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CHARACTERIZATIONS AND DECOMPOSITIONS OF ALMOST
STRICTLY POSITIVE MATRICES∗

M. GASCA† AND J. M. PEÑA†

Abstract. A nonsingular matrix is called almost strictly totally positive when all its minors
are nonnegative, and furthermore these minors are positive if and only if their diagonal entries are
positive. In this paper we give a characterization of these matrices in terms of the positivity of
a very reduced number of their minors (which are called boundary minors), improving previous
characterizations that have appeared in the literature. We show the role of boundary minors in
accurate computations with almost strictly totally positive matrices. Moreover, we analyze the QR
factorization of these matrices, showing the differences and analogies with that of totally positive
matrices.
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1. Introduction and basic notation. Matrices with all minors nonnegative (in
particular, all positive) have attracted much interest in several branches of mathemat-
ics and their applications, including computer aided geometric design, combinatorics,
and economics. Unfortunately there is not an agreement to use a unified terminology
for them. On one hand, the American school, following Schoenberg and especially
Karlin and his book [16] Total Positivity, used to call totally positive matrices those
matrices with all minors nonnegative and strictly totally positive matrices the ones
with all minors positive. Many authors, including Ando, de Boor, and Pinkus, have
followed these names in the second half of the last century, and so have we in our
papers on this subject. On the other hand, the German school used the terms “totally
nonnegative” and “totally positive” matrices instead of the above ones, respectively.
These last terms have become more accepted in the recent literature. Due to all of
this, the term “totally positive matrix” has become ambiguous because it is used in
two slightly (but significantly) different senses.

As we have said above, in the last decade we have used Karlin’s terminology in
our papers, and so it would be even more confusing to change to the other termi-
nology in the present paper because, as we explain below, it improves some of our
previous results and we make frequent references to these results. Consequently, in
this paper, we continue calling totally positive (TP) matrices those matrices with all
minors nonnegative and strictly totally positive (STP) matrices those with all minors
positive and hope this will cause no confusion to the reader. In any case, it would be
good to unify terminology in the future.

For some important applications, for example, B-splines [2], interpolation [4],
Hurwitz matrices [7, 17], or interval mathematics [8], the most important class of
TP matrices is that which we called in [9] almost strictly totally positive matrices
(referred to as ASTP matrices in the rest of this paper). This class is formed by TP
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matrices whose minors are positive if and only if they do not contain a zero element
in the diagonal. This class is intermediate between TP and STP matrices. The most
interesting ASTP matrices are the nonsingular ones, and therefore, in the rest of
the paper, we deal with these matrices. They have been called in [15] inner totally
positive matrices. Matrices called in some papers [1] Δ-STP matrices are examples of
triangular ASTP matrices.

From the beginning of the study of TP matrices it has been known that it is
not necessary to check the sign of all minors of a matrix to decide whether or not it
is totally positive and analogously for strict total positivity. Some of our efforts in
the last decade have been devoted to getting criteria which decrease the number of
minors to be checked and other characterizations in terms of bidiagonal factorizations
[10, 11, 12, 14]. So we did this with ASTP matrices too. The nonzero pattern of these
matrices [9, 13, 15] always has a staircase form. Roughly speaking (it will be explained
more precisely in section 2) we proved [13, Theorem 3.1] that for a nonnegative matrix
to be nonsingular ASTP we have to check only that minors formed with consecutive
rows and columns, with the first row or column of the minor being the first row or
column of a stair (of the nonzero pattern), are nonnegative and that they are positive
if and only if the diagonal entries of the minor are all positive. These minors form a
subclass of those called in [15, Theorem 2.1] inner minors with consecutive rows and
columns, which are the minors to be checked in that paper. See also Theorem 3.1
of [9].

In this paper we improve our characterization of nonsingular ASTP matrices
of [13] in the sense that the number of minors to be checked can be decreased. We
introduce in section 2 the concept of boundary minor, which has special interest in
matrices with staircase nonzero pattern, and prove that only these minors should be
checked. Since they are a subclass of the ones used in [13], we decrease considerably
the number with respect to [9, 15]. Moreover, we show how boundary minors can
play a role in accurate computations with nonsingular ASTP matrices.

In the process of proving these results we have realized that in Theorem 3.1 of [13]
the assumption of nonnegativity of the matrix can be suppressed: it is a consequence
of any of the two equivalent properties of the theorem. So we have taken into account
this fact in Theorem 2.4 of section 2 which is the new, improved version of that
theorem.

After getting some results on the LU factorization of TP matrices we studied their
QR factorization in [11]. In [13] we provided a bidiagonal factorization of nonsingular
ASTP matrices and also the result that a nonsingular matrix A is ASTP if and only
if it can be factorized LU with L and U ASTP matrices. It seems natural to study
now the QR factorization of ASTP matrices to know if it has some peculiarities with
respect to the general class of TP matrices. In section 3 we show the differences and
analogies of the QR factorization of nonsingular ASTP matrices with respect to that
of nonsingular TP and STP matrices. Boundary minors play again a crucial role in
the proofs of that section.

2. Boundary submatrices of ASTP matrices. For k, n positive integers,
1 ≤ k ≤ n, Qk,n will denote the set of all increasing sequences of k natural numbers
less than or equal to n. For α = (α1, α2, . . . , αk), β = (β1, β2, . . . , βk) ∈ Qk,n, and A
an n× n real matrix, we denote by A[α|β] the k × k submatrix of A containing rows
α1, . . . , αk and columns β1, . . . , βk of A. Q0

k,n will denote the set of sequences of k
consecutive natural numbers less than or equal to n.

By the shadow lemma (see [3, Lemma A]), a nonsingular ASTP matrix A =
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(aij)1≤i,j≤n satisfies

aij = 0, i > j ⇒ ahk = 0 ∀h ≥ i, k ≤ j,

aij = 0, i < j ⇒ ahk = 0 ∀h ≤ i, k ≥ j.
(2.1)

Moreover, it cannot have zero diagonal entries due to its nonsingularity (cf. [1, Corol-
lary 3.8]):

aii �= 0, i = 1, . . . , n.(2.2)

Properties (2.1) and (2.2) produce a staircase form for the zero pattern of A, which
will be made precise in the following notation, as in [13].

For an n× n matrix A let us denote

i0 = 1, j0 = 1;

for t = 1, . . . , l :

it = max{i|ai,jt−1 �= 0} + 1 (≤ n + 1),

jt = max{j|ait,j = 0} + 1 (≤ n + 1),

where l is given in this recurrent definition by il = n + 1. Analogously we denote

ĵ0 = 1, î0 = 1;

for t = 1, . . . , r :

ĵt = max{j|aît−1,j
�= 0} + 1,

ît = max{i|ai,ĵt = 0} + 1,

where ĵr = n + 1. In other words, the entries below the places (i1 − 1, j) with
j0 ≤ j < j1, (i2 − 1, j) with j1 ≤ j < j2, . . . , (il−1 − 1, j) with jl−2 ≤ j < jl−1 are
zero. So are the entries to the right of the places (i, ĵ1 − 1) with î0 ≤ i < î1, (i, ĵ2 − 1)
with î1 ≤ i < î2, . . . , (i, ĵr−1 − 1) with îr−2 ≤ i < îr−1.

When the matrix A is nonsingular ASTP, by (2.1), the remaining elements of A
are nonzero. We shall express this by saying that the matrix A has a zero pattern given
by I = {i0, i1, . . . , il}, J = {j0, j1, . . . , jl}, Î = {̂i0, î1, . . . , îr}, and Ĵ = {ĵ0, ĵ1, . . . , ĵr}.
Only matrices with these patterns of zeros and all the other entries positive can be
nonsingular ASTP.

Observe that, for a nonsingular ASTP matrix, by (2.2) we have necessarily

it ≥ jt, t = 1, . . . , l − 1,

ĵt ≥ ît, t = 1, . . . , r − 1.
(2.3)

In formula (3.2) of [13], the previous inequalities appeared strict, but in fact the
equalities can also appear.

Remark 2.1. Given any matrix A = (aij)1≤i,j≤n, it is easy to deduce that the
following properties are equivalent:

(i) A satisfies (2.1) and (2.2).
(ii) A has a zero pattern given by I, J, Î, Ĵ as above satisfying (2.3).
The submatrices introduced in the following definition are relevant in the context

of matrices with a staircase zero pattern and will play a key role in this paper.
Definition 2.2. Given an n×n matrix A, let B := A[α|β] with α, β ∈ Q0

k,n and
aα1,β1

· · · aαk,βk
�= 0. Then B is a column boundary submatrix if either β1 = 1 or
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β1 > 1 and A[α|β1 − 1] = 0. Analogously, B is a row boundary submatrix if either
α1 = 1 or α1 > 1 and A[α1 − 1|β] = 0.

Minors corresponding to column or row boundary submatrices are called, respec-
tively, column or row boundary minors.

Remark 2.3. Using staircase notation, we can easily identify the boundary subma-
trices for matrices satisfying the zero pattern described above. Let A = (aij)1≤i,j≤n be

an n×n matrix with a zero pattern given by I, J, Î, Ĵ satisfying (2.3). Let B := A[α|β]
with α, β ∈ Q0

k,n and aα1,β1 · · · aαk,βk
�= 0. Then B is a column boundary submatrix

if there exists k ≥ 1 such that β1 = jk and α1 ≥ ik. B is a row boundary submatrix
if there exists k ≥ 1 such that α1 = ĵk and β1 ≥ îk. The leading principal minors of
A are column and row boundary minors of it.

Let us consider an example of a 5 × 5 matrix A with l = 2, r = 1, {i0, i1, i2} =
{1, 4, 6}, {j0, j1, j2} = {1, 3, 6}, {ĵ0, ĵ1} = {1, 6}, and {̂i0, î1} = {1, 6}. Entries repre-
sented by the symbol * are nonzero. The row boundary minors of the matrix

A =

⎛
⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎠

(2.4)

are the minors using initial consecutive rows and consecutive columns. The column
boundary minors of A are its leading principal minors, the entries a21, a31, a43, a53,
the minors

detA[2, 3|1, 2], detA[4, 5|3, 4],(2.5)

and the following minors which can be obtained from the previous ones: the minor
detA[2, 3, 4|1, 2, 3] (which is equal to a43 detA[2, 3|1, 2]) and detA[2, 3, 4, 5|1, 2, 3, 4]
(which coincides with detA[2, 3|1, 2] detA[4, 5|3, 4]).

Now we shall prove that, for a matrix A, being nonsingular ASTP depends only on
the sign of the boundary minors, improving the characterization of Theorem 3.1 of [13].
In addition, as said in section 1, we point out that the hypothesis of nonnegativity of
A used in that theorem is not necessary because it is a consequence of any of the two
equivalent properties of the theorem.

Theorem 2.4. Let A = (aij)1≤i,j≤n be a real matrix satisfying (2.1) and (2.2).
Then the following properties are equivalent:

(i) A is a nonsingular ASTP matrix.
(ii) All boundary minors of A are positive.
Proof. By definition of nonsingular ASTP matrices, (i) implies (ii). For the

converse, take into account that, by definition, A is a (trivial) boundary submatrix
of itself, and consequently it is nonsingular. Now, the arguments of the proof of the
converse part of Theorem 3.1 of [13] can be applied. Let us sketch the main points
of that proof. It consists of showing that the Neville elimination of A and AT can be
performed without row or column exchanges and with nonnegative pivots which are
zero if and only if they lie in the zero pattern of A, which by Remark 2.1 is given by
I, J, Î, Ĵ as above. If we take a column j with jt−1 ≤ j < jt, the crucial point of the
proof of Theorem 3.1 of [13] is to show the positivity of the quotients

detA[i− j + jk, . . . , i− 1, i|jk, . . . , j − 1, j]

detA[i− j + jk, . . . , i− 1|jk, . . . , j − 1]
, i = j, j + 1, . . . , it − 1,(2.6)
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where

jk = max{js ≤ j|0 ≤ s ≤ t− 1, j − js ≤ i− is}.(2.7)

In fact, in that proof it is shown that the numerator and denominator of (2.6) are
positive. Observe that for j = jt−1 and i = it−1, . . . , it − 1 we have jk = jt−1, and
the quotient above becomes simply aij . Let us also point out that, by (2.3), in (2.6)
one has it ≥ jt.

Coming back to our present theorem, the same arguments lead us to consider the
quotients (2.6). Now, taking into account that, by (2.7), j − jk ≤ i− ik, we have

i− j + jk = i− (j − jk) ≥ i− (i− ik) = ik.

So, the submatrices of the numerator and denominator of (2.6) are of the form A[α|β]
with α, β ∈ Q0

k,n, β1 = jk, and α1 ≥ ik, and, consequently, they are column boundary
submatrices by Remark 2.3. Then (ii) implies that these minors are positive and the
arguments of Theorem 3.1 of [13] to prove their positivity are not needed.

Since similar reasoning can be applied to AT , the positivity of the row boundary
minors is also involved.

In summary, the proof of Theorem 3.1 of [13] has been simplified, pointing out
that the positivity of all boundary minors of A implies that A is a nonsingular ASTP
matrix.

If we apply the previous theorem to the matrix A of (2.4) in order to know
if it is nonsingular ASTP, we have to check the positivity of the minors using ini-
tial consecutive rows and consecutive columns (row boundary minors), the elements
a21, a31, a43, a53, and the two minors given by (2.5). If we apply Theorem 3.1 of [13],
we should also check, in addition to all the above minors, the positivity of the entries
a13, a23, a33 and of the following four minors:

detA[2, 3|3, 4], detA[3, 4], detA[2, 3, 4|3, 4, 5], detA[3, 4, 5].

Finally, if we apply the characterization given in [15, Theorem 2.1] and [9], we
should check the positivity of the remaining nonzero entries of A and of the fol-
lowing six minors, in addition to all of the previous ones: detA[2, 3], detA[2, 3, 4],
detA[2, 3, 4, 5|2, 3, 4, 5], detA[2, 3|4, 5], detA[3, 4|4, 5], detA[4, 5]. In larger matrices,
the differences in the number of minors to be checked easily increase.

Given an algebraic expression defined by additions, subtractions, multiplications,
and divisions and assuming that each initial real datum is known to high relative
accuracy (see p. 52 of [5]), then it is well known that the algebraic expression can be
computed accurately if it is defined by sums of numbers of the same sign, products,
and quotients. In other words, the only “forbidden” operation is true subtraction, due
to possible cancellation in leading digits. From now on, we will use the word accurately
to mean to high relative accuracy. Let us recall that a nonsingular TP matrix admits
a unique factorization as a product of nonnegative bidiagonal, unit diagonal matrices
and a diagonal matrix (see [12] or [14]). This factorization has been called recently in
[6] and [18] bidiagonal decomposition of A and is denoted by BD(A). Moreover, the
property of A being nonsingular ASTP or not can be decided by BD(A) as can be
seen in Theorem 4.1 of [13].

In [18] it is shown that an accurate bidiagonal decomposition of a nonsingular
TP matrix A allows us to determine its eigenvalues and singular value decomposition
to high relative accuracy. The following result proves that the accurate computation
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of the boundary minors of A guarantees an accurate bidiagonal decomposition of a
nonsingular ASTP matrix A. For the sake of brevity, we refer to [12] and [14] instead
of introducing all notation related to Neville elimination.

Proposition 2.5. Let A be a nonsingular ASTP matrix. If we are able to com-
pute all boundary minors of A accurately, then we can compute an accurate BD(A).

Proof. As can be seen in [12] or in section 2 of [14], the diagonal entries of the
diagonal factor of BD(A) are the diagonal pivots of the Neville elimination of A. The
nonzero off-diagonal entries of the bidiagonal factors of BD(A) are the multipliers of
the Neville elimination of A or of AT (see p. 116 of [14]) and, by formula (2.7) of [12],
they are quotients of pivots of the Neville elimination of A or AT . Since the pivots of
the Neville elimination of A are given by (2.6) (see (2.3) of [12]), they are quotients of
column boundary minors of A, and, analogously, the pivots of the Neville elimination
of AT are quotients of row boundary minors of A. Then we conclude that all pivots
and multipliers can be computed accurately and the result follows.

3. QR factorization of nonsingular ASTP matrices. In [11], nonsingular
TP matrices and STP matrices were characterized in terms of their QR factorization.
Now we are going to study that factorization for nonsingular ASTP matrices and
show its peculiarity with respect to the other classes.

In this section, L (resp., U) represents a lower (upper) triangular, unit diagonal
matrix, and D represents a diagonal matrix. Let us recall that, by Corollary 4.2 of [13],
a nonsingular matrix A is ASTP if and only if it can be factorized as A = LDU with
L,U ASTP matrices and D a diagonal matrix with positive diagonal entries. Now we
define a new class of matrices containing ASTP matrices.

Definition 3.1. A nonsingular matrix A is said to be lowerly ASTP if it can be
decomposed in the form A = LDU and LD is ASTP.

The following proposition characterizes lowerly ASTP matrices.

Proposition 3.2. An n × n matrix A is lowerly ASTP if and only if all its
column boundary minors are positive.

Proof. If A is lowerly ASTP, then A can be factorized as A = LDU with LD
ASTP. Hence, all column boundary minors of LD are positive. Since U is an upper
triangular matrix with unit diagonal, it is easy to see that rows and columns involved
in the column boundary submatrices of A are the same as those of the column bound-
ary submatrices of LD and that the column boundary minors of A have the same
value as the corresponding column boundary minors of LD. So, all column boundary
minors of A are positive.

For the converse, if all column boundary minors of A are positive, in particular,
the leading principal minors of A are positive. So A can be decomposed as A = LDU .
Again the column boundary minors of LD have the same value as those of A, and
so they are positive. The row boundary minors of the lower triangular matrix LD
are principal minors of LD using consecutive rows and columns, that is, of the form
(LD)[k, k + 1, . . . , k + r] (1 ≤ k ≤ n, 0 ≤ r ≤ n − k). Using Schur complements, we
have

det(LD)[k, k + 1, . . . , k + r] =
detA[1, 2, . . . , k + r]

detA[1, 2, . . . , k]
.(3.1)

Since the numerator and the denominator of (3.1) are column boundary minors of
A, they are positive, and so the row boundary minors of LD are positive. Then, by
Theorem 2.4, LD is ASTP and A is lowerly ASTP.
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The following definition will be used in the QR decomposition of nonsingular
ASTP matrices.

Definition 3.3. A nonsingular matrix A is said to be an almost strict γ-matrix
if it is lowerly ASTP and, in the factorization A = LDU , U−1 is ASTP.

Proposition 3.4. If A and (AT )−1 are lowerly ASTP, then A is an almost
strict γ-matrix.

Proof. The proof is completely analogous to that of Proposition 4.6 of [11]. The
only difference is that, in the factorization A = LDU , in order to see that the upper
triangular matrix (UT )−1 is ASTP, we have to use the same reasoning as in the
proof of the converse of Proposition 3.2 to show the almost strict total positivity
of LD.

The following theorem characterizes ASTP matrices by means of their QR de-
compositions. This characterization is slightly different from those of nonsingular TP
matrices and STP matrices given in Theorem 4.7 of [11], as we shall explain later.

Theorem 3.5. Let A be a nonsingular matrix. Then A is ASTP if and only if
there exist two orthogonal almost strict γ-matrices Q1, Q2 and two nonsingular, upper
triangular TP matrices R1, R2, such that

A = Q1R1, AT = Q2R2.(3.2)

The proof is analogous to that of Theorem 4.7 of [11], replacing TP by ASTP
until the step when we use that the product of TP matrices ATA is also TP, because
the product of ASTP matrices is not necessarily ASTP. So, the reasoning leading to
the total positivity of R1 (R2) in the proof of Theorem 4.7 of [11] does not lead to
the almost strict total positivity of them but only to their total positivity.

In fact, the following counterexample shows that in the above theorem we cannot
replace the total positivity of R1, R2 by almost strict total positivity. The ASTP
matrix

A =

⎛
⎝

1 0 0
1 1 1
0 0 1

⎞
⎠

can be decomposed as A = Q1R1, where

Q1 =

⎛
⎝

1/
√

2 −1/
√

2 0

1/
√

2 1/
√

2 0
0 0 1

⎞
⎠ , R1 =

⎛
⎝
√

2 1/
√

2 1/
√

2

0 1/
√

2 1/
√

2
0 0 1

⎞
⎠ .

The matrix R1 is TP but not ASTP due to the minor detR1[1, 2|2, 3] = 0 in spite of the
positivity of its diagonal elements. The essential uniqueness of the QR factorization
implies that it is not possible to decompose A = QR with Q orthogonal and R ASTP.
Moreover, ATA illustrates that the property of being ASTP is not inherited under the
product of matrices. In fact, ATA is not ASTP due to the minor det(ATA)[1, 2|2, 3],
which is zero and has positive diagonal elements.

Finally, let us recall that, in the particular case of A being STP, Theorem 4.7
of [11] shows that Q1 and Q2 are strict γ-matrices and R1 and R2 are Δ-STP matrices.

In summary, a matrix A is STP or nonsingular ASTP or nonsingular TP if and
only if A and AT can be decomposed as in (3.2) with Q1, Q2 orthogonal and R1, R2
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nonsingular upper triangular, according to the following table.

A Q1, Q2 R1, R2

STP strict γ-matrices Δ-STP
nonsingular ASTP almost strict γ-matrices TP
nonsingular TP γ-matrices TP
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1. Background and notation. It is well known that projectors and their gener-
alizations [10] have been widely used in different mathematical areas and applications.
Moreover, applications to statistics [1], [2], [3], [13] reveal the importance of oblique
projectors as well as their applications for developing the theory of perturbations of
generalized inverses [7], [8], [16] and for studying iterative numerical methods [12]. In
[14] and [15] the problem of characterizing {k}-potent matrices was studied from the
viewpoint of sign-patterns.

The symbol C
m×n is used to denote the set of m × n complex matrices. The

transpose and the conjugate transpose of A ∈ C
m×n are, respectively, denoted by AT

and A∗, and, if m = n, the spectrum of A (i.e., the set of all the eigenvalues of A) is
denoted by σ(A). We denote the direct sum of A and B by A ⊕ B. Moreover, for a
scalar α ∈ C and a set S, we denote by αS the set of all elements αs, where s ∈ S.

For a given matrix A ∈ C
n×n, a matrix X ∈ C

n×n satisfying AXA = A, XAX =
X, and AX = XA is a group inverse of A. It is well known that the group inverse
exists if and only if A and A2 have the same rank, and that if it exists, then it is unique
[4]. It is customary to denote the group inverse of A by A#. It is also well known [6]
that the group inverse of a matrix A ∈ C

n×n can be represented as a polynomial in
A, whenever it exists. A natural question is, When can the matrix A# be represented
as a monomial in A? Fix k ≥ 2. A matrix A ∈ C

n×n satisfying A# = Ak−1 is called a
{k}-group periodic matrix. A characterization of this kind of matrix [5] is A# = Ak−1

if and only if Ak+1 = A for k = 2, 3, . . . . We denote the set of all {k}-group periodic
matrices by

Gn(k) := {A ∈ C
n×n : Ak+1 = A}, k = 1, 2, 3, . . . .

Let Ωk denote the set of roots of unity of order k. We recall that if ωk :=
exp(2πi/k), then Ωk = {ω0

k, ω
1
k, . . . , ω

k−1
k }.

In the study presented here, we consider only natural powers of matrices. The
notation r|k indicates that r divides to k, and the greatest common divisor and least
common multiple of r and s are denoted by gcd(r, s) and lcm(r, s), respectively.
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Throughout this paper it is assumed that c1 and c2 are nonzero elements of C

and P1, P2 are nonzero different projectors of the same order over the field C, that
is, P1, P2 ∈ C

n×n \ {O} and P 2
1 = P1 �= P2 = P 2

2 . Idempotent matrices A ∈ C
n×n

are also called (oblique) projectors, and if A is a Hermitian matrix (i.e., A∗ = A), it
is called an orthogonal projector.

In this paper we first obtain some characterizations of {k}-group periodic matrices
and later study the problem of finding linear combinations of projectors that are {k}-
group periodic matrices; that is, we will describe the set

S(P1, P2, k) := {(c1, c2) ∈ C
2 : (c1P1 + c2P2)

k+1 = c1P1 + c2P2},

k = 1, 2, 3, . . . .

The obtained results here extend the results in [2] and [9]. The technique used for
solving these particular cases (k = 1 in [2] and k = 2 in [9]) is tedious for k ≥ 3, and
we introduce a new technique for the general case solved here.

This paper is organized as follows. Section 2 gives some algebraic characteriza-
tions of the set Gn(k) and also some geometrical and topological aspects. Section 3
provides all the elements of the set S(P1, P2, k) for the case P1P2 = P2P1 by means
of simultaneous diagonalization of projectors P1 and P2. Section 4 describes the set
S(P1, P2, k) for the case P1P2 �= P2P1, splitting this study into two cases: if k is not
a multiple of 6 and if k is a multiple of 6.

Next, we quote some known definitions and results for further references.

A commuting family F ⊂ C
n×n is an arbitrary (finite or infinite) set of matrices

in which each pair in the set commutes under multiplication. A family of projectors
{Aα}α∈A is said to be disjoint if AαAβ = O for all α, β ∈ A and α �= β.

Theorem 1.1 (see Thm. 1.3.19 of [11]). Let F ⊂ C
n×n be a family of diagonal-

izable matrices. Then F is a commuting family if and only if there is a nonsingular
matrix S ∈ C

n×n such that S−1AS is diagonal for every A ∈ F.

Theorem 1.2 (see Thm. 6.31 of [11]). Let A ∈ C
n×n be diagonalizable with

A = SDS−1 and D = diag(λ1, . . . , λn). Let E ∈ C
n×n. If λ̂ is an eigenvalue of

A+E, then there is some eigenvalue λi of A for which |λ̂−λi| ≤ k∞(S)‖E‖∞, where
k∞ denotes the condition number with respect to the matrix norm ‖ · ‖∞.

2. Characterizations of {k}-group periodic matrices. We start this section
by giving a canonical form of the {k}-group periodic matrices.

Theorem 2.1. Let A ∈ C
n×n. The following statements are equivalent:

1. Ak+1 = A (i.e., A is a {k}-group periodic matrix).

2. There are disjoint projectors A0, . . . , Ak−1 with A =
∑k−1

j=0 ωj
kAj.

3. A is diagonalizable, and σ(A) ⊆ {0} ∪ Ωk.

Moreover, if the above conditions hold, then the following are true:

1. The decomposition A =
∑k−1

j=0 ωj
kAj is unique in the following sense: If

A =
∑m

i=1 λiBi =
∑m′

j=1 μjCj, where λ1, . . . , λm and μ1, . . . , μm′ are nonzero
complex numbers such that i �= j implies λi �= λj and μi �= μj, and {Bi}mi=1,

{Cj}m
′

j=1 are two families of nonzero disjoint projectors, then m = m′ and
there exists a permutation σ : {1, . . . ,m} → {1, . . . ,m′} such that λi = μσ(i)

and Bi = Cσ(i) for i = 1, 2, . . . ,m.

2. For j = 0, 1, . . . , k − 1, the scalar ωj
k is an eigenvalue of A if and only if

Aj �= O.
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Proof. We shall prove the implications 1 ⇒ 3 ⇒ 2 ⇒ 1 and later the uniqueness.
In fact, we have the following:

1 ⇒ 3. From Ak+1 = A, the polynomial q(t) = tk+1−t is a multiple of the minimal
polynomial qA(t) of A, and then every root of qA(t) has multiplicity 1. Hence A is
diagonalizable by Corollary 3.3.10 in [11]. Moreover, it is clear that σ(A) ⊆ {0}∪Ωk.

3 ⇒ 2. By the spectral theorem (see, for example, [4]), the decomposition in
condition 2 can be easily obtained. In the case that ωj

k /∈ σ(A) for j ∈ {0, 1, . . . , k−1}
we take Aj = O.

2 ⇒ 1. Since the family is commuting, An =
∑k−1

j=0 ωnj
k Aj .

In order to prove the uniqueness, we suppose

m∑
i=1

λiBi =

m′∑
j=1

μjCj(2.1)

and without loss of generality m ≤ m′ (if m′ < m, it is sufficient to change m by
m′). Choose r ∈ {1, . . . ,m} and s ∈ {1, . . . ,m′}. Premultiplying (2.1) by Br and
postmultiplying (2.1) by Cs we get λrBrCs = μsBrCs and if λr �= μs, then BrCs = O.
Premultiplying (2.1) again by B1, we obtain

λ1B1 =

m′∑
j=1

μjB1Cj .(2.2)

Since λ1B1 �= O and μ1, . . . , μm′ are different, there exists only one j ∈ {1, . . . ,m′}
such that μj = λ1. Set σ(1) := j. From (2.2) we get λ1B1 = μσ(1)B1Cσ(1) and thus

B1 = B1Cσ(1).(2.3)

Postmultiplying (2.1) by Cσ(1), we obtain that B1Cσ(1) = Cσ(1), that (2.3) yields
B1 = Cσ(1), and from (2.1) that the equality

m∑
i=2

λiBi =
∑

j �=σ(1)

μjCj

holds. Similarly, there exists σ(2) ∈ {1, . . . ,m′} \ {σ(1)} such that λ2 = μσ(2) and
B2 = Cσ(2). Following in the same way, an injective function σ : {1, . . . ,m} →
{1, . . . ,m′} satisfying λi = μσ(i) and Bi = Cσ(i) for i = 1, . . . ,m can be constructed.
Let us prove that m = m′. Because of m ≤ m′, if we suppose m < m′, the equality

∑
j /∈{σ(1),...,σ(m)}

μjCj = O

follows from (2.1). By choosing s ∈ {1, . . . ,m′}\{σ(1), . . . , σ(m)} and postmultiplying
the last equality by Cs, we obtain μsCs = O, which is a contradiction. This concludes
the proof.

A useful fact is that a tripotent matrix (i.e., A3 = A) can uniquely be decomposed
as a difference of two disjoint projectors [13]. This property can be immediately
derived as a simple consequence from Theorem 2.1.
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Two important particular cases of Theorem 2.1 are considered in the following
results.

Corollary 2.2. Let A ∈ C
n×n be a {k}-group periodic matrix.

1. If A is a Hermitian matrix, then A3 = A when A is even and A2 = A when
k is odd.

2. If A is a skew-Hermitian matrix, then A = O when k is not a multiple of 4
and A3 = −A when k is a multiple of 4.

Proof. Since normal matrices are diagonalizable, in both cases A is diagonalizable.

1. Since A is Hermitian, σ(A) ⊂ R and because A is a {k}-group periodic matrix,
σ(A) ⊆ {0} ∪ Ωk by Theorem 2.1. Hence σ(A) ⊆ ({0} ∪ Ωk) ∩ R. If k is even, then
({0} ∪ Ωk) ∩ R = {0, 1,−1} = {0} ∪ Ω2. Now, from Theorem 2.1, we obtain A3 = A.
The argument when k is odd is similar.

2. Since A is skew-Hermitian, σ(A) ⊂ iR. As before, σ(A) ⊆ ({0} ∪ Ωk) ∩ iR by
Theorem 2.1. If k is not a multiple of 4, then ({0}∪Ωk)∩ iR = {0} and hence A = O.
If 4|k, then ({0} ∪ Ωk) ∩ iR = {0, i,−i} and hence A3 + A = O.

Corollary 2.3. Let A ∈ C
n×n be Hermitian or skew-Hermitian. If A =∑m

i=1 λiAi is the spectral decomposition obtained in Theorem 2.1, then every Ai is
an orthogonal projector.

Proof. If A is Hermitian, then σ(A) ⊂ R. By the decomposition of A in Theorem
2.1, one has

A = A∗ =

(
m∑
i=1

λiAi

)∗

=

m∑
i=1

λiA
∗
i =

m∑
i=1

λiA
∗
i .

The uniqueness of the representation permits us to conclude that Ai = A∗
i holds for

i = 1, . . . ,m. If A is skew-Hermitian, then σ(A) ⊂ iR. A similar argument as before
is also valid for this case.

It is known [10] that the class of projectors is the intersection of the class of
tripotent (A3 = A) and the class of quadripotent (A4 = A) matrices. The next
theorem extends this result and gives some geometrical and topological aspects of the
set Gn(k) for an arbitrary k ∈ N. We recall that Gn(k) := {M ∈ C

n×n : Mk+1 = M}.
Theorem 2.4. Let r, s, k ∈ N. Then

1. r|k if and only if Gn(r) ⊆ Gn(k);
2. Gn(r) ∩ Gn(s) = Gn(gcd(r, s));
3. if ω ∈ Ωr, then ωGn(r) = Gn(r);
4. if r|k, then Gn(r) is closed and open in Gn(k).

Proof. 1. If r|k, then Ωr ⊆ Ωk. If M ∈ Gn(r), by Theorem 2.1, M is diagonalizable
and σ(M) ⊆ {0} ∪ Ωr ⊆ {0} ∪ Ωk, and hence M ∈ Gn(k).

Conversely, since ωrI ∈ Gn(r) ⊆ Gn(k), then 1 = ωk
r = exp(2πki/r) and from this

last equality we get k|r ∈ N.

2. From elementary algebra, it is known that Ωr ∩ Ωs = Ωgcd(r,s). Now the
assertion follows from Theorem 2.1.

3. It is obvious.

4. The first item implies that Gn(r) ⊆ Gn(k). Let us prove that Gn(r) is a closed
and open subset of Gn(k).

The function f : Gn(k) → C
n×n given by f(M) := Mr+1 − M is continuous.

Since Gn(r) = f−1({O}), then Gn(r) is a closed subset of Gn(k).
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Let

ε := min{|z − w| : z �= w, z, w ∈ {0} ∪ Ωk} > 0.

If Gn(r) were not an open subset of Gn(k), then there would exist M ∈ Gn(r) and
(Mi)

∞
i=1 ⊂ Gn(k) \ Gn(r) such that limi→∞ Mi = M . Since Mi /∈ Gn(r) for i ∈ N,

there exists λi ∈ σ(Mi) \ ({0} ∪ Ωr) and now we can apply Theorem 1.2 because
M is diagonalizable. Let S nonsingular and D diagonal be two matrices such that
M = SDS−1. If Ei := Mi −M , there exists an eigenvalue μi of M such that

|λi − μi| ≤ k∞(S)‖Ei‖ = k∞(S)‖Mi −M‖.(2.4)

Choose i ∈ N such that ‖M − Mi‖ ≤ ε/k∞(S). From this inequality and (2.4) it
follows that |λi−μi| < ε. Since λi, μi ∈ {0}∪Ωk (because λi and μi are eigenvalues of
two {k}-group periodic matrices), by definition of ε, we get λi = μi. Since M ∈ Gn(r),
then μi ∈ {0} ∪ Ωr. This contradicts λi /∈ {0} ∪ Ωr.

Theorem 2.4 gives some information about S(P1, P2, k). Recall that

S(P1, P2, k) := {(c1, c2) ∈ C
2 : (c1P1 + c2P2)

k+1 = c1P1 + c2P2}.

The first item of this theorem implies that each element of S(P1, P2, r) is also an el-
ement of S(P1, P2, k) for each divisor r of k. The second item describes the common
elements of S(P1, P2, k) and S(P1, P2, s) by means of the greatest common divisor
of r and s. The third assertion implies that the subset S(P1, P2, r) is invariant un-
der rotations about the origin through an angle 2π/r. The last item assures that
S(P1, P2, r) is the union of connected components of S(P1, P2, k). In fact, if we define
f : S(P1, P2, k) → Gn(k) given by f(c1, c2) := c1P1+c2P2, then, since Gn(r) is a closed
and open subset of Gn(k), the continuity of f implies that S(P1, P2, r) = f−1(Gn(r))
is a closed and open subset of S(P1, P2, k); i.e., S(P1, P2, r) is the union of connected
components of S(P1, P2, k).

We close this section with a characterization of {k}-group periodic matrices in-
volving a rank factorization.

Theorem 2.5. Let A ∈ C
n×n, and consider a rank factorization A = FG of A

(that is, F ∈ C
n×r, G ∈ C

r×n, and r = rank(A) = rank(F ) = rank(G)). Then A is
a {k}-group periodic matrix if and only if (GF )k = I.

Proof. Assume that A is {k}-group periodic. Then Ak+1 = A. Since rank(F ) =
rank(G) = r, there exist two matrices F (1) ∈ C

r×n and G(1) ∈ C
n×r such that

F (1)F = I and GG(1) = I [4]. Premultiplying and postmultiplying the equality
Ak+1 = A by F (1) and G(1), respectively, and using that A = FG, we get (GF )k = I.

The other implication follows from Ak+1 = F (GF )kG = FG = A.
Setting k = 2 in Theorem 2.5, we recover Theorem 2 in [4, p. 163] as a simple

consequence.

3. Elements of S(P1, P2, k): Commutative case. This section describes, in
an explicit manner, the elements (c1, c2) of S(P1, P2, k) whenever P1P2 = P2P1, with
P1 �= P2 and c1, c2 ∈ C \ {0}.

Theorem 3.1. Let P1 and P2 be two nonzero idempotent matrices. If P1P2 =
P2P1 and P1 �= P2, then (c1, c2) ∈ S(P1, P2, k) if and only if at least one of the
following conditions holds:

1. c1 ∈ Ωk and c1 + c2 = 0.
(a) k is even and P1 and P2 are arbitrary projectors.
(b) k is odd and P1P2 = P2.
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2. c1 ∈ Ωk and c1 + c2 ∈ Ωk.
(a) c2 ∈ Ωk and P1 and P2 are arbitrary projectors.
(b) c2 /∈ Ωk and P1P2 = P2.

3. c1 ∈ Ωk and c2 ∈ Ωk.
(a) c1 + c2 ∈ {0} ∪ Ωk and P1 and P2 are arbitrary projectors.
(b) c1 + c2 /∈ {0} ∪ Ωk and P1P2 = O.

4. c2 ∈ Ωk and c1 + c2 = 0.
(a) k is even and P1 and P2 are arbitrary projectors.
(b) k is odd and P1P2 = P1.

5. c2 ∈ Ωk and c1 + c2 ∈ Ωk.
(a) c1 ∈ Ωk and P1 and P2 are arbitrary projectors.
(b) c1 /∈ Ωk and P1P2 = P1.

Proof. Since P1P2 = P2P1 and P1, P2 are diagonalizable matrices, by Theorem 1.1
there exist a nonsingular matrix S and two diagonal matrices D1 = diag(λ11, . . . , λ1n)
and D2 = diag(λ21, . . . , λ2n) such that Pi = SDiS

−1 for i = 1, 2. Since λij are
eigenvalues of projectors, λij ∈ {0, 1} for i = 1, 2 and j = 1, . . . , n. Suppose that
(c1P1 + c2P2)

k+1 = c1P1 + c2P2. Since c1P1 + c2P2 = S(c1D1 + c2D2)S
−1 and

(c1P1 + c2P2)
k+1 = S(c1D1 + c2D2)

k+1S−1, then (c1D1 + c2D2)
k+1 = c1D1 + c2D2.

Since Di = diag(λi1, . . . , λin), then (c1λ1j+c2λ2j)
k+1 = c1λ1j+c2λ2j for j = 1, . . . , n.

Hence

c1λ1j + c2λ2j ∈ {0} ∪ Ωk for j = 1, . . . , n.(3.1)

If λ1j = λ2j for j ∈ {1, . . . , n}, then D1 = D2, and hence P1 = P2, which is a
contradiction. Thus, there exists r ∈ {1, . . . , n} such that λ1r �= λ2r. Since λ1r, λ2r ∈
{0, 1}, there are only two possibilities:

λ1r = 1, λ2r = 0 or λ1r = 0, λ2r = 1.(3.2)

Using the first possibility and (3.1) we get c1 ∈ {0} ∪ Ωk, and so c1 ∈ Ωk because
c1 �= 0. If λ2j = 0 for all j ∈ {1, . . . , n}, then P2 = SD2S

−1 = O, which is again a
contradiction, so there exists s ∈ {1, . . . , n} such that λ2s �= 0, and hence λ2s = 1.
Now, there are two possibilities for λ1s. Using (3.1) for these possibilities, we obtain
λ1s = 1, which yields c1 + c2 ∈ {0} ∪Ωk or λ1s = 0, which implies c2 ∈ {0} ∪Ωk, i.e.,
c2 ∈ Ωk.

The first three cases of the theorem have been obtained. The second possibility in
(3.2) yields the remaining cases of the theorem. Now define Q := (c1P1 + c2P2)

k+1 −
(c1P1 + c2P2). Since P1P2 = P2P1,

Q =

k+1∑
m=0

(
k + 1

m

)
(c1P1)

m(c2P2)
k+1−m − (c1P1 + c2P2)

= ck+1
1 P1 +

(
k∑

m=1

(
k + 1

m

)
cm1 ck+1−m

2

)
P1P2 + ck+1

2 P2 − (c1P1 + c2P2)

= c1(c
k
1 − 1)P1 + [(c1 + c2)

k+1 − ck+1
1 − ck+1

2 ]P1P2 + c2(c
k
2 − 1)P2.(3.3)

The proof is now split into five cases:
1. Using c1 ∈ Ωk and c1+c2 = 0 with (3.3) yields Q = c1(1−(−1)k)(P2−P1P2).

Now the assertion of the theorem for this case is simple to prove.
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2. Since c1, c1+c2 ∈ Ωk, by (3.3) we obtain Q = c2(1−ck2)(P1P2−P2). Subcases
2(a) and 2(b) of the theorem are easily obtained.

3. From c1, c2 ∈ Ωk and (3.3), it is easy to see that Q = (c1 + c2)((c1 + c2)
k −

1)P1P2. Now subcases 3(a) and 3(b) are evident.
Cases 4 and 5 are completely analogous to cases 1 and 2, and their proofs are omitted.
The sufficiency is simple by considering the previous computations for the matrix Q.
This completes the proof.

Note 1. If c1 + c2 = 0 and c1, c2 ∈ Ωk, then k must be even. In fact, 1 = ck1 =
(−c2)

k = (−1)kck2 = (−1)k.
Note 2. If c1, c2, c1 + c2 ∈ Ωk, then k must be a multiple of 6 and c1 = ω2

6c2 or
c2 = ω2

6c1. In fact, let us consider the triangle in the complex plane with vertices
located at 0, c1 and c1 + c2. All sides of this triangle have the same length. So the
three angles are equal to π/3. Now it is easy to conclude the assertion.

As particular cases we obtain the conditions in the main results in [2] and [9].

4. Elements of S(P1, P2, k): Noncommutative case. As in the previous
section, we will describe the set S(P1, P2, k) but now in the case that P1 and P2 do
not commute.

The following results are the basis for our derivations.
Lemma 4.1. If P1P2 �= P2P1 and (c1, c2) ∈ S(P1, P2, k), then there exist α, β ∈

{0} ∪ Ωk such that c1 + c2 = α + β and α �= β.
Proof. By Theorem 2.1 there exists a nonsingular matrix S such that

c1P1 + c2P2 = SDS−1, D =

⎛
⎜⎜⎜⎝

λ1I O · · · O
O λ2I · · · O
...

...
. . .

...
O O · · · λmI

⎞
⎟⎟⎟⎠ ,(4.1)

where all λj ∈ {0} ∪ Ωk for j = 1, . . . ,m and λi �= λj if i �= j; that is, c1P1 + c2P2

has m distinct eigenvalues λ1, λ2, . . . , λm of multiplicities n1, n2, . . . , nm. If we define
Q1 := S−1P1S and Q2 := S−1P2S, the following facts are easily obtained:

1. c1Q1 + c2Q2 = D.
2. Q2

i = Qi.
3. Q1Q2 −Q2Q1 �= O.
4. Q2D −DQ2 �= O.

Fact 4 follows from facts 1 and 3 since Q2D − DQ2 = Q2(c1Q1 + c2Q2) − (c1Q1 +
c2Q2)Q2 = c1Q2Q1 − c1Q1Q2 = c1(Q2Q1 − Q1Q2) �= O. From facts 1 and 2 we get
the following equalities:

c1Q1 = D − c2Q2, c21Q1 = D2 − c2(DQ2 + Q2D) + c22Q2.(4.2)

The matrices Q1 and Q2 are partitioned as

Q1 =

⎛
⎜⎜⎜⎝

A11 A12 · · · A1m

A21 A22 · · · A2m

...
...

. . .
...

Am1 Am2 · · · Amm

⎞
⎟⎟⎟⎠ , Q2 =

⎛
⎜⎜⎜⎝

B11 B12 · · · B1m

B21 B22 · · · B2m

...
...

. . .
...

Bm1 Bm2 · · · Bmm

⎞
⎟⎟⎟⎠ ,

where each block in the position (i, j) has the same size as the block (i, j) in the
partitioned matrix D in (4.1). Since DQ2 �= Q2D, it is easy to check that there exist
i, j ∈ {1, . . . ,m} with i �= j such that (λi−λj)Bji �= O. Since λi �= λj , then Bji �= O.
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By considering the block (j, i) in (4.2) the following equalities are obtained:

c1Aji = −c2Bji and c21Aji = −c2(λi + λj)Bji + c22Bji.

From these last equalities we get

O = −c1c2Bji + c2(λi + λj)Bji − c22Bji = c2[(λi + λj) − (c1 + c2)]Bji.(4.3)

Since c2 �= 0 and Bji �= 0, we get λi + λj = c1 + c2. The proof is completed.
Lemma 4.2. Let λ1, λ2, λ3, λ4 ∈ {0} ∪ Ωk such that λ1 �= λ2, λ3 �= λ4, and

λ1 + λ2 = λ3 + λ4 �= 0. Then the following statements hold:
1. If λj �= 0 for all j = 1, 2, 3, 4, then {λ1, λ2} = {λ3, λ4}.
2. If 6� |k, then {λ1, λ2} = {λ3, λ4}.
3. If 6|k, then one of the following statements is valid:

(a) {λ1, λ2} = {λ3, λ4}.
(b) There exists ω ∈ Ωk such that {λ1, λ2} = {0, ω} and {λ3, λ4} = {ω−1

6 ω, ω6ω}.
(c) There exists ω ∈ Ωk such that {λ1, λ2} = {ω−1

6 ω, ω6ω} and {λ3, λ4} =
{0, ω}.

Proof. 1. Let z := (λ1 + λ2)/2 = (λ3 + λ4)/2 and SC := {u ∈ C : |u| = 1}. For
u ∈ SC, we define ru := {ω ∈ C : ω = z + xu, x ∈ R} and if z + xu ∈ ru ∩ SC, we get

1 = (z + xu)(z + xu) = (z + xu)(z + xu) = |z|2 + x(zu + zu) + x2.(4.4)

Since z is fixed, if z + x1u ∈ ru ∩ SC and z + x2u ∈ ru ∩ SC, then x1x2 = |z|2 − 1,
because x1 and x2 satisfy (4.4).

Set u := (λ2 − λ1)/|λ2 − λ1| ∈ SC. Since

z +
|λ2 − λ1|

2
u =

λ1 + λ2

2
+

λ2 − λ1

2
= λ2 ∈ ru ∩ SC

and, analogously,

z − |λ2 − λ1|
2

u = λ1 ∈ ru ∩ SC,

we get that

|z|2 − 1 = −
(
|λ2 − λ1|

2

)2

.

By using the same reasoning, but now with λ3 and λ4, we obtain that |z|2 − 1 =
−(|λ3 − λ4|/2)2. Hence |λ1 − λ2| = |λ3 − λ4| =: ρ. Now it is easy to see that

{λ1, λ2, λ3, λ4} ⊂
{
w ∈ C : |w − z| =

ρ

2

}
=: C.

Hence λj ∈ C ∩ SC for j = 1, 2, 3, 4. If the set {λ1, λ2, λ3, λ4} has at least three
distinct elements, then C and SC are two circumferences with at least three distinct
common points. Hence C = SC and so their centers coincide; i.e., z = 0, which is
a contradiction. Thus, the set {λ1, λ2, λ3, λ4} has at most two distinct elements and
this completes the proof of the first item.

2. If 0 /∈ {λ1, λ2, λ3, λ4}, then the situation is the same as in the previous item.
We suppose that 0 ∈ {λ1, λ2, λ3, λ4} and, without loss of generality, we take 0 = λ1

and hence λ2 = λ3 + λ4. If 0 ∈ {λ3, λ4}, it is easy to obtain the conclusion. If
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0 /∈ {λ3, λ4}, from λ2 = λ3 + λ4, it is simple to get that {λ3, λ4} = {ω−1
6 λ2, ω6λ2}.

Since λ2, λ3 ∈ Ωk, we get 1 = (λ3)
k = (ω±1

6 λ2)
k = exp(±kiπ/3) and hence k is a

multiple of 6, which contradicts the assumption of this item.
3. The proof of the above item works.
Lemma 4.3. Let α, β ∈ C and P1P2 �= P2P1; then the matrix c1P1+c2P2 satisfies

the matrix equation X2 − (α + β)X + αβI = O if and only if c1 + c2 = α + β and
c1c2(P1 − P2)

2 = αβI.
Proof. If c1P1 + c2P2 satisfies the equation X2 − (α + β)X + αβI = O, then

c21P1 + c22P2 + c1c2(P1P2 + P2P1) − (α + β)(c1P1 + c2P2) + αβI = O.(4.5)

Premultiplying and postmultiplying (4.5) by P1, we get, respectively,

(c21 − (α + β)c1 + αβ)P1 + (c22 + c1c2 − (α + β)c2)P1P2 + c1c2P1P2P1 = O,

(c21 − (α + β)c1 + αβ)P1 + (c22 + c1c2 − (α + β)c2)P2P1 + c1c2P1P2P1 = O.

Hence c2[c1 +c2−(α+β)](P1P2−P2P1) = O. Under the assumptions of the theorem,
it is clear that this equation is equivalent to

c1 + c2 = α + β.(4.6)

Replacing (4.6) in (4.5) we get

O = c1[c1 − (α + β)]P1 + c2[c2 − (α + β)]P2 + c1c2(P1P2 + P2P1) + αβI

= −c1c2[P1 + P2 − (P1P2 + P2P1)] + αβI

= −c1c2(P1 − P2)
2 + αβI.

Conversely, (c1P1 + c2P2)
2 = (α + β)(c1P1 + c2P2) − αβI holds from the obvious

equality P1P2 + P2P1 = P1 + P2 − (P1 − P2)
2.

Now, we are ready to state the main result when k is not a multiple of 6.
Theorem 4.4. If k is not a multiple of 6, P1P2 �= P2P1, and c1 + c2 �= 0, then

(c1, c2) ∈ S(P1, P2, k) if and only if there exist λ1, λ2 ∈ {0}∪Ωk, α ∈ C with λ1 �= λ2,
c1 + c2 = λ1 + λ2, αc1c2 = λ1λ2, and a nonzero projector Π such that ΠP1 = P1Π,
ΠP2 = P2Π, and ΠΔ2 = αΠ, where Δ := P1 − P2, and at least one of the conditions
below is satisfied.

1. Δ2 = αI.
2. c1 ∈ Ωk, c1 + c2 ∈ Ωk, c2 /∈ Ωk, and (I − Π)(Δ2 − Δ) = O.
3. c1 ∈ Ωk, c2 ∈ Ωk, c1 + c2 /∈ Ωk, and (I − Π)P1P2 = (I − Π)P2P1 = O.
4. c2 ∈ Ωk, c1 + c2 ∈ Ωk, c1 /∈ Ωk, and (I − Π)(Δ2 + Δ) = O.
5. c2 ∈ Ωk and (I − Π)P1 = O.
6. c1 ∈ Ωk and (I − Π)P2 = O.
7. c1 + c2 ∈ Ωk and (I − Π)Δ = O.

Proof. Following the notation of Lemma 4.1, there exist i, j ∈ {1, . . . ,m} such
that Bji �= O with i �= j. In addition, c1 + c2 = λi + λj holds.

By Lemma 4.2, we get λi +λj �= λs +λt for all {s, t} �= {i, j} and s �= t. By (4.3),
rearranging the eigenvalues of D and the blocks of Q2 by some suitable permutation
of rows and columns, we can suppose that

Q2 =

⎡
⎢⎢⎢⎢⎢⎣

B11 B12 O · · · O
B21 B22 O · · · O
O O B33 · · · O
...

...
...

. . .
...

O O O · · · Bmm

⎤
⎥⎥⎥⎥⎥⎦
.
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Note that blocks B33, . . . , Bmm may be absent. By this rearrangement, c1 + c2 =
λ1 + λ2 holds. From (4.2) we get c1D + c2(DQ2 + Q2D) = D2 + (c1 + c2)c2Q2 and
its block (r, r) gives

(c1 − λr)λrI = c2(c1 + c2 − 2λr)Brr.(4.7)

Observe that c1 + c2 − 2λr �= 0. In fact, if c1 + c2 = 2λr, then λr �= 0 and |λ1 + λ2| =
|c1 + c2| = |2λr| = 2, so λ1 �= 0 and λ2 �= 0 and then |λ1| = |λ2| = 1. This implies
λ1 = λ2, which is impossible. So from (4.7) we get Brr = βrI for some βr ∈ C. From
c1Arr + c2Brr = λrI, it follows that Arr = αrI for some αr ∈ C. If we denote

M0 :=

[
λ1I O
O λ2I

]
, M1 :=

[
A11 A12

A21 A22

]
, M2 :=

[
B11 B12

B21 B22

]

and

J0 := λ3I ⊕ · · · ⊕ λmI, J1 := α3I ⊕ · · · ⊕ αmI, J2 := β3I ⊕ · · · ⊕ βmI,

then

D = M0 ⊕ J0, Q1 = M1 ⊕ J1, Q2 = M2 ⊕ J2.(4.8)

Again we recall that the blocks J0, J1, and J2 may be absent. If not, J1J2 = J2J1.
Define B := I⊕O partitioned as in D, Q1, and Q2 in (4.8). Note that B is a nonzero
projector, BQ1 = Q1B, and BQ2 = Q2B. It is clear that if Π := SBS−1, then Π
is a projector and ΠPi = PiΠ for i = 1, 2. Note that M1,M2, J1, and J2 are also
projectors since Q1 and Q2 are projectors.

Focusing on blocks Mi (i = 0, 1, 2), the equality c1M1 + c2M2 = M0 holds. Since
M2

0 − (λ1 + λ2)M0 + λ1λ2I = O, in order to apply Lemma 4.3, we have to prove that
M1 and M2 do not commute. In fact, this is clear from (4.8) since Q1Q2 �= Q2Q1

and J1J2 = J2J1. By Lemma 4.3, it follows that (M1 − M2)
2 = αI, where α :=

(λ1λ2)/(c1c2). So, B(Q1 −Q2)
2 = αB, which implies Π(P1 − P2)

2 = αΠ.
Now, we focus on commuting blocks Ji (i = 0, 1, 2). Since c1J1 + c2J2 is a {k}-

group periodic matrix and J1, J2 are projectors, Theorem 3.1 gives the following
cases:

0. c1 ∈ Ωk, c2 ∈ Ωk, and c1 + c2 ∈ Ωk. This implies that k is a multiple of 6,
which is contrary to the assumption.

1. If blocks J0, J1 and J2 are absent, then Δ2 = αI.
2. c1 ∈ Ωk, c1 + c2 ∈ Ωk, c2 /∈ Ωk, and J1J2 = J2. It is easy to prove that

J1 − J2 is a projector, so (I − B)(Q1 − Q2)
2 = (I − B)(Q1 − Q2), which

implies (I − Π)(Δ2 − Δ) = O.
3. c1 ∈ Ωk, c2 ∈ Ωk, c1 + c2 /∈ Ωk, and J1J2 = O. Because of J1J2 = J2J1 =

O, we can obtain that (I − B)Q1Q2 = (I − B)Q2Q1 = O, which implies
(I − Π)P1P2 = (I − Π)P2P1 = O.

4. c2 ∈ Ωk, c1 + c2 ∈ Ωk, c1 /∈ Ωk, and J1J2 = J1. It is similar to case 2.
Note that we cannot apply Theorem 3.1 if J1 = O, J2 = O, or J1 = J2. If

J1 = J2 = O, then we obtain case 1. So, we must consider the following cases:
5. J1 = O and J2 �= O. Since (c1J1+c2J2)

k+1 = c1J1+c2J2, we get (c2J2)
k+1 =

c2J2; hence c2 ∈ Ωk. Moreover, since J1 = O, we get (I − Π)P1 = O.
6. J2 = O and J1 �= O. This is analogous to the previous case.
7. J1 = J2 �= O. We obtain (c1 + c2)

k+1 = c1 + c2, and by assumption we get
c1 + c2 ∈ Ωk. Since J1 − J2 = O, we get (I − Π)Δ = O.
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So, the necessity has been proved.
Let us prove the sufficiency for case 1: By Lemma 4.3 the matrix Q := c1P1+c2P2

satisfies Q2 = (λ1 +λ2)Q−λ1λ2I. By recurrence, there exists (am, bm)∞m=0 such that
Qm = amQ + bmI for m ∈ {0} ∪ N. It is easy to prove

[
am+1

bm+1

]
=

[
λ1 + λ2 1
−λ1λ2 0

] [
am
bm

]
; i.e., vm+1 = Avm.

Since A is diagonalizable and σ(A) = {λ1, λ2} ⊆ {0} ∪ Ωk, by Theorem 2.1, we
get Ak+1 = A; hence vk+1 = Ak+1v0 = Av0 = A[0 1]T = [1 0]T. So Qk+1 =
ak+1Q + bk+1I = Q. Thus the sufficiency for case 1 is proved.

For cases 2, 3, and 4 it is useful to observe that

(c1P1 + c2P2)
2 = (c1ΠP1 + c2ΠP2 + c1(I − Π)P1 + c2(I − Π)P2)

2

= (c1ΠP1 + c2ΠP2)
2 + (c1(I − Π)P1 + c2(I − Π)P2)

2

since ΠPi(I − Π)Pj = (I − Π)PiΠPj = O for i, j ∈ {1, 2}. So, by recurrence

(c1P1 + c2P2)
k+1 = [c1ΠP1 + c2ΠP2]

k+1 + [c1(I − Π)P1 + c2(I − Π)P2]
k+1.

Hence, in order to prove that (c1, c2) ∈ S(P1, P2, k), it is enough to see that

(c1, c2) ∈ S(ΠP1,ΠP2, k) ∩ S((I − Π)P1, (I − Π)P2, k).

2. Let T1 := ΠP1 and T2 := ΠP2. It is clear that T1 and T2 are projectors. Now
we define Q := c1T1 + c2T2. It is easy to verify that under the assumptions
of this case, ΠQ = Q and Q2 = (λ1 + λ2)Q− (λ1λ2)Π. In the same manner
as in case 1 we obtain Qk+1 = Q and hence (c1, c2) ∈ S(T1, T2, k).
Let R1 := (I − Π)P1 and R2 := (I − Π)P2. It is clear that R1 and R2

are projectors. Since (I − Π)Δ2 = (I − Π)Δ we get 2R2 = R1R2 + R2R1.
Premultiplying first by R1 we obtain R1R2 = R1R2R1 and postmultiplying
later by R1 we obtain R2R1 = R1R2R1. Hence R1 and R2 commute and now
it is easy to deduce that R1R2 = R2. By the sufficiency of Theorem 3.1 we
get that (c1, c2) ∈ S(R1, R2, k).

3. In a similar manner as in the previous case we obtain (c1, c2) ∈ S(ΠP1,ΠP2, k).
Let R1 := (I − Π)P1 and R2 := (I − Π)P2. It is clear that R1 and R2 are
projectors satisfying R2R1 = R1R2 = O and that sufficiency of Theorem 3.1
yields (c1, c2) ∈ S(R1, R2, k).

4. It is similar to case 2.
For cases 5, 6, and 7 we proceed as in case 2 and obtain (c1, c2) ∈ S(ΠP1,ΠP2, k). In
these cases it is easy to check that (c1, c2) ∈ S((I − Π)P1, (I − Π)P2, k).

Note: In cases 2, 4, and 7 it can be proved that α = 0. In fact, c1 + c2 = λ1 + λ2

and λ1, λ2, c1 + c2 ∈ {0} ∪ Ωk implies λ1 = 0 or λ2 = 0. In the third case, α must be
nonzero because if α = 0, then λ1 = 0 or λ2 = 0, so c1 + c2 = λ1 + λ2 ∈ Ωk, which is
a contradiction.

Systematic procedures can be designed in order to decide when each case of
Theorem 4.4 may occur and furthermore when the involved numbers c1 and c2 may
be found. We will present such a procedure to decide when case 3 of Theorem 4.4
may occur for given matrices P1 and P2. In addition, this algorithm calculates the
projector Π and α ∈ C appearing in Theorem 4.4. Similar algorithms for remaining
cases may be designed.
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Algorithm (value of α and matrix Π for case 3).
Step 1. Compute the eigenvalues α1, . . . , αm of Δ2 and set i := 1.
Step 2. Set α := αi.
Step 3. Construct a basis for null space of Δ2 − αI and denote by B1 the matrix

whose columns are the vectors of this basis.
Step 4. Construct a basis for the intersection of the null spaces of P1P2 and P2P1,

respectively, and denote by B2 the matrix whose columns are the vectors of
this basis.

Step 5. Let B := [B1|B2]. If B is singular, let i := i + 1 and go to Step 2. If B is
nonsingular, then go to Step 6.

Step 6. Let Π := [B1|B2](I ⊕O)[B1|B2]
−1. (It is obvious that Π is a projector.)

Step 7. If ΠP1 = P1Π and ΠP2 = P2Π, then case 3 is satisfied and the projector Π and
α ∈ C have been found (it can be proved that ΠΔ2 = αΠ and (I−Π)P1P2 =
(I − Π)P2P1 = O), and the algorithm is finished.
Otherwise,
7.1. If i = m, the algorithm is finished and we decide that case 3 of Theorem

4.4 is not satisfied.
7.2. If i �= m let i := i + 1 and go to Step 2.

Note that we have characterized all the possible structures of combinations of
two idempotent matrices that are {k}-periodic. Moreover, using Theorem 4.4 and the
algorithms we can compute the values c1 and c2 such that c1P1+c2P2 is a {k}-periodic
matrix.

The main result when k is a multiple of 6 is given in the following theorem.
Theorem 4.5. Let k be a multiple of 6, P1P2 �= P2P1, c1 + c2 �= 0, and Δ :=

P1 −P2. Then (c1, c2) ∈ S(P1, P2, k) if and only if at least one of the conditions below
is satisfied.

1. One of the conditions in Theorem 4.4 holds.
2. There exist λ1, λ2 ∈ Ωk with λ1 �= λ2 and ω ∈ Ωk such that c1 + c2 =

λ1 + λ2, {c1, c2} = {ωω6, ωω
−1
6 }, and there exists a nonzero projector Π

which commutes with P1 and P2 such that ΠΔ2 = αΠ, where α := λ1λ2/ω
2

and (I − Π)P1P2 = (I − Π)P2P1.
3. There exists a nonzero projector Π which commutes with P1 and P2, and there

exist ω ∈ Ωk and α ∈ C such that c1 + c2 = ω, αc1c2 = ω2, ΠΔ2 = O, and
(I − Π)(Δ2 − αI) = O.

4. There exist a commuting and disjoint family {Π1,Π2,Π3} of projectors which

commutes with P1 and P2 such that I =
∑3

i=1 Πi and Π1Δ
2 = O, Π2(Δ

2 −
αI) = O with ω ∈ Ωk, α ∈ C such that c1 +c2 = ω and αc1c2 = ω2, satisfying
one of the following possibilities:
(a) c2 ∈ Ωk and Π3P1 = O.
(b) c1 ∈ Ωk and Π3P2 = O.
(c) Π3Δ = O.
(d) {c1, c2} = {ωω6, ωω

−1
6 }, α = 1, and Π3P1P2 = Π3P2P1.

(e) c1 ∈ Ωk, c2 /∈ Ωk, and Π3(Δ
2 − Δ) = O.

(f) c2 ∈ Ωk, c1 /∈ Ωk, and Π3(Δ
2 + Δ) = O.

Proof. As in the proof of Theorem 4.4, following the notation of Lemma 4.1, there
exist i, j ∈ {1, . . . ,m} such that Bji �= O with i �= j, and also λi + λj = c1 + c2 �= 0
holds. We shall consider two possibilities:

(a) λi + λj /∈ Ωk or (b) λi + λj ∈ Ωk.(4.9)

In case (a) of (4.9) it is evident that λi �= 0 and λj �= 0. If there exist λr, λs ∈ {0}∪Ωk
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such that λr + λs = λi + λj , it is also evident that λr �= 0 and λs �= 0. From Lemma
4.2 we get λi = λr or λi = λs. In addition to the studied cases, another case appears:

2. c1 ∈ Ωk, c2 ∈ Ωk, and c1 + c2 ∈ Ωk. Let ω := c1 + c2. In order to deduce
{c1, c2} = {ωω6, ωω

−1
6 } recall that ω6 = exp(iπ/3). The same construction

for J1 and J2 as in the previous theorem is valid for the present case. As
before, J1J2 = J2J1 and hence (I − Π)P1P2 = (I − Π)P2P1. Moreover,
c1c2 = ω2 and α = (λ1λ2)/(c1c2).

Now we consider case (b) of (4.9). Lemma 4.2 allows us to suppose that λ1 = 0,
λ2 = ω, λ3 = ω−1

6 ω, and λ4 = ω6ω for some ω ∈ Ωk. In fact, this is possible by
rearranging the eigenvalues of D and the blocks of Q2, that is,

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B11 B12 O O O · · · O
B21 B22 O O O · · · O
O O B33 B34 O · · · O
O O B43 B44 O · · · O
O O O O B55 · · · O
...

...
...

...
...

. . .
...

O O O O O · · · Bmm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=:

⎡
⎣

M2 O O
O N2 O
O O J2

⎤
⎦ .

The matrices Q1 and D will be partitioned in the same way. Observe that some block
may be absent. The equalities Bii = βiI and Aii = αiI for some αi, βi ∈ C can be
obtained as before. Then J1J2 = J2J1 and this rearranging yields

M0 =

[
O O
O ωI

]
and N0 =

[
ω−1

6 ωI O
O ω6ωI

]
.

If some of blocks M and N are absent, it reduces to some previously studied case.
Since Q1Q2 �= Q2Q1, M1M2 �= M2M1 or N1N2 �= N2N1. If M1M2 �= M2M1 and

N1N2 = N2N1, then N1⊕J1 commutes with N2⊕J2 and now instead of Ni⊕Ji we shall
write Ji and it becomes as in some previous case. The situation M1M2 = M2M1,
N1N2 �= N2N1 can be treated similarly. Now we focus on the situation M1M2 �=
M2M1 and N1N2 �= N2N1. Applying Lemma 4.3 twice we get (M1 −M2)

2 = O and
(N1 −N2)

2 = αI, where α := ω2/(c1c2) and c1 + c2 = ω.
Now we split the proof into two cases:
3. If blocks J are absent, it is easy to see that Δ2 = S(O ⊕ αI)S−1 and then

there exists a projector Π such that ΠΔ2 = O and (I − Π)Δ2 = α(I − Π).
4. If blocks J are not absent, we denote B1 := I ⊕ O ⊕ O, B2 := O ⊕ I ⊕ O,

and B3 := O ⊕ O ⊕ I with the same partition as in Q2 = M2 ⊕ N2 ⊕ J2.
Now we define Πi := SBiS

−1 for i = 1, 2, 3. Thus we get Π1Δ
2 = O and

Π2(Δ
2 − αI) = O. In this case c1J1 + c2J2 is a {k}-group periodic matrix.

The following cases may occur:
(a) J1 = O, J2 �= O. This case yields c2 ∈ Ωk and Π3P1 = O.
(b) J2 = O, J1 �= O. The proof is similar to the previous one.
(c) J1 = J2 �= O. Since J1 − J2 = O, Π3Δ = O.

We apply Theorem 3.1 for the remaining cases since J1 �= J2.
(d) c1 ∈ Ωk, c2 ∈ Ωk, and c1 + c2 ∈ Ωk. Since c1 + c2 = ω, {c1, c2} =

{ωω6, ωω
−1
6 }.

(e) c1 ∈ Ωk, c1 + c2 ∈ Ωk, and c2 /∈ Ωk. Theorem 3.1 yields J1J2 = J2J1 =
J2. It is easy to see that (J1−J2)

2 = J1−J2 and thus Π3(Δ
2−Δ) = O.

(f) c2 ∈ Ωk, c1 + c2 ∈ Ωk, and c1 /∈ Ωk. The proof is similar to the previous
one.
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Let us proof the sufficiency. By a similar argument used in the sufficiency of
Theorem 4.4 we obtain the following useful fact: “If {Πi}mi=1 is a commuting and
disjoint family of projectors which commutes with P1 and P2 such that I =

∑m
i=1 Πi,

then ∩m
i=1S(ΠiP1,ΠiP2, k) ⊆ S(P1, P2, k).”

2. Since ΠΔ2 = αΠ with α = (λ1λ2)/(c1c2), (c1, c2) ∈ S(ΠP1,ΠP2, k). This
fact can be shown in a way similar to that of the proof of the sufficiency of
case 2 (first part) in Theorem 4.4. As (I −Π)P1P2 = (I −Π)P2P1, (I −Π)P1

and (I − Π)P2 are two commuting projectors and since c1 ∈ Ωk, c2 ∈ Ωk,
and c1 + c2 ∈ Ωk, by the sufficiency of Theorem 3.1 we get (c1, c2) ∈ S((I −
Π)P1, (I − Π)P2, k).

The remaining cases are similar, and the proof is completed.
Note. In case 2 of the above theorem, if α = 0, then c1 + c2 ∈ Ωk. In fact, if

α = 0, then λ1λ2 = 0, which implies c1 + c2 = λ1 + λ2 ∈ Ωk.
Algorithms similar to the one depicted after Theorem 4.4 may be given for finding

the projectors appearing in Theorem 4.5.
The necessary and sufficient conditions obtained in the previous theorem may be

difficult to check. Here we present necessary (but sometimes not sufficient) conditions
that are easier to check.

Corollary 4.6. The following conditions are necessary for the respective cases
of Theorem 4.4:

1. Δ2 = αI.
2. Δ3 = Δ2.
3. If α = 1, then Δ3 = Δ. If α �= 1, then Δ5 − Δ3 = α(Δ3 − Δ).
4. Δ3 = −Δ2.
5. If α = 0, then Δ3 + Δ2 = O. If α = 1, then Δ3 = Δ. If α /∈ {0, 1}, then

Δ4 + Δ3 = α(Δ2 + Δ).
6. If α = 0, then Δ3 = Δ2. If α = 1, then Δ3 = Δ. If α /∈ {0, 1}, then

Δ4 − Δ3 = α(Δ2 − Δ).
7. If α = 0, then Δ2 = O. If α �= 0, then Δ3 = αΔ.

Proof. This corollary follows easily from the next claim: “If C1, . . . , Cm are
matrices such that I =

∑m
i=1 Ci and if there exist polynomials p1, . . . , pm such that

Cipi(Δ) = O for i = 1, . . . ,m, then p(Δ) = O, where p := lcm(p1, . . . , pm).” In fact,
since pi|p, there exist polynomials q1, . . . , qm such that p = piqi and thus

p(Δ) =

m∑
i=1

Cip(Δ) =

m∑
i=1

Cipi(Δ)qi(Δ) = O.

Now it is enough to apply this claim with C1 := Π and C2 := I − Π.
The next corollary gives some necessary conditions for cases 3, 5, and 6.
Corollary 4.7. The following conditions are necessary for the respective cases

of Theorem 4.4:
3. (1 − α)P1P2 = (P1P2)

2 and (1 − α)P2P1 = (P2P1)
2.

5. (1 − α)P1 = P1P2P1.
6. (1 − α)P2 = P2P1P2.

Proof. We will use the following simple fact: “If A,B ∈ C
n×n and f1, . . . , fm are

matrix polynomials in two variables such that {fi(A,B)}mi=1 is a commuting family
and if there exists a family of projectors {Πi}mi=1 satisfying Πifi(A,B) = O and∑m

i=1 Πi = I, then f1(A,B) · · · fn(A,B) = O.” Setting f1(P1, P2) := (P1 −P2)
2 −αI

and f2(P1, P2) := P1P2, we get the first equality of case 3. The remaining cases may
be analogously obtained.
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Corollary 4.8. The following conditions are necessary for the respective cases
of Theorem 4.5:

3. Δ4 = αΔ2.
4. (a) If α = 1, then Δ4 = Δ2; if α �= 1, then Δ5 + Δ4 = α(Δ3 + Δ2).

(b) If α = 1, then Δ4 = Δ2; if α �= 1, then Δ5 − Δ4 = α(Δ3 − Δ2).
(c) Δ4 = αΔ2.
(e) If α = 1, then Δ4 = Δ2; if α �= 1, then Δ5 − Δ4 = α(Δ3 − Δ2).
(f) If α = 1, then Δ4 = Δ2; if α �= 1, then Δ5 + Δ4 = α(Δ3 + Δ2).

Proof. It is enough to apply the claim of the proof of Corollary 4.7 by using
C1 := Π and C2 := I − Π for case 3 and Ci := Πi for i = 1, 2, 3 for case 4.

Corollary 4.9. The following conditions are necessary for the respective cases
of Theorem 4.5:

2. (1 − α)(P1P2 − P2P1) = (P1P2)
2 − (P2P1)

2.
4. (a) P1(I − P2P1)

2 = αP1(I − P2P1).
(b) P2(I − P1P2)

2 = αP2(I − P1P2).
(d) (1 − α)(P1P2 − P2P1) + α[(P1P2)

2 − (P2P1)
2] = (P1P2)

3 − (P2P1)
3.

Proof. Using the fact mentioned in Corollary 4.7, these conditions are easy to
obtain.

Corollary 4.10. If P1P2 − P2P1 is a nonsingular matrix, then only case 1 of
Theorem 4.4 and case 3 of Theorem 4.5 may occur.

Proof. Following the notation of the proof of Theorems 4.4 and 4.5 and using that
P1P2 − P2P1 is nonsingular, we obtain that Q1Q2 −Q2Q1 is also nonsingular. Since
Q1Q2 − Q2Q1 = (M1M2 − M2M1) ⊕ (N1N2 − N2N1) ⊕ (J1J2 − J2J1) = (M1M2 −
M2M1) ⊕ (N1N2 − N2N1) ⊕ O, blocks Ji must be absent and hence the conclusion
follows.

Theorem 4.11. If P1P2 �= P2P1, (c1, c2) ∈ S(P1, P2, k), and c1 + c2 = 0, then k
is even and ck1(P1 − P2)

k+1 = P1 − P2.
Proof. The matrix equality is obvious. By Theorem 4.1 there are α, β ∈ {0}∪Ωk

such that α �= β and α + β = 0. It is clear that α �= 0 and β �= 0. Thus, 1 = αk =
(−β)k = (−1)kβk = (−1)k. Now it is evident that k must be even.

Example. Let (y, z) ∈ C
2 and α ∈ C \ {1/2} such that α2 + yz = α and yz �= 0.

The matrices

P1 :=

[
α y
z 1 − α

]
and P2 :=

[
1 − α y
z α

]

are projectors which do not commute. The nonzero solutions of (c1P1 − c1P2)
k+1 =

c1P1 − c1P2 must satisfy ck1(2α− 1)k = 1. Since α �= 1/2 is arbitrary, this shows that
c1 is also arbitrary. So, the conclusion on c1 of Theorem 4.11 cannot be improved.

Note 1. This theorem asserts that if there are nontrivial elements of S(P1, P2, k)∩
{(c1, c2) ∈ C

2 : c1 + c2 = 0}, then there are exactly k different nontrivial solutions
and if (c1,−c1) is one of them, then

S(P1, P2, k)∩{(c1, c2) ∈ C
2 : c1+c2 = 0} = {(c1,−c1), ωk(c1,−c1), . . . , ω

k−1
k (c1,−c1)}.

Note 2. From Theorem 4.11, we deduce that (P1 − P2)
k+1 is a scalar multiple of

P1 − P2 if and only if there are nontrivial solutions in S(P1, P2, k) ∩ {(c1, c2) ∈ C
2 :

c1 + c2 = 0}. Moreover, we can suppose that k = 2m for certain m ∈ N.
The calculation of (P1 − P2)

2m+1 can be done more efficiently by using the next
result.
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Proposition 4.12. If A,B ∈ C
n×n are projectors and m ∈ N, then

(A−B)2m+1 = A(I −BA)m − (I −BA)mB.

Proof. First, we shall prove the following claim:

B(I −BA)mB = (I −BA)mB and A(I −BA)mA = A(I −BA)m.

The proof of the first equality follows by induction. The case m = 0 is evident. If it
is true for m, then

B(I −BA)m+1B = B(I −BA)(I −BA)mB = B(I −BA)mB −BA(I −BA)mB.

By the induction hypothesis, B(I − BA)mB = (I − BA)mB. Now, by using the
obvious fact, “if p(t) is a polynomial and if M ∈ C

n×n is a given matrix, then p(M)
commutes with M,” we get BA(I −BA)mB = (I −BA)mBAB. So

B(I −BA)m+1B = (I −BA)mB − (I −BA)mBAB

= (I −BA)m(B −BAB) = (I −BA)m+1B.

The other equality of the claim can be proved in a similar way. Now, the theorem
will also be proved by induction. The case m = 0 is evident. If the theorem is true
for m, then

(A−B)2(m+1)+1 = (A−B)(A−B)2m+1(A−B)

= (A−B) [A(I −BA)m − (I −BA)mB] (A−B)

= A(I −BA)mA−A(I −BA)mBA−BA(I −BA)mA

+B(I −BA)mBA−A(I −BA)mB + A(I −BA)mB

+BA(I −BA)mB −B(I −BA)mB.

Now, by using the claim we obtain

A(I −BA)mA−A(I −BA)mBA = A(I −BA)m−ABA(I −BA)m = A(I −BA)m+1

and

BA(I−BA)mB−B(I−BA)mB = (I−BA)mBAB−(I−BA)mB = −(I−BA)m+1B.

Since B(I −BA)mBA = BA(I −BA)m = (I −BA)mBA = BA(I −BA)mA, we get

(A−B)2(m+1)+1 = A(I −BA)m+1 − (I −BA)m+1B.

This completes the proof.
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DOUBLING ALGORITHMS FOR RICCATI-TYPE MATRIX
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Abstract. In this paper, we introduce the doubling transformation, a structure-preserving
transformation for symplectic pencils, and present its basic properties. Based on these properties, a
unified convergence theory for the structure-preserving doubling algorithms for a class of Riccati-type
matrix equations is established, using only elementary matrix theory.
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1. Introduction. In this paper, we investigate the convergence of the structure-
preserving doubling algorithms (SDAs) for the symmetric positive (semi)definite so-
lutions to the following Riccati-type matrix equations:

• Continuous-time algebraic Riccati equation (CARE) [22, 27]:

−XGX + ATX + XA + H = 0,(1.1)

where A,H,G ∈ R
n×n with G and H being symmetric positive semidefinite.

• Discrete-time algebraic Riccati equation (DARE) [22, 27]:

X = ATX(I + GX)−1A + H,(1.2)

where A,H,G ∈ R
n×n with G and H being symmetric positive semidefinite.

• Nonlinear matrix equation with the plus sign (NME-P) [3]:

X + ATX−1A = Q,(1.3)

where A,Q ∈ R
n×n with Q being symmetric positive definite.

• Nonlinear matrix equation with the minus sign (NME-M) [12]:

X −ATX−1A = Q,(1.4)

where A,Q ∈ R
n×n with Q being symmetric positive definite.

The Riccati-type matrix equations occur in many important applications (see
[3, 12, 22, 27] and references therein). The nonlinear matrix equations CARE and
DARE have been studied extensively (see [1, 2, 4, 5, 6, 7, 19, 8, 14, 15, 18, 20, 21, 22,
23, 24, 25, 26, 27, 29, 30, 31, 34]). Recently, the nonlinear matrix equations NME-P
and NME-M have been studied in [3, 10, 11, 12, 16, 17, 28, 32, 35].
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A class of methods, referred to as doubling algorithms, attracted much interest
in the 1970s and ’80s (see [2] and references therein). These methods originate from
the fixed-point iteration derived from the DARE:

Xk+1 = ATXk(I + GXk)
−1A + H.

Instead of generating the sequence {Xk}, doubling algorithms generate {X2k}. Dou-
bling algorithms were largely forgotten in the past decade. Recently, doubling al-
gorithms have been revived for DAREs and CAREs because of their nice numerical
behavior—a quadratic convergence rate, low computational cost, and high numerical
reliability, despite the lack of a rigorous error analysis (see [19, 9, 8]). For the NME-Ps
and NME-Ms, Meini [28] and Guo [17] proposed iterative methods with a numerical
behavior similar to that of the SDAs for DAREs and CAREs.

In this paper, by employing techniques similar to those in [8], we derive two
SDAs for solving NME-Ps and NME-Ms, similar to those proposed by Meini in [28].
In general, we discover that our SDAs can be viewed as repeated applications of some
special structure-preserving transformations to the associated symplectic pencils. We
first introduce these doubling transformations, then develop a unified convergence
theory for the SDAs, based on the nice properties of the doubling transformations
using only elementary matrix theory.

Throughout this paper, the symbols ‖ · ‖2 denote the matrix spectral norm. For
a given n × n matrix A we use ρ(A) to denote the spectral radius of A. For real
symmetric matrices X and Y we write X > Y (X ≥ Y ) if X − Y is symmetric
positive definite (semidefinite).

The paper is organized as follows. In section 2, we introduce a structure-preserv-
ing transformation for symplectic pencils and show its basic properties. In section 3,
we analyze the convergence of the SDAs for the DARE and the CARE. In section 4,
we derive the SDAs for solving the NME-P and the NME-M by using the doubling
transformations, and establish the convergence theory of SDAs. Concluding remarks
are given in section 5.

2. Doubling transformation. In this section, we introduce a structure-pre-
serving transformation for symplectic pencils and investigate its basic properties.
Based on the swapping and collapsing techniques in [4, 7, 6, 5], we begin with the
definition of the transformation.

For M,L ∈ R
2n×2n, let M − λL be a symplectic pencil, i.e.,

MJMT = LJLT , J =

[
0 I

−I 0

]
.(2.1)

Define

N (M,L) =

{
[M∗, L∗] : M∗, L∗ ∈ R

2n×2n, rank[M∗, L∗] = 2n, [M∗, L∗]

[
L

−M

]
= 0

}
.

(2.2)

Since rank
[

L
−M

]
≤ 2n, it follows that N (M,L) �= ∅. For any given [M∗, L∗] ∈

N (M,L), define

M̂ = M∗M, L̂ = L∗L.(2.3)

The transformation

M − λL −→ M̂ − λL̂

is called a doubling transformation.
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An important feature of this kind of transformation is that it is structure-preserving,
eigenspace-preserving, and eigenvalue-squaring, which has been shown in [4, 5, 33].
We quote the basic properties in the following theorem.

Theorem 2.1. Assume that the pencil M̂ − λL̂ is the result of a doubling trans-
formation of the symplectic pencil M − λL. Then we have the following:

(a) The pencil M̂ − λL̂ is symplectic.

(b) If M [ UV ] = L [ UV ]S, where U, V ∈ R
n×m and S ∈ R

m×m, then M̂ [ UV ] =

L̂ [ UV ]S2.
(c) If the pencil M − λL has the Kronecker canonical form

WMZ =

[
Jr 0
0 I2n−r

]
, WLZ =

[
Ir 0
0 N2n−r

]
,(2.4)

where W,Z are nonsingular, Jr is a Jordan matrix, and N2n−r is a nilpotent matrix,

then there exists a nonsingular matrix Ŵ such that

ŴM̂Z =

[
J2
r 0
0 I2n−r

]
, Ŵ L̂Z =

[
Ir 0
0 N2

2n−r

]
.(2.5)

Remark 2.1. (i) A subspace W of R
2n is called a generalized eigenspace of a pencil

M −λL if W is spanned by the columns of W = [ UV ], where U, V ∈ R
n×m, and W has

full column rank and satisfies MW = LWS with S ∈ R
m×m. Therefore, part (b)

of Theorem 2.1 tells us that if W is a generalized eigenspace of a symplectic pencil
M −λL, then it is still a generalized eigenspace after a doubling transformation. This
is a cornerstone for the convergence theory of the SDAs for the Riccati-type matrix
equations in the next two sections.

(ii) A pencil M − λL is called regular if det(M − λL) does not vanish identically.
It is well known that a pencil is regular if and only if it has a Kronecker canonical form
as in (2.4). Thus, part (c) of Theorem 2.1 says that doubling transformations preserve
regularity and that λ is a eigenvalue of M − λL if and only if λ2 is an eigenvalue of
M̂ − λL̂.

A symplectic pencil M−λL is said to be in first standard symplectic form (SSF-1)
if it has the form

M =

[
A 0

−H I

]
, L =

[
I G
0 AT

]
,(2.6)

with H,G ≥ 0; it is said to be in second standard symplectic form (SSF-2) if

M =

[
A 0
Q −I

]
, L =

[
−P I
AT 0

]
,(2.7)

with P,Q ≥ 0.
Note that one standard symplective form cannot be transformed to another by

left nonsingular and right symplectic equivalence transformations unless G in (2.6) or
P in (2.7) is positive definite. The following theorem shows that the two standard
symplectic forms are preserved by an appropriate choice of doubling transformations.

Theorem 2.2. (a) Let M − λL be in SSF-1. Then [M∗, L∗] ∈ N (M,L) can be

constructed such that after the corresponding doubling transformation, M̂ −λL̂ is still
in SSF-1.
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(b) Let M − λL be in SSF-2. If Q − P > 0 and Q − AT (Q − P )−1A ≥ 0, then
[M∗, L∗] ∈ N (M,L) can be constructed such that after the corresponding doubling

transformation, M̂ − λL̂ is still in SSF-2.
Proof. (a) Applying block Gaussian elimination and row permutation to

[
L

−M

]
,

we get

M∗ =

[
A(I + GH)−1 0

−AT (I + HG)−1H I

]
, L∗ =

[
I AG(I + HG)−1

0 AT (I + HG)−1

]
(2.8)

such that

M∗L = L∗M,(2.9)

i.e., [M∗, L∗] ∈ N (M,L). Here the Sherman–Morrison–Woodbury formula (see, e.g.,
[13, p. 50]) is used. For more details, see [8]. We then compute L∗L and M∗M to
produce

M̂ = M∗M =

[
Â 0

−Ĥ I

]
, L̂ = L∗L =

[
I Ĝ

0 ÂT

]
,(2.10)

where

Â = A(I + GH)−1A,(2.11)

Ĝ = G + AG(I + HG)−1AT ,(2.12)

Ĥ = H + AT (I + HG)−1HA.(2.13)

It is clear that the resulting pencil is still in SSF-1.
(b) Similarly, under the condition Q−P > 0, we can compute [M∗, L∗] ∈ N (M,L)

with

M∗ =

[
A(Q− P )−1 0

−AT (Q− P )−1 I

]
, L∗ =

[
I −A(Q− P )−1

0 AT (Q− P )−1

]
.(2.14)

Direct calculation gives rise to

M̂ = M∗M =

[
Â 0

Q̂ −I

]
, L̂ = L∗L =

[
−P̂ I

ÂT 0

]
,(2.15)

where

Â = A(Q− P )−1A,(2.16)

Q̂ = Q−AT (Q− P )−1A,(2.17)

P̂ = P + A(Q− P )−1AT .(2.18)

The assumption Q − AT (Q − P )−1A ≥ 0 implies that the resulting pencil is still in
SSF-2.

Remark 2.2. The proof of Theorem 2.2 provided us with the well-defined compu-
tation formulae for the special structure-preserving doubling transformations, which
is the basis for the SDAs for solving the Riccati-type matrix equations.
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3. SDAs for preserving SSF-1. In this section, we first state the SDAs pro-
posed in [8] and [9], respectively, for solving DAREs and CAREs. Then we use the
technique established in the last section to develop the convergence theory of the
SDAs.

3.1. SDA for solving DAREs. It is well known [27] that the DARE (1.2) has
a symmetric positive semidefinite solution X (i.e., X ≥ 0) if and only if X satisfies
that

M

[
I
X

]
= L

[
I
X

]
S(3.1)

for some stable matrix S ∈ R
n×n, where

M =

[
A 0

−H I

]
, L =

[
I G
0 AT

]
.(3.2)

Notice that the pencil M − λL is in SSF-1. Therefore, repeated applications of the
special doubling transformation defined in (2.11)–(2.13) gives rise to the following
structure-preserving doubling algorithm.

Algorithm SDA-1.

A0 = A, G0 = G, H0 = H,

Ak+1 = Ak(I + GkHk)
−1Ak,

Gk+1 = Gk + AkGk(I + HkGk)
−1AT

k ,

Hk+1 = Hk + AT
k (I + HkGk)

−1HkAk.

This is the SDA described in [8], in which extensive numerical experiments show
that this algorithm is efficient and competitive.

3.2. SDA for solving CAREs. Assume that X ≥ 0 solves the CARE (1.1). It
is well known that the CARE (1.1) can be rewritten as

H
[
I
X

]
=

[
I
X

]
R,(3.3)

where

H =

[
A −G

−H −AT

]
, R = A−GX.

The matrix H is a Hamiltonian matrix, i.e., (HJ)T = HJ . Using a Cayley transfor-
mation with some appropriate γ > 0, we can transform (3.3) into the form

M

[
I
X

]
= L

[
I
X

]
S,(3.4)

where

M = H + γI, L = H− γI, S = (R− γI)−1(R + γI).

Now assume that we have chosen a γ > 0 such that the matrices

Aγ = A− γI and Wγ = AT
γ + HA−1

γ G(3.5)
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are nonsingular. Chu, Fan, and Lin [9] proposed a method for computing γ such that
both Aγ and Wγ are well conditioned. Let

T1 =

[
A−1

γ 0
HA−1

γ I

]
, T2 =

[
I −A−1

γ GW−1
γ

0 −W−1
γ

]
,(3.6)

which are obtained by alternately applying block Gaussian elimination to the matrices
L and M (see [9] for more details). Then, direct calculations give rise to

M̂ = T2T1M =

[
Â 0

−Ĥ I

]
, L̂ = T2T1L =

[
I Ĝ

0 ÂT

]
,

where

Â = I + 2γW−T
γ , Ĝ = 2γA−1

γ GW−1
γ , Ĥ = 2γW−1

γ HA−1
γ .

Here the Sherman–Morrison–Woodbury formula is used. Since γ > 0 and H,G ≥ 0
implies that Ĝ, Ĥ ≥ 0, it follows that the resulting pencil M̂ − λL̂ is in SSF-1. In
addition, it follows from (3.4) that

M̂

[
I
X

]
= L̂

[
I
X

]
S.(3.7)

Thus, beginning with (3.7), following the same lines as SDA-1 for solving the
DARE, we can construct a matrix sequence to approximate the unique symmetric
positive semidefinite solution X to the CARE (1.1). For more details, see [9].

3.3. Convergence analysis of SDA-1. Now we establish the convergence the-
ory of SDA-1 using Theorem 2.1. The main results are listed in the following theorem.

Theorem 3.1. Assume that X,Y ≥ 0 satisfies that

X = ATX(I + GX)−1A + H,(3.8)

Y = AY (I + HY )−1AT + G,(3.9)

where G,H ≥ 0, and let

S = (I + GX)−1A, T = (I + HY )−1AT .(3.10)

Then the matrix sequences {Ak}, {Gk}, and {Hk} generated by SDA-1 satisfy

(a) Ak = (I + GkX)S2k

;
(b) H ≤ Hk ≤ Hk+1 ≤ X and

X −Hk = (ST )2
k

(X + XGkX)S2k ≤ (ST )2
k

(X + XYX)S2k

;(3.11)

(c) G ≤ Gk ≤ Gk+1 ≤ Y and

Y −Gk = (TT )2
k

(Y + Y HkY )T 2k ≤ (TT )2
k

(Y + Y XY )T 2k

.(3.12)

Proof. Notice that U, V ≥ 0 implies that I + UV is nonsingular and V (I +
UV )−1, (I + UV )−1U ≥ 0. It follows that SDA-1 is well defined and

H = H0 ≤ Hk ≤ Hk+1 and G = G0 ≤ Gk ≤ Gk+1.(3.13)
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Define

Mk =

[
Ak 0

−Hk I

]
, Lk =

[
I Gk

0 AT
k

]
.

Then the pencil Mk+1−λLk+1 is the result of doubling-transforming the pencil Mk−
λLk. Since (3.8) implies

M0

[
I
X

]
= L0

[
I
X

]
S,(3.14)

where S is defined by (3.10), repeated applications of part (b) of Theorem 2.1 produce

Mk

[
I
X

]
= Lk

[
I
X

]
S2k

.(3.15)

Equating the blocks of (3.15) then yields

Ak = (I + GkX)S2k

,(3.16)

X −Hk = AT
kXS2k

.(3.17)

Combining (3.16) with (3.17) gives rise to

X −Hk = (ST )2
k

(X + XGkX)S2k

.(3.18)

This, together with (I + XGk)X ≥ 0, implies that X −Hk ≥ 0, i.e., X ≥ Hk.
Similarly, (3.9) can be rewritten as

M0

[
−Y
I

]
T = L0

[
−Y
I

]
,(3.19)

where T is defined by (3.10), and from (3.19) we can derive that

Y −Gk = (TT )2
k

(Y + Y HkY )T 2k

,

implying that Y ≥ Gk. Thus, the theorem is proved.
Let

W =

[
L

[
I
X

]
,M

[
−Y
I

]]
, Z =

[
I −Y
X I

]
.

Noting that M0 = M , L0 = L, and X,Y ≥ 0, it follows from (3.14) and (3.19) that
W and Z are nonsingular and satisfy

W−1MZ =

[
S 0
0 I

]
, W−1LZ =

[
I 0
0 T

]
.

Thus, by the spectral properties of symplectic pencils, it follows that if ρ(S) < 1,
then we must have ρ(T ) = ρ(S) < 1. In addition, it is well known that 0 ≤ U ≤ V
implies that ‖U‖2 ≤ ‖V ‖2. Consequently from Theorem 3.1, we immediately get the
following convergence result for SDA-1.

Corollary 3.2. Under the hypothesis of Theorem 3.1, if ρ(S) < 1, then we
have
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(a) ‖Ak‖2 ≤ (1 + ‖X‖2‖Y ‖2)‖S2k‖2 −→ 0 as k → ∞;

(b) ‖X −Hk‖2 ≤ ‖X + XYX‖2‖S2k‖2
2 −→ 0 as k → ∞;

(c) ‖Y −Gk‖2 ≤ ‖Y + Y XY ‖2‖T 2k‖2
2 −→ 0 as k → ∞.

Remark 3.1. (i) Convergence results similar to those in Corollary 3.2 were ob-
tained in [8]. In contrast to the work of [8], however, our analysis is simpler and our
convergence results are stronger. In Theorem 3.1, we show explicit expressions of Ak,
X −Hk, and Y −Gk, respectively. Furthermore, Corollary 3.2 contains simple upper
bounds of ‖Ak‖2, ‖X −Hk‖2, and ‖Y −Gk‖2 in terms of only S, X, and Y .

(ii) Again from parts (b) and (c) of Theorem 3.1, the matrix sequences {Hk}
and {Gk} are monotonically increasing and bounded above, and hence there exist
symmetric positive semidefinite matrices H̄ and Ḡ such that

lim
k→∞

Hk = H̄, lim
k→∞

Gk = Ḡ.

Corollary 3.2 tells us that if ρ(S) < 1, then X = H̄ and Y = Ḡ.
Remark 3.2. Let G = BR−1BT ≥ 0, with R > 0, let H = CTC ≥ 0 in the DARE

(3.8), and assume that (A,B) is stabilizable and (A,C) is detectable. Then it is well
known that the DARE (3.8) and its dual (3.9), respectively, have symmetric positive
semidefinite solutions X and Y , and that ρ(S) < 1 (see, e.g., [25, 29] for details).
Thus the conditions in Corollary 3.2 are satisfied. In fact, it is easy to verify that if
the DARE (3.8) and its dual (3.9), respectively, have symmetric positive semidefinite
solutions X and Y , with S = (I + GX)−1A and ρ(S) < 1, then (A,B) is stabilizable
and (A,C) is detectable. A similar argument also holds for the CARE (1.1) (see [9]
for details).

4. SDAs for preserving SSF-2. In this section, we shall use the doubling
transformations defined in the last section to derive two SDAs for solving the NME-Ps
and NME-Ms. Then, we use the technique established in the last section to develop
the convergence theory of these SDAs.

4.1. SDA for solving NME-Ps. It is easy to verify that the NME-P (1.3) has
a symmetric positive definite X (i.e., X > 0) if and only if X satisfies

M

[
I
X

]
= L

[
I
X

]
S(4.1)

for some matrix S ∈ R
n×n, where

M =

[
A 0
Q −I

]
, L =

[
0 I
AT 0

]
.(4.2)

Notice that the pencil M − λL is in SSF-2. Therefore, applying the special doubling
transformation defined in (2.16)–(2.18) repeatedly gives rise to the following SDA.

Algorithm SDA-2.

A0 = A, Q0 = Q, P0 = 0,

Ak+1 = Ak(Qk − Pk)
−1Ak,

Qk+1 = Qk −AT
k (Qk − Pk)

−1Ak,

Pk+1 = Pk + Ak(Qk − Pk)
−1AT

k .

Remark 4.1. To ensure that the iterations in SDA-2 are well defined, the matrix
Qk − Pk must be symmetric positive definite for all k. This can be guaranteed if the
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NME-P (1.3) has a symmetric positive solution (see Theorem 4.1), as we shall prove
below.

Remark 4.2. It is interesting to note that SDA-2 is essentially the same as
Algorithm 3.1 proposed in [28] with Qk − Pk and Qk in SDA-2 replaced by Qk and
Xk, respectively. In other words, Algorithm 3.1 in [28] is an SDA. It was pointed out
that this algorithm has very nice numerical behavior, with quadratical convergence
rate, low computational cost, and good numerical stability. For more details, see
[28, 17].

4.2. SDA for solving NEM-Ms. It is proved in [12] that there always exists
a unique positive definite solution X to the NME-M

X −ATX−1A = Q(4.3)

and, moreover, that the spectral radius of X−1A is strictly less than 1. The solution
X is closely related to the generalized eigenspace of the pencil

M − λL =

[
A 0

−Q I

]
− λ

[
0 I
AT 0

]
.(4.4)

In fact, it is easy to verify that a symmetric positive definite matrix X is a solution
to the NME-M (4.3) if and only if X satisfies that

M

[
I
X

]
= L

[
I
X

]
S(4.5)

for some matrix S ∈ R
n×n.

Although the pencil (4.4) is not symplectic, we can use the same technique as
described in section 2 to transform it into a symplectic pencil. Take

M∗ =

[
AQ−1 0
ATQ−1 −I

]
, L∗ =

[
I AQ−1

0 ATQ−1

]
;

then we have

M∗L = L∗M.(4.6)

Direct calculations lead to

M̂0 = M∗M =

[
Â 0

Q̂ −I

]
, L̂0 = L∗L =

[
P̂ I

ÂT 0

]
,

where

Â = AQ−1A, Q̂ = Q + ATQ−1A, P̂ = AQ−1AT .(4.7)

The pencil M̂0 − λL̂0 is symplectic but neither an SSF-1 nor an SSF-2.
Assume that X > 0 is the unique symmetric positive solution to the NME-M

(4.3). Then it satisfies (4.5) with S = X−1A. From part (b) of Theorem 2.1, we have

M̂0

[
I
X

]
= L̂0

[
I
X

]
S2.(4.8)
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Now let

[
I

X̂

]
=

[
I 0

P̂ I

] [
I
X

]
, M̂ =

[
Â 0

Q̂ + P̂ −I

]
, L̂ =

[
0 I

ÂT 0

]
.

Then it follows from (4.8) that

M̂

[
I

X̂

]
= L̂

[
I

X̂

]
S2.(4.9)

Clearly, the pencil M̂ − λL̂ is in SSF-2. Thus, beginning with (4.9), following the
same lines as SDA-2 for solving the NME-P (1.3), we can construct an approximating

matrix sequence with limit X̂. Then the unique symmetric positive definite solution
X to the NME-M (4.3) can be obtained by computing X = X̂ − P̂ .

4.3. Convergence analysis of SDA-2. Now we establish the convergence the-
ory of SDA-2 based on Theorem 2.1. The main results are listed in the following
theorem.

Theorem 4.1. Assume that X > 0 satisfies that

X + ATX−1A = Q,(4.10)

where Q > 0, and let S = X−1A. Then the matrix sequences {Ak}, {Qk}, and {Pk}
generated by SDA-2 satisfy

(a) Ak = (X − Pk)S
2k

;
(b) 0 ≤ Pk ≤ Pk+1 < X and

Qk − Pk = (X − Pk) + AT
k (X − Pk)

−1Ak > 0;(4.11)

(c) X ≤ Qk+1 ≤ Qk ≤ Q and

Qk −X = (ST )2
k

(X − Pk)S
2k ≤ (ST )2

k

XS2k

.(4.12)

Proof. Using mathematical induction, denote

Mk =

[
Ak 0
Qk −I

]
, Lk =

[
−Pk I
AT

k 0

]
,

where P0 = 0.
For k = 1, since Q0 − P0 = Q > 0, it follows that A1, Q1, P1 are all well defined.

Using (4.10), we have

[
X A
AT Q

]
=

[
I 0

ATX−1 I

] [
X 0
0 X

] [
I X−1A
0 I

]
> 0.(4.13)

Further computations yield

[
I −AQ−1

0 I

] [
X A
AT Q

] [
I 0

−Q−1AT I

]
=

[
X −AQ−1AT 0

0 Q

]
.(4.14)

Combining (4.14) and (4.13), we obtain

X − P1 = X −AQ−1AT > 0.(4.15)
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From (4.10), it is easy to verify that X satisfies

M0

[
I
X

]
= L0

[
I
X

]
S

with S = X−1A. Since M1 − λL1 is the result of doubling-transforming M0 − λL0,
part (b) of Theorem 2.1 leads to

M1

[
I
X

]
= L1

[
I
X

]
S2.(4.16)

Equating the blocks of (4.16) gives rise to

A1 = (X − P1)S
2, Q1 −X = AT

1 S
2.

This, together with (4.15), implies that

Q1 − P1 = (X − P1) + AT
1 (X − P1)

−1A1 > 0,(4.17)

Q1 −X = (ST )2(X − P1)S
2 ≥ 0.(4.18)

Obviously, the inequalities Q = Q0 ≥ Q1 and 0 = P0 ≤ P1 hold. Thus, we have
proved that the theorem is true for k = 1.

Next, considering the k+1 case, we assume that the theorem is true for all positive
integers less than or equal to k. Since Qk −Pk > 0, it follows that Ak+1, Qk+1, Pk+1

are all well defined. Similar to the proof of (4.15), (4.11) implies

X − Pk+1 = (X − Pk) −Ak(Qk − Pk)
−1AT

k > 0.

Recall that Mj+1 − λLj+1 is the result of doubling-transforming Mj − λLj for
j = 0, 1, . . . , k. Applying part (b) of Theorem 2.1 k + 1 times, we get

Mk+1

[
I
X

]
= Lk+1

[
I
X

]
S2k+1

.(4.19)

From (4.19), following the same lines as the proof of (4.17) and (4.18), it can be
proved that

Qk+1 − Pk+1 = (X − Pk+1) + AT
k+1(X − Pk+1)

−1Ak+1 > 0,

Qk+1 −X = (ST )2
k+1

(X − Pk+1)S
2k+1 ≥ 0.

Clearly, Pk ≤ Pk+1 and Qk ≥ Qk+1. This shows that the theorem is also true for inte-
gers k+1. By induction principle, the theorem is true for all positive integers k.

Remark 4.3. Similar results were obtained in [28] by using properties of cyclic
reduction and spectral properties of block Toeplitz matrices with nonnegative definite
matrix-valued generating functions. In contrast, our analysis is simpler and the results
are stronger. In Theorem 4.1, we show the explicit expressions of Ak and Qk − X,
as well as the monotonicity properties of {Pk} and {Qk}. Furthermore, in part (b)
we prove that Qk − Pk is symmetric positive definite for all k, which guarantees that
SDA-2 is well defined.

It was proved in [11] that if the NME-P (1.3) has a symmetric positive definite
solution, then all symmetric solutions are positive definite with the maximal and
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minimal solutions X+ and X−. Since Theorem 4.1 is true for any symmetric positive
definite solution X, the following result follows immediately.

Corollary 4.2. Under the hypothesis of Theorem 4.1, we have

Qk − Pk > X+ −X− ≥ 0

for all k, where X+ and X− are the maximal and minimal solutions of (1.3), respec-
tively.

In addition, from Theorem 4.1, we obtain the following corollary.

Corollary 4.3. Under the hypothesis of Theorem 4.1, if ρ(S) < 1, then we
have

(a) ‖Ak‖2 ≤ ‖X‖2‖S2k‖2 −→ 0 as k → ∞;

(b) ‖X −Qk‖2 ≤ ‖X‖2‖S2k‖2
2 −→ 0 as k → ∞.

Remark 4.4. (i) Here we see that the upper bounds of ‖Ak‖2 and ‖X −Qk‖2 are
in terms of only X and S ≡ X−1A.

(ii) By Theorem 4.1, the matrix sequence {Qk} is monotonically decreasing and

bounded below by X > 0. Hence, there exists Q̄ > 0 such that limk→∞ Qk = Q̄.
Corollary 4.3 tells us that if ρ(S) < 1, then X = Q̄. In fact, X will then be the
maximal solution of (1.3). Moreover, it has been proved that X is the maximal
solution of (1.3) if and only if ρ(S) ≤ 1 (see [17]). Now assuming that X = X+ is the
maximal solution of (1.3), it is natural to ask whether Q̄ = X+ if ρ(S) = 1. In [17],
Guo proved that if ρ(S) = 1 and all eigenvalues of S on the unit circle are semisimple,
then Q̄ = X+ is still true. In this case, the convergence is at least linear with rate 1/2.
When S has nonsemisimple unimodular eigenvalues, it is unclear whether Q̄ = X+.

Remark 4.5. It is proved that the NME-P (1.3) has a symmetric positive definite
solution X if and only if the nonlinear matrix equation

Y + AY −1AT = Q(4.20)

has a symmetric positive solution Y (see, for e.g., [28]). Assume that the maximal
solution of (4.20) is Y+. Then it follows from (4.20) that

[
A 0
Q −I

] [
I

Q− Y+

]
T =

[
0 I
AT 0

] [
I

Q− Y+

]
,(4.21)

where T = Y −1
+ AT . Similar to the proof of (4.12), we can show from (4.21) that

0 ≤ Q− Y+ − Pk = (TT )2
k

(Qk −Q + Y+)T 2k ≤ (TT )2
k

Y+T
2k

,

where Pk and Qk are generated by SDA-2. Since ρ(T ) = ρ(Y −1
+ AT ) = ρ(X−1

+ A)
(see, e.g., [28]), where X+ is the maximal solution of the NME-P (1.3), it follows that
limk→∞ Pk = Q− Y+ under the conditions of Corollary 4.3. If A is nonsingular, then
X− = Q− Y+ (see [28]), where X− is the minimal solution of the NME-P (1.3), and
thus in this case we have limk→∞ Pk = X−.

Remark 4.6. Since limk→∞(Qk−Pk) = X+−X− if A is nonsingular and ρ(S) < 1,
the lower bound X+ −X− in Corollary 4.2 is the best one. However, X+ −X− may
be singular and, indeed, it can be the zero matrix. For example, the NME-P with
Q = I and A = 1

2I has X+ = X− = 1
2I.
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5. Conclusions. In this paper, we have introduced a structure-preserving trans-
formation for symplectic pencils, referred to as the doubling transformation, and in-
vestigated its basic properties. Based on these nice properties, a unified convergence
theory for the SDAs for solving a class of Riccati-type matrix equations has been
established, using only elementary matrix theory.
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applied to the Schur parameters and complementary parameters of a unitary Hessenberg matrix
H gives computed parameters for QHHQ that are close to those obtained from a perturbed set of
parameters using a perturbed shift with no numerical error. The perturbations of the parameters
and the shift are bounded.
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1. Background. If an unreduced unitary Hessenberg matrix is scaled by a di-
agonal similarity so as to have real positive subdiagonal, then it has the form

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

−a0a1 −a0b1a2 −a0b1b2a3 · · · −a0b1 · · · bn−1an
b1 −a1a2 −a1b2a3 · · · −a1b2 · · · bn−1an

b2 −a2a3

...
. . .

. . .
...

bn−1 −an−1an

⎤
⎥⎥⎥⎥⎥⎥⎦
,(1)

where bk is real, bk > 0, |ak|2 + b2k = 1 for 1 ≤ k < n, and |an| = 1. We also assume
that a0 = 1. The ak are the Schur parameters and the bk are the complementary
parameters of H.

A unitary Hessenberg matrix can also be written as a product of modified ele-
mentary rotations

H = G1(a1)G2(a2) · · ·Gn(an),(2)

where

Gk(ak) = Ik−1 ⊕
[
−ak bk
bk ak

]
⊕ In−k−1

for 1 ≤ k < n and

Gn(an) = In−1 ⊕ (−an).

The parameters in the rotations are the same as the parameters in (1).
Unitary Hessenberg structure is similar to symmetric tridiagonal structure in

that it can be exploited by the QR algorithm. If we do not accumulate eigenvectors,
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then the unitary Hessenberg QR (UHQR) algorithm requires O(n2) floating point
operations [3]. As originally presented the algorithm was unstable. A stable algorithm
based on the application of a parameterized QZ algorithm to a structured matrix
pencil with the same eigenvalues as H was analyzed in [1].

In [4] the main source of the instability in a rational variant of the UHQR al-
gorithm was identified as cancellation in a single formula. A stabilizing alternate
formula was proposed in the same paper and numerical results suggested that the
modified algorithm was numerically stable. The main features of an error analysis of
a rational UHQR algorithm were summarized in [6] where it was shown that an ad-
ditional modificaton to enforce the normalization condition |ak|2 + b2k = 1 results in a
provably stable algorithm. In this paper we prove the numerical stability of a simpler
modification for which the normalization errors on ak and bk can be bounded over
repeated QR iterations without explicit renormalization. The algorithm considered
here admits a somewhat simpler proof of stability than that of [6].

2. The algorithm. For a particular choice of shift z one iteration of the QR
algorithm computes

H − zI = QR

and

Ĥ = RQ + zI = QHHQ,

where

Q = G1(c1)G2(c2) · · ·Gn(cn)

is a product of plane rotations computed to zero the subdiagonal elements of H − zI
and give real, positive values on the diagonal of R. Clearly Ĥ is a unitary Hessenberg
matrix. If we let the Schur parameters of Ĥ be âk and b̂k, then the UHQR algorithm
efficiently computes the parameters âk and b̂k from ak and bk. The algorithm also
computes the cosines ck and the corresponding real sines sk. While Gn(cn) is not
needed to triangularize QH(H − zI) = R, it is required to make the last diagonal
element of R real and nonnegative. We assume that H is unreduced (i.e., that bk > 0
for k = 1, 2, . . . , n− 1). If this is not the case, then the problem deflates in the usual
way. Algorithm 1 is the UHQR algorithm in the form originally given in [3].

Algorithm 1: UHQR
c0 = d0 = 1, s0 = 1
for k = 1 : n− 1

pk = zck−1 + akdk−1

qk = akzck−1 + dk−1

rk =
√
|pk|2 + b2k

ck = pk/rk, sk = bk/rk, dk = qk/rk
b̂k−1 = rksk−1

âk = ckdk − zs2
kak+1

end
pn = zcn−1 + andn−1, rn = |pn|
b̂n−1 = rnsn−1, ân = an
if rn > 0, then cn = sign(pn)

else cn = 1
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In its original formulation the algorithm is numerically unstable. Three modifi-
cations lead to a provably stable algorithm. The first, from [4], gives an algorithm,
specialized to the case |z| = 1, from which square roots are easily eliminated if the
eigenvectors are not needed. The resulting algorithm is still unstable. A further mod-
ification of a single formula, also proposed in [4], stabilizes the algorithm in practice.
Unfortunately, it is not possible to prove stability. The difficulty is that there is no
guarantee that the normalization errors on the Schur parameters remain small. If

|ak|2 + b2k = 1 + δk,

where δk represents the normalization error on ak and bk, then the analysis given in
this paper suggests that δk could grow exponentially with repeated UHQR iterations.

From this point on we assume that |z| = 1. Even with this restriction the shift
can be chosen to ensure global quadratic convergence. In [8] it is shown that the QR
algorithm applied to a unitary Hessenberg matrix converges globally and quadratically
if z is chosen to be the eigenvalue of the 2 × 2 unitary matrix

[
−an−2an−1/|an−2| −an−2bn−1an/|an−2|

bn−1 −an−1an

]
(3)

which is closer to −an−1an. If an−2 = 0, then the factor an−2/|an−2| is replaced by
an. This is the projected Wilkinson shift.

Instead of computing both ck and dk we work with ck and the ratio

fk =
ck
dk

=
pk
qk

.

If we define the Szegö polynomial χk(z) = det(zI−Hk), where Hk is the k×k leading
principal submatrix of H, then it can be shown that

pk =
χk(z)

r1r2 · · · rk−1
, and qk =

zkχk(1/z)

r1r2 · · · rk−1
.

If H is unreduced, then it follows from well-known properties of Szegö polynomials
[7] that for k = 1, 2, . . . , n − 1 the polynomial χk(z) has all zeros strictly within the
unit circle and zkχk(1/z) has all zeros strictly outside the unit circle; thus for |z| = 1,
qk �= 0. It also follows that zkχk(1/z) = zkχk(z) so that |pk| = |qk| and |fk| = 1.
Further details on the connection of Szegö polynomials and the UHQR algorithm can
be found in [3].

If we define

wk = zfk−1 and gk = wk + ak,

then we can compute fk from

fk =
zck−1 + akdk−1

akzck−1 + dk−1
=

zfk−1 + ak
akzfk−1 + 1

=
gk

gkwk
=

wkgk
gk

.

We can compute pk from gk, fk−1, and ck−1 using

pk = zck−1 + akdk−1 = (z + akfk−1)ck−1 = gkfk−1ck−1,

where we have used the fact that |fk−1| = 1. Since ck = fkdk so that |dk| = |ck| we
have

âk = |ck|2fk − zs2
kak+1.
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The stabilizing formula of [4] is an alternate formula for gk. We define tk =
akzfk−1 so that

gk = zfk−1 + ak = zfk−1(1 + tk).

If Re(tk) ≥ 0, then there is no cancellation and it can be shown that gk is computed
to high relative accuracy from z, fk−1, and ak. However, if Re(tk) < 0, then the
formula can be inaccurate. In the latter case it was proposed in [4] to use

gk = zfk−1 + ak

=
(zfk−1 + ak)(zfk−1 − ak)

(zfk−1 − ak)

=
1 − |ak|2 − 2i Imag(akzfk−1)

(zfk−1 − ak)

=
b2k − 2i Imag(tk)

(zfk−1 − ak)
,(4)

where x = Re(x) + i Imag(x). The use of (4) to compute gk when Re(tk) < 0
dramatically improves the numerical properties of the algorithm. However, if we
always apply (4) when Re(tk) < 0, then we cannot prove that the normalization
errors on the Schur parameters remain small.

There are two possible ways to prevent the growth of normalization errors: the
parameters ak and bk can be explicitly renormalized with every iteration or we can
further restrict the use of the alternate formula (4). We take the latter approach and
use (4) only when

Re(tk) < 0 and |ak| >
√

2

2
.

We show in section 4 that this additional restriction stabilizes the propagation of
normalization errors. This results in the following stabilized algorithm.

Algorithm 2: Stabilized UHQR
z = z/|z|
f0 = c0 = 1, s0 = 0
for k = 1 : n− 1

wk = zfk−1, tk = akwk

if Re(tk) ≥ 0 or |ak| ≤
√

2
2 , then gk = wk + ak

else gk = (b2k − 2iImag(tk))/(wk − ak)

pk = gkfk−1ck−1

rk = sqrt(|pk|2 + b2k), b̂k−1 = rksk−1

ck = pk/rk, sk = bk/rk
fk = wkgk/gk
âk = |ck|2fk − zs2

kak+1

end
wn = zfn−1 tn = anwn

if Re(tn) ≥ 0, then gn = wn + an
else gn = (−2iImag(tn))/(wn − an)

pn = gnfn−1cn−1

rn = |pn|, b̂n−1 = rnsn−1
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ân = an
if rn > 0, then cn = sign(pn)

else cn = 1

The algorithm uses several divisions that might be of some concern. The matrix
H is unreduced so that in the absence of underflow in the computation of b2k we have
rk �= 0. Underflow of b2k should justify deflation. Thus the computation of ck = pk/rk
and sk = bk/rk will not result in division by zero when H is numerically unreduced. In
the absence of numerical error wk = 1 so that gk = wk + ak = 0 implies |ak| = 1 and
bk = 0. Thus bk �= 0 implies gk �= 0. To state conditions under which gk �= 0 in finite
precision arithmetic requires a bound on the numerical errors in the normalization
relation |wk| = 1. This will be fully dealt with in section 4.

If the eigenvectors are not desired, then Algorithm 2 can be converted to a ra-
tional algorithm that avoids the use of square roots. In particular we can replace the
computation of pk, rk, b̂k−1, ck, and sk with

|pk|2 = |gk|2|ck−1|2, r2
k = |pk|2 + b2k, b̂2k−1 = r2

ks
2
k−1,

|ck|2 = |pk|2/r2
k, and s2

k = b2k/r
2
k.

This is the form of the algorithm emphasized in [4]. The analysis of this paper can be
modified to apply to the rational form of the algorithm with only minor modifications.

3. General issues. The analysis involves both forward and backward errors.
The backward errors are placed in a structured way on the Schur parameters ak, the
complementary parameters bk, and the shift z instead of in an unstructured way on
the matrix H. Similarly the forward errors are placed on the quantities computed by
the algorithm and not in an unstructured way on Ĥ or Q.

It is not reasonable to assume that we start with perfectly normalized ak and bk
and exactly unimodular z. Instead we assume that

|ak|2 + b2k = 1 + δk,(5)

where bn = 0 so that |an|2 = 1 + δn and

z = z̃(1 + δz),(6)

where δk and δz = |z| − 1 are assumed to be of the order of the unit roundoff. The
shift z̃ is not the exact projected Wilkinson shift. Instead, since

|z̃| =
|z|

|1 + δz|
=

|z|
|z| = 1,

it is the projection of an arbitrary computed shift on the unit circle. If the shift is
computed in such a way as to guarantee numerical unimodularity, then |δz| can be
bounded as a small multiple of the unit roundoff. This can be guaranteed by the
explicit normalization z = z/|z|.

We use δ as an upper bound on the normalization errors on the Schur parameters
so that

δ = max
1≤k≤n

|δk|.



ERROR ANALYSIS OF A UHQR ALGORITHM 45

With ε defined to be the unit roundoff, bounds on the forward and backward errors
are written in terms of the three basic sources of error ε, δ, and δz. All three errors
must be small for the resulting bounds to imply stability. The shift can be explicitly
normalized to keep δz small. In the case of δ, we must prove that repeated UHQR
iterations do not cause dramatic growth in the normalization errors on the Schur
parameters.

Structured bounds with errors on the Schur parameters imply normwise error
bounds. For the moment we assume that ãk, b̃k, and z̃ are such that the computed

âk, b̂k, sk, and ck are close to the quantities ˜̂ak,
˜̂
bk, s̃k, and c̃k computed by stabilized

UHQR applied to ãk, b̃k, and z̃ without error. We have already chosen z̃ so that
|z̃| = 1. The perturbed Schur parameters are constructed to satisfy |ãk|2 + b̃2k = 1 and

|ãn| = 1. Throughout the analysis a tilde indicates a quantity computed from ãk, b̃k,
and z̃ without error.

It follows from the fact that the tilde quantities are computed without error that

˜̂
H = Q̃HH̃Q̃ and Q̃HQ̃ = I,(7)

where

H̃ = G1(ã1)G2(ã2) · · ·Gn(ãn),

˜̂
H = G1(˜̂a1)G2(˜̂a2) · · ·Gn(˜̂an),

and

Q̃ = G1(c̃1)G2(c̃2) · · ·Gn(c̃n).

In proving the stability of the algorithm we give bounds for Ka(ε, δ, δz, k) and
Kb(ε, δ, δz, k) in the relative backward error bounds

|ãk − ak| ≤ |ãk|Ka(ε, δ, δz, k) and
∣∣∣b̃k − bk

∣∣∣ ≤ |b̃k|Kb(ε, δ, δz, k),

for Kb̂(ε, δ, δz, k), Kc(ε, δ, δz, k), and Ks(ε, δ, δz, k) in the relative forward error bounds

∣∣∣˜̂bk − b̂k

∣∣∣ ≤ |˜̂bk|Kb̂(ε, δ, δz, k), |c̃k − ck| ≤ |c̃k|Kc(ε, δ, δz, k),

and

|s̃k − sk| ≤ |s̃k|Ks(ε, δ, δz, k),

and for Kâ(ε, δ, δz, k) in the absolute forward error bound

|˜̂ak − âk| ≤ Kâ(ε, δ, δz, k).

The use of an absolute error bound for ak is a result of the details of the analysis. In
contrast to the other quantities, it does not appear that there is a satisfactory relative
error bound for ak.

Define

Ĥ = G1(â1, b̂1)G2(â2, b̂2) · · ·Gn−1(ân−1, b̂n−1)Gn(ân)
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and

Q = G1(c1, s1)G2(c2, s2) · · ·Gn−1(cn−1, sn−1)Gn(cn)

with

Gk(ak, bk) = Ik−1 ⊕
[
−ak bk
bk ak

]
⊕ In−k−1 and Gn(an) = In−1 ⊕ (−an).

We have shown explicitly the dependence of Gk(âk, b̂k) on b̂k since, when dealing with

computed quantities that are not exactly normalized, b̂k is not determined by âk.
The above error bounds for the Schur parameters imply that

H̃ = H + E and
˜̂
H = Ĥ + F,

where

‖E‖2 ≤
n∑

k=1

2 max(Ka(ε, δ, δz, k),Kb(ε, δ, δz, k)) + O(ε2)

and

‖F‖2 ≤
n∑

k=1

2 max(Kâ(ε, δ, δz, k),Kb̂(ε, δ, δz, k)) + O(ε2).

Similarly

‖Q− Q̃‖2 ≤
n∑

k=1

2 max(Kc(ε, δ, δz, k),Ks(ε, δ, δz, k)) + O(ε2).(8)

Writing (7) in terms of H and Ĥ gives

Ĥ = Q̃H
(
H + E − Q̃F Q̃H

)
Q̃.(9)

Thus the computed Ĥ is similar to a matrix that is close to H.
If we now consider a sequence of QR iterations starting with H = H0 and satis-

fying the error relation

Hj+1 = Q̃H
j [Hj + Ej ] Q̃j ,

then

Hj+1 = (Q̃H
j Q̃

H
j−1 · · · Q̃H

0 )[H0 + E0 + Q̃0E1Q̃
H
0 + Q̃0Q̃1E2Q̃

H
1 Q̃

H
0

+ · · · (Q̃0 · · · Q̃j−1)Ej(Q̃
H
j−1 · · · Q̃0)]Q̃0Q̃1 · · · Q̃j .

Thus Hj+1 is similar to a matrix that is close to H0. If the iteration converges so
that Hj+1 is diagonal or numerically diagonal, then the diagonal matrix is similar
to a matrix that is close to H0. The similarity Q can be accurately computed by
accumulating the rotations Gk(ck, sk) from each iteration. We use these observations
to give normwise error bounds in section 7.

We begin the analysis in section 4 with an analysis of the normalization errors
and continue in section 5 with a backward error analysis. In both sections, the com-
putation of fk is of primary importance: The normalization condition |fk| = 1 is
crucial throughout the analysis and the backward errors on ak and bk are chosen to
show that the computation of fk is stable. The relevant fragment of Algorithm 2 is
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the following.
Algorithm 3: Computation of fk

for k = 1 : n
wk = zfk−1, tk = akwk

if Re(tk) ≥ 0 or |ak| ≤
√

2
2 , then gk = wk + ak

else gk = (b2k − 2iImag(tk))/(wk − ak)
fk = wkgk/gk

end

To include gn we have extended the loop to run from k = 1 to k = n. This computes
the unnecessary quantity fn and uses bn = 0. With bn = 0 the gn computed by this
loop is the same as that computed by Algorithm 2.

In the backward part of the analysis we construct ãk and b̃k close to ak and bk
such that |ãk|2 + b̃2k = 1 holds exactly. The computed fk satisfies

fk = (1 + ηk)f̃k and ηk =
fk − f̃k

f̃k
(10)

for some relative error ηk = O(ε).
In addition to the normalization errors δk and δz we are also concerned with the

normalization of fk. Since |f̃k| = 1, the size of Re(ηk) can be viewed as a measure of
how far fk departs from unimodularity. In particular

|fk| =

√
fkfk =

√
(1 + ηk)(1 + ηk) = (1 + Re(ηk)) + O(|ηk|2)(11)

so that Re(ηk) = |fk| − 1 + O(|ηk|2). In section 4 we prove that fk is numerically
unimodular for k = 1, 2, . . . , n − 1. This immediately gives a first order bound on
Re(ηk) that does not depend on the choice of the backward errors in ãk and b̃k.

To keep the equations relatively short for as long as possible, we will only substi-
tute bounds on normalization errors into the forward and backward error bounds at
the end. Prior to this many of the bounds will be expressed in terms of

δf (k) = |Re(ηk)|,

δ
(1)
f (k) =

k∑
l=1

δf (l),

and

δ
(2)
f (k) =

k∑
l=1

δ
(1)
f (l).

The following is an outline of the analysis.
1. The normalization errors: In section 4 we bound Re(ηk) and thus δf (k),

δ
(1)
f (k), and δ

(2)
f (k). The bounds are used to show that gk �= 0 under reason-

able assumptions on ε and δz. We show that the normalization errors δk do
not increase over the course of repeated UHQR iterations.

2. The backward errors: In section 5 we define ãk and b̃k. We then bound
the backward errors on ak and bk and the imaginary part, Imag(ηk), of the
forward relative error on fk. The normalization errors Re(ηk), δk, and δz are
present in these bounds.
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3. The forward errors: In section 6 we analyze the error propagation in the
computation of ck, concluding that ck is close to c̃k computed without error
from ãk and b̃k. We also give forward error bounds for all other computed
quantities.

Most of the analysis neglects second order terms. One exception is the construc-
tion of backward errors for which |ãk|2 + b̃2k = 1 holds exactly. Another exception is
the condition that ensures gk �= 0. When we wish to keep track of second order terms
we use the following result from [5].

Lemma 1. If |εk| ≤ ε, ρk = ±1 and jε < 1, then

j∏
k=1

(1 + εk)
ρk = 1 + θj ,

where |θj | ≤ γj for

γj =
jε

1 − jε
.

The error γj is used when it is inappropriate to use the first order expansion

j∏
k=1

(1 + εk)
ρk = 1 +

j∑
k=1

ρkεj + O(ε2).(12)

Along the same lines, the following is useful for manipulating expressions involving
the multiple sources of error ε, δz, Re(ηk), and δ.

Lemma 2. Suppose that δ1 ≥ 0, δ2 ≥ 0, and δ1 + δ2 < 1. If

|θ1| ≤
δ1

1 − δ1
and |θ2| ≤

δ2
1 − δ2

,

then

(1 + θ1)(1 + θ2) = 1 + θ

with

|θ| ≤ δ1 + δ2
1 − (δ1 + δ2)

.

Proof. Clearly

|θ| = |θ1 + θ2 + θ1θ2| ≤
δ1

1 − δ1
+

δ2
1 − δ2

+
δ2

1 − δ2

δ1
1 − δ1

=
δ1 + δ2 − δ1δ2

1 − δ1 − δ2 + δ1δ2

≤ δ1 + δ2
1 − δ1 − δ2

.

The obvious extension of Lemma 2 to the expression (1+ θ1)/(1+ θ2) is not true.
We make regular use of the expansions

√
1 + ε = 1 +

ε

2
+ O(ε2) and

1

1 + ε
= 1 − ε + O(ε2)

without comment.
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Throughout the analysis we use ε as an effective unit roundoff for complex arith-
metic. Thus our model for complex floating point arithmetic is

fl(x op y) = (x op y)(1 + εop), and fl(
√
x) =

√
x(1 + εop),

where |εop | ≤ ε. If ε is replaced with
√

2γ4 where γ4 = 4ε/(1 − 4ε), then the model
holds for the true unit roundoff [5].

We signal the presence of neglected second order terms by O(ε2). Equations or
inequalities in which the O(ε2) term is absent hold strictly.

We use both subscripts and superscripts on errors. When we write ε
(j)
k where

|ε(j)k | ≤ ε the subscript refers to the index k in the loop of Algorithm 2. The superscript
j is present to distinguish errors resulting from different computations within the loop.
The superscripts are used consistently throughout the paper; they increase with each

error encountered. Similar comments apply to constants x
(j)
k for which we require

|x(j)
k | ≤ 1.

4. Normalization errors. The normalization error on fk is the easiest to deal
with. Since the shift is by assumption numerically unimodular and fl(gk/gk) is nu-
merically unimodular, the formula

fk = fl

(
zfk−1

gk
gk

)

implies that the normalization of fk is not much worse than that of fk−1. The following
result makes this observation precise.

Theorem 1. Suppose that the sequence fk is computed as in Algorithm 2 and
that gj �= 0 for j = 1, 2, . . . , k. (We justify this assumption later.) If γ3 and δz satisfy
kγ3 + k|δz| < 1, then there is a real φk such that 1 + φk �= 0 and

f̂k =
fk

1 + φk
, |f̂k|= 1, and |φk| ≤

kγ3 + k|δz|
1 − (kγ3 + k|δz|)

≤ k|δz|+ 3kε+O(ε2).

Recall that the constants γj, which will be used consistently throughout the analysis,
are defined in Lemma 1.

If ηk is an arbitrary complex number such that fk = (1+ ηk)f̃k and |f̃k| = 1, then

φk = Re(ηk) + O(ε2)

from which we can conclude that

|Re(ηk)| ≤ k|δz| + 3kε + O(ε2).

Proof. The proof is inductive. Since f0 = 1 we may choose φ0 = 0. We assume
that there is a real φk−1 satisfying the upper bound stated in the theorem and such
that f̂k−1 = 1 and 1 + φk−1 �= 0. The numerical errors in the computation of fk are

fk = fl

(
zfk−1gk

gk

)
=

zfk−1gk
gk

(1 + 3ε
(1)
k ) =

z̃f̂k−1gk
gk

(1 + 3ε
(1)
k )(1 + δz)(1 + φk−1)

for |ε(1)k | ≤ γ3/3. We choose φk so that

1 + φk =
∣∣∣1 + 3ε

(1)
k

∣∣∣ (1 + δz)(1 + φk−1).
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Clearly the assumptions on γ3 and δz imply that 1 + φk �= 0 so that

|f̂k| =

∣∣∣∣
fk

1 + φk

∣∣∣∣ =

∣∣∣∣∣
z̃f̂k−1gk

(1 + φk)gk
(1 + 3ε

(1)
k )(1 + δz)(1 + φk−1)

∣∣∣∣∣ = 1.

Applying Lemma 2 we conclude that when γ3 + |δz| < 1 we have

1 + |φk| ≤
(

1 +
γ3 + |δz|

1 − (γ3 + |δz|)

)
(1 + |φk−1|)

≤
(

1 +
γ3 + |δz|

1 − (γ3 + |δz|)

)(
1 +

(k − 1)γ3 + (k − 1)|δz|
1 − ((k − 1)γ3 + (k − 1)|δz|)

)
.

A further application of Lemma 2 gives the upper bound for |φk|. The first order
upper bound is a first order expansion of the strict upper bound.

The claim that φk = Re(ηk) + O(ε2) follows from

∣∣∣(1 + φk)f̂k

∣∣∣
2

= |fk|2 =
∣∣∣(1 + ηk)f̃k

∣∣∣
2

which implies |1 + φk|2 = |1 + ηk|2 or

1 + 2Re(φk) + |φk|2 = 1 + 2Re(ηk) + |ηk|2.

Since φk is real this implies φk = Re(ηk) + O(ε2).
The theorem shows that

δf (k) ≤ k|δz| + 3kε + O(ε2),(13)

δ
(1)
f (k) ≤

k∑
l=1

l|δz| + 3lε =
3

2
(k2 + k)ε +

1

2
(k2 + k)|δz| + O(ε2),(14)

and

δ
(2)
f (k) ≤

k∑
l=1

3

2
(l2 + l)ε +

1

2
(l2 + l)|δz| =

1

2
(k3 + 3k2 + 2k)ε +

1

6
(k3 + 3k2 + 2k)|δz|

+O(ε2).(15)

We can now use the bounds on the normalization on fk to give conditions under
which gk �= 0; we assume that underflow does not occur.

Theorem 2. Assume the following hold for 1 ≤ k ≤ n− 1:
• If |ak| ≤

√
2/2 so that gk = fl(wk + ak), then we assume that

2 −
√

2/2

1 −
√

2/2
(ε + (k − 1)γ3 + k|δz|) < 1.(16)

• If Re(tk) ≥ 0 so that gk = fl(wk + ak), then we assume that

4(k − 1)γ3 + 4k|δz| + 2γ2 + 2ε < 1.(17)

• If Re(tk) < 0 and |ak| >
√

2/2 so that gk = fl(b2k − 2iImag(tk))/(wk − ak),
then we assume that (17) holds.
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For the last case we have fl(wk − ak) �= 0 and for all three cases we have gk �= 0. The
assumptions of this theorem imply those of Theorem 1 so that there is a |φk| < 1 such

that |f̂k| = 1 for f̂k = fk/(1 + φk).
Proof. We consider the cases in which gk = wk + ak first. The computation of gk

with errors is

gk =
(
zfk−1(1 + ε

(2)
k ) + ak

)
(1 + ε

(3)
k ),

where |ε(2)k | < ε and |ε(3)k | < ε. Either (16) or (17) guarantees that |ε(3)k | < 1 so that
gk is zero if and only if

zfk−1(1 + ε
(2)
k ) + ak = 0

or equivalently

ẑf̂k−1(1 + ε
(2)
k )(1 + φk−1)(1 + δz) + ak = 0.(18)

Assuming that |ak| ≤
√

2/2 and that (16) holds we clearly have ε+(k−1)γ3+k|δz| < 1.
Lemma 2 and Theorem 1 then imply that

ẑf̂k−1(1 + θ) + ak = 0,

where

|θ| ≤ ε + (k − 1)γ3 + k|δz|
1 − ε− (k − 1)γ3 − k|δz|

.

Since |ak| ≤
√

2/2 and |ẑf̂k−1| = 1, gk = 0 implies

|θ| ≥ 1 −
√

2/2.

However, (16) can be put in the form

ε + (k − 1)γ3 + k|δz|
1 − (ε + (k − 1)γ3 + k|δz|)

< 1 −
√

2

2

so that |θ| < 1 −
√

2/2 and gk �= 0.
Considering the case Re(tk) ≥ 0 we assume that (17) holds and return to (18)

which holds if and only if

(1 + ε
(2)
k )(1 + φk−1)(1 + δz) +

akzfk−1

(1 + φk−1)(1 + δz)
= 0.

The denominator of the second term is nonzero since (17) implies that |δz| < 1 and
that

2(k − 1)γ3 + 2k|δz| + γ2 + ε

1 − (2(k − 1)γ3 + 2k|δz| + γ2 + ε)
< 1

which by Theorem 1 implies |φk−1| < 1. The errors in the computation of tk are

tk = akzfk−1(1 + 2ε
(4)
k ),
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where |ε(4)k | ≤ γ2/2. Thus gk is zero if and only if

(1 + ε
(2)
k )(1 + φk−1)(1 + δz) +

tk

(1 + φk−1)(1 + δz)(1 + 2ε
(4)
k )

= 0.

Since γ2 < 1 the denominator is nonzero. It follows that gk = 0 if and only if

(1 + ε
(2)
k )(1 + φk−1)

2(1 + δz)
2(1 + 2ε

(4)
k ) + tk = 0.

By Theorem 1 and repeated application of Lemma 2 this is equivalent to

1 + θ + tk = 0

for some θ satisfying

|θ| < 2(k − 1)γ3 + 2k|δz| + γ2 + ε

1 − (2(k − 1)γ3 + 2k|δz| + γ2 + ε)
.

Since Re(tk) ≥ 0 this can only happen if |Re(θ)| > 1. The inequality (17) implies that
|θ| < 1 so that gk �= 0.

Finally, we observe that the proof that wk−ak �= 0 when (17) holds and Re(tk) < 0
parallels the proof that wk + ak �= 0 when (17) holds and Re(tk) ≥ 0. Since H is by
assumption unreduced, bk �= 0 so that

Re(fl(b2k − 2iImag(tk))) = b2k(1 + ε
(5)
k ) �= 0

for some |ε(5)k | < ε. The computation of gk is then

gk =
fl(b2k − 2iImag(tk))

fl(wk − ak)
(1 + ε

(6)
k ) �= 0.

We have neglected the possibility of underflow in proving Theorem 2. However,
underflow appears unlikely if H is numerically unreduced. If |ak| ≤

√
2/2 or Re(tk) ≥

0 so that the formula gk = wk+ak is used, then |gk| ≥ 1−
√

2/2+O(ε). If |ak| >
√

2/2
and Re(tk) < 0 so that the alternate formula for gk is used, then |wk − ak| < 2+O(ε)
so that the numerator must underflow or very nearly underflow to cause an underflow
in the computation of gk. This occurs only if the computation of b2k underflows.

The following result shows that for any given k = 1, 2, . . . , n−1 the normalization
error for âk and b̂k computed by Algorithm 2 is never much larger than δk+1 provided
that the formula gk = wk + ak is used.

Theorem 3. Let the assumptions of Theorem 2 hold so that gl �= 0 for l =
1, 2, . . . k + 1. Suppose that gk+1 is computed by the formula gk+1 = wk+1 + ak+1

in Algorithm 2. If |ak|2 + b2k = 1 + δk for k = 1, 2, . . . , n where bn = 0, then for

k = 1, 2, . . . n− 1 the âk and b̂k computed by the algorithm satisfy

|âk|2 + b̂2k = 1 + δ̂k

with

δ̂k = s2
kδk+1 + xk [(66k + 70)ε + (22k + 18)|δz|] + O(ε2)

for |xk| ≤ 1.
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Proof. We first consider the normalization errors in the relation |ck|2 + s2
k = 1.

The errors involved in computing ck and sk are

rk =
√
|pk|2 + b2k

(
1 + 4ε

(7)
k

)
+ O(ε2),

sk =
bk
rk

(
1 + ε

(8)
k

)
, and ck =

pk
rk

(
1 + ε

(9)
k

)
.

It follows that

|ck|2 + s2
k =

b2k + |pk|2
r2
k

+ 2Re(ε
(8)
k )

b2k
r2
k

+ 2Re(ε
(9)
k )

|pk|2
r2
k

+ O(ε2)

=
r2
k(1 − 8ε

(7)
k )

r2
k

+ 2Re(ε
(8)
k )

b2k
r2
k

+ 2Re(ε
(9)
k )

|pk|2
r2
k

+ O(ε2)

so that

s2
k + |ck|2 = 1 + 10ε

(10)
k + O(ε2).

Let φk be chosen as in Theorem 1 so that f̂k(1 + φk) = fk, where |f̂k| = 1. The
errors in the computation of gk+1 are

gk+1 = fl(zfk + ak+1)

= (zfk + ak+1)
(
1 + 5ε

(11)
k

)
+ O(ε2)

= (z̃f̂k + ak+1)
(
1 + 5ε

(11)
k + 4x

(1)
k (|δz| + |φk|)

)
+ O(ε2).

= z̃f̂k

(
1 + ak+1z̃f̂k

)(
1 + 5ε

(11)
k + 4x

(1)
k (|δz| + |φk|)

)
+ O(ε2),

where we have used the fact that |gk+1| ≥ 1/4 + O(ε) to cast the errors associated
with the multiplication zfk as relative errors on gk+1.

We now consider the computation

b̂k = fl(rk+1sk) =
√

|pk+1|2 + b2k+1 · sk
(
1 + 5ε

(12)
k

)
+ O(ε2)

and

pk+1 = fl(gk+1fkck)

= gk+1fkck(1 + 2ε
(13)
k ) + O(ε2)

= gk+1f̂kck(1 + 2ε
(13)
k + φk) + O(ε2).

Combining the formula for b̂k with those for pk+1 and gk+1 gives

b̂k =

√
|1 + ak+1z̃f̂k|2|ck|2 + b2k+1 · sk

(
1 + x

(2)
k (19ε + 10|φk| + 8|δz|)

)
+ O(ε2).

We have used the lack of cancellation in the equation to combine the errors on pk+1

and gk+1 into a relative error on b̂k. Note that the above expression for b̂k applies for
k = n − 1 under the assumption that bn = 0 even though b̂n−1 is computed outside
the loop of Algorithm 2.
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The errors in the computation of âk are

âk = fl(|ck|2fk − zs2
kak+1)

= |ck|2fk − zs2
kak+1 + 6ε

(14)
k + O(ε2)

= |ck|2f̂k − z̃s2
kak+1 + x

(3)
k (6ε + |δz| + |φk|) + O(ε2).

Finally, combining the expressions for âk and b̂k gives

|âk|2 + b̂2k = |ck|4 + |ak+1|2s4
k − 2Re

(
|ck|2s2

kf̂kz̃ak+1

)

+

(
|ck|2

∣∣∣1 + ak+1z̃f̂k

∣∣∣
2

+ b2k+1

)
s2
k + x

(4)
k (50ε + 18|δz| + 22|φk|) + O(ε2)

= |ck|4 + |ak+1|2s4
k − 2|ck|2s2

kRe
(
f̂kz̃ak+1

)

+
(
|ck|2

(
1 + 2Re

(
z̃f̂kak+1

)
+ |ak+1|2

)
+ b2k+1

)
s2
k

+x
(4)
k (50ε + 18|δz| + 22|φk|) + O(ε2)

= |ck|2
(
|ck|2 + s2

k

)
+ |ak+1|2s2

k

(
|ck|2 + s2

k

)
+ b2k+1s

2
k

+x
(4)
k (50ε + 18|δz| + 22|φk|) + O(ε2)

= |ck|2 + s2
k

(
|ak+1|2 + b2k+1

)
+
(
|ck|2 + |ak+1|2s2

k

)
10ε

(10)
k

+x
(4)
k (50ε + 18|δz| + 22|φk|) + O(ε2)

= 1 + s2
kδk+1 + 10

(
1 + |ck|2 + |ak+1|2s2

k

)
ε
(10)
k

+x
(5)
k (50ε + 18|δz| + 22|φk|) + O(ε2)

= 1 + s2
kδk+1 + x

(6)
k (70ε + 18|δz| + 22|φk|) + O(ε2).

The lemma follows by applying the first order bound on |φk| from Theorem 1.
The main result of Theorem 3 is of the form

δ̂k = s2
kδk+1 + O(ε),

where the O(ε) term hides only bounded errors. It is significant that this is an equality

and not an upper bound; the theorem accurately describes the effect of δk+1 on δ̂k.
Since |s2

k| ≤ 1 the propagation of normalization errors is stable when the formula
gk+1 = wk+1 + ak+1 is used.

To show that error propagation is stable in general, we must give an analogous
result that applies when the algorithm uses the other formula for gk+1.

Theorem 4. Assume that the assumptions of Theorem 2 hold so that gl �= 0
for l = 1, 2, . . . , k + 1. Suppose that gk+1 is computed by (4) in Algorithm 2. If
|ak|2 + b2k = 1 + δk for k = 1, 2, . . . , n where bn = 0, then for k = 1, 2, . . . , n − 1 the

âk and b̂k computed by the algorithm satisfy

|âk|2 + b̂2k = 1 + δ̂k

with

δ̂k =

(
s2
k +

2b2k+1|ck|2s2
k

|zfk − ak+1|2

)
δk+1 + xk [(78k + 118)ε + (26k + 18)|δz|] + O(ε2)
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for |xk| < 1.

Proof. Let f̂k(1+φk) = fk, where |f̂k| = 1. As in the proof of Theorem 3 we have

|ck|2 + s2
k = 1 + 10ε

(10)
k + O(ε2).

The assumption that (4) is used to compute gk+1 implies that Re(tk+1) < 0 which in
turn implies that |fkz− ak+1| > 1+O(ε). We also have gk+1 ≤ 2+O(ε). Using these
facts we can represent errors in (4) as small absolute errors so that gk+1 satisfies

gk+1 =
b2k+1 − 2i Imag(ak+1fkz)

fkz − ak+1

+ 15ε
(15)
k + O(ε2)

=
b2k+1 − 2i Imag(ak+1f̂kz̃)

f̂kz̃ − ak+1

+ x
(7)
k (15ε + 4|φk| + 4|δz|) + O(ε2).(19)

We also have

z̃f̂k + ak+1 =
(z̃f̂k + ak+1)(z̃f̂k − ak+1)

(z̃f̂k − ak+1)

=
1 − |ak+1|2 − 2i Imag(ak+1f̂kz̃)

(z̃f̂k − ak+1)

so that

∣∣∣1 + ak+1z̃f̂k

∣∣∣
2

= |z̃f̂k + ak+1|2

=

(
b2k+1 − δk+1

)2
+ 4 Imag(ak+1f̂kz̃)

2

|z̃f̂k − ak+1|2

= |gk+1|2 −
2b2k+1

|z̃f̂k − ak+1|2
δk+1 + x

(8)
k (60ε + 16|φk| + 16|δz|) + O(ε2),

where we have used the fact that |gk+1| ≤ 2+O(ε) when using (19) to evaluate |gk+1|2.
As in the proof of Theorem 3 we have

b̂k =
√
|pk+1|2 + b2k+1 · sk

(
1 + 5ε

(12)
k

)
+ O(ε2)

with

pk+1 = gk+1f̂kck

(
1 + 2ε

(13)
k + φk

)
.

Thus

b̂2k =
(
|gk+1|2|ck|2

(
1 + 4Re(ε

(13)
k ) + 2φk

)
+ b2k+1

)
s2
k(1 + 10ε

(12)
k ) + O(ε2)

=
(
|gk+1|2|ck|2 + b2k+1

)
s2
k + x

(9)
k (26ε + 8|φk|) + O(ε2)

=

(∣∣∣1 + ak+1z̃f̂k

∣∣∣
2

|ck|2 + b2k+1

)
s2
k +

2|ck|2s2
kb

2
k+1

|z̃f̂k − ak+1|2
δk+1

+x
(10)
k (86ε + 24|φk| + 16|δz|) + O(ε2).
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As before the computed âk is

âk = |ck|2f̂k − z̃s2
kak+1 + x

(3)
k (6ε + |δz| + |φk|) + O(ε2)

so that

|âk|2 + b̂2k = |ck|4 + |ak+1|2s4
k − 2Re

(
|ck|2s2

kf̂kz̃ak+1

)

+

(
|ck|2

∣∣∣1 + ak+1z̃f̂k

∣∣∣
2

+ b2k+1

)
s2
k + x

(11)
k (98ε + 18|δz| + 26|φk|)

+
2b2k+1|ck|2s2

k

|z̃f̂k − ak+1|2
δk+1 + O(ε2).

A repetition of the final part of the proof of Theorem 3 gives

|âk|2 + b̂2k = |ck|2 + s2
k(|ak+1|2 + b2k+1) + 10(|ck|2 + |ak+1|2s2

k)ε
(10)
k

+x
(11)
k (98ε + 26|φk| + 18|δz|) +

2b2k+1|ck|2s2
k

|z̃f̂k − ak+1|2
δk+1 + O(ε2)

= 1 +

(
s2
k +

2b2k+1|ck|2s2
k

|z̃f̂k − ak+1|2

)
δk+1 + x

(12)
k (118ε + 26|φk| + 18|δz|) + O(ε2).

The lemma follows upon using Theorem 1 to bound |φk|.
The reason for requiring |ak| >

√
2/2 when applying the alternate formula for gk

can now be made clear. If (4) is used to compute gk+1, then Re(tk+1) < 0 so that
|zfk − ak+1| > 1 + O(ε). Since |ak+1|2 > 1/2 we have b2k+1 ≤ 1/2 + O(ε). Neglecting
numerical errors, the multiplier of δk+1 is

s2
k +

2b2k+1|ck|2s2
k

|zfk − ak+1|2
≤ s2

k + 2b2k+1|ck|2s2
k ≤ s2

k + |ck|2s2
k = s2

k(2 − s2
k) ≤ 1.

The function s2
k(2 − s2

k) reaches its maximum at s2
k = 1. With errors we have

s2
k +

2b2k+1|ck|2s2
k

|zfk − ak+1|2
≤ 1 + O(ε).

The O(ε) term is second order when multiplied by δk+1. Thus when the alternate
formula for gk is used we have

|δ̂k| ≤ |δk+1| + O(ε),

where the O(ε) term hides only bounded errors.
Whichever formula for gk is used we can conclude by taking the largest error

coefficients from each equation for δ̂k that

|δ̂k| ≤ |δk+1| + (78k + 118)ε + (26k + 18)|δz| + O(ε2).

If the initial errors are all less than δ, then after j UHQR iterations the normalization
errors satisfy

|δk| ≤ δ + j(78k + 118)ε + j(26k + 18)|δz| + O(ε2)(20)
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so that the errors grow at worst linearly in the number of UHQR iterations.
If we apply the alternate formula for gk when |ak| ≤

√
2/2, then the most that

we can conclude is that

s2
k + 2b2k+1|ck|2s2

k

zfk − ak+1
≤ s2

k(1 + 2|ck|2) = s2
k(3 − 2s2

k) ≤
9

8
,

where the maximum occurs when bk+1 = 1 and sk =
√

3/2. This upper bound is
achieved by the 5 × 5 unitary Hessenberg matrix with parameters

a0 = 1, (a1, b1) =

(
−1

2
i,

√
3

2

)
, (a2, b2) = (0, 1) , (a3, b3) =

(
1

2
,

√
3

2

)
,

(a4, b4) = (0, 1), a5 = 1.

The projected Wilkinson shift is z = i. Application of the UHQR algorithm gives
g1 = i/2, p1 = i/2, r1 = 1, c1 = i/2, and s1 =

√
3/2. Thus

δ̂1 =

(
s2
1 +

2b22|c1|2s2
1

zf1 − a2

)
δ2 + O(ε) =

9

8
δ2 + O(ε).

This suggests that if we do not require |ak| >
√

2/2 when using the alternate formula
for gk, then the normalization errors could grow as O((9/8)j) over j UHQR iterations.
The possibility of exponential growth in errors is inconvenient when attempting to
prove the stability of the algorithm, but it seems to have no practical impact on
the accuracy of the computation. Sustained exponential error growth has not been
observed.

5. Backward errors. The backward errors on ak and bk have the form

ãk = (1 − αk + iμk)ak

and

b̃k = (1 − βk)bk,

where αk, βk, and μk are real. The αk and βk are chosen to enforce the normalization
|ãk|2 + b̃2k = 1. The imaginary part μk is chosen to ensure that the computed fk is

close to f̃k. That is, the choice of μk guarantees that ηk in (10) is small. In defining
μk we assume that the relative error ηk−1 on fk−1 has already been determined. This
leads to a recurrence for ηk in terms of ηk−1. Since f0 = f̃0 = 1 the process starts
with η0 = 0. The recurrence can be used to bound ηk for k = 1, 2, . . . , n− 1.

For the computed tk define the error |ε(4)k | ≤ γ2/2 by

tk = fl(akzfk−1) = (1 + 2ε
(4)
k )akzfk−1.(21)

Let

μk = −Imag(ηk−1) − 2Imag(ε
(4)
k ).

In defining αk and βk we consider two cases.
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1. If |ak| >
√

2/2 we set βk = 0 and

αk = 1 −
√

1 − δk
|ak|2

− μ2
k =

δk
2|ak|2

+ O(ε2).(22)

In this case we have

(1 − αk)
2 + μ2

k = 1 − δk
|ak|2

so that

|ãk|2 + b̃2k = |ak|2
(
(1 − αk)

2 + μ2
k

)
+ b2k = |ak|2

(
1 − δk

|ak|2

)
+ b2k = 1.

2. If |ak| ≤
√

2/2 we set αk = 0 and

βk = 1 −
√

1 − |ak|2
b2k

μ2
k − δk

b2k
=

δk
2b2k

+ O(ε2).

In this case we have

(1 − βk)
2 = 1 − δk

b2k
− |ak|2

b2k
μ2
k

so that

|ãk|2 + b̃2k = |ak|2(1 + μ2
k) + b2k|(1 − βk)

2

= |ak|2(1 + μ2
k) + b2k

(
1 − δk

b2k
− |ak|2

b2k
μ2
k

)
= 1.

Note that for an the first case applies with b̃n = bn = 0.
Whichever case holds we have

|ãk|2 + |b̃k|2 = 1 and max(|αk|, |βk|) ≤ |δk| + O(ε2).(23)

We now perform a forward error analysis for each of the two equations for gk. In
each case we show that the choice of μk leads to a recurrence for ηk in terms of ηk−1.

Analysis for the first formula. We start by assuming that Re(tk) ≥ 0 or
|ak| ≤

√
2/2 so that

gk = fl(wk + ak).

The inequalities that hold when this formula is used imply that there is no significant
cancellation in computing gk. Hence we may represent the effect of all errors on ak
and wk as small forward relative errors on gk.

To make this precise we give a lower bound on |gk|. First assume that |ak| ≤
√

2/2.
Since |wk| = 1 + O(ε) the formula gk = wk + ak gives

|gk| ≥ 1 −
√

2

2
+ O(ε).

If we instead assume that Re(tk) ≥ 0, then gk = wk(1 + tk) + O(ε) implies

|gk| ≥ 1 + O(ε).
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Thus whenever the formula gk = wk + ak is used

|gk| ≥ 1 −
√

2

2
+ O(ε) ≥ 1

4
+ O(ε) ≥ 1

4
|ak| + O(ε).(24)

We have used 1/4 instead of 1 −
√

2/2 ≈ .29 in order to avoid unwieldy constants in
already long error bounds.

Let the errors in computing gk from z, fk−1, and ak be

gk = fl(ak + wk) =
[
ak + zfk−1(1 + ε

(16)
k )

]
(1 + ε

(17)
k ),

where |ε(16)k | ≤ ε and |ε(17)k | ≤ ε. Since ak = (1 + αk − iμk)ãk + O(ε2), z = (1 + δz)z̃,

and fk−1 = (1+ηk−1)f̃k−1 and since we have chosen μk = −Imag(ηk−1)−2Imag(ε
(4)
k )

we have

fl(gk) =

[
ãk (1 + αk − iμk) + z̃f̃k−1

(
1 + ηk−1 + δz + ε

(16)
k

)]
(1 + ε

(17)
k ) + O(ε2)

=

[
ãk

(
1 + αk + iImag(ηk−1) + 2iImag(ε

(4)
k )

)

+ z̃f̃k

(
1 + Re(ηk−1) + iImag(ηk−1) + δz + ε

(16)
k

)]
(1 + ε

(17)
k ) + O(ε2).

Note that iImag(ηk−1) is common to both the ãk term and the z̃f̃k−1 term and to first
order can be factored out of the expression as (1 + iImag(ηk−1)). Since (24) implies
that relative errors on ãk and z̃f̃k−1 correspond to relative errors on gk that are no
more than four times larger we get

fl(gk) = g̃k

(
1 + iImag(ηk−1) + 4x

(13)
k

(
|αk| + |δz| + |Re(ηk−1)| + (13/4)ε

))
+ O(ε2),

(25)

where |x(13)
k | ≤ 1. This expression gives the forward errors on gk.

Analysis for the second formula. We assume that Re(tk) < 0 and |ak| >√
2/2. The reason for choosing μk as we have is that it implies that Imag(tk) is close

to Imag(t̃k). The verification of this is

fl(Imag(tk)) = Imag
(
akzfk−1

(
1 + 2ε

(4)
k

))

= Imag
(
ãkz̃f̃k−1

(
1 + αk + iμk + δz + ηk−1 + 2ε

(4)
k

))
+ O(ε2)

= Imag
(
t̃k
) (

1 + αk + δz + Re(ηk−1) + 2Re
(
ε
(4)
k

))

+ Re
(
t̃k
) (

μk + Imag(ηk−1) + 2Imag
(
ε
(4)
k

))
+ O(ε2)

= Imag
(
t̃k
) (

1 + αk + δz + Re(ηk−1) + 2Re
(
ε
(4)
k

))
+ O(ε2),(26)

where t̃k = ãkz̃f̃k−1 and ε
(4)
k is defined by (21). The last line follows upon substituting

in the expression for μk. Thus if the Schur parameters are normalized so that |αk| ≤
|δk|+O(ε2) is small, if δz is small, and if Re(ηk−1) is small, then Imag(t̃k) is close to
Imag(tk) in a relative sense.
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The condition Re(tk) < 0 implies that zfk−1 − ak = wk(1 − tk) + O(ε) satisfies

|zfk−1 − ak| ≥ 1 + O(ε) ≥ |ak| + O(ε).(27)

It follows that small relative errors on zfk−1 or ak correspond to small relative errors
on zfk−1 − ak. Similarly

|b2k − 2iImag(akzfk−1)| ≥ b2k + O(ε)

and

|b2k − 2iImag(akzfk−1)| ≥ |2iImag(akzfk−1)| + O(ε)

so that relative errors due to squaring bk and multiplying Imag(tk) by 2 correspond
to small relative errors on gk. Thus the local errors in computing gk are

gk = fl

(
b2k − 2iImag(akzfk−1)

zfk−1 − ak

)

=
b2k − 2ifl (Imag(akzfk−1))

zfk−1 − ak

(
1 + 5ε

(18)
k

)
+ O(ε2),

where |ε(18)k | ≤ ε. We have treated the subtraction in the numerator as exact. If we

substitute z̃, f̃k−1, and ãk in the denominator, the associated relative errors can also
be put on gk. Since b̃k = bk whenever |ak| >

√
2/2 we have

gk =
b̃2k − 2iImag(ãkz̃f̃k−1)

(
1 + αk + δz + Re(ηk−1) + 2Re(ε

(4)
k )

)

z̃f̃k−1(1 + δz + ηk−1) − ãk(1 + αk + iμk)
(1 + 5ε

(18)
k )

+O(ε2)

=
b̃2k − 2iImag(ãkz̃f̃k−1)

(
1 + αk + δz + Re(ηk−1) + 2Re(ε

(4)
k )

)

z̃f̃k−1(1 + δz + Re(ηk−1)) − ãk(1 + αk − 2iImag(ε
(4)
k ))

·
(
1 + iImag(ηk−1) + 5ε

(18)
k

)
+ O(ε2)

= g̃k

(
1 + iImag(ηk−1) + x

(14)
k

(
2|δz| + 2|Re(ηk−1)| + 2|αk| + 9ε

))
+ O(ε2),(28)

where |x(14)
k | ≤ 1. In the first line we have used (26). In the second line we have

used μk = −Imag(ηk−1) − 2Imag(ε
(4)
k ) to factor out (1 − iImag(ηk−1)) from both

denominator terms. In the last line we have cast all other errors as small relative
errors on g̃k.

Comparing (28) and (25) and taking the coefficients of (25), which are larger, we
conclude that whichever formula is used

gk = g̃k [1 + iImag(ηk−1) + ωk] + O(ε2),

where

|ωk| ≤ 4|δz| + 4|αk| + 4|Re(ηk−1)| + 13ε.

We now turn our attention to the computation of fk. The local numerical errors
in computing fk from z, fk−1, and gk are

fk = fl

(
zfk−1gk

gk

)
=

zfk−1gk
gk

(1 + 3ε
(19)
k ) + O(ε2)
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for |ε(19)k | ≤ ε. In terms of g̃k, z̃, and f̃k−1 we get

fk =
z̃f̃k−1g̃k

g̃k(1 − iImag(ηk−1) + ωk)

(
1 + 3ε

(19)
k + δz + ηk−1 + iImag(ηk−1) + ωk

)

+O(ε2)

= f̃k

(
1 + ηk−1 + 3ε

(19)
k + δz + 2iImag(ωk)

)
+ O(ε2).

Since ηk = (fk − f̃k)/f̃k we have

ηk = ηk−1 + 3ε
(19)
k + δz + 2iImag(ωk) + O(ε2)

or

ηk = ηk−1 + νk,

where

|νk| ≤ 9|δz| + 8|αk| + 8|Re(ηk−1)| + 29ε + O(ε2).(29)

These results are summarized in the following theorem.
Theorem 5. Let

|ak|2 + b2k = 1 + δk, and z = (1 + δz)z̃

for k = 1, 2, . . . , n, where by definition bn = 0. Suppose that fk is computed as in
Algorithm 3 and gk �= 0 for k = 1, 2, . . . , n− 1. Then there are ãk and b̃k given by

ãk = (1 − αk + iμk)ak, and b̃k = (1 − βk)bk

for αk, βk, and μk real such that if f̃k and g̃k are quantities computed from ãk and
b̃k by Algorithm 3 without numerical error, then

fk = (1 + ηk)f̃k

and

gk = (1 + iImag(ηk−1) + ωk) g̃k.

The following relations and inequalities hold.
1. |ãk|2 + b̃2k = 1.
2. max(|αk|, |βk|) ≤ |δk| + O(ε2).
3. μk satisfies

|μk| ≤ |Imag(ηk−1)| + 2ε.

4. ωk satisfies

|ωk| ≤ 4|δz| + 4|αk| + 4|Re(ηk−1)| + 13ε + O(ε2).

5. ηk satisfies

ηk = ηk−1 + νk

with

η0 = 0 and |νk| ≤ 9|δz| + 8|αk| + 8|Re(ηk−1)| + 29ε + O(ε2).
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Recall that we are treating Re(ηk) as a normalization error on fk. The nor-
malization errors were bounded in section 4. However, it is worth noting that if all
normalization errors are small, then we have already proven that the computation of
fk is stable. In particular, there are perfectly normalized ãk and b̃k, defined as in the
theorem, such that the relative error on fk satisfies

∣∣∣∣∣
fk − f̃k

f̃k

∣∣∣∣∣ = |ηk| ≤
k∑

j=1

|νk| ≤ 9k|δz| + 29kε + 8

k∑
j=1

|δj | + δf (j − 1) + O(ε2)

or

|ηk| ≤ 9k|δz| + 29kε + 8kδ + 8δ
(1)
f (k − 1) + O(ε2).

6. Forward errors. The computation of ck is the only nontrivial portion of the
algorithm left to analyze. We start by assuming that

ck = (1 + ζk)c̃k.

Since c0 = c̃0 = 1 is exact, we have ζ0 = 0. Recall that pk is a scaled Szegö polynomial
so that when H̃ is unreduced p̃k �= 0 for k = 1, 2, . . . , n−1. It follows that c̃k = p̃k/r̃k �=
0 for k = 1, 2, . . . , n − 1. Since b̃k = (1 − βk)bk, if |βk| ≤ |δk| + O(ε2) < 1 and H is
unreduced, then H̃ is unreduced. Thus c̃k �= 0 and ζk = (ck − c̃k)/c̃k is well defined
under the assumption that H is unreduced and |δk| < 1.

We show that the relative error ζk is small by constructing a recurrence for ζk
in terms of ζk−1. The recurrence immediately leads to an upper bound for |ζk|. The
local errors in the computation of ck are

ck =
gkfk−1ck−1√

|gkfk−1ck−1|2 + b2k

(
1 + 9ε

(20)
k

)
+ O(ε2),

where |ε(20)k | ≤ ε. We wish to derive an expression for ck in terms of g̃k, f̃k−1, and
c̃k−1. We start by changing ck−1 to (1 + ζk−1)c̃k−1 to get

ck =
gkfk−1c̃k−1√

|gkfk−1c̃k−1|2 (1 + 2Re(ζk−1)) + b2k

(
1 + 9ε

(20)
k + ζk−1

)
+ O(ε2)

=
gkfk−1c̃k−1√

|gkfk−1c̃k−1|2 + b2k

· 1√
1 + 2|gkfk−1c̃k−1|2

|gkfk−1c̃k−1|2+b2k
Re(ζk−1)

(
1 + 9ε

(20)
k + ζk−1

)

+O(ε2)

=
gkfk−1c̃k−1√

|gkfk−1c̃k−1|2 + b2k

(
1 + 9ε

(20)
k + ζk−1 − |c̃k|2Re(ζk−1)

)
+ O(ε2).

Similarly we can replace fk−1 with (1+ ηk−1)f̃k−1, gk with (1+ iImag(ηk−1)+ωk)g̃k,
and bk with (1 + βk)b̃k to get

ck =
g̃kf̃k−1c̃k−1√∣∣∣g̃kf̃k−1c̃k−1

∣∣∣
2

+ b̃2k

(
1 + 9ε

(20)
k + ζk−1 − |c̃k|2Re(ζk−1) + ηk−1

− |c̃k|2Re(ηk−1) + iImag(ηk−1) + ωk − |c̃k|2Re(ωk) − s̃2
kβk

)
+ O(ε2).
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The relative errors on fk−1 and gk have been put on ck by the same method as was
used for the relative errors on ck−1. The relative error on bk has been handled similarly
using

s̃2
k =

b̃2k
|g̃kf̃k−1c̃k−1|2 + b̃2k

.

It follows that

|ζk| ≤ |ζk−1| + 9ε + 2|ηk−1| + |ωk| + s̃2
k|βk| + O(ε2).

Substituting in the bounds on ηk−1, ωk, and βk from Theorem 5 gives

|ζk| ≤ |ζk−1| + (58k − 36)ε + (18k − 14)|δz| + (16k − 11)δ + 16δ
(1)
f (k − 2) + 4δf (k − 1)

+O(ε2).

Summing this gives

|ζk| ≤
k∑

l=1

(58l − 36)ε + (18l − 14)|δz| + (16l − 11)δ + 16δ
(1)
f (l − 2) + 4δf (l − 1)

+O(ε2)

= (29k2 − 7k)ε + (9k2 − 5k)|δz| + (8k2 − 3k)δ + 4δ
(1)
f (k − 1)

+ 16δ
(2)
f (k − 2) + O(ε2).(30)

Bounding the errors on pk, rk, sk, b̂k, and âk is straightforward but tedious.1 We
start with pk for which

pk = gkfk−1ck−1

(
1 + 2ε

(13)
k

)
+ O(ε2),

where ε
(13)
k ≤ ε. Substituting in g̃k, f̃k, and c̃k we get

pk = g̃kf̃k−1c̃k−1

(
1 + 2ε

(13)
k + iImag(ηk−1) + ωk + ηk−1 + ζk−1

)
+ O(ε2)

from which it follows that
∣∣∣∣
pk − p̃k

p̃k

∣∣∣∣ ≤ 2ε + 2|ηk−1| + |ζk−1| + |ωk| + O(ε2).

Substituting the bounds on |ηk−1|, |ζk−1|, and |ωk| we get
∣∣∣∣
pk − p̃k

p̃k

∣∣∣∣ ≤ (29k2 − 7k − 7)ε + (9k2 − 5k)|δz| + (8k2 − 3k − 1)δ

+ 4δf (k − 1) + 20δ
(1)
f (k − 2) + 16δ

(2)
f (k − 3) + O(ε2).(31)

For rk we have

rk =
√
|pk|2 + b2k

(
1 + 4ε

(7)
k

)
+ O(ε2)

1The bound on |ζk| and the remaining bounds were derived using the computer algebra program
Mupad.
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for |ε(7)k | ≤ ε. Thus

rk =

√
|p̃k|2

(
1 + 2Re

(
pk − p̃k

p̃k

))
+ b̃2k(1 + 2βk)

(
1 + 4ε

(7)
k

)
+ O(ε2)

= r̃k

(
1 + 4ε

(7)
k + x

(15)
k

(∣∣∣∣
pk − p̃k

p̃k

∣∣∣∣ + |βk|
))

+ O(ε2).

Thus
∣∣∣∣
rk − r̃k

r̃k

∣∣∣∣ ≤ 4ε +

∣∣∣∣
pk − p̃k

p̃k

∣∣∣∣ + |βk|.

Substituting in the bound for |βk| and the bound for the error on pk we get

∣∣∣∣
rk − r̃k

r̃k

∣∣∣∣ ≤ (29k2 − 7k − 3)ε + (9k2 − 5k)|δz| + (8k2 − 3k)δ

+ 4δf (k − 1) + 20δ
(1)
f (k − 2) + 16δ

(2)
f (k − 3) + O(ε2).(32)

In computing sk the single division results in an error

sk =
bk
rk

(
1 + ε

(8)
k

)
,

where |ε(8)k | ≤ ε so that

sk =
b̃k

(
1 + ε

(8)
k + βk

)

r̃k

(
1 + rk−r̃k

r̃k

) + O(ε2) = s̃k

(
1 + ε

(8)
k + βk − rk − r̃k

r̃k

)
+ O(ε2).

Thus
∣∣∣∣
sk − s̃k

s̃k

∣∣∣∣ ≤ (29k2 − 7k − 2)ε + (9k2 − 5k)|δz| + (8k2 − 3k + 1)δ

+ 4δf (k − 1) + 20δ
(1)
f (k − 2) + 16δ

(2)
f (k − 3) + O(ε2).(33)

For the computation of b̂k−1 we get

b̂k−1 = rksk−1

(
1 + ε

(21)
k

)
= r̃ks̃k−1

(
1 + ε

(21)
k +

rk − r̃k
r̃k

+
sk−1 − s̃k−1

s̃k−1

)
+ O(ε2)

so that
∣∣∣∣∣
b̂k − ˜̂

bk
˜̂
bk

∣∣∣∣∣ ≤ (58k2 + 44k + 18)ε + (18k2 + 8k + 4)|δz| + (16k2 + 10k + 6)δ

+ 4δf (k) + 4δf (k − 1) + 20δ
(1)
f (k − 1) + 36δ

(1)
f (k − 2)

+ 32δ
(2)
f (k − 3) + O(ε2).(34)

Finally, we consider the computation of âk. The relative difference between âk
and the perturbed ˜̂ak is not necessarily small. Nevertheless all quantities involved in
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the computation of âk are less than one in magnitude so that

âk = |ck|2fk − zs2
kak+1 + 6ε

(14)
k + O(ε2)

= |c̃k|2f̃k (1 + 2Re(ζk) + ηk) + z̃s̃2
kãk+1

(
1 + δz + 2

sk − s̃k
s̃k

+ αk+1 − iμk+1

)

+ 6ε
(14)
k + O(ε2).

Since |μk+1| ≤ |Imag(ηk)| + 2ε and |αk+1| ≤ δ we have

∣∣∣âk − ˜̂ak

∣∣∣ ≤ 2|ζk| + 2|ηk| + |δz| + 2

∣∣∣∣
sk − s̃k

s̃k

∣∣∣∣ + δ + 8ε + O(ε2)

so that∣∣∣âk − ˜̂ak

∣∣∣ ≤ (116k2 + 30k + 4)ε + (36k2 − 2k + 1)|δz| + (32k2 + 4k + 3)δ

+ 8δf (k − 1) + 24δ
(1)
f (k − 1) + 72δ

(1)
f (k − 2)

+ 64δ
(2)
f (k − 3) + O(ε2).(35)

Combining the results of this section with Theorem 5 we have bounds on the
relative backward errors on ak and bk and bounds on the relative forward errors on
gk, pk, rk, b̂k−1, ck, sk, and fk. We have a bound on the absolute forward error on

âk. All of these bounds are given in terms of ε, δ, δ
(j)
f (k), and δz. If the starting

normalization errors δk and δz are small and if the normalization error δf (l) is small
for each l = 1, 2, . . . , n, then we have a proof of stability for a single iteration of
Algorithm 2.

7. Final error bounds. We have now bounded all forward and backward errors
and all normalization errors. The results are summarized in the following theorem.

Theorem 6. Let bk �= 0 for k = 1, 2, . . . , n− 1 and

max
1≤k≤n

∣∣1 − |ak|2 − b2k
∣∣ = δ,

where bn = 0. Assume that z is such that |z| = 1 + δz for |δz| < 1, that δ = O(ε), and
that δz = O(ε). If

2 −
√

2/2

1 −
√

2/2
(ε + (n− 1)γ3 + n|δz|) + 2γ2 < 1,

then Algorithm 2 runs with gk �= 0 for k = 1, 2, . . . , n− 1.
There exist parameters ãk and b̃k satisfying |ãk|2 + b̃2k = 1 and a unimodular shift

z̃ such that

|ãk − ak| ≤
[
(12k2 − 7k − 3)ε + (8k − 7)δ + (4k2 − 3k − 1)|δz|

]
|ãk| + O(ε2)

and

|b̃k − bk| ≤ δ|b̃k| + O(ε2).

If c̃k, s̃k, ˜̂ak, and
˜̂
bk−1 are obtained from ãk, b̃k, and z̃ without error, then the computed

âk, b̂k−1, ck, and sk satisfy
∣∣∣˜̂ak − âk

∣∣∣ ≤ (32k3 + 68k2 + 46k + 4)ε +
1

3
(32k3 + 60k2 + 10k + 3)|δz|

+ (32k2 + 4k + 3)δ + O(ε2),
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∣∣∣˜̂bk − b̂k

∣∣∣ ≤
[
(16k3 + 46k2 + 52k + 18)ε +

1

3
(16k3 + 42k2 + 32k + 12)|δz|

+ (16k2 + 10k + 6)δ

]
|˜̂bk−1| + O(ε2),

|c̃k − ck| ≤
[
(8k3 + 11k2 + 3k)ε +

1

3
(8k3 + 9k2 − 5k)|δz| + (8k2 − 3k)δ

]
|c̃k| + O(ε2),

and

|s̃k − sk| ≤
[
(8k3 + 11k2 + 3k − 2)ε +

1

3
(8k3 + 9k2 − 5k)|δz|

+ (8k2 − 3k + 1)δ

]
|s̃k| + O(ε2).

Proof. The stated condition on the unit roundoff and |δz| implies both of the
conditions assumed in Theorem 2 so that gk �= 0 for k = 1, 2, . . . , n − 1. All that is
needed to prove the forward error bounds is to substitute (13), (14), and (15) into
(35), (34), (30), and (33). Similarly the bounds on the backward errors are from

Theorem 5 combined with the bounds on δ
(j)
f (k).

In terms of normwise errors we have the following.
Theorem 7. Under the same assumptions as Theorem 6 and with H, Q, Ĥ, H̃,

Q̃, and
˜̂
H defined as in section 3 we have

Ĥ = Q̃H [H + E] Q̃

with

‖E‖2 ≤ 1

3
(48n4 + 256n3 + 405n2 + 203n)ε +

1

3
(16n4 + 80n3 + 89n2 + 25n)|δz|

+
1

3
(64n3 + 132n2 + 44n)δ + O(ε2)

and

‖Q− Q̃‖2 ≤ 1

3
(12n4 + 46n3 + 54n2 + 20n)ε +

1

3
(4n4 + 14n3 + 8n2 − 2n)|δz|

+
1

3
(16n3 + 15n2 + 5n)δ + O(ε2).

Proof. In terms of the notation used in section 3, we see from Theorem 6 that

max(Ka(ε, δ, δz, k),Kb(ε, δ, δz, k)) ≤ (12k2 − 7k − 3)ε + (4k2 − 3k − 1)|δz|
+ (8k − 7)δ + O(ε2),

max(Kâ(ε, δ, δz, k),Kb̂(ε, δ, δz, k)) ≤ (32k3 + 68k2 + 46k + 4)ε

+
1

3
(32k3 + 60k2 + 10k + 3)|δz|

+ (32k2 + 4k + 3)δ + O(ε2),
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and

max(Kc(ε, δ, δz, k),Ks(ε, δ, δz, k)) ≤ (8k3 + 11k2 + 3k)ε +
1

3
(8k3 + 9k2 − 5k)|δz|

+ (8k2 − 3k + 1)δ + O(ε2).

The theorem then follows from (9) and (8).
Although we have stated the bounds only for a single UHQR iteration, the ob-

servations of section 3 apply. The normalization errors on the Schur parameters grow
at worst linearly in the number of iterations so that a sequence of j + 1 UHQR itera-
tions will compute Hj+1 that is similar to a matrix H̃ that is close to H0 = H. The

similarity transformation is the product Q̃ = Q̃0Q̃1 · · · Q̃j . The product of computed

transformations Q = Q0Q1 · · ·Qj is close to Q̃. If Hj+1 is diagonal, then the diagonal

elements are eigenvalues of H̃. The matrix Q is close to the matrix of eigenvectors of
H̃.

We have not taken into account errors due to neglecting a small bk when per-
forming a deflation. The deflation contributes an additional error to the bound on
‖H0 − H̃0‖. The error is proportional to the size of the subdiagonal neglected. Ne-
glecting bk also affects the normalization error on ak. Suppose that for some small bk
we have before deflation |ak|2 + b2k = 1 + δk. After setting bk to zero we have a new
normalization error associated with ak only, |ak|2 = 1 + (δk − b2k). Thus in neglecting
bk we have δk ← δk − b2k. If bk = O(ε) the effect on δk is O(ε2).

Finally, we warn against relying on implicit normalization of the projected shift.
Suppose that the algorithm is implemented using the projected Wilkinson shift com-
puted directly as an eigenvalue of (3) without explicit normalization. The unimodu-
larity of the eigenvalue depends on the normalization on an−1 and bn−1. If the Schur
parameters are not properly normalized, the computed eigenvalue of (3) is not per-
fectly unimodular. This increases the normalization error in the computed parameters
ân−1 and b̂n−1, leading to even poorer normalization of the shift in the next iteration.
The process is highly unstable and can quickly lead to overflow in the Schur param-
eters. The explicit normalization z ← z/|z| solves the problem ensuring that |δz| is
less than a fixed multiple of ε regardless of the normalization on an−1 and bn−1.
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Abstract. A matrix is called totally positive if all its minors are positive. If a totally positive
matrix A is partitioned as A = (Aij) i, j = 1, 2, . . . , k, in which each block Aij is n×n, we show that
the k × k compressed matrix given by (detAij) is also totally positive and that the determinant of
the compressed matrix exceeds detA when k = 2, 3. An extension that allows for overlapping blocks
is also presented when k = 2, 3. For k ≥ 4 we verify, by example, that the k × k compressed matrix
of a totally positive matrix need not be totally positive.
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1. Introduction. An n × n matrix A is called totally positive (TP) (resp., to-
tally nonnegative (TN)) if every minor of A is positive (nonnegative) (see [1, 6, 10]).
Such matrices have a wide variety of applications in approximation theory, numerical
mathematics, statistics, and combinatorics [7].

We consider nk × nk partitioned matrices A = (Aij)
k
i,j=1, in which each block

Aij is n× n. It has long been known (see [18], for example) that if A is a Hermitian
positive definite matrix, then the k × k compressed matrix (or compression of A)

Ck(A) = (detAij)
k
i,j=1

is also positive definite, and

detCk(A) > detA.

Analogous results have also been shown to hold for M -matrices (namely, matrices
with nonpositive off-diagonal entries and entrywise positive inverses), with the extra
condition that the comparison matrix of the compression of A is used in place of the
usual compression of A (see [9]).

Naturally, comparing and identifying common properties between these positivity
classes and totally positive matrices is both important and useful.

Thus we formulate the corresponding problem in the context of totally positive
matrices and ask, If A is a totally positive nk × nk matrix, then is the compressed
matrix Ck(A) a totally positive matrix?

Due to the evident inductive nature of this problem, for general k it suffices to
prove that det(Ck(A)) > 0, because determinants of proper square submatrices of
Ck(A) can be assumed positive by induction.
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On the other hand, we note that Ck(A) is a principal submatrix of the kth com-
pound of A (see [1]). Using this fact, it is easy to conclude that Ck(A) is positive
semidefinite whenever A is positive semidefinite. Furthermore, recall that the (n−1)st
compound of an n × n totally nonnegative matrix is again totally nonnegative (see
[1]). However, for 1 < k < n− 1, the kth compound of a totally nonnegative matrix
need not be totally nonnegative. Further along these lines if we consider Sylvester’s
determinantal identity (see [6, p. 12 or p. 92]), it is known that if A is totally positive,
then the matrix corresponding to Sylvester’s determinantal identity (see also a related
result in [15, Prop. 2]) is also totally positive.

In an effort to answer these questions we consider small values of k (k = 2, 3)
initially and provide positive resolutions in these cases. However, it is shown by
example that for k ≥ 4, the compression of a totally positive matrix need not be totally
positive. This is in stark constrast to the situations for both positive semidefinite
matrices and for M -matrices.

The rest of the paper is organized as follows. In section 2 we consider the case k =
2 in complete detail. Section 3 begins by identifying the determinant of the compressed
matrix as a generalized matrix function. We then make use of the related generalized
Cauchy–Binet identity in concert with an associated bidiagonal factorization of TP
matrices. These results yield an affirmative answer to our question for the case k = 3.
Section 5 contains an example of an 8 × 8 totally nonnegative matrix A for which
C4(A) is not totally nonnegative. Finally, in section 6, we derive some interesting
consequences for the cases k = 2, 3.

2. The case k = 2. Let A be presented as follows:

A =

(
A11 A12

A21 A22

)
,

where Aij are n× n.
Clearly, in this case to verify that the compression of A is totally positive it is

enough to show that det(C2(A)) > 0. In fact we will prove a little more by demon-
strating that not only is det(C2(A)) positive, but it can be naturally expanded as a
subtraction-free expression involving only nonnegative terms. To accomplish this we
make use of the fact that any totally positive matrix can be written as the product
LU (see [4]), where L (resp., U) is a lower (resp., upper) triangular matrix and is
ΔTP (see definition below).

We now introduce some important notation. Let A be an n×n real matrix, and let
α, β be nonempty subsets of {1, 2, . . . , n}, arranged in increasing order. Then A[α|β]
denotes the submatrix of A lying in rows indexed by α and columns indexed by β. If,
in addition, α = β, then we abbreviate the principal submatrix A[α|α] to A[α]. An
m×m lower (upper) triangular matrix A is called triangular totally positive, denoted
by ΔTP, if for each l = 1, 2, . . . ,m and for each pair of index sets α = {i1, . . . , il} and
β = {j1, . . . , jl} with the property that is ≥ js (is ≤ js) for s = 1, 2, . . . , l, the minor
detA[α|β] is positive. We are now in a position to prove the result.

Lemma 2.1. Let A be a 2n × 2n totally positive matrix that is partitioned as
follows:

A =

(
A11 A12

A21 A22

)
,

where each Aij is an n×n block. Then the compression C2(A) is also totally positive.
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Moreover, in this case

detC2(A) > detA.

Proof. Since A is totally positive A can be written as A = LU , where L and U
are ΔTP matrices. We can partition L and U into n× n blocks and rewrite A = LU
as

A =

(
A11 A12

A21 A22

)
=

(
L11 0
L21 L22

)(
U11 U12

0 U22

)
.

Observe that

detA11 detA22 = det(L11U11) det

(
[L21L22]

[
U12

U22

])
.

Applying the classical Cauchy–Binet identity to the far right term above yields

det

(
[L21L22]

[
U12

U22

])

=
∑
γ

detL[{n + 1, . . . , 2n}|γ]detU [γ|{n + 1, . . . , 2n}],(2.1)

where the sum is taken over all ordered subsets γ of {1, 2, . . . , 2n} with cardinality n.
If we separate the terms with γ = {1, 2, . . . n} and γ = {n+ 1, n+ 2, . . . 2n}, then the
sum on the right in (2.1) reduces to

∑
γ

detL[{n + 1, . . . , 2n}|γ]detU [γ|{n + 1, . . . , 2n}]

= detL21 detU12 + detL22 detU22 + (positive terms).

Since L and U are ΔTP, all summands are positive.
Hence

detA11 detA22 = det(L11U11)[detL21 detU12 + detL22 detU22] + (positive terms),

which is equivalent to

detA11 detA22 = detA12 detA21 + detA + (positive terms).

Thus we have

detC2(A) = detA11 detA22 − detA12 detA21

= detA + (positive terms),

and so detC2(A) > detA > 0, which completes the proof.
The following is a consequence of Lemma 2.1 and the classical fact (see [10], for

example) that the TP matrices are dense in the TN matrices.
Corollary 2.2. Let A be a 2n×2n totally nonnegative matrix that is partitioned

as follows:

A =

(
A11 A12

A21 A22

)
,

where Aij is n× n. Then C2(A) is also totally nonnegative and

detC2(A) ≥ detA.

Next we establish a connection between det(Ck(A)) and a certain generalized
matrix function, which is included for completeness.
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3. det(Ck(A)) as a generalized matrix function. For brevity, we let N =
nk. Let SN be the group of permutations of {1, . . . , N}, which we view as acting on
the row and column indices of A. For each g ∈ SN , the generalized diagonal of A
determined by g is

Ag = a1,g(1)a2,g(2) . . . aN,g(N).

The collection of all generalized diagonals of A determines a specific element of the
group algebra RSN given by

[A] =
∑
g∈SN

Agg.

If χ is a character of a subgroup H of SN , then χ can be viewed as a linear map from
RSN to R by extending it as 0 on SN \H. Applying this to [A] we have

χ[A] =
∑
g∈H

Agχ(g).

A generalized matrix function is a function dχ : MN (R) → R such that dχ(A) = χ[A],
for a fixed character χ of some subgroup of SN . For a general reference on generalized
matrix functions see [14].

The aim of this section is to show that there exists a real-valued character χ of
a subgroup H of SN having degree 1 such that det(Ck(A)) = dχ(A) for all N × N
matrices A.

We begin by describing the subgroup H. For each s ∈ {1, . . . , k}, let Sn(s)
be the subgroup of SN consisting of all permutations on the set of n consecutive
indices Δs = {(s− 1)n + 1, (s− 1)n + 2, . . . , sn}. The subgroups Sn(s), s = 1, . . . , k,
generate an internal direct product Sn(1) × Sn(2) × · · · × Sn(k) as a subgroup of
SN . The k distinct blocks Δ1, . . . ,Δk of n consecutive indices are also permuted
by a subgroup S̃k of SN . This subgroup is isomorphic to Sk. The element of S̃k

sending Δs to Δt is represented in SN as the product of the nonoverlapping 2-cycles
((s−1)n+u, (t−1)n+u), u = 1, . . . , n. The subgroup S̃k normalizes Sn(1)×· · ·×Sn(k),
so the subgroup H generated by S̃k and Sn(1) × · · · × Sn(k) in SN is a semidirect
product of the form (Sn(1) × · · · × Sn(k)) � S̃k. This is the subgroup H we require.
Note that this subgroup H is one of several isomorphic copies of the wreath product
group Sn � Sk occurring as subgroups of SN .

Let τ → τ̃ be the natural isomorphism from Sk to S̃k. Then the sign character
εk corresponds to a character ε̃k on S̃k by ε̃k(τ̃) = εk(τ) for τ ∈ Sk. The function χ
is defined as follows. Since any element h of H can be uniquely written in the form
τ̃ · (τ1τ2 · · · τk), where each τs ∈ Sn(s) for s = 1, 2, . . . , k, and τ̃ ∈ S̃k,

χ(h) = ε̃k(τ̃)εH(τ1τ2 · · · τk).

Observe that χ(τ) = −1 for every 2-cycle τ ∈ H.
Theorem 3.1. Let H and χ be as defined in the preceding paragraph. Then

det(Ck(A)) = dχ(A) for all N ×N matrices A.
Proof. We begin by examining the standard formula for det(Ck(A)) as the gener-

alized matrix function corresponding to the sign character εk of the symmetric group
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Sk. That is,

det(Ck(A)) =
∑
τ∈Sk

εk(τ)(detA1,τ(1)) . . . (detAk,τ(k))

=
∑
τ∈Sk

εk(τ)

k∏
s=1

⎛
⎝ ∑

τs∈Sn(s)

ε(τs)

n∏
us=1

(As,τ(s))us,τs(us)

⎞
⎠ .

Note that the block submatrices As,τ(s) have entries a(s−1)n+us,(τ(s)−1)n+vs , where
1 ≤ us, vs ≤ n, for all s = 1, . . . , k. Therefore, we have

det(Ck(A)) =
∑
τ∈Sk

εk(τ)

k∏
s=1

( ∑
τs∈Sn

ε(τs)

(
n∏

us=1

a(s−1)n+us,(τ(s)−1)n+τs(us)

))
.

Now, any element h of H can be uniquely written in the form τ̃ · (τ1τ2 . . . τk),
where each τs ∈ Sn(s) for s = 1, . . . , k, and τ̃ ∈ S̃k. If i ∈ {1, . . . , N}, then i can be
uniquely written as i = (s− 1)n + u for some s ∈ {1, . . . , k} and u ∈ {1, . . . , n}, and
the value of h(i) can be computed as follows:

h(i) = h((s− 1)n + u)
= (τ̃ · (τ1τ2 . . . τk))((s− 1)n + u))
= τ̃((s− 1)n + τs(u))
= (τ(s) − 1)n + τs(u),

where τ ∈ Sk. Thus

det(Ck(A)) =
∑
τ∈Sk

∑
(τ1τ2...τk)∈Sn(1)×···×Sn(k)

εk(τ)εH(τ1τ2 . . . τk)

·
(

k∏
s=1

n∏
us=1

a(s−1)n+us,(τ(s)−1)n+τs(us)

)

=
∑

τ̃∈S̃k

( ∑
(τ1τ2...τk)∈Sn(1)×···×Sn(k)

ε̃k(τ̃)εH(τ1τ2 . . . τk)

(
N∏
i=1

ai,τ̃ ·τ1τ2...τk(i)

))

=
∑
h∈H

χ(h)Ah

= χ[A]

= dχ(A),

and the theorem follows.
Note that if we let K = kerχ, then K is a subgroup of index 2 in H. In fact,

since we are assuming n > 1, we have that the two distinct left cosets of K in H are
K and σK, where σ can be chosen to be the permutation (1, 2) ∈ SN . We remark
here that the above result is mentioned in passing in [9].

Since χ is a real valued character of degree 1, Theorem 3.1 allows us to apply
the generalized Cauchy–Binet theorem of Marcus and Minc [13, Lemma 2.3] for the
character corresponding to the determinant of the k-compression. We will use this in
combination with the standard bidiagonal factorization of a totally positive matrix.
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4. The generalized Cauchy–Binet theorem and the case k = 3. To state
the version of the generalized Cauchy–Binet theorem needed, we first make some
definitions. Let ΓN denote the set of all N -multisets γ = (γ1, γ2, . . . , γN ) with γi ∈
{1, 2, . . . , N} for all i = 1, 2, . . . , N . When N = nk, we divide γ ∈ ΓN further into k
blocks of n-multisets, so γ = (γ1, γ2, . . . , γk) with γj = (γ(j−1)n+1, γ(j−1)n+2, . . . , γjn)
for all j = 1, 2, . . . , k. SN acts naturally on ΓN by permuting indices, so σγ =
(γσ(1), γσ(2), . . . , γσ(N)). By Theorem 3.1, the determinant of the k-compression of an
N×N matrix can be identified with the generalized matrix function dχ corresponding
to the real-valued degree 1 character χ of the aforementioned subgroup H of SN . Now,
H acts naturally on ΓN by restriction. Let Δ denote the set of representatives for the
orbits of H on ΓN whose elements are chosen to be minimal in lexicographic order
among all the elements in their orbit. For each γ ∈ Δ, let Hγ denote the stabilizer
in H of γ, and let v(γ) = |Hγ |. Finally, let Δ̄ = {γ ∈ Δ : χHγ = 1Hγ}. Then Δ̄ is
the set of all those γ = (γ1, γ2, . . . , γk) ∈ ΓN for which each γj is a strictly increasing
n-multiset, and γ1 < γ2 < · · · < γk in the lexicographic order on n-multisets.

Now we state the version of the generalized Cauchy–Binet theorem that we need.
We use 	 to denote the N -multiset, 	 = (1, 2, 3, . . . , N).

Theorem 4.1. If L and U are N ×N matrices and A = LU , then

dχ(A) =
∑
α∈Δ̄

1

v(α)
dχ(L[	|α])dχ(U [α|	]).

We apply this formula to the case of an N ×N totally positive matrix A. Such
a matrix has a decomposition of the form A = LDU , where L is a unipotent lower
triangular ΔTP matrix, D is a diagonal matrix with positive main diagonal entries,
and U is a unipotent upper triangular ΔTP matrix. By factoring appropriate positive
scalars, we may assume for our purposes that D = I, so A = LU for ΔTP matrices L
and U (see [4]). It is interesting to observe the following property, which is true for
all generalized matrix functions corresponding to real-valued characters of subgroups
of SN . We omit the straightforward proof.

Lemma 4.2. Let B be an N ×N -matrix, and let γ, δ ∈ ΓN . Then dχ(B[γ|δ]) =
dχ(BT [δ|γ]).

For 1 ≤ i, j ≤ N , let Eij denote the N ×N matrix whose only nonzero entry is a
1 in the (i, j) position. If t is a positive scalar, then let Er(t) = I + tEr,r−1. If L is a
lower triangular ΔTP matrix with unit main diagonal, then the standard bidiagonal
factorization of L is given by

L =
N∏
s=2

(
N∏
r=s

Er(ts,r)

)

for uniquely chosen positive scalars ts,r. Such a factorization is called an elementary
bidiagonal factorization and has proved to be a useful tool in the study of TN matrices
(see [2, 4, 5, 8, 12]).

By repeatedly applying the generalized Cauchy–Binet theorem to this standard
bidiagonal factorization of L, we can express dχ(L[	|α]) for any α ∈ Δ̄ as a nonnegative
linear combination of terms which are products of factors of the form dχ(Er(ts,r)[γ|δ])
for γ, δ ∈ Δ̄. For any r = 2, . . . , N , t > 0, and γ, δ ∈ Δ̄, we have that dχ(Er(t)[γ|δ]) =
det(Ck(Er(t)[γ|δ])), and (Ck(Er(t)[γ|δ]))p,q = det(Er(t)[γ

p|δq]) for all 1 ≤ p, q ≤ k.
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Lemma 4.3. If γ, δ ∈ Δ̄, then for all p, q = 1, 2, . . . , k,

det(Er(t)[γ
p|γq]) =

⎧⎨
⎩

1 if δq = γp,
t if δq = (γp \ {r}) ∪ {r − 1},
0 otherwise.

Proof. Suppose det(Er(t)[γ
p|γq]) �= 0. Since γ, δ ∈ Δ̄, the n-multisets γp and δq

are strictly increasing. If r �∈ γp, then Er(t)[γ
p|	] is an n ×N matrix each of whose

ith rows contain only one nonzero entry, which is a 1 in the (γp)ith column. So in
order to choose a strictly increasing n-multiset δq so that every row of Er(t)[γ

p|δq]
has a nonzero entry, we have to choose (δq)i = (γp)i for all i = 1, . . . , n, so δq = γp.
In this case, Er(t)[γ

p|δq] is a lower triangular matrix with 1’s on the diagonal, and
det(Er(t)[γ

p|γq]) = 1.
If r ∈ γp, then the rth row of Er(t)[γ

p|	] contains two nonzero entries, a t in the
(r−1)st column and a 1 in the rth column. If i �= r, then the ith row of Er(t)[γ

p|	] has
only one nonzero entry, which is again a 1 in the (γp)ith column. As in the previous
case, if (γp)i < r − 1, then we are forced to choose (δq)i = (γp)i. If (γp)i = r − 1,
then (γp)i+1 is automatically r, and in order for det(Er(t)[γ

p|γq]) to be nonzero we
have to choose (γq)i = r − 1 and (γq)i+1 = r. If r − 1 �∈ γp and (γp)i = r, then
we may choose (δq)i to be either r or r − 1, as both choices ensure a nonzero entry
in the ith row of Er(t)[γ

p|γq]. Whenever (γp)i > r, we are again forced to choose
(δq)i = (γp)i in order to have a nonzero entry in the ith row of Er(t)[γ

p|γq]. So the
two possible choices of a strictly increasing n-multiset δq resulting in a nonzero value
for det(Er(t)[γ

p|γq]) are δq = γp or δq = (γp \{r})∪{r−1}. The first of these results
in the determinant being 1, and for the latter the resulting determinant is t. This
proves the lemma.

The next lemma demonstrates an interesting property of the matrices Ck(Er(t)[γ|δ])
when t > 0 and γ, δ ∈ Δ̄.

Lemma 4.4. If γ, δ ∈ Δ̄ and detCk(Er(t)[γ|δ]) �= 0, then the determinant cal-
culation for Ck(Er(t)[γ|δ]) is “permutation-like” in the sense that only one entry in
each row and column contributes to the result.

Proof. By Lemma 4.3, the pth row of Ck(Er(t)[γ|δ]) contains at most two nonzero
entries, and when it contains two nonzero entries, we must have r ∈ γp, r − 1 �∈ γp,
δq = (γp \ {r}) ∪ {r − 1}, and δq+1 = γp. Note that the two nonzero entries in the
pth row must lie in adjacent positions. If p = 1, then, in the lexicographic order on
n-multisets, we have δq < δq+1 = γ1 < γ� for all 1 ≤ � ≤ k. Therefore, γ� �= δq, δq+1,
so the qth and (q + 1)st columns of Ck(Er(t)[γ|δ]) are all 0’s after the first row
is deleted. This implies that detCk(Er(t)[γ|δ]) = 0, a contradiction. Therefore,
when detCk(Er(t)[γ|δ]) �= 0, the first row of Ck(Er(t)[γ|δ]) contains only one nonzero
entry. If this entry lies in the qth column, then we can apply induction to the matrix
obtained by deleting the first row and qth column of Ck(Er(t)[γ|δ]), and the lemma
follows.

An easy consequence of the above lemma is that Ck(Er(t)[γ|γ]) = 1 for all γ ∈ Δ̄,
because Ck(Er(t)[γ|γ]) is guaranteed to have 1’s down the main diagonal.

We now investigate the possibility of applying our results about detCk(Er(t)[γ|δ])
for γ, δ ∈ Δ̄ to the expression for detCk(L[	|α]), α ∈ Δ̄, that results from repeatedly
applying the generalized Cauchy–Binet expansion to the factors in the standard bidi-
agonal factorization of the lower triangular totally positive matrix L. This provides
an expression for detCk(L[	|α]) as nonnegative linear combinations of products of the
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form

N−1∏
s=2

(
N∏
r=s

detCk(Er(ts,r)[γs,r|δs,r]
)
,(4.1)

where all ts,r > 0 and γs,r, δs,r ∈ Δ̄ are chosen so that (i) γ2,2 = 	; (ii) γs,r+1 = δs,r;
(iii) γs+1,s+1 = δs,N ; and (iv) δN−1,N = α.

For convenience, we will refer to those γs,r for r = s, . . . , N as being the elements
of Δ̄ chosen in the sth round for (4.1). It follows from Lemma 4.3 that when (4.1) is
nonzero, then every δs,r is either equal to γs,r or is obtained from γs,r by changing
some of the r’s in γs,r to r − 1’s. The first lemma gives a restriction on those γ ∈ Δ̄
that can occur in such a product when (4.1) is nonzero.

Lemma 4.5. Suppose γ = γs,r ∈ Δ̄ occurs in one of the factors of (4.1) when the
product is nonzero. Then the entries of γ satisfy the following conditions:

(i) If m ∈ {1, . . . , n}, then γm = m.
(ii) If m ∈ {n + 1, . . . , N}, then 	m

2 
 ≤ γm ≤ m.
Proof. It is easy to see that γm can be at most m. Since γ2,2 = 	 at the start,

reducing any of the first n entries from r to r − 1 would cause γ1 to have a repeated
index, thus forcing it out of Δ. This proves (i).

Now suppose n + 1 ≤ m. Then the index γm is obtained by reducing the mth
position of 	 exactly m− γm times. However, this index can be reduced only once in
each round, at the factor involving Er(ts,r) when r = (γs,r)m. If we reduce as often as
possible, the mth position can be reduced to m−1 in the 2-round, m−2 in the 3-round,
m − 3 in the 4-round, etc. Continuing in this manner, the first round in which the
mth postion cannot be reduced is the sth round when the mth position is m− (s− 2)
and this is less than s. This occurs when m− (s−2) < s but m− (s−3) ≥ (s−1), so
we have 2(s− 2) ≤ m < 2(s− 1). If m is even and m = 2�, then this forces � = s− 2,
so the mth position can be reduced by one in each of the rounds 2, 3, . . . , s−1, a total
of s− 2 = � times. This forces γm ≥ � = m

2 = 	m
2 
. If m is odd and m = 2�+ 1, then

this forces � = s− 2, so the mth position can be reduced by one in each of the rounds
2, 3, . . . , s− 1, a total of � times, so again γm ≥ m− � = 	m

2 
.
The above lemma can be used to give another proof that detC2(A) > 0 for all

totally positive matrices A. In this case, every pair γ, δ ∈ Δ̄ involved in a factor
of the product (4.1) when it is nonzero satisfies γ1 = δ1 < δ2. This implies that
every factor in every nonzero product (4.1) is the determinant of a lower triangular
matrix C2(Er(t)[γ|δ]) with nonnegative entries, from which the result follows. In fact,
it also follows that detC2(A) ≥ det(A), since det(A) is the term of the generalized
Cauchy–Binet expansion obtained when every γ ∈ Δ̄ is chosen to be 	.

For k = 3, a similar approach also works.
Theorem 4.6. If A is a totally positive 3n× 3n matrix, then detC3(A) > 0.
Proof. Again it suffices to show that every factor in the product (4.1) when it

is nonzero is the determinant of the lower triangular matrix C3(Er(t)[γ|δ]). From
the proof of Lemma 4.4, we can see that the first row of C3(Er(t)[γ|δ]) has only one
nonzero entry, which has to be a 1 in the (1, 1)-position because γ1 = δ1 = (1, 2, . . . , n).
So it suffices to show that the (2, 3)-entry of C3(Er(t)[γ|δ]) is always 0. Suppose that
one of the (2, 3)-entries of the C3(Er(t)[γ|δ]) matrices involved in a nonzero term of
the expansion of (4.1) is nonzero. In the first such occurrence, the γ that occurs must
have an r in position n + i, with 1 ≤ i ≤ 2n. More precisely,

γ2 = (s1, . . . , si−1, r − 1, t2, u1, . . . , un−(i+1)) and
γ3 = (s1, . . . , si−1, r, t1, v1, . . . , vn−(i+1))
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with s1 < · · · < si−1 < r − 1, r < t1 < t2 < u1 < · · ·un−(i+1) ≤ 2n and t1 < v1 <
· · · < vn−(i+1) ≤ 3n. We obtain δ from γ by replacing r by r− 1 in γ3, which reverses
the lexicographic order of γ2 and γ3, making

δ2 = (s1, . . . , si−1, r − 1, t1, v1, . . . , vn−(i+1)) and
δ3 = γ2.

(This reversing of the lexicographic order is needed to ensure that the (2,3)-entry of
C3(Er(t)[γ|δ]) nonzero.) Since t2 = γn+i+1, we have that t2 ≤ n + i + 1. If i > 1,
then this forces s1 ≤ n − 1. However, s1 = γ2n+1, so we must have s1 ≥ n + 1 by
Lemma 4.5, a contradiction. If i = 1, then t2 ≤ n + 2, so r ≤ n. But γ has an
r in the (2n + 1)-position, which again contradicts Lemma 4.5. This completes the
proof.

Corollary 4.7. Let A be a totally nonnegative 3n × 3n matrix. Then the
compression matrix C3(A) is also totally nonnegative.

5. The case k ≥ 4. We now verify by example that Theorem 4.6 does not
extend to k ≥ 4. Specifically, we show that there exists an 8 × 8 totally nonegative
matrix, in which the corresponding 4× 4 compression consisting of 2× 2 blocks is not
totally nonnegative. It is evident how to extend this example for larger values of k by
embedding this example into the upper left corner of a 2k × 2k totally nonnegative
matrix.

Consider the 8 × 8 matrix given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 t t 0 0 0 0 0
t t2 + 1 t2 + 1 2t 2t t2 t2 0
t t2 + 1 t2 + 1 2t 2t t2 t2 0
t2 t3 + 2t t3 + 2t 1 + 4t2 1 + 4t2 t(1 + 2t2) t(1 + 2t2) 0
t2 t3 + 2t t3 + 2t 1 + 4t2 1 + 4t2 t(1 + 2t2) t(1 + 2t2) 0
0 t2 t2 2t3 + 2t 2t3 + 2t 1 + t(t3 + 2t) 1 + t(t3 + 2t) t
0 t2 t2 2t3 + 2t 2t3 + 2t 1 + t(t3 + 2t) 1 + t(t3 + 2t) t
0 0 0 t2 t2 t3 + t t3 + t t2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then for any t ≥ 0, the matrix A above is totally nonnegative. Furthermore, its
compressed 4 × 4 matrix, namely, C4(A), is given by

C4(A) =

⎡
⎢⎢⎣

1 2t2 0 0
t2 t2 + 2t4 + 1 t2 0
t4 2t6 + 2t4 + 3t2 1 + 3t4 + 4t2 t2(1 + 2t2)
0 t4 t2 + t6 + 2t4 t6 + t4

⎤
⎥⎥⎦ .

It is not difficult to verify that

det(C4(A)) = t8 − t12 + t6,

which is negative for large t (even t ≥
√

2 suffices). A basic continuity argument can
be applied to this example, using the fact that the TP matrices are dense in the TN
matrices, to conclude that there exists an 8 × 8 TP matrix whose 4 × 4 compression
matrix is not TP.

The above example represents another case of a generalized matrix function which
can take negative values on the set of TN matrices (see also [16]).
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6. Further results. Here we extend Corollaries 2.2 and 4.7 for k = 2, 3 by
verifying that, in fact, the inequality det(Ck(A)) ≥ det(A) is strict if A is TP or,
more generally, an oscillatory matrix. Recall [5, 6] that a matrix is called oscillatory
if it is totally nonnegative and some positive integer power of it is totally positive. To
proceed, we need additional background information.

As in the previous section we use an existence of a factorization of any invertible
TN matrix into a product of totally nonnegative bidiagonal matrices of the form
Er(t) = I + tEr,r−1, E−r(t) = Er(t)

T and a positive diagonal factor.
An elementary bidiagonal factorization of an N × N invertible TN matrix A is

not unique. Factorizations involving the minimal possible number of factors can be
described as follows (see [5]). Each A belongs to one of the disjoint subsets Gu,v of
the set of invertible TN matrices uniquely parametrized by a pair of permutations
u, v ∈ Sn. Let u = (i1, i1 + 1) · · · (il, il + 1) and v = (j1, j1 + 1) · · · (jm, jm + 1) be
any pair of reduced (i.e., shortest possible) factorizations of u and v into products
of elementary transpositions. Recall that l is called the length of u and the ordered
tuple (i1, . . . , il) is called a reduced word for u. Further let (k1, . . . , kl+m) be an
arbitrary shuffle of ordered tuples (−i1, . . . ,−il) and (j1, . . . , jm). Then, for every
s ∈ {1, . . . , l + m}, there is a unique factorization of A of the form

A = Ek1(t1) · · ·Eks−1
(ts−1)DEks

(ts) · · ·Ekl+m
(tl+m),(6.1)

where t1, . . . , tl+m are positive numbers and D is a positive diagonal matrix that does
not depend on s. Furthermore, A is TP if and only if both u and v are elements of
maximal length in SN and A is oscillatory if and only if, for every i ∈ {1, . . . , N − 1},
indices ±i are present in the vector (k1, . . . , kl+m) (cf. [5]). Recall that a permutation
w is called a Coxeter element of SN if any reduced word for w contains exactly one
copy of every index i ∈ {1, . . . , N − 1}.

One of the tools used in [2, 5] (see also [3]) is a graphical representation of the
bidiagonal factorization in terms of planar diagrams (or networks). A planar diagram
of order n is a planar acyclic digraph D with all edges oriented from left to right and
2n distinguished boundary vertices: n sources on the left and n sinks on the right
with both sources and sinks labeled 1, . . . , n from bottom to top. To each edge of a
planar diagram D we assign a positive weight. We denote a collection of all assigned
weights by W and call the pair (D,W ) a weighted planar diagram of order n. The
weight of a path in D is defined as a product of weights assigned to edges that form
this path.

Now, if (D,W ) is an arbitrary weighted planar diagram of order n, then we define
an n× n matrix A = A(D,W ) by letting the (i, j)-entry of A be equal to the sum of
the weights of all paths joining the vertex i on the left side of the obtained diagram
D with the vertex j on the right side.

If we let A = A(D,W ), then we can calculate any minor of A as follows (see
[11], for example). For index sets α = {i1, i2, . . . , it} and β = {j1, j2, . . . , jt}, con-
sider a collection P (α, β) of all families of vertex-disjoint paths joining the vertices
{i1, i2, . . . , it} on the left of the diagram D with the vertices {j1, j2, . . . , jt} on the
right. For π ∈ P (α, β), let w(π) be the product of all the weights assigned to edges
that form a family π. Then

detA[α|β] =
∑

π∈P (α,β)

w(π) .

In particular, A(D,W ) is TN.
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As an example, consider a planar diagram that corresponds to the factorization
(6.1). It is obtained by concatenation, left to right, of diagrams that correspond
to elementary factors. In the diagram representing D the only edges present are
horizontal edges joining i on the left with i on the right (i = 1, . . . , N) with some
positive weight assigned to each edge. In the diagram representing Er(α) there is
an additional edge from r to r + 1 if r is positive and from r + 1 to r otherwise.
The weight of this edge is α, while the weights of all horizontal edges are equal to 1.
The result looks like a collection of N horizontal lines with additional inclined edges
between them directed either southeast or northeast.

Suppose now that N = nk (n ≥ 2) and A is a N ×N TN matrix.
Lemma 6.1. For any t > 0, l ∈ {1, . . . , N − 1}, and k = 2, 3,

detCk(E±l(t)A) ≥ detCk(A), detCk(AE±l(t)) ≥ detCk(A).(6.2)

Proof. Define B = El(t)A. Then B is totally nonnegative. Moreover, B is
obtained from A by replacing the lth row of A by itself plus t times row l− 1. If both
l − 1, l belong to some Δi, then evidently Ck(B) = Ck(A). On the other hand, if
l ∈ Δi and l − 1 ∈ Δi−1, then Ck(B) and Ck(A) are equal entrywise except in row i
(which involves the interval Δi). Observe that any entry in row i of Ck(B) is given by

detB[Δi|Δj ] = detA[Δi|Δj ] + tdetA′[Δi|Δj ], j = 1, 2, . . . , k,

where A′ is obtained from A by replacing row l with row l−1 (i.e., row l−1 is repeated
in A). Clearly A′ is TN. Hence by the linearity of the determinant it follows that

detCk(B) = detCk(A) + tdetCk(A
′).

By Corollaries 2.2 or 4.7, detCk(A
′) ≥ 0 and so

detCk(B) ≥ detCk(A).

The remaining three inequalities in (6.2) can be proved in a similar way.
Now suppose A is oscillatory and u, v is a pair of permutations that correspond

to A.
Lemma 6.2. There exists a pair of Coxeter elements u′, v′ and an oscillatory

matrix A′ ∈ Gu′,v′ such that diagonal factors included in elementary bidiagonal fac-
torizations (6.1) of A and A′ coincide and detCk(A) ≥ detCk(A

′) for k = 2, 3.
Proof. We will use induction on the length of u and v. If the length of both u

and v is N − 1, then both permutations are Coxeter and there is nothing to prove. If
the length of v is at least N , we will show that v has a reduced factorization of the
form v = (i, i+ 1)v1 or v = v1(i, i+ 1), where any reduced word for v1 contains every
index j ∈ {1, . . . , N − 1}. Then, by (6.1), A can be factored as A = Ei(t)A1 (resp.,
A = A1Ei(t)), where A1 is oscillatory, has the same diagonal factor and belongs to
Gu,v1 with the length of v1 strictly less than the length of v. Moreover, by Lemma
6.1, detCk(A) ≥ detCk(A1). Next, one can apply the same strategy to u and then
use the induction hypothesis.

To obtain the required factorization of v, first recall that among reduced words
for v there is one of the form [m1, n1][m2, n2] . . . [ms, ns], where mi ≤ ni and N − 1 ≥
n1 > n2 > · · · > n1 ≥ 1 (see, e.g., [17]). Since A is oscillatory, we have n1 = N − 1
and min{m1, . . . ,ms} = 1. Note that v is Coxeter if and only if m1 = n2 + 1, m2 =
n3 + 1, . . . , ms−1 = ns + 1, ms = 1. If the length of v is greater than N − 1, then
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there exists r ∈ {1, s− 1} such that m1 = n2 + 1, m2 = n3 + 1, . . . , mr−1 = nr + 1,
but mr ≤ nr+1. Then

mr < nr+1 + 1 ≤ nr = mr−1 − 1

and thus the transpositions (mr,mr + 1) and (mr−1,mr−1 + 1) commute.
If mr > 1, we can write v = (mr,mr + 1)v1, where v1 corresponds to the reduced

word [m1, N−1] . . . [mr−1, nr−1][mr+1, nr] . . . [ms, ns]. Otherwise, v = v1(ns, ns+1),
where v1 corresponds to the reduced word [m1, N−1] . . . [mr−1, nr−1][1, nr] . . . [ms, ns−
1]. In both cases, the reduced word for v1 contains every index j ∈ {1, . . . , N − 1}
and we are done.

Lemma 6.3. Let A ∈ Gu,v, where u, v are Coxeter. Then detCk(A) > det(A),
for k = 2, 3.

Proof. Since u, v are Coxeter, their reduced words (i1, . . . , iN−1) and (j1, . . . , jN−1)
are two permutations of indices 1, . . . , N − 1. Consider a factorization (6.1) of A that
corresponds to s = 1 and a shuffle (−i1, . . . ,−iN−1, j1, . . . , jN−1). Let (D,W ) be the
weighted diagram defined by this factorization and let D = diag(d1, . . . , dN ) be the
diagonal factor in the factorization. Note that for every i ∈ {1, . . . , N − 1}, D con-
tains exactly one edge running southeast between (i + 1)st and ith horizontal lines.
This edge is followed by exactly one edge running northeast between ith and (i+1)st
horizontal lines.

For i, j ∈ {1, . . . , N}, consider the minor detA[Δi|Δj ] We claim that for i < j,
detA[Δi|Δj ] = 0. Indeed, since intervals Δi and Δj are disjoint, any collection of k
nonintersecting paths from Δi on the left to Δj on the right in D must contain at
least n northeast oriented edges between (in)th and (in + 1)st horizontal lines. But
only one such edge is contained in D. Similarly, detA[Δi|Δj ] = 0 for i > j.

On the other hand, for i > 1, there exist at least two collections of nonintersecting
paths from Δi to Δi: one that consists of n horizontal paths and another one consisting
of n− 1 horizontal paths from (i− 1)n+ 2 to (i− 1)n+ 2, . . . , in to in, and the path
from (i− 1)n+ 1 to (i− 1)n+ 1 by going down on the left to (i− 1)n and then back
up to (i − 1)n + 1 on the right. Thus, for i > 1, detA[Δi] > d(i−1)n+1 · · · din. It is
also easy to see that detA[Δ1] = d1 · · · dn.

It follows from the arguments above that

detCk(A) =

k∏
i=1

detA[Δi]

>

N∏
r=1

dr = detD = detA.

Combining the two preceeding Lemmas, we obtain the next result.
Theorem 6.4. For any oscillatory nk × nk-matrix A (n ≥ 2, k = 2, 3),

det(Ck(A)) > det(A).
Our next generalization deals with compressions involving submatrices with over-

lapping row and column index sets.
For arbitrary N with n < N , let I1 = [i1, i1 +n− 1], I2 = [i2, i2 +n− 1], . . . , Ik =

[ik, ik + n− 1] and J1 = [j1, j1 + n− 1], J2 = [j2, j2 + n− 1], . . . , Jk = [jk, jk + n− 1]
be two collections of intervals of size n in {1, 2, . . . , N} such that i1 < · · · < ik and
j1 < · · · < jk. Suppose A is any N × N totally nonnegative matrix. Consider the
“compressed matrix” Â = (detA[Is|Jt])ks,t=1, and let d = det Â.

Let BI be the nk × N totally nonnegative matrix represented by the planar
diagram in which the only edges are those going from 1 to i1, . . . , n to i1 +n−1; n+1
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to i2, . . ., 2n to i2 + n− 1; . . . ; (k − 1)n + 1 to ik, . . . , nk to ik + n− 1, and all edge
weights are equal to one. Let BJ be constructed in a similar manner for J1, . . . , Jk.
Define A′ = BIABT

J . Then A′ is totally nonnegative and

detA[Is|Jt] = detA′[Δs|Δt].

Thus it follows that

d = det Â = detCk(A
′) ≥ 0.

Consequently, the matrix Â = (detA[Is|Jt]) for s, t = 1, 2, . . . , k, is totally nonnegative
whenever A is totally nonnegative. We summarize the above analysis in the next
theorem.

Theorem 6.5. For positive integers n,N , n < N , and for k = 2, 3, let I1, I2, . . . , Ik
and J1, J2, . . . , Jk be two collections of intervals of size n in {1, 2, . . . , N} such that the
first indices in the sets I1, I2, . . . , Ik (resp., J1, J2, . . . , Jk) form an increasing family.
If A is any N ×N totally nonnegative matrix and we define Â = (detA[Is|Jt])ks,t=1,

then Â is also totally nonnegative.
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Abstract. A matrix A ∈ Mn(C) is called unitoid if it is congruent to a diagonal matrix.
Necessary and sufficient conditions are given on the canonical angles of a unitoid matrix so that
sufficiently small perturbations remain unitoid. This, in particular, resolves the question of when
simultaneous diagonalizability of two Hermitian matrices is retained under perturbation.
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1. Introduction. Matrices A and B ∈ Mn(C), Mn for short, are said to be
congruent if there is a nonsingular C ∈ Mn such that B = C∗AC. Of course, con-
gruence is an equivalence relation on Mn and, in addition to the classical motivation
of change of variables in a quadratic form, it arises in many ways, such as study of
the algebraic Riccati equation and indefinite scalar products [GLR]. We note also
that our main result shows which pairs of Hermitian matrices remain simultaneously
diagonalizable under congruence, a phenomenon important in several applications,
including mechanics, computation, and control.

In [JF], a matrix that is diagonalizable by congruence is called unitoid ; by use of
an auxiliary diagonal congruence, A ∈ Mn is nonsingular and unitoid if and only if it
is congruent to a diagonal unitary matrix, and a general unitoid matrix is necessarily
congruent to a direct sum of a zero matrix and a diagonal unitary matrix (the “non-
singular part” of the diagonal form). The arguments of the nonzero diagonal entries
of a diagonal matrix D to which a unitoid matrix A is congruent are a congruential
invariant. Thus, these angles are called canonical for A; the zero eigenvalues of D are
referred to as degenerate canonical angles. The canonical angles play an important
role in the understanding of properties of unitoid matrices. The lines through the ori-
gin of the complex plane along which canonical angles (for A) lie are called canonical
lines (for A). Note that canonical angles may be multiple and that canonical angles
may lie in both directions (from the origin) along a canonical line. Whether the latter
occurs (canonical angles that differ by π) is quite important. We call a canonical line
for the unitoid matrix A simple if it has canonical angles in only one direction; oth-
erwise the line is nonsimple. A nonsingular unitoid matrix A is called simple if all its
canonical lines are simple; otherwise, it is called nonsimple. A nonsingular A ∈ Mn is
unitoid if and only if A−1A∗ is similar to a unitary matrix [DJ, FJ2]. The canonical
lines of the nonsingular A are determined by the spectrum of A−1A∗, although the
canonical angles are not. In particular, canonical angles that lie on the same canonical
line lead to multiple eigenvalues of A−1A∗.
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Our interests here lay in describing a perturbation theory for unitoid matrices,
and the remarkable structure of it is rather surprising compared to classical eigen-
value perturbation theory. In classical eigenvalue perturbation theory, small changes
in a matrix with multiple eigenvalues can lead to a change in Jordan structure and
sufficiently small perturbations of a matrix with distinct eigenvalues remain diagonal-
izable. We shall see that the situation for unitoid matrices is quite different. Small
perturbations of a simple unitoid matrix with multiple canonical angles remain uni-
toid and small perturbations of a nonsimple unitoid matrix can lead to a nonunitoid
one, even if all canonical angles have multiplicity one. Also, perturbations of a non-
singular A give very structured perturbations of A−1A∗. For example, if A−1A∗ is
similar to a unitary matrix, even with repeated eigenvalues, small perturbations B of
A almost always leave B−1B∗ similar to a unitary.

Though it is not central to our theoretical development, it is relevant to ap-
plications that it is not difficult to see that A ∈ Mn is unitoid if and only if two
certain Hermitian matrices are simultaneously diagonalizable by congruence, namely,
H(A) = 1

2 (A+A∗) and 1
iS(A) = 1

2i (A−A∗). Since these may be any two Hermitian
matrices, a corollary to our results will be the identification of pairs of Hermitian ma-
trices, arbitrarily small independent Hermitian perturbations of which will be simul-
taneously diagonalizable by congruence. In addition, perturbation of unitoid matrices
is relevant to perturbation of Hermitian matrix pencils [T1, T2].

Recall that the field of values of A ∈ Mn is

F (A) ≡ {x∗Ax : x ∈ lCn, x∗x = 1},

a compact convex subset of the complex plane [HJ]. The location of 0 relative to
F (A) (in the interior, on the boundary or outside) is invariant under congruence.

It is known [DJ] that a matrix A for which 0 /∈ F (A) is necessarily unitoid. Thus,
the perturbation of such matrices is a special case of the results herein.

Given A ∈ Mn we denote the spectrum of A by σ(A). If A is nonsingular, we
denote A−1A∗ by Φ(A).

2. Preliminary results. We first need to identify a fact that follows immedi-
ately from Theorem 1 and Lemmas 3, 4, and 5 in [FJ2] and will be useful in the
technical part of our development. These results in [FJ2] have been proved using the
simultaneous canonical form for a pair of Hermitian matrices which may be found,
for example, in [T1, T2].

Lemma 1. Let A ∈ Mn be a nonsingular matrix. Then there is a nonsingular
C ∈ Mn such that C∗AC = E1⊕· · ·⊕En1 ⊕F1⊕· · ·⊕Fn2 , with Ei ∈ Mpi , Fj ∈ M2qj ,
Φ(Ei) similar to a Jordan block associated with an eigenvalue on the unit circle,
i = 1, . . . , n1, and Φ(Fj) similar to a direct sum of two Jordan blocks of size qj
associated with eigenvalues λje

iθj , 1
λj
eiθj for some λj > 1, j = 1, . . . , n2.

Many links between congruential structure of A and similarity structure of Φ(A)
have been recognized, beginning with [DJ]. Our next lemma, crucial for our later
results, more precisely relates reducibility in one setting to that in the other. Restric-
tions are necessary, as the extent to which similarity reduction of Φ(A) translates into
congruential reduction of A is limited.

Lemma 2. Let A ∈ Mn be a nonsingular matrix. Suppose that P ∈ Mn is such
that P−1Φ(A)P = Q1 ⊕Q2 with Q1 ∈ Mr, Q2 ∈ Mn−r, and if λeiθ ∈ σ(Q1), λ > 0,
then 1

λe
iθ /∈ σ(Q2). Then P ∗AP = A1 ⊕A2, for some A1 ∈ Mr and A2 ∈ Mn−r such

that Φ(A1) = Q1 and Φ(A2) = Q2.
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Proof. It follows from Lemma 1 that there is a nonsingular C ∈ Mn such that
C∗AC = B1 ⊕ · · · ⊕ Bm, in which, for j = 1, . . . ,m, Bj is such that either Φ(Bj) is
similar to a Jordan block associated with an eigenvalue on the unit circle or Φ(Bj)
is similar to a direct sum of two Jordan blocks of the same size associated with
eigenvalues λje

iθj , 1
λj
eiθj for some λj > 1. Since Φ(C∗AC) = C−1Φ(A)C is similar

to Q1 ⊕ Q2, and because of our assumption on the spectra of Q1 and Q2, we have
σ(Q1)∩σ(Q2) = ∅ and we may suppose, without loss of generality, that σ(Φ(B1⊕· · ·⊕
Bk)) = σ(Q1), 1 ≤ k ≤ m. Let X1 = B1 ⊕ · · · ⊕Bk and X2 = Bk+1 ⊕ · · · ⊕Bm. Then
Φ(C∗AC) = Φ(X1)⊕Φ(X2) is similar to Q1⊕Q2. Moreover, since σ(Φ(X1)) = σ(Q1),
σ(Φ(X2)) = σ(Q2), and σ(Q1) ∩ σ(Q2) = ∅, there are P1 ∈ Mr and P2 ∈ Mn−r

nonsingular such that P−1
1 Φ(X1)P1 = Q1 and P−1

2 Φ(X2)P2 = Q2. Then

(P1 ⊕ P2)
−1

C−1Φ(A)C (P1 ⊕ P2) = Q1 ⊕Q2,

or, equivalently,
[
(P1 ⊕ P2)

−1
C−1P

]
[Q1 ⊕Q2]

[
P−1C (P1 ⊕ P2)

]
= Q1 ⊕Q2.

Because σ(Q1)∩σ(Q2) = ∅, it follows easily from [HJ, Theorem 4.4.6] that P−1C(P1⊕
P2) = R1⊕R2 for some nonsingular R1 ∈ Mr and R2 ∈ Mn−r. Thus, P = C (P1 ⊕ P2)(
R−1

1 ⊕R−1
2

)
and

P ∗AP =
((

R−1
1

)∗
P ∗

1 X1P1R
−1
1

)
⊕
((

R−1
2

)∗
P ∗

2 X2P2R
−1
2

)
.

Since, by hypothesis, Φ(P ∗AP ) = P−1Φ(A)P = Q1 ⊕ Q2, it follows that Φ
( (

R−1
1

)∗
P ∗

1 X1P1R
−1
1

)
= Q1 and Φ

( (
R−1

2

)∗
P ∗

2 X2P2R
−1
2

)
, completing the proof.

The following examples show that without the restrictions imposed on the spectra
of Q1 and Q2, Lemma 2 is not generally true.

Example 1. Let

A =

[
1 3
0 1

]
.

Then Φ(A) has eigenvalues λ1 = − 7
2 + 3

2

√
5 and λ2 = 1/λ1. The matrix P−1Φ(A)P

is diagonal with

P =

[
− 3

2 + 1
2

√
5 − 3

2 − 1
2

√
5

1 1

]
.

However, P ∗AP is not diagonal.
Example 2. If A ∈ Mn, n > 1, is a nonsingular Hermitian matrix, all nonsingular

P ∈ Mn diagonalize Φ(A) = In by similarity. However, for almost all P, P ∗AP is not
diagonal.

Although it is not relevant for our work here, we now state a consequence of
Lemma 2 concerning reducibility of unitoid matrices. We say that B ∈ Mn is rota-
tionally Hermitian if B = eiθH for some 0 ≤ θ < 2π and H ∈ Mn Hermitian.

Corollary 3. Let A ∈ Mn be a nonsingular unitoid matrix. If C ∈ Mn is
a nonsingular matrix such that C−1Φ(A)C is diagonal, then, up to a permutation,
C∗AC is a direct sum of rotationally Hermitian matrices, each corresponding to a
canonical line. In particular, if A is simple with distinct canonical angles, then C∗AC
is diagonal.
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Proof. Because Φ(A) is similar to a unitary matrix, by a possible unitary similarity
via a permutation matrix, suppose, without loss of generality, that C−1Φ(A)C =
Q1 ⊕ · · · ⊕ Qm with Qj = e−2iγjIkj , γj ∈ R, j = 1, . . . ,m, and e−2iγj1 	= e−2iγj2

for j1 	= j2. It follows easily from Lemma 2 that C∗AC = A1 ⊕ · · · ⊕ Am for some
Aj ∈ Mkj such that Φ(Aj) = Qj , j = 1, , . . . ,m. Clearly, because Φ(Aj) is unitary,
Aj is unitoid. Let A′

j be a diagonal unitary matrix congruent to Aj . Since Φ(A′
j)

is similar to Qj , then A′
j is unitarily similar (via a permutation matrix) to a matrix

of the form eiγj
(
−Ikj−rj ⊕ Irj

)
with 0 ≤ rj ≤ kj . Therefore, A′

j (and, thus, Aj) is
rotationally Hermitian, corresponding to the canonical line for A on which the angle
γj lies. In case A is simple with distinct canonical angles, then kj = 1, j = 1, , . . . ,m,
completing the proof.

As a practical matter in what follows we take ||| · ||| to be the spectral norm.
However, any unitary similarity invariant submultiplicative matrix norm for which
|||C||| = |||C∗||| will do (e.g., the Frobenius norm).

For A ∈ Mn,m and ε > 0, we denote by Vε(A) the set

{B ∈ Mn,m : |||B −A||| < ε} .

Lemma 4. Let A ∈ Mk1 and B ∈ Mk2 . Suppose that σ(A)∩ σ(B) = ∅. Then, for
sufficiently small ε > 0, if Aε ∈ Vε(A), Bε ∈ Vε(B) and Σε ∈ Vε(0k1,k2), there is a
unique Rε ∈ Mk1,k2

such that AεRε −RεBε = Σε. Moreover, Rε → 0 as ε → 0.
Proof. The uniqueness of the solution Rε follows from [HJ, Theorem 4.4.6] be-

cause, by continuity, for sufficiently small ε > 0, σ(Aε) ∩ σ(Bε) = ∅. Since for each ε,
AεRε − RεBε = Σε is a linear system in the entries of Rε, then the unique solution
Rε depends continuously on Aε, Bε and Σε. Because AR − RB = 0 has the unique
solution R = 0, it follows that Rε → 0 as ε → 0.

Lemma 5. Let Q = Q1 ⊕Q2 be a nonsingular diagonal matrix with Q1 ∈ Mr and
Q2 ∈ Mn−r. Suppose that σ(Q1)∩σ(Q2) = ∅. For ε > 0, let Qε ∈ Vε(Q). Then there
is a unitary matrix

Uε =

[
Uε

11 Uε
12

Uε
21 Uε

22

]
∈ Mn,

Uε
11 ∈ Mr, such that U∗

εQεUε is upper triangular, and, as ε → 0, Uε
12 → 0, Uε

21 → 0
and U∗

εQεUε → Q.
Proof. For ε > 0, let Qε ∈ Vε(Q). By continuity, the eigenvalues of Qε approach

the eigenvalues of Q, as ε → 0. Using Schur’s unitary triangularization theorem, for
each ε there is a unitary matrix Uε ∈ Mn such that

U∗
εQεUε =

[
Qε

1 Σε

0 Qε
2

]
,(1)

in which Qε
1 ∈ Mr and Qε

2 ∈ Mn−r are upper triangular and the main diagonal of Qε
1

(respectively, Qε
2) approaches the main diagonal of Q1 (respectively, Q2) as ε → 0.

Because |||U∗
εQεUε||| = |||Qε||| → |||Q||| and Q is diagonal, then Σε → 0, Qε

1 → Q1 and
Qε

2 → Q2, as ε → 0. Equality (1) is equivalent to

QεUε = Uε

[
Qε

1 Σε

0 Qε
2

]
,

which, for

Qε =

[
Qε

11 Qε
12

Qε
21 Qε

22

]
and Uε =

[
Uε

11 Uε
12

Uε
21 Uε

22

]
,
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Qε
11, U

ε
11 ∈ Mr, implies

Qε
11U

ε
12 − Uε

12Q
ε
2 = Uε

11Σε −Qε
12U

ε
22,(2)

Qε
22U

ε
21 − Uε

21Q
ε
1 = −Qε

21U
ε
11.(3)

Since, as ε → 0, Qε
21U

ε
11 → 0 (note that Qε

21 → 0 and, because U∗
εUε = In, the norms

of Uε
11 and Uε

22 are bounded) and, for sufficiently small ε, σ(Qε
22) ∩ σ(Qε

1) = ∅, it
follows from (3) and Lemma 4 that Uε

21 → 0. Analogously, from (2) it follows that
Uε

12 → 0.
Our first key perturbation result is a technical prelude to our main results and

indicates the importance of canonical lines.
Theorem 6. Let A ∈ Mn be a nonsingular diagonal matrix with A = A1 ⊕ · · · ⊕

Am, in which m ≥ 2, Ai ∈ Mki
has just one canonical line, i = 1, . . . ,m, and the

canonical lines of Ai and Aj , i 	= j, are distinct. For ε > 0, let Aε ∈ Vε(A). Then, for
sufficiently small ε, there is a nonsingular Cε ∈ Mn such that C∗

εAεCε = Aε
1⊕· · ·⊕Aε

m

and, as ε → 0, Aε
i → Ai, i = 1, . . . ,m, and Cε → In.

Proof. First, note that each block Φ(Ai) is λiIki , for some complex number λi

on the unit circle, and λi 	= λj for i 	= j. For ε > 0, let Aε ∈ Vε(A). The proof is by
induction on m. Let D = A2 ⊕ · · · ⊕ Am. By the continuity of Φ(·), Φ(Aε) → Φ(A),
as ε → 0. Bearing in mind Lemma 5, for each ε, there is a unitary matrix

Uε =

[
Uε

11 Uε
12

Uε
21 Uε

22

]
∈ Mn,

Uε
11 ∈ Mk1 , such that

U∗
ε Φ(Aε)Uε =

[
Qε

1 Σε

0 Qε
2

]
,

with Qε
1 ∈ Mk1 and Qε

2 ∈ Mn−k1 upper triangular matrices, and, as ε → 0, Qε
1 →

Φ(A1), Q
ε
2 → Φ(D), Σε → 0, Uε

12 → 0, and Uε
21 → 0. According to Lemma 4, for

sufficiently small ε, because σ(Qε
1) ∩ σ(Qε

2) = ∅, there is Rε ∈ Mk1,n−k1
such that

Qε
1Rε −RεQ

ε
2 = −Σε,

and Rε → 0 as ε → 0. Let

Bε = Uε

[
Ik1 Rε

0 In−k1

]
.

Then

B−1
ε Φ(Aε)Bε =

[
Qε

1 0
0 Qε

2

]
.

Because Qε
1 → Φ(A1), Q

ε
2 → Φ(D), the arguments of the eigenvalues of Φ(A1) and

Φ(D) are on the unit circle and σ(Φ(A1)) ∩ σ(Φ(D)) = ∅, for sufficiently small ε, if
λeiθ ∈ σ(Qε

1), λ > 0, then 1
λe

iθ /∈ σ(Qε
2). Therefore, by Lemma 2, for sufficiently small

ε,

B∗
εAεBε =

[
Zε

1 0
0 Zε

2

]
,
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for some Zε
1 ∈ Mk1

and Zε
2 ∈ Mn−k1

such that Φ(Zε
1) = Qε

1 and Φ(Zε
2) = Qε

2. Let
Pε = Bε((U

ε
11)

∗ ⊕ (Uε
22)

∗
). Then

P ∗
ε AεPε =

[
Aε

1 0
0 Y ε

2

]

with Aε
1 = Uε

11Z
ε
1 (Uε

11)
∗

and Y ε
2 = Uε

22Z
ε
2 (Uε

22)
∗
. A calculation shows that Pε → In,

Aε
1 → A1, and Y ε

2 → D, as ε → 0. If m = 2 the proof is complete, with Aε
2 =

Y ε
2 . Now suppose that m > 2. By the induction hypothesis, for sufficiently small

ε, there is a nonsingular Fε ∈ Mn−k1 such that F ∗
ε Y

ε
2 Fε = Aε

2 ⊕ · · · ⊕ Aε
m, with

Aε
i → Ai, i = 2, . . . ,m, and Fε → In−k1

, as ε → 0. Then Pε (Ik1
⊕ Fε) → In and

[Pε (Ik1 ⊕ Fε)]
∗
Aε [Pε (Ik1 ⊕ Fε)] = Aε

1 ⊕ · · · ⊕Aε
m, completing the proof.

Thus far our results imagine perturbing a unitoid matrix in diagonal form. The
following observation facilitates a natural transition.

Proposition 7. Let A ∈ Mn, B = C∗AC for some nonsingular C ∈ Mn, and
ε > 0. Then there is δ > 0 such that, for every Bδ ∈ Vδ(B), (C∗)

−1
BδC

−1 ∈ Vε(A).
Proof. For ε > 0 let δ = ε/|||C−1|||2 and Bδ ∈ Vδ(B). We have

||| (C∗)
−1

BδC
−1 −A||| ≤ |||C−1|||2|||Bδ−B||| ≤ |||C−1|||2δ = ε.

3. Perturbation of simple unitoid matrices. We first investigate the impor-
tant special case in which A ∈ Mn is such that 0 /∈ F (A). This includes, in particular,
the case A is simple with just one canonical line (A is congruent to a scalar matrix).

Lemma 8. Let A ∈ Mn be such that 0 /∈ F (A). Then there is an ε > 0 such that
every Aε ∈ Vε(A) is simple unitoid. Moreover, the canonical angles of Aε approach
the canonical angles of A as ε → 0.

Proof. Since 0 /∈ F (A), there is ε > 0 such that 0 /∈ F (Aε) for every Aε ∈
Vε(A). According to [DJ], each Aε is unitoid. Suppose that A is congruent to
diag(eiθ1 , . . . , eiθn) and Aε is congruent to diag(eiθ

ε
1 , . . . , eiθ

ε
n). Then the eigenval-

ues of Φ(A) and Φ(Aε) are e−2iθ1 , . . . , e−2iθn and e−2iθε
1 , . . . , e−2iθε

n , respectively. By
continuity, as ε → 0, the eigenvalues of Φ(Aε) approach the eigenvalues of Φ(A). Thus,
suppose, without loss of generality, that

e−2iθε
j → e−2iθj , j = 1, . . . , n.(4)

Because there is an open half-plane determined by a line through the origin in which,
for sufficiently small ε, the fields of values (and, thus, the canonical angles) of both A
and Aε lie, then (4) implies that

eiθ
ε
j → eiθj , j = 1, . . . , n,

completing the proof.
The next theorem is the main result of this section.
Theorem 9. Let A ∈ Mn be a simple unitoid matrix. Then there is an ε > 0

such that every Aε ∈ Vε(A) is simple unitoid. Moreover, the canonical angles of Aε

approach the canonical angles of A as ε → 0.
Proof. Because of Proposition 7, suppose, without loss of generality, that A =

A1⊕· · ·⊕Am, in which Aj ∈ Mkj
is diagonal with just one canonical line, j = 1, . . . ,m,

and the canonical lines of Aj1 and Aj2 , j1 	= j2, are distinct. Note that because A is
simple, each Aj is congruent, via a diagonal real matrix, to a scalar unitary matrix,
say, eiγjIkj . Clearly, the distinct canonical angles for A are γ1, . . . , γm. According to
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Theorem 6, for sufficiently small ε, each Aε ∈ Vε(A) is congruent to a matrix of the
form Aε

1⊕· · ·⊕Aε
m with Aε

j → Aj as ε → 0. Because of Lemma 8, for sufficiently small
ε, Aε

j , j = 1, . . . ,m, is simple unitoid and, as ε → 0, its canonical angles approach
γj . Then Aε is unitoid and, since the canonical angles are unique, they are the union
of the canonical angles of each block Aε

j . Clearly, because A is simple, for sufficiently
small ε, no two canonical angles of Aε differ by π and, thus, Aε is simple.

4. Perturbation of nonsimple unitoid matrices.
Proposition 10. Let A = diag(a, b), with a ∈ {−1, 0} and b ∈ {0, 1}. Then

in any neighborhood of A there are unitoid (simple and nonsimple) and nonunitoid
matrices, both occurring with positive density.

Proof. For ε > 0,

A1 =

[
a + εi 0

0 b + ε

]

is simple unitoid (0 /∈ F (A1)). Because of Theorem 9, there is a neighborhood of
A1 in which all matrices are unitoid. Thus, in any neighborhood of A the unitoid
matrices occur with positive density. The matrix

A2 =

[
a− ε 0

0 b + ε

]

is nonsimple unitoid. (We observe that the nonsimple unitoid matrices occur with
zero density.) It is easily checked that 0 ∈ intF (A3) with

A3 =

[
a− ε ε

0 b + ε

]
.

But a 2-by-2 matrix with 0 in the interior of its field of values is necessarily nonunitoid.
This conclusion also follows from the fact that the eigenvalues of Φ(A3) are not on
the unit circle. By continuity, in a sufficiently small neighborhood of A3 every matrix
B is such that Φ(B) has no eigenvalues on the unit circle. Therefore, every such B
is nonunitoid and, thus, in any neighborhood of A nonunitoid matrices occur with
positive density.

We extend the notion of canonical angles of unitoid matrices to nonsingular
nonunitoid matrices. We say that θ is a canonical angle for a nonsingular A ∈ Mn if
A is congruent to a matrix of the form

[
eiθ

]
⊕B for some B ∈ Mn−1. It follows from

the work in [FJ2] that, also for this extension, the canonical angles are a congruential
invariant.

Theorem 11. Let A ∈ Mn be a nonsimple unitoid matrix. Then, for any ε > 0,
there are unitoid (simple and nonsimple) and nonunitoid matrices in Vε(A), both
occurring with positive density. For sufficiently small ε, Aε ∈ Vε(A) has at least as
many canonical angles as the canonical angles of A that lie on the simple canonical
lines. Moreover, as ε → 0, these canonical angles of Aε approach the canonical angles
of A that lie on the simple canonical lines.

Proof. Because of Proposition 7, suppose, without loss of generality, that A =
A1 ⊕ · · · ⊕ Am, in which Ai is diagonal unitary with just one canonical line, i =
1, . . . ,m, and the canonical lines of Ai and Aj , i 	= j, are distinct. Note that since A
is nonsimple, there is at least a nonsimple block Ai. Without loss of generality, suppose
that A1 is nonsimple. It follows easily from Proposition 10 that for any ε > 0 there are
unitoid (simple and nonsimple) and nonunitoid matrices in Vε(A1), both occurring
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with positive density. Because for Aε
1 ∈ Vε(A1), A

ε
1⊕A2⊕· · ·⊕Am ∈ Vε(A) is unitoid

if and only if Aε
1 is, the first part of the claim follows. By Theorem 6, for sufficiently

small ε, each Aε ∈ Vε(A) is congruent to a matrix of the form Aε
1 ⊕ · · · ⊕ Aε

m, with
Aε

i → Ai, as ε → 0. If Ai is simple, by Theorem 9, for sufficiently small ε, Aε
i is

simple and, as ε → 0, the canonical angles of Aε
i approach the canonical angles of Ai,

completing the proof.
We conclude with some observations concerning singular unitoid matrices. This

allows the statement of a general result about the perturbation of unitoid matrices. If
A is a singular unitoid matrix, then A is congruent to a matrix of the form A′ = 0⊕D,
with D diagonal unitary. As follows from Proposition 10, nonunitoid as well as unitoid
matrices can be obtained by perturbing a singular principal submatrix of A′. Also,
if Dε ∈ Vε(D), ε > 0, then 0 ⊕Dε ∈ Vε(A

′), and, thus, according to Theorem 11, if
D is nonsimple, unitoid and nonunitoid matrices in any neighborhood of A′ can be
obtained by perturbing only the summand D.

Our main result is then an immediate consequence of Theorems 9 and 11 and the
observations above.

Theorem 12. Let A ∈ Mn be a unitoid matrix. Then there is a neighborhood of
A in which all matrices are unitoid if and only if A is a nonsingular simple unitoid
matrix.

Because a nonsingular A ∈ Mn is unitoid if and only if A−1A∗ is similar to a
unitary matrix, Theorem 12 implies the following.

Corollary 13. Let A ∈ Mn be a nonsingular matrix. Then the following are
equivalent:

(a) there is a neighborhood of A in which any B is such that Φ(B) is similar to
a unitary matrix;

(b) A is simple unitoid.
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A PERTURBATION ANALYSIS FOR NONLINEAR SELFADJOINT
OPERATOR EQUATIONS∗
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Abstract. Perturbation analysis, including perturbation bounds, is developed for nonlinear
operator equations of the form X = Q ± A∗F (X)A, under perturbations of the given operators Q
(which is assumed to be positive definite) and A and of the given operator function F (X) which
takes self-adjoint operator values. Stability of fixed points under suitable map perturbations serves
as the main technical tool. More detailed analysis is provided in the particular cases where F (X) is
a power map.
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1. Introduction. Let H and G be two Hilbert spaces. We consider operator
equations of the form

X = Q±A∗F (X)A.(1.1)

Here X is the unknown positive semidefinite (or positive definite) matrix or operator,
Q is a positive definite operator from H into itself, A is a linear operator from H into
G, and F (·) is a given (possibly nonlinear) function.

The equation (1.1), especially for matrices, has been extensively studied in the
literature; see the papers [5, 9, 10, 11, 8, 16, 17, 18, 19, 20, 21] and the book [13].
The interest to study (1.1) arose, in particular, in connection with algebraic Riccati
equations and interpolation; see, for example, [5, 23]. Fixed point theory techniques
play a key role in many recent developments (see [18, 21]).

Of particular interest in applications are results on perturbations and bounds for
solutions of (1.1). Several approaches have been explored in the literature. In [19] a
perturbation theory was developed for the matrix problem with H = G, where the map
F is kept fixed and perturbations of A and Q are allowed. The result obtained was
conditional Lipschitz stability, i.e., nearby equations have nearby solutions (provided
they exist), where the difference between the solutions is of perturbed equations and
the original solution is of the same magnitude as the difference between the coefficients
of the perturbed equation and the coefficients of the original equation. In [22] the
same results are stated in case H and G are not necessarily equal but still are finite
dimensional. In [4] it was assumed that F and Q are kept fixed and perturbations of
A are allowed.
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In the present paper we develop a perturbation analysis, including perturbation
bounds, for operator equations of type (1.1). In contrast with the previous work,
we allow changes in all three constituents A, Q, and F . Our approach is based on
stability results in the abstract framework of maps on complete metric spaces, taking
the cue from [18, 21]. Although our primary interest lies in matrix equations (1.1),
i.e., with finite dimensional H and G, it turns out that our results do not depend on
finite dimensionality of the underlying Hilbert spaces. Therefore, we formulate and
prove the results in the context of linear bounded operators acting on (possibly infinite
dimensional) Hilbert spaces. In the terminology of [13], we consider situations when
solutions of (1.1) are proper and give explicit error bounds. The book [13] contains
detailed perturbation analysis and error bounds for symmetric and nonsymmetric
matrix equations of degree at most two, which are developed using other techniques.
Here, (1.1) may be of degree higher than two; on the other hand, (1.1) is assumed to
be symmetric.

In the next section we review the needed abstract results on fixed points and
their perturbations. Our main theorems, Theorems 3.1 and 3.3, are stated in section
3. In section 4 we specialize to the particular cases of power maps that are frequently
encountered in applications and provide more detailed analysis.

2. Stability of fixed points with respect to map perturbation. We state
the results here in an abstract framework of metric spaces. Let X be a complete
metric space with the distance function d(·, ·), and let Ω be a closed subset of X . For
every fixed α, 0 < α < 1, consider the set M(Ω, α) of all maps Φ : Ω → Ω with the
property that

d(Φ(x),Φ(y)) ≤ αd(x, y) ∀ x, y ∈ Ω.

The maps in M(Ω, α) are necessarily continuous and moreover they are contractions
with the contraction constant α.

The next theorem is well known; for instance, see [12] or [14].
Theorem 2.1. Let Φ ∈ M(Ω, α). Then there is a unique element x∗ ∈ Ω, called

the fixed point of Φ, such that x∗ = Φ(x∗). Moreover, for every x0 ∈ Ω we have

x∗ = lim
m→∞

xm,

where the elements {xm}∞m=0 are determined by the equalities xm = Φ(xm−1), m =
1, 2, . . . , and the rate of convergence is given by

d(xm, x∗) ≤ αm

1 − α
d(x1, x0), m = 0, 1, . . . .

Based on this theorem, we will formulate a perturbation result (Theorem 2.2). In
this result two maps Φ and Ψ are involved. The unique fixed points of Φ and of Ψ
will be denoted by x∗(Φ) and x∗(Ψ), respectively.

Theorem 2.2. Let Φ ∈ M(Ω, α). Then for every ε > 0 and for all Ψ ∈ M(Ω, α)
satisfying

sup
x∈Ω

d(Ψ(x),Φ(x)) < min

{
1 − α

3
ε, 1

}
,

we have the inequality

d(x∗(Ψ), x∗(Φ)) < ε.
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Proof. The proof uses a standard approach and is provided here for completeness.
Let ε > 0 be given. Now fix an x0 ∈ Ω and select an integer k such that

αk

1 − α
(1 + d(Φ(x0), x0)) <

ε

3
.(2.1)

Further, take δ > 0 such that

δ < min

{
1 − α

3
ε, 1

}
.

It follows from this inequality that

1 − αk

1 − α
δ <

ε

3
.

Finally, let Ψ be in M(Ω, α) such that

sup
x∈Ω

d(Ψ(x),Φ(x)) < δ.(2.2)

We will prove that this implies that d(x∗(Φ), x∗(Ψ)) < ε.
First note that because of (2.2), δ < 1, and (2.1) we have that

αk

1 − α
d(Ψ(x0), x0) ≤

αk

1 − α
(d(Ψ(x0),Φ(x0)) + d(Φ(x0), x0)) <

ε

3
.

Therefore, by Theorem 2.1, we also have the inequalities

d(Φk(x0), x
∗(Φ)) ≤ αk

1 − α
d(Φ(x0), x0) <

ε

3
,

d(Ψk(x0), x
∗(Ψ)) ≤ αk

1 − α
d(Ψ(x0), x0) <

ε

3
.

(2.3)

Next denote for m ≥ 2

cm := sup
x∈Ω

d(Φm(x),Ψm(x))

and note that for all integers m ≥ 2 and for all x ∈ Ω :

d(Φm(x),Ψm(x)) ≤ d(Φm−1(Φ(x)),Φm−1(Ψ(x))) + d(Φm−1(Ψ(x)),Ψm−1(Ψ(x)))

≤ αm−1d(Φ(x),Ψ(x)) + cm−1

≤ αm−1δ + cm−1.

Taking the supremum over all x ∈ Ω gives us that

cm ≤ αm−1δ + cm−1, m = 2, 3, . . . ,

and thus

cm ≤ αm−1δ + αm−2δ + · · · + αδ + c1.

Because of (2.2) we know that c1 < δ, so we derive

cm ≤ 1 − αm

1 − α
δ,



92 A. C. M. RAN, M. C. B. REURINGS, AND L. RODMAN

which implies that

d(Φm(x0),Ψ
m(x0)) ≤

1 − αm

1 − α
δ.

For m = k the right-hand side is smaller than ε
3 . This all leads to

d(x∗(Φ), x∗(Ψ)) ≤ d(Φk(x0), x
∗(Φ)) + d(Ψk(x0), x

∗(Ψ)) + d(Φk(x0),Ψ
k(x0))

<
ε

3
+

ε

3
+

ε

3
= ε,

which we wanted to prove.

3. Applications to nonlinear operator equations. Let H,G be (complex)
Hilbert spaces, and let L(G,H) stand for the Banach space of linear bounded operators
from G into H, considered with the operator norm ‖ · ‖. The notation L(H) is used
as an abbreviation for L(H,H). We denote by P(H) the set of positive definite
invertible operators in L(H) and by P(H) the closure of P(H), i.e., the set of positive
semidefinite operators in L(H). Different notations for X ∈ P(H) and X ∈ P(H) will
be X > 0 and X ≥ 0, respectively. Also, X > Y (resp., X ≥ Y ) is used to denote
that X − Y > 0 ( resp., X − Y ≥ 0).

In this section we will consider the operator equation

Q = X −A∗F (X)A,(3.1)

where Q ∈ P(H), A ∈ L(H,G), and F is a (possible nonlinear) map defined on a
subset of P(H) and taking self-adjoint values in L(G). The solutions of (3.1) are
exactly the fixed points of the map

Φ(X) = Q + A∗F (X)A.(3.2)

We set X = P(H), so X , equipped with the distance function induced by the norm
‖ · ‖, is a complete metric space. Further, we let Ω be a closed subset of X such
that Φ : Ω → Ω. The existence of such a set Ω is of course not automatic. In
specific examples it will be necessary to impose certain conditions on Q, A, and F
to guarantee existence of Ω. We shall pay careful attention to this point in the next
section, where particular cases are discussed, but for now we just assume that Q, A,
and F are such that there exists some closed subset Ω in X which is invariant under
Φ. Corresponding to F and Ω we introduce the value MF,Ω > 0, which is the smallest
number β satisfying

‖F (X) − F (Y )‖ ≤ β‖X − Y ‖(3.3)

for all X,Y ∈ Ω, provided such a value exists. Again, existence of such a value
depends heavily on the particular form of F , but we shall assume its existence in this
section. It follows from (3.3) and the definition of MF,Ω that

‖Φ(X) − Φ(Y )‖ = ‖A∗(F (X) − F (Y ))A‖ ≤ ‖A‖2‖F (X) − F (Y )‖
≤ MF,Ω‖A‖2‖X − Y ‖,

so if MF,Ω‖A‖2 < 1, then Φ ∈ M(Ω,MF,Ω‖A‖2) and (3.1) has a unique solution in
Ω, which we will denote by X(Φ).
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Now consider the perturbed equation

Q̃ = X − Ã∗F̃ (X)Ã,(3.4)

where Ã and Q̃ are small perturbations of A and Q, respectively, and F̃ is the per-
turbation of F given by

F̃ (X) = F (X) + E(X),

where E is some map on Ω into the set of bounded self-adjoint operators on G. Let
Ψ be the map corresponding to this equation, i.e., the solutions of (3.4) are the fixed
points of Ψ:

Ψ(X) = Q̃ + Ã∗F̃ (X)Ã.(3.5)

Again we have that Ψ ∈ M(Ω,MF̃ ,Ω‖Ã‖2) provided MF̃ ,Ω‖Ã‖2 < 1 and Ψ : Ω → Ω.

In this case also (3.4) has a unique solution in Ω, which we will denote by X(Ψ).

Moreover, if ‖Ã‖ ≤ ‖A‖ and MF̃ ,Ω < MF,Ω, then also Ψ ∈ M(Ω,MF,Ω‖A‖2). We will
now apply Theorem 2.2 to Φ.

Theorem 3.1. Let Φ be the map given by (3.2) such that MF,Ω‖A‖2 < 1.
Then for every ε > 0 and for all Ψ given by (3.5) with the properties that Ψ ∈
M(Ω,MF,Ω‖A‖2) and

sup
X∈Ω

‖Ψ(X) − Φ(X)‖ < min

{
1 −MF,Ω‖A‖2

3
ε, 1

}
,(3.6)

we have the inequality

‖X(Φ) −X(Ψ)‖ < ε.

Now note that

‖Φ(X) − Ψ(X)‖ = ‖Q̃−Q + Ã∗F̃ (X)Ã−A∗F (X)A‖
≤ ‖Q̃−Q‖ + ‖Ã∗F̃ (X)Ã−A∗F (X)A‖
= ‖Q̃−Q‖

+ ‖Ã∗F̃ (X)(Ã−A) + Ã∗(F̃ (X) − F (X))A + (Ã∗ −A∗)F (X)A‖
≤ ‖Q̃−Q‖ + (‖Ã‖‖F̃ (X)‖ + ‖A‖‖F (X)‖)‖Ã−A‖

+ ‖Ã‖‖A‖‖F̃ (X) − F (X)‖
= ‖Q̃−Q‖ + (‖Ã‖‖F̃ (X)‖ + ‖A‖‖F (X)‖)‖Ã−A‖

+ ‖Ã‖‖A‖‖E(X)‖,

so the left-hand side of (3.6) can be estimated as

sup
X∈Ω

‖Ψ(X) − Φ(X)‖ ≤ ‖Q̃−Q‖ + sup
X∈Ω

‖Ã‖‖A‖‖E(X)‖

+ ‖Ã−A‖ sup
X∈Ω

(‖Ã‖‖F̃ (X)‖ + ‖A‖‖F (X)‖).

Hence we have the following corollary.
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Corollary 3.2. Let Φ be the map given by (3.2) such that Φ ∈ M(Ω,MF,Ω‖A‖2),
i.e.,

MF,Ω‖A‖2 < 1.

Then for every ε > 0 and for all Ψ given by (3.5) and satisfying the conditions that

Ψ ∈ M(Ω,MF,Ω‖A‖2)

and

‖Q̃−Q‖ + ‖Ã−A‖ sup
X∈Ω

(‖Ã‖‖F̃ (X)‖ + ‖A‖‖F (X)‖)

+ sup
X∈Ω

‖Ã‖‖A‖‖E(X)‖ < min

{
1 −MF,Ω‖A‖2

3
ε, 1

}
,

we have the inequality

‖X(Φ) −X(Ψ)‖ < ε.

The condition that Ψ ∈ M(Ω,MF,Ω‖A‖2) can be incorporated in the other hy-
potheses of Corollary 3.2, at the expense of making the other hypotheses more strin-
gent, as the next theorem shows.

Theorem 3.3. Let Φ be the map given by (3.2) such that MF,Ω‖A‖2 < 1. Then
for every ε > 0 and for all Ψ : Ω → Ω given by (3.4) satisfying the inequality

‖Q̃−Q‖ + ‖Ã−A‖ sup
X∈Ω

(‖Ã‖‖F̃ (X)‖ + ‖A‖‖F (X)‖)

+ sup
X∈Ω

‖Ã‖‖A‖‖E(X)‖ < min

{
1 −MF,Ω‖A‖2

3
ε,

1 −MF̃ ,Ω‖Ã‖2

3
ε, 1

}

and at least one of the two conditions
(i) ‖Ã‖ ≤ ‖A‖,MF̃ ,Ω ≤ MF,Ω,

(ii) ‖Ã‖ ≥ ‖A‖ and ‖Ã−A‖ < 1√
M

F̃ ,Ω

− ‖A‖,
we have the inequality

‖X(Φ) −X(Ψ)‖ < ε.

Proof. If Ã and MF̃ ,Ω satisfy condition (i), then it is easy to see that MF̃ ,Ω‖Ã‖2 <

1. In case (ii) holds we can use similar lines as in Proposition 4.2 in [19] to show that
the inequality holds. Indeed,

MF̃ ,Ω‖Ã‖
2 = MF̃ ,Ω‖A + (Ã−A)‖2 ≤ MF̃ ,Ω(‖A‖ + ‖Ã−A‖)2 < MF̃ ,Ω

(
1

MF̃ ,Ω

)2

= 1.

Now let α be defined by

α = max
{
MF,Ω‖A‖2,MF̃ ,Ω‖Ã‖2

}
,

then Φ and Ψ both are in M(Ω, α). Now apply Corollary 3.2 with MF,Ω‖A‖2 replaced
by α.
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A special case of the types of perturbations we are studying in the present paper
was already discussed in [19] (for finite dimensional H and G). In [19] the perturbed
equation

Q̃ = X − Ã∗F (X)Ã(3.7)

is considered, i.e., (3.4) with F̃ = F. However, if we apply the previous results to
(3.7), assuming H is finite dimensional, the obtained perturbation bounds turn out
to be weaker than those of [19]. We record only one corollary that can be obtained
that way.

Corollary 3.4. Let Φ be the map given by (3.2) such that Φ ∈ M(Ω,MF,Ω‖A‖2),
i.e., MF,Ω‖A‖2 < 1. Then for every ε > 0 and for all Ψ given by (3.4) satisfying
Ψ ∈ M(Ω,MF,Ω‖A‖2) and

‖Q̃−Q‖ + ‖Ã−A‖(‖Ã‖ + ‖A‖) sup
X∈Ω

‖F (X)‖ < min

{
1 −MF,Ω‖A‖2

3
ε, 1

}
,

we have the inequality

‖X(Φ) −X(Ψ)‖ < ε.

The analysis of the equation

Q = X + A∗F (X)A

is the same as the one for the equation already considered, as one sees immediately
by replacing F by −F . Recall that F is assumed only to take self-adjoint values, not
necessarily positive definite values.

4. Power maps. In this section we will specialize the results of the previous
section to particular cases of the power maps

F1(X) = Xm, m ≤ 1 or m ≥ 2,

and

F2(X) = −Xm, m ≤ 1 or m ≥ 2,

which are the cases frequently encountered in applications (see [15, 3, 20, 5], for
example). Thus, we consider equations

X = Q + A∗XmA, m ≤ 1 or m ≥ 2,(4.1)

and

X = Q−A∗XmA, m ≤ 1 or m ≥ 2.(4.2)

Note that we take H = G for both equations. As the cases m ≤ 1 and m ≥ 2 in (4.1)
require slightly different arguments, they are considered separately.

Recall that Q is assumed to be positive definite and invertible.
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4.1. The equation X = Q + A∗XmA with m ≤ 1. It is easy to see that
the map

G1(X) := Q + A∗XmA

maps the set {X ∈ P(H)|X ≥ Q} into itself. However, this set depends on the map
G1. Thus, we cannot expect also that the map

G̃1 := Q̃ + Ã∗(Xm + E(X))Ã

corresponding to the perturbed equation

X = Q̃ + Ã∗(Xm + E(X))Ã(4.3)

maps that set into itself. Therefore, we will take Ω = Ω1 as follows:

Ω1 = {X ∈ P(H)|X ≥ P},

where P is a positive definite invertible operator such that Q ≥ P , and we will only
consider perturbations Q̃ of Q which satisfy Q̃ ≥ P. If we assume in addition that E
is such that

Xm + E(X) ≥ 0 ∀X ≥ P,(4.4)

then both G1 and G̃1 map Ω1 into itself.
Before continuing our arguments, let us briefly comment on the fact that at least

in the finite dimensional case one can easily deduce the solvability of the equations
under consideration by constructing a compact and convex subset of the positive
definite matrices that is mapped into itself by G1. As G1 is continuous on P(H), it
follows by Schauder’s fixed point theorem that a solution will exist.

To determine MF1,Ω1
, we will make use of the generalized mean value theorem

(see Theorem 1.1.8 in [1]), which is stated below.

Theorem 4.1. Let G̃ and H̃ be real Banach spaces and let U be an open subset of
G̃. Let Φ : U → H̃ be Fréchet differentiable in U . If X,Y ∈ U are such that LX,Y ⊂ U ,
then

‖Φ(X) − Φ(Y )‖H̃ ≤ sup
Z∈LX,Y

‖DΦ(Z)‖‖X − Y ‖G̃ .

Here LX,Y is the line segment joining X and Y, DΦ(Z) denotes the Fréchet
derivative of Φ at Z and

‖DΦ(Z)‖ = sup
H∈H̃, ‖H‖=1

‖DΦ(Z)(H)‖.

We will also use the equality

‖DF1(X)‖ = |m|‖Xm−1‖, X ∈ P(H),

where H is a Hilbert space. This equality is proved in [2] for m ∈ (−∞, 1] ∪ [2,∞).
Now we have for all X,Y ∈ Ω1,

‖F1(X) − F1(Y )‖ = ‖Xm − Y m‖ ≤ sup
Z∈LX,Y

‖DF1(Z)‖‖X − Y ‖

= |m| sup
Z∈LX,Y

‖Zm−1‖‖X − Y ‖ ≤ |m| sup
Z∈Ω1

‖Zm−1‖‖X − Y ‖

≤ |m| sup
Z∈Ω1

‖Z−1‖1−m‖X − Y ‖ ≤ |m|‖P−1‖1−m‖X − Y ‖,
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so we can take MF1,Ω1
= |m|‖P−1‖1−m. Note that in the last inequality we used the

assumption m ≤ 1.
Together with Theorem 3.3 the foregoing proves the following result.
Theorem 4.2. Let Q ∈ P(H), m ≤ 1, A ∈ L(H) and suppose there exists a

P ∈ P(H) such that Q ≥ P and |m|‖P−1‖1−m‖A‖2 < 1. Then for every ε > 0 and

for all perturbations Ã, Q̃, and E satisfying the four conditions
1. Q̃ ≥ P ,
2. Xm + E(X) ≥ 0 for all X ≥ P ,
3.

‖Q̃−Q‖ + sup
X∈Ω1

(‖Ã‖‖Xm + E(X)‖ + ‖A‖‖Xm‖)‖Ã−A‖ + sup
X∈Ω1

‖Ã‖‖A‖‖E(X)‖

< min

{
1 − |m|‖P−1‖1−m‖A‖2

3
ε,

1 −MF̃1,Ω1
‖Ã‖2

3
ε, 1

}
,

4. at least one of the two conditions
(i) ‖Ã‖ ≤ ‖A‖,
(ii) ‖Ã‖ ≥ ‖A‖ and ‖Ã−A‖ < 1√

M
F̃1,Ω1

− ‖A‖,
we have that the inequality

‖XS − X̃S‖ < ε

holds, where XS is the unique solution of (4.1) in Ω1 and X̃S is the unique solution
of (4.3) in Ω1.

If we assume that E satisfies

‖E(X) − E(Y )‖ ≤ ME,Ω1
‖X − Y ‖ ∀X,Y ∈ Ω1,(4.5)

for some ME,Ω1 > 0, then

‖F̃1(X) − F̃1(Y )‖ = ‖F1(X) + E(X) − F1(Y ) − E(Y )‖
≤ ‖F1(X) − F1(Y )‖ + ‖E(X) − E(Y )‖
≤ (MF1,Ω1 + ME,Ω1)‖X − Y ‖.

Hence we can take MF̃1,Ω1
= MF1,Ω1

+ ME,Ω1 .

An interesting special case of the perturbations studied above is Q̃ = Q, Ã = A,
and E(X) = Xm̃−Xm, where m̃ ≤ 1 is a small perturbation of m. So we are interested
in the relation between solutions of

X = Q + A∗Xm̃A, m̃ ≤ 1,(4.6)

and solutions of (4.1) if |m− m̃| is small. Note that F̃1(X) = Xm̃ in this case, so we
have MF̃1,Ω1

= |m̃|‖P−1‖1−m̃. Hence, if we apply Theorem 4.2, we find that E has to
satisfy

sup
X∈Ω1

‖A‖2‖E(X)‖ < min

{
1 − |m|‖P−1‖1−m‖A‖2

3
ε,

1 − |m̃|‖P−1‖1−m̃‖A‖2

3
ε, 1

}

for ‖XS − X̃S‖ < ε to hold. However, it is not possible to find an upper bound for

sup
X∈Ω1

‖E(X)‖ = sup
X∈Ω1

‖Xm̃ −Xm‖

for the Ω1 we used before. Thus we will need a different Ω1.
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From now on in this subsection we will assume that Q = I. First we shall discuss
the case where m and m̃ are strictly negative. Under these assumptions we can choose
Ω = Ω̂1 as follows:

Ω̂1 = {X ∈ P(H)|I ≤ X ≤ I + A∗A}.

The following lemma is needed in the derivation for an upper bound for ‖E(X)‖.
Lemma 4.3. Let X ∈ P(H) such that X ≥ I and and let p and q be real numbers

satisfying p > q. Then Xp −Xq is positive semidefinite.
Proof. Because X ≥ I we can write

Xp −Xq =

∫ ‖X‖

1

(tp − tq) dE(t),

where E(t) is the spectral measure of X. Clearly this is positive semidefinite as
tp − tq ≥ 0 for t ≥ 1.

Now let X ∈ Ω̂1 and assume that m̃ > m. Note that X ≥ I implies that Xm̃ ≤ I,
because m̃ < 0. Further, it follows from X ≤ I + A∗A that X ≤ (1 + ‖A‖2)I, which
implies that Xm ≥ (1 + ‖A‖2)mI. So we have that

0 ≤ Xm̃ −Xm ≤ I − (1 + ‖A‖2)mI = (1 − (1 + ‖A‖2)m)I.

Interchanging m̃ and m we find that

0 ≤ Xm −Xm̃ ≤ I − (1 + ‖A‖2)m̃I = (1 − (1 + ‖A‖2)m̃)I

if m̃ < m. Because of one of the assumptions on the norm ‖ · ‖ this leads to

sup
X∈Ω̂1

‖Xm̃ −Xm‖ ≤ sup
I≤X≤(1+‖A‖2)I

‖Xm̃ −Xm‖

≤ max{1 − (1 + ‖A‖2)m, 1 − (1 + ‖A‖2)m̃}.

Hence we have the following theorem.
Theorem 4.4. Let m < 0 and let A ∈ L(H) such that |m|‖A‖2 < 1. Let Q = I.

Then for every ε > 0 and for all perturbations E(X) = Xm̃ −Xm, m̃ < 0, satisfying
|m̃|‖A‖2 < 1 and

‖A‖2 max{1 − (1 + ‖A‖2)m,1 − (1 + ‖A‖2)m̃}

≤ min

{
1 − |m|‖A‖2

3
ε,

1 − |m̃|‖A‖2

3
ε, 1

}
,

the inequality

‖XS − X̃S‖ < ε

holds, where XS is the unique solution of (4.1) in Ω̂1 and X̃S is the unique solution

of (4.6) in Ω̂1.
Next we consider that case where m and m̃ are strictly between 0 and 1. Since

m < 1, the scalar equation 1 + ‖A‖2xm = x has a unique positive solution, which we
shall denote by β(m). Observe that if m̃ < m, then 1 < β(m̃) < β(m) (unless A = 0,
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a trivial case we shall not consider). We choose Ω̂1 = [I, β(m)I], and we claim that

this set is mapped into itself by both G1 and G̃1. Indeed, let I ≤ X ≤ β(m)I; then

‖G1(X)‖ ≤ 1 + ‖A‖2‖X‖m ≤ 1 + ‖A‖2β(m)m = β(m),

‖G̃1(X)‖ ≤ 1 + ‖A‖2‖X‖m̃ ≤ 1 + ‖A‖2β(m)m̃ ≤ β(m).

Next, we consider the difference Xm −Xm̃ for X in [I, β(m)I] and m > m̃. We have

0 < Xm −Xm̃ ≤ (β(m)m − 1)I.

So, for the case where 0 < m < 1 and m̃ < m we arrive at the following theorem.
Theorem 4.5. Let A ∈ L(H), and let 0 < m < 1 be such that m‖A‖2 < 1. Let

Q = I. Then for every ε > 0 and all 0 < m̃ < m such that

‖A‖2(β(m)m − 1) ≤ min

{
1 −m‖A‖2

3
ε, 1

}
,

the inequality

‖XS − X̃S‖ < ε

holds, where XS is the unique solution of X = I + A∗XmA and X̃S is the unique
solution of X = I + A∗Xm̃A in [I, β(m)I].

We finish this section with a few remarks on the cases m = 0 and m = 1, which
have not been treated here. In the case m = 0 the map is not an interesting one,
while the case m = 1 amounts to the Stein equation. For the Stein equation there is
a well-developed perturbation theory for perturbations of A and Q; see, e.g., [6, 7].

4.2. The equation X = Q + A∗XmA with m ≥ 2. In this subsection we
shall consider the same equation as in the previous one, but with the assumption that
m ≥ 2. Our first order of business is to find a subset Ω1 of P(H) that is mapped into
itself by the map G1 and for which we can obtain estimates comparable to the ones
in the previous subsection. It is the latter point that requires us to consider sets that
are bounded not only from below but also from above.

Consider

G1(x · I) = Q + xmA∗A, x real.

We estimate this as follows:

‖G1(xI)‖ = ‖Q + xmA∗A‖ ≤ ‖Q‖ + ‖A‖2xm.

We shall assume that Q and A are such that the equation x = ‖Q‖+‖A‖2xm has two
positive solutions. Let β be the largest of these two solutions. We consider the set

Ω := [0, βI] := {X ∈ P(H) : 0 ≤ X ≤ βI}

and claim that Ω is mapped into itself by G1. Indeed, let 0 ≤ X ≤ βI; then 0 ≤
Xm ≤ βmI, and hence Q = G1(0) ≤ G1(X) ≤ G1(βI). However, by the definition of
β we have that G1(βI) ≤ βI. Indeed, G1(βI) = Q + βmA∗A. So

‖G1(β)‖ ≤ ‖Q‖ + βm‖A‖2 = β.
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As in the previous subsection we comment on the consequence of this inclusion
for the finite dimensional case. The set Ω is then a compact convex set, and G1 being
continuous must have a fixed point in Ω by Schauder’s fixed point theorem. Hence
solvability of the equation is guaranteed in the finite dimensional case.

For the infinite dimensional case we wish to apply the results of section 2, the
conditions of which imply uniqueness of the solution. Notice that part of the necessary
estimate to come to MF1,Ω was already done in the previous subsection. For all
X,Y ∈ Ω we have

‖F1(X) − F1(Y )‖ ≤ m sup
Z∈Ω

‖Z‖m−1‖X − Y ‖ ≤ mβm−1‖X − Y ‖.

Thus we can take MF1,Ω = mβm−1. The following theorem gives conditions under
which G1 is a contraction on the set [0, βI].

Theorem 4.6. Let m ≥ 2. Let Q ∈ P(H) and A ∈ L(H) be such that there exist
positive solutions to x = ‖Q‖+ ‖A‖2xm and such that for β being the largest of these
solutions we have m‖A‖2βm−1 < 1. Then there is a unique positive definite solution
to the equation X = Q + A∗XmA in the interval [0, βI].

Now consider perturbations G̃1 given by (4.3). Once again, we need a set Ω1

which is mapped into itself not only by G1 but also by the perturbation G̃1. In order
to achieve this, we slightly change the definition of β as follows: let q > 0 and a > 0
be such that the equation x = q + a2xm has two positive solutions. Let β be the
maximum of the largest of the solutions and 1. We consider the map G1 and its
perturbation G̃1 under the conditions ‖Q‖ ≤ q, ‖Q̃‖ ≤ q, ‖A‖ ≤ a, ‖Ã‖ ≤ a, and
E(X) such that Xm + E(X) ≥ 0 and ‖Xm + E(X)‖ ≤ βm for 0 < X ≤ βI. Under

these conditions it is easily seen that both G1 and G̃1 leave the set Ω1 := [0, βI]

invariant. We check this for G̃1: for 0 ≤ X ≤ βI we have 0 < Q̃ ≤ G̃1(X) and

‖G̃1(X)‖ ≤ ‖Q̃‖ + ‖Ã||2(‖Xm + E(X)‖) ≤ q + a2βm ≤ β.

As an interesting example, let m̃ < m and consider the case where E(X) =
Xm̃ − Xm. Then both conditions on E(X) are satisfied, as ‖Xm̃‖ ≤ ‖X‖m̃. Now
if ‖X‖ ≤ 1, then certainly ‖X‖ ≤ βm as β ≥ 1, while if 1 ≤ ‖X‖ ≤ β, then
‖X‖m̃ ≤ ‖X‖m ≤ βm.

We are now in a position to apply Theorem 3.3 to this situation.
Theorem 4.7. Let m ≥ 2. Let q > 0 and a > 0 be such that the equation

x = q + a2xm has two positive solutions. Let β0 be the largest of these solutions, and
set β = max{β0, 1}. Put Ω1 = [0, βI]. Let Q, Q̃ ∈ P(H), A, Ã ∈ L(H) be such that

‖Q‖ ≤ q, ‖Q̃‖ ≤ q, ‖A‖ ≤ a, ‖Ã‖ ≤ a,

and let the self-adjoint valued function E(X), X ∈ P(H), be such that

Xm + E(X) ≥ 0 and ‖Xm + E(X)‖ ≤ βm for 0 ≤ X ≤ βI.

Assume that m‖A‖2βm−1 < 1. Then for every ε > 0 and for all Q̃, Ã satisfying

‖Q̃−Q‖ + sup
X∈Ω1

(‖Ã‖‖Xm + E(X)‖ + ‖A‖‖Xm‖)‖Ã−A‖ + sup
X∈Ω1

‖Ã‖‖A‖‖E(X)‖

< min

{
1 −m‖β‖m−1‖A‖2

3
ε,

1 −MF̃1,Ω1
‖Ã‖2

3
ε, 1

}

and finally, at least one of the two conditions
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(i) ‖Ã‖ ≤ ‖A‖,
(ii) ‖Ã‖ ≥ ‖A‖ and ‖Ã−A‖ < 1√

M
F̃1,Ω1

− ‖A‖,
we have that the inequality

‖XS − X̃S‖ < ε

holds, where XS is the unique solution of (4.1) in Ω1 and X̃S is the unique solution

of (4.3) in Ω1. (In particular, in this case also MF̃1,Ω1
‖Ã‖2 < 1.)

To make the conditions more transparent we would need to have an estimate for
MF̃1,Ω1

. For the case mentioned above, where E(X) = Xm̃ −Xm with m̃ < m this

is easily done, in this case MF̃1,Ω1
= m̃βm̃−1. With Q = Q̃, A = Ã, we get that the

condition becomes ‖A‖2 sup0≤X≤βI ‖Xm − Xm̃‖ < 1−m̃βm̃−1‖A‖2

3 ε to conclude that

‖XS − X̃S‖ < ε.

4.3. The equation X = Q−A∗XmA with m ∈ (−∞, 1]∪ [2,∞). In this
subsection we will consider (4.2). For this equation we need a condition on A and Q
such that there exists an Ω2 ⊂ P(H) which is mapped into itself by

G2(X) = Q−A∗XmA.

Let us assume that there is an R ∈ P(H) such that

Q−A∗XmA ≥ R ∀X ≥ R.(4.7)

Then we can take

Ω = {X ∈ P(H)|X ≥ R}.

If the perturbations Ã, Q̃, and E are such that

Q̃− Ã∗(Xm + E(X))Ã ≥ R ∀X ≥ R,(4.8)

then the map G̃2 corresponding to

X = Q̃− Ã∗(Xm + E(X))Ã(4.9)

also maps {X ∈ P(H)|X ≥ R} into itself. Moreover, it is obvious that G2(X) ≤ Q
for all X ≥ 0 and if we assume in addition that E is such that

Xm + E(X) ≥ 0 ∀X ≥ R,(4.10)

then also G̃2(X) ≤ Q̃ for all X ≥ 0. So if we let B be an operator such that Q ≤ B

and we only consider perturbations Q̃ of Q satisfying Q̃ ≤ B, then it is clear that G2

and G̃2 map

Ω2 = {X ∈ P(H)|R ≤ X ≤ B}
into itself.

Analogously to subsection 4.1 we find MF2,Ω2 = |m|‖R−1‖1−m in case m ≤ 1. If
m ≥ 2, then MF2,Ω2 is slightly different. Indeed, in this case we have for all X,Y ∈ Ω2

‖F2(X) − F2(Y )‖ = ‖Xm − Y m‖ ≤ sup
Z∈LX,Y

‖DF2(Z)‖‖X − Y ‖

= |m| sup
Z∈LX,Y

‖Zm−1‖‖X − Y ‖ ≤ |m| sup
Z∈Ω2

‖Zm−1‖‖X − Y ‖

≤ |m| sup
Z∈Ω2

‖Z‖m−1‖X − Y ‖ ≤ |m|‖B‖m−1‖X − Y ‖.

Thus we have MF2,Ω2 = |m|‖B‖m−1, and we obtain the following results.
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Theorem 4.8. Let m ≤ 1, and let Q ∈ P(H), A ∈ L(H). Assume that there
exists an R ∈ P(H) such that (4.7) and |m|‖R−1‖1−m‖A‖2 < 1 are satisfied. Then

for every ε > 0 and for all perturbations Ã, Q̃, and E satisfying conditions (4.8) and
(4.10), the inequality

‖Q̃−Q‖ + sup
X∈Ω2

(‖Ã‖‖Xm + E(X)‖ + ‖A‖‖Xm‖)‖Ã−A‖ + sup
X∈Ω2

‖Ã‖‖A‖‖E(X)‖

< min

{
1 − |m|‖R−1‖1−m‖A‖2

3
ε,

1 −MF̃2,Ω2
‖Ã‖2

3
ε, 1

}

and at least one of the two conditions
(i) ‖Ã‖ ≤ ‖A‖,
(ii) ‖Ã‖ ≥ ‖A‖ and ‖Ã−A‖ < 1√

M
F̃2,Ω2

− ‖A‖,
the inequality

‖XS − X̃S‖ < ε

holds, where XS is the unique solution of (4.2) in Ω2 and X̃S is the unique solution
of (4.9) in Ω2.

Theorem 4.9. Let m ≥ 2, and let Q ∈ P(H), A ∈ L(H). Assume that there ex-
ists an R ∈ P(H) such that (4.7) is satisfied. Further, assume there is B ∈ P(H) such
that Q ≤ B and |m|‖B‖m−1‖A‖2 < 1. Then for every ε > 0 and for all perturbations

Ã, Q̃, and E satisfying Q̃ ≤ B and the conditions (4.8) and (4.10), the inequality

‖Q̃−Q‖ + sup
X∈Ω2

(‖Ã‖‖Xm + E(X)‖ + ‖A‖‖Xm‖)‖Ã−A‖ + sup
X∈Ω2

‖Ã‖‖A‖‖E(X)‖

< min

{
1 − |m|‖B‖m−1‖A‖2

3
ε,

1 −MF̃2,Ω2
‖Ã‖2

3
ε, 1

}

and at least one of the two conditions
(i) ‖Ã‖ ≤ ‖A‖,
(ii) ‖Ã‖ ≥ ‖A‖ and ‖Ã−A‖ < 1√

M
F̃2,Ω2

− ‖A‖,
the inequality

‖XS − X̃S‖ < ε

holds, where XS is the unique solution of (4.2) in Ω2 and X̃S is the unique solution
of (4.9) in Ω2.

Independently of m we can take MF̃2,Ω2
= MF2,Ω2 + ME,Ω2 , if we assume again

that E satisfies (4.5) for some ME,Ω2 > 0.
Also for (4.2) and the perturbed equation (4.9) we will discuss the special case

Q̃ = Q, Ã = A and E(X) = Xm̃ − Xm, where m̃ ∈ (−∞, 1] ∪ [2,∞) is a small
perturbation of m such that

Q−A∗Xm̃A ≥ R ∀X ≥ R.(4.11)

So we are interested in the relation between solutions of (4.2) and

X = Q−A∗Xm̃A(4.12)

for |m̃−m| small. In the rest of this section we set B = Q.
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Now let X ∈ [R,Q], i.e., X ∈ P(H) and R ≤ X ≤ Q. Then

‖R−1‖−1I ≤ X ≤ ‖Q‖I.

So

‖R−1‖−mI ≤ Xm ≤ ‖Q‖mI, m > 0,

‖Q‖mI ≤ Xm ≤ ‖R−1‖−mI, m < 0.

First assume that m̃ > 0. Then it follows that

0 ≤ Xm̃ −Xm ≤ ‖Q‖m̃I − ‖R−1‖−mI, m̃ > m > 0,

0 ≤ Xm̃ −Xm ≤ ‖R−1‖−m̃I − ‖Q‖mI, 0 > m̃ > m.

Interchanging the role of m̃ and m gives

0 ≤ Xm −Xm̃ ≤ ‖Q‖mI − ‖R−1‖−m̃I, m > m̃ > 0,

0 ≤ Xm −Xm̃ ≤ ‖R−1‖−mI − ‖Q‖m̃I, 0 > m > m̃.

Hence for all X ∈ [R,Q] and all m, m̃ ∈ (−∞, 1] ∪ [2,∞) we have

‖Xm̃ −Xm‖ ≤ max{|‖Q‖m̃ − ‖R−1‖−m|, |‖R−1‖−m̃ − ‖Q‖m|}.

This proves the following results.
Theorem 4.10. Let m ≤ 1, and let Q ∈ P(H), A ∈ L(H). Assume that there

exists an R ∈ P(H) such that (4.7) and |m|‖R−1‖1−m‖A‖2 < 1 are satisfied. Then
for every ε > 0 and for all perturbations E(X) = Xm̃ −Xm, m̃ ≤ 1, where m̃ has the
same sign as m, satisfying |m̃|‖A‖2 < 1, condition (4.11), and

‖A‖2 max{|‖Q‖m̃−‖R−1‖−m|, |‖R−1‖−m̃ − ‖Q‖m|}

< min

{
1 − |m|‖R−1‖1−m‖A‖2

3
ε,

1 − |m̃|‖R−1‖1−m̃‖A‖2

3
ε, 1

}
,

the inequality

‖XS − X̃S‖ < ε

holds, where XS is the unique solution of (4.2) in Ω2 and X̃S is the unique solution
of (4.12) in Ω2.

Theorem 4.11. Let m ≥ 2, and let Q ∈ P(H), A ∈ L(H) be such that the
inequality

|m|‖Q‖m−1‖A‖2 < 1

holds. Assume furthermore that there exists an R ∈ P(H) such that (4.7) is satisfied.
Then for every ε > 0 and for all perturbations E(X) = Xm̃ −Xm, m̃ ≥ 2, satisfying
|m̃|‖A‖2 < 1, condition (4.11), and

‖A‖2 max{|‖Q‖m̃−‖R−1‖−m, |‖R−1‖−m̃ − ‖Q‖m|}

< min

{
1 − |m|‖Q‖m−1‖A‖2

3
ε,

1 − |m̃|‖Q‖m̃−1‖A‖2

3
ε, 1

}
,
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the inequality

‖XS − X̃S‖ < ε

holds, where XS is the unique solution of (4.2) in Ω2 and X̃S is the unique solution
of (4.12) in Ω2.

REFERENCES

[1] A. Ambrostetti and G. Prodi, A Primer of Nonlinear Analysis, Cambridge Stud. Adv. Math.
34, Cambridge University Press, Cambridge, UK, 1995.

[2] R. Bhatia and K. B. Sinha, Variation of real powers of positive operators, Indiana Univ.
Math. J., 43 (1994), pp. 913–925.

[3] D. A. Bini, G. Latouche, and B. Meini, Solving nonlinear matrix equations arising in tree-
like stochastic processes, Linear Algebra Appl., 366 (2003), pp. 39–64.

[4] M. Cheng and S. Xu, Perturbation analysis of the Hermitian positive definite solution of the
matrix equation X −A∗X−2A = I, Linear Algebra Appl., 394 (2005), pp. 39–51.

[5] J. C. Engwerda, A. C. M. Ran, and A. L. Rijkeboer, Necessary and sufficient conditions
for the existence of a positive definite solution of the matrix equation X + A∗X−1A = Q,
Linear Algebra Appl., 186 (1993), pp. 255–275.

[6] P. M. Gahinet, A. J. Laub, C. S. Kenney, and G. A. Hewer, Sensitivity of the stable
discrete-time Lyapunov equation, IEEE Trans. Automat. Control, 35 (1990), pp. 1209–
1217.

[7] A. R. Ghavimi and A. J. Laub, Residual bounds for discrete-time Lyapunov equations, IEEE
Trans. Automat. Control, 40 (1995), pp. 1244–1249.

[8] V. I. Hasanov and I. G. Ivanov, Solutions and perturbation estimates for the matrix equations
X ±A∗X−nA = Q, Appl. Math. Comput., 156 (2004), pp. 513–525.

[9] V. I. Hasanov and I. G. Ivanov, Positive definite solutions of the equation X+A∗X−nA = I,
in Numerical Analysis and Its Applications, Lecture Notes in Comput. Sci., 1988, Springer,
Berlin, 2001, pp. 377–384.

[10] I. G. Ivanov, V. I. Hasanov, and B. V. Minchev, On matrix equations X ± A∗X−2A = I,
Linear Algebra Appl., 326 (2001), pp. 27–44.

[11] I. G. Ivanov, B. V. Minchev, and V. I. Hasanov, Positive definite solutions of the equation

X − A∗√X−1A = I, in Applications of Mathematics in Engineering, Heron Press, Sofia,
Bulgaria, 1999, pp. 113–116.

[12] L. V. Kantorovich and G. P. Akilov, Functional Analysis, 2nd ed., Pergamon Press, Elms-
ford, NY, 1982.

[13] M. M. Konstantinov, D. Gu, V. Mehrmann, and P. Petkov, Perturbation Theory of Matrix
Equations, Elsevier, New York, 2003.

[14] M. A. Krasnosel’skĭı, G. M. Văınikko, P. P. Zabrĕıko, Ya. B. Rutitskĭı, and V. Ya.
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EIGENVALUE PROBLEMS IN FIBER OPTIC DESIGN∗

LINDA KAUFMAN†

Abstract. Maxwell’s equation for modeling the guided waves in a circularly symmetric fiber
leads to a family of partial differential equation–eigenvalue systems. Incorporating the boundary
condition into a discretized system leads to an eigenvalue problem which is nonlinear in only one
element. In fiber design one would like to determine the index profile which is involved in Maxwell’s
equation so that certain optical properties, which sometimes involve derivatives of the eigenvalues,
are satisfied. This contribution discusses how to handle the nonlinear eigenvalue problem and how
to determine derivatives of the eigenvalue problem.

Key words. eigenvalue, nonlinear, Rayleigh quotient

AMS subject classifications. 15A18, 3FP30, 3FQ60

DOI. 10.1137/S0895479803432708

1. Introduction. In this paper we consider several computation issues arising
in fiber optic modeling. Assuming a fiber is perfectly straight, circular, and uniform
along its length, then Maxwell’s equations for guided waves of the fiber can be reduced
to a family in m of problems of the form(

1

r

d

dr

(
r
dx

dr

)
+ ω2η2(r, ω) − m

r2

)
x = β2x.(1.1)

The index of refraction profile η(r, ω) is in some regions a piecewise constant function,
as in Figure 1.1, and can be parameterized by several design parameters relating to
the widths and heights of each region. In (1.1), ω is a specified frequency and m is a
specified mode number. The finite element method converts this family of differential
equations to a family of symmetric tridiagonal eigenvalue problems in ω and m

A(ω,m)x = μx,(1.2)

where one wishes to find the positive eigenvalues and their corresponding eigenvectors.
The eigenvalue μ corresponds to β2 in (1.1). To simplify our notation we let A
represent one member of this family. Usually the waveform is truncated at some
radius beyond the core of the fiber, and the boundary condition is expressed as the
mth order modified Bessel function of the second kind [9]. This changes the eigenvalue
problem in (1.2) to the form

(A + s(μ)ene
T
n )x = μx,(1.3)

where s(μ) involves the appropriate Bessel functions, A is an n × n matrix, and en
is the last column of the n × n identity matrix. In section 2, we describe several
algorithms that can be used to solve (1.3).

As explained in [6], for a particular index profile η(r, ω), one is interested in
various integrals of the modes (the eigenvectors), the dispersion

∂2β2

∂λ∂ω
(1.4)
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Fig. 1.1. A typical index of refraction profile η(r, ω).

and the dispersion slope

∂3β2

∂λ∂ω2
,(1.5)

where λ is the excitation energy and 2πc = λω with the frequency ω is measured in
radians per second, and c is the speed of light. More to the point, one is interested
in finding the index profile η which might produce certain values of the dispersion
and the dispersion slope at particular values of m and ω. If the index profile η is
partially defined by a parameter p, then to use an optimization package to determine
p typically requires derivatives such as

∂4β2

∂λ∂ω2∂p
.(1.6)

Numerical differentiation of these quantities has proved unsatisfactory as small changes
in a variable are not necessarily accurately reflected in the computed dispersion. Thus,
analytic differentiation is required. In section 4, we review formulas for derivatives of
eigenvalues and indicate how the amount of computation can be reduced by noticing
common subexpressions.

Note that by defining η(r, ω) we are actually specifying the chemical composition
of the radial layers for a fiber. A fiber suitable for, say, underwater transmission would
not be appropriate for a local area network or to splice into an existing network to
restore a degraded signal. Also various manufacturers tend to emphasize different op-
tical properties for a given application. When using an optimizer to determine η(r, ω),
for each function evaluation one may have to solve up to 30 nonlinear eigenvalue prob-
lems for various values of m and ω in (1.1). Because there are sometimes multiple
local minima to a particular optimization problem, the optimizer is often called sev-
eral times with different starting guesses to find a design that is manufacturable and
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Fig. 2.1. The function s(μ) for varying eigenvalue μ.

more suitable. A production run may require solving thousands of nonlinear eigen-
value problems and then finding derivatives of the computed eigenvalues with respect
to the parameters that define the matrix.

2. The nonlinear problem. In this section three methods are considered for
finding the positive eigenvalues and their corresponding eigenvectors of the nonlinear
eigenvalue problem (1.3). For m = 0, s(μ) is displayed in Figure 2.1. Usually only
one or two eigenvalues are positive.

The first method is a simple Picard iteration.
Picard iteration
Let B = A + s(0)ene

T
n

Until convergence
Find μ, a specific positive eigenvalue of B.
Reset B to A + s(μ)ene

T
n

The matrix B is also tridiagonal and differs from A only in its bottom right
element. The eigenvalues of B were determined using the bisection code in EISPACK
[12] modified as in Kaufman [7] so that the inertia of the complete matrix was not
computed when the inertia of only part of the matrix sufficed. However, because there
were such good guesses for the eigenvalues and eigenvectors from previous iterations
of the optimization procedure it was much more efficient to use a Rayleigh quotient
iteration to determine μ.
Linear Rayleigh quotient algorithm for a fixed B
(in the inner loop of the Picard iteration)
Determine a lower bound μl and an upper bound μu for the desired eigenvalue μ.
Set μ0 to μl.
Set x = e , the vector of all 1’s or a good guess if available.
Set k to 0.
Until convergence

Solve (B − μkI)y = x and determine the inertia of (B − μkI)
If the inertia claims that μk is less than μ, reset μl to μk

If the inertia claims that μk is greater than μ, reset μu to μk

Set α = yTBy/(yT y)
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Table 2.1

The growth of | s′(μ) | as μ approaches zero.

the eigenvalue μ | s′(μ) |
2.0000 0.3631
1.0000 0.5219
0.5000 0.7559
0.2500 1.1054
0.1250 1.6358
0.0625 2.4543

If α < μl, set μk+1 = .9μl + .1μu

If α > μu, set μk+1 = .9μu + .1μl

If μl ≤ α ≤ μu set μk+1 = α
set x = y/(yT y)
increment k.

In the algorithm outlined above, the inertia of the system and the solution y can
be determined using the Bunch algorithm for tridiagonal systems [1]. The choice of
.9 and .1 were arbitrary and just a heuristic.

Although the inner Rayleigh quotient iteration has cubic convergence, the outer
iteration is a fixed point scheme and is generally linear convergent. If the outer
iteration is as μ = f(μ), then f(μ) is an eigenvalue of the B matrix. The rate of
the convergence, and whether it converges, depends on df

dμ . Let x be the eigenvector

corresponding to f . Then fx = (A + s(μ)ene
T
n )x, which implies df

dμx = ds
dμene

T
nx,

giving

df

dμ
=

ds

dμ
x2
n/(x

Tx).(2.1)

Because x2
n/(x

Tx) < 1, convergence is guaranteed as long as | dsdμ | < 1. For our fiber

optic problem, Table 2.1 gives ds
dμ for various values of μ.

Thus as μ approaches zero, convergence is dubious.
In practice a major problem with the Picard iteration approach is speed. One

potentially spends time in the inner loop of the Rayleigh quotient iteration for the
wrong problem. This pitfall is especially noticeable for problems where the eigenvalue
is near zero and the function s(μ) is rather steep, as in the example at the end of this
section.

One way around the sluggishness of the Picard iteration is to mimic the derivation
of the Rayleigh quotient iteration for the nonlinear problem. In the Rayleigh quotient
iteration for a matrix A, the next iterate μk+1 is chosen so that

‖(A− μI)y‖2(2.2)

is minimized, which occurs when 2yTAyμ+μ2 is minimized or when μ = yTAy/yT y.
For the nonlinear Rayleigh quotient case one would like to minimize

‖(A + s(μ)enen
T − μI)y‖2.(2.3)

If z = (A + s(μ)enen
T )y, then the required μ minimizes zT z − 2μzT y + μ2yT y,

which occurs when

μ =
zT y − zT z′

yT y − z′T y
.(2.4)
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Since z′ = s′(μ)enen
T y = s′(μ)ynen, from (2.4)

μ =
zT y − s′(μ)ynzn
yT y − s′(μ)yn2

.(2.5)

With the linear Rayleigh quotient algorithm given above, the bounds on the
eigenvalue estimates ensure that the algorithm is converging to the correct eigenvalue.
The bounds can be obtained by examining the Bunch–Parlett decomposition [2], which
dictates that one can find a lower triangular matrix L and a block diagonal matrix D
with 1 × 1 blocks and 2 × 2 blocks such that

B − μI = LDLT .(2.6)

If D has i 2× 2 blocks and j positive 1× 1 blocks, then B has i+ j eigenvalues larger
than μ. In a nonlinear Rayleigh quotient iteration one would like the same bounding
mechanism to be preserved even if the element Bn,n is changed in each iteration. The
following theorem treats the largest eigenvalue and a similar proof can be used to
handle other eigenvalues.

Theorem 2.1. Let s(μ) be a negative decreasing function. If μu is an upper
bound of the largest eigenvalue of the matrix B0 = A + s(μ0)enen

T , where μ0 is an
initial guess of the eigenvalue, then it is an upper bound on the largest eigenvalue
μmax of the problem (A + s(μ)enen

T )x = μx.
Proof. If μ0 ≥ μmax, the theorem is trivially true. So assume μmax > μ0. Let

D be the diagonal matrix in the Bunch–Parlett decomposition [2] of B0 − μuI. If μu

is an upper bound of the largest eigenvalue of B0, then D is diagonal with negative
elements. Let B̃ = A + s(μmax)enen

T , where μmax is the solution to the nonlinear
problem, and let D̃ be the diagonal matrix in the Bunch–Parlett decomposition of
B̃ − μuI.

The first n−1 diagonal elements of D and D̃ are identical and d̃n = dn+s(μmax)−
s(μ0). If μmax > μ0, then s(μmax) < s(μ0), so d̃n is negative and μu is an upper bound
for the nonlinear problem.

Theorem 2.2. Let s(μ) be a negative decreasing function. If μl is a lower bound
for the largest eigenvalue of the matrix B0 = (A + s(μ0)enen

T ), then it is a lower
bound for the largest eigenvalue μmax of the problem (A+ s(μ)enen

T )x = μx, as long
as μmax ≥ 0.

Proof. Let D be the block diagonal matrix in the Bunch–Parlett decomposition
of B0 − μlI. If there is a 2 × 2 block above the bottom two rows or if there is a
positive element on the diagonal above the bottom right corner element, then no
matter how s is changed, D will signal that μl always is a lower bound for the largest
eigenvalue. Thus, one may assume that dn is positive. Moreover, if μmax ≥ μ0, the
theorem is also trivially true so assume μmax < μ0. If D̃ is the diagonal matrix in
the Bunch–Parlett decomposition of A + s(μmax)enen

T , where μmax is the solution
to the nonlinear problem, then d̃n = dn + s(μmax) − s(μ0). If 0 ≤ μmax < μ0, then
s(μmax) > s(μ0), so d̃n will be positive and μu will be a lower bound of the nonlinear
problem.

From (2.5) one gets the following algorithm.
Nonlinear Rayleigh quotient
Determine a lower bound μl and an upper bound μu for the desired eigenvalue μ.
Set μ0 to μl.
Set x = e , the vector of all 1’s if a good guess is not available.
Set k to 0.
Until convergence
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Set B = A + s(μk)ene
T
n .

Solve (B − μkI)y = x and determine the inertia of (B − μkI)
If the inertia claims that μk is less than μ, reset μl to μk

If the inertia claims that μk is greater than μ, reset μu to μk

Set z = By.

Set α = zT y−s′(μ)ynzn
yT y−s′(μ)yn

2

If α < μl, set μk+1 = .9μl + .1μu

If α > μu, set μk+1 = .9μu + .1μl

If μl <= α <= μu set μk+1 = α
set x = y/(yT y)
increment k.

A third method, suggested by Cowsar [4], is designed to find a root of the function

f(γ) = γ − s(μ(γ)),(2.7)

where μ satisfies

(A + γene
T
n − μI)x = 0.

Newton’s method for determining the root of (2.7) determines the new approximation
of γnew using the formula

γnew = γ − γ − s(μ(γ))
df
dγ

.(2.8)

Note that

df

dγ
= 1 − ds

dμ

dμ

dγ

and if μx = (A + γene
T
n )x, then

dμ

dγ
x = ene

T
nx.

Because x can be chosen such that xTx = 1,

dμ

dγ
= (xT en)2.

Thus each iterate of Newton’s method for minimizing (2.7) would set the new approx-
imation of γnew to

γnew = γ − γ − s(μ(γ))

1 − ds
dμ (xT en)2

,(2.9)

where x is the normalized eigenvector corresponding to the eigenvalue μ of A+γene
T
n .

Because Newton’s method is not globally convergent, it is wise to determine
initially an interval containing the root and to use a bisection technique if the new
iterate does not fall within the interval. If one is seeking a positive eigenvalue μ, then
0 is an upper bound for γ because f(0) > 0 since s(μ) is negative if μ is positive. A
lower bound for γ can be found if the Bunch–Parlett decomposition yields a diagonal
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matrix D whose first n − 1 diagonal elements are negative but whose right corner
element dn is positive. In this case the matrix has one nonnegative eigenvalue and
if γ = −dn, then the largest eigenvalue of A + γene

T
n is 0. For m = 0, s(0) = 0,

which means f(−dn) < 0. If one of the first n − 1 elements of the D matrix in the
Bunch–Parlett decomposition is negative, then any very large negative number can
be used as a lower bound for γ.

In the formal definition of Newton’s method given below, to find one positive
eigenvalue of the nonlinear eigenvalue problem an upper and a lower bound are first
determined and subsequently the bounds are adjusted so that the root of f is always
bracketed. If the Newton step is outside the bound, then a step that is 90% of the
distance to the bound is taken. If the chosen step does not decrease the norm of f ,
the step size is reduced by 4. To determine several eigenvalues, the algorithm is used
first to determine the largest eigenvalue, the bounds are adjusted to find subsequent
eigenvalues, and the linear Rayleigh quotient solver is ask to find a specific numbered
eigenvalue.
Safeguarded Newton’s method
Set γu, an upper bound for γ to 0.
Find γl, a lower bound for γ as follows:

Determine D, the diagonal matrix of the Bunch–Parlett decomposition
of A.

If none of the elements of D are positive, there is no positive eigenvalue.
If one of the first n− 1 elements of D is greater than 0, set γl to a

very large negative number else set γl = −dn
If an initial eigenvalue μ0 is available, set γ0 = s(μ0), otherwise set γ0 = γu;
Set k to 0.
Until convergence

Find μ > 0 and x such that (A + γkene
T
n )x = μx using the linear

Rayleigh quotient algorithm
Set f = γk − s(μ); r = abs(f)
If f > 0

if γk ≤ γu set γu = γk
If f < 0

if γk ≥ γl set γl = γk
if (k > 1 and r > minr)

Set γchange = γchange/4

Set γk+1 = γk + γchange
else

Set minr to r

Set γk+1 = γk − γk−s(μ)

1− ds
dμ (xT en)2

If γk+1 < γl, set γk+1 = .9γl + .1γu
If γk+1 > γu, set γk+1 = .9γu + .1γl
Set γchange = γk+1 − γk
increment k

3. Computational experiments. To indicate the effectiveness of the three
algorithms outlined above, we show their effectiveness on several problems. The
problem in section 3.1 is a small example with a tunable parameter which indicates
that the Picard iteration and the nonlinear Rayleigh quotient may converge linearly
and slowly. The second example in section 3.2 is derived from a fiber optics problem
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Table 3.1

The course of the Picard iteration, the nonlinear Rayleigh quotient, and the Newton approach
with z = .5 in (3.1).

Picard iteration Nonlinear Rayleigh Newton
iterate inner iterate inner derived inner

iterations iterations eigenvalue iterations
.3589622 4 .2865810 1 .3589622 4
.3589538 2 .3577595 1 .3589538 2
.3589538 1 .3589538 1 .3589538 1

.3589538 1

in the literature.

3.1. A small example. In this section we consider the following small problem:

ai,i =

⎧⎨
⎩

−2 + z, 1 ≤ i ≤ 5,
−2 − z, i = 6, 7,
−2, 8 ≤ i ≤ 12,

(3.1)

and for 1 ≤ i ≤ 11

ai+1,i = ai,i+1 = (i + .5)/
√

(i + 1) × (i + 2).(3.2)

The function s(μ) involved computing the modified Bessel function of the second
kind calculated using ACM Algorithm 484 [3].

For z = .5, the largest eigenvalue is about .359, where s(μ) is not very steep,
and all three methods behaved rather well, as Table 3.1 indicates. The rate of
convergence for the Picard iteration is based on ds

dμx
2
n/(x

Tx). For this value of z,

as the algorithm converged, ds
dμwas about −1.08, xn was about −.00242, so that

ds
dμx

2
n/(x

Tx) ≈ −6.36×10−6, suggesting fast convergence. Note for Newton’s method
the eigenvalue corresponding to γ is given.

For z = .081, the largest eigenvalue is about 3.2 × 10−4, where the s function is
rather steep. For this value of z, as the Picard algorithm converged, ds

dμwas about

−3.23, xn was about −.047, so that ds
dμx

2
n/(x

Tx) ≈ −5.56 × 10−3, which is approx-
imately the square root of the previous example. The Picard iteration algorithm
required 9 outer iterations and 42 inner iterations, which is far more than 14 required
by the nonlinear Rayleigh quotient and the 13 required by the Newton approach. The
course of the algorithms is shown in Table 3.2. Note that the first three iterations
of the nonlinear Rayleigh quotient iteration produced iterates that were negative and
then were forced to be positive.

Results like those obtained in Table 3.2 for the Picard iteration have stimulated
the search for other algorithms that might not have linear convergence. It was hoped
that the nonlinear Rayleigh quotient algorithm would be cubically convergent and
one could mimic the proof of cubic convergence given in Parlett [11], but when an
eigenvalue approached zero, one could not easily bound ds

dμ . Moreover, problems like

that given in (3.2) suggested that the algorithm was linearly convergent. Table 3.3
shows the rate of convergence of the Picard and nonlinear Rayleigh quotient iteration.
In the table μ̂ refers to the solution.

3.2. A fiber optics problem. The nonlinear Rayleigh quotient algorithm and
the Newton approach were also applied to a more realistic problem that was posed
by Lenahan and Friedrichsen [10] for m = 1 involving a core region of silicon dioxide
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Table 3.2

The course of the Picard iteration, the nonlinear Rayleigh quotient, and the Newton approach
with z = .081 in (3.1).

Picard iteration Nonlinear Rayleigh Newton
iterate inner iterate inner derived inner

iterations iterations eigenvalue iterations

.6770570×10−3 5 1.0 1 .6770570×10−3 5

.2831247×10−3 11 .1 1 .3187768×10−3 3

.3294611×10−3 3 .01 1 .3229664×10−3 3

.3219722×10−3 3 .8701964×10−4 1 .3229683×10−3 2

.3231226×10−3 2 .3682030×10−3 1

.3229445×10−3 2 .3161693×10−3 1

.3229720×10−3 2 .3240255×10−3 1

.3229677×10−3 7 .3228049×10−3 1

.3229684×10−3 2 .3229936×10−3 1

.3229683×10−3 4 .3229644×10−3 1

.3229683×10−3 1 .3229689×10−3 1
.3229682×10−3 1
.3229683×10−3 1
.3229683×10−3 1

Table 3.3

Rates of convergence with z = .081.

Picard iteration Nonlinear Rayleigh

(μk − μ̂)/(μk−1 − μ̂) (μk − μ̂)/(μk−1 − μ̂)
−.113 .100
−.163 .097
−.153 −.024
−.155 −.192
−.154 −.150
−.155 −.155
−.162 −.155
−.167 −.155

−.154
−.154
−.167

doped with germanium surrounded by a region of pure silicon dioxide. The index
profile for the core region had the form

η(r, ω) = e(ω) + C(r)h(ω, sign(C(r)),(3.3)

where e(ω)is the index of pure silicon dioxide, C(r) denotes the dopant concentration,
and h is a function of the Sellmeier coefficients [5] at ω and the reference frequency.
We started with an example where the radius of the fiber Rf and the radius of the
core Rc satisfied the relation Rf = 6Rc and C(r) was nonnegative and defined by

C(r) =

{
((1 − 2δ(r/Rc)

α)/(1 − 2δ))1/2 − 1), 0 ≤ r ≤ Rc,
0, r > Rc.

(3.4)

We solved (3.4) for several values of λ = 2π × 4.0/(Rcω), δ, and α. In an opti-
mization problem one may wish to vary α and δ and solve the eigenvalue problem for
about 20 values of λ. A uniform grid was used in the finite element discretization and
Rc was set at 100 units and Rf at 600 units. The matrix eigenvalue problem derived
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Table 3.4

Inner iteration count for the nonlinear Rayleigh quotient method and the Newton approach on
(3.4).

λ α δ eigenvalue nonlinear RQI Newton

0.85 25 .003 2.636370×10−4 6 7
1.1 25 .003 4.216316×10−6 10 14
0.85 20 .003 2.525251×10−4 6 7
1.1 20 .003 1.110249×10−6 14 15
0.85 25 .004 5.486164×10−4 5 6
1.1 25 .004 1.046444×10−4 5 8

Table 3.5

Inner iteration count for the nonlinear Rayleigh quotient method and the Newton approach on
the augmented model with λ = .85, α = 25, and δ = .003.

ρ σ eigenvalues nonlinear RQI Newton

−0.01 0.005 1.312023×10−3 6 7
2.824626×10−5 10 19

−0.008 0.005 1.319503×10−3 6 7
4.442786×10−5 16 20
4.807390×10−6 4 7

−0.01 0.008 2.366140×10−3 7 8
7.768107×10−4 17 18

−0.01 0.001 5.740407×10−5 11 15

from this problem involved a tridiagional matrix whose diagonal elements, ai,i, were
given by

ai,i =

⎧⎨
⎩

−2 + ω2(η2 − e(ω)2) − (1/i)2, 1 ≤ i ≤ 100,
−2 − (1/i)2, 100 < i < 600,

−2 − (1/i)2 + (1 + .5/600) × 601.5/
√

(600) × (601), i = 600,

and for 1 ≤ i < 600

ai+1,i = ai,i+1 = (i + 1.5)/
√

(i) × (i + 1).(3.5)

For the values of λ, α, and δ given in Table 3.4, there was only one positive
eigenvalue. With the smaller eigenvalues both algorithms had trouble. For λ = .85,
we used the approximation e = 1.45291 and h = 1.44943 in (3.3). For λ = 1.1, we
used e = 1.4969 and h = 1.4201.

We then augmented the model in (3.4) with a layer of fluorine doped silicon
dioxide of constant concentration ρ and then a layer of germanium doped silicon
dioxide of constant concentration σ. Each layer had the same width as the core
region. We kept the same width of the fiber, used the same uniform finite element
discretization, and set the wavelength λ at .85, α = 25, and δ = .003. As we varied
the concentrations, the number of positive eigenvalues changed. For the fluorine layer
the dopant concentration was negative and h in (3.3) was 1.456475. In Table 3.5
the number of Rayleigh quotient iterations is given for several values of σ and ρ. In
general the nonlinear Rayleigh quotient seemed to be slightly faster than the Newton
technique but the differences were rather inconsequential.

Usually when an eigenvalue was not close to zero, the nonlinear Rayleigh quotient
algorithm required the same effort as the initial iteration of the Newton approach.
In the production code a polyalgorithm was formed that initially used the Rayleigh
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quotient algorithm, and if that did not work after a specified number of iterations, its
best approximation was used to determine an initial γ in the Newton procedure.

Because we were solving a sequence of eigenvalue problems in which there were
often only small changes in the matrix, good starting approximations for eigenvalues
and eigenvectors were usually available from previous problems.

4. Analytic derivatives. The function η in (1.1) is defined by a number of pa-
rameters pk, k = 1, 2 . . .K, giving the shape of the initial region and the concentration
and width of the various layers of the fiber. Often the parameters pk are requested

such that the dispersion ∂2β2

∂λ∂ω and the dispersion slope ∂3β2

∂λ∂ω2 have prescribed values
where ω = 2πc/λ for specific value of ω and m in (1.1). In a typical optimization
problem to find an optimal shape of η, one might have to supply the dispersion for
about 30 combinations of ω and m for each function and derivative evaluation. A
signal traveling down a fiber tends to spread out over various wavelengths. Tradi-
tionally, about every 40 kilometers the signal was restored electrically. The concept
of a dispersion compensating fiber for existing fiber is to splice in a small length of
fiber with negative dispersion that is specially created to restore the signal so that
electrical restoration is not needed. A fiber optics company might also wish to lay
new fiber which has zero dispersion.

If μ = β2, one needs first to solve (A + s(μ)ene
T
n )x = μx and then to determine

the dispersion, 1
2μ1/2

∂2μ
∂λ∂ω . Moreover, since ∂μ

∂λ = − ∂μ
∂ω

2πc
λ2 , ∂2μ

∂ω2 and ∂3μ
∂ω3 must be

computed to evaluate the dispersion and dispersion slope, respectively.
Let us use the shorthand A′, μ′, and x′ to denote the derivatives of the elements

of A, μ, and x with respect to ω, respectively. To simplify our notation let B =
(A + s(μ)ene

T
n ), φ = xT en, and σ = 1 − sμφ

2. The following lemma provides a
formula for μ′, and x′.

Lemma 4.1. One can express the derivative of μ with respect to ω as

μ′ = xTA′x/σ,(4.1)

and x′ satisfies x′Tx = 0 and

(μI −B)x′ = −(μI −B)′x.(4.2)

Proof. Differentiating the equation Bx = μx yields

((μI −A)′ − sμμ
′ene

T
n )x + (μI −B)x′ = 0,(4.3)

which, when multiplied by xT , implies xT (μI−A)′x− sμμ
′φ2 = 0. If x is chosen such

that xTx = 1, then

μ′ = xTA′x/σ.(4.4)

Because sμ is always negative, σ = 1 − sμφ
2 is never zero. From (4.3) and (4.1) one

gets (4.2). Unfortunately (μI −B) is singular, but if μ is not a multiple eigenvalue of
B, the vector x′ can be determined uniquely by using the condition x′Tx = 0.

Following the approach given in the proof of Lemma 4.1 it is shown in [8] that
the dispersion is given by − 2πc

λ2 μ′′, where

μ′′ = (xTA′′x + 2xTB′x′ + α)/σ,(4.5)

where α = sμμμ
′2φ2.
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Calculating the dispersion slope requires μ′′′. If ρ = φφ((s′′(μ)μ′2)′ + s′′(μ)μ′′μ′)
and φ′ = eTnx

′, then one can express μ′′′ as

μ′′′ = (xTA′′′x + 6xTB′′x′ + 6x′TB′x′ − 6μ′x′Tx′ + ρ)/σ.(4.6)

Since our aim is to determine the parameters in η that give a prescribed dispersion,
the derivatives of the dispersion with respect to these parameters are needed by most
optimizers. Let us use the convention that μk is the derivative of μ with respect to
the kth design parameter, Ak is the derivative of the A matrix with respect to the kth
design parameter, xk is the derivative of x with respect to its kth design parameter,
etc. Mimicking the proof of Lemma 4.1 suggests that if xTx = 1, then

μk = xTAkx/σ.(4.7)

It is shown in [8] that if θ contains all the terms in s(μ)′′kφ
2 except the one with

μ′′
k , then μ′′

k can be expressed several ways, including

μ′′
k = (xTA′′

kx + 2(xTB′′xk + xTB′
kx

′ + xTB′x′
k + xT

kB
′x′) + θ)/σ,(4.8)

where x′
k satisfies (μI − B)x′

k = −(μI − B)′kx − (μI − B)′xk − (μI − B)kx
′ and the

condition xTx′
k = −x′Txk, and by the equation

μ′′
k = (xTA′′

kx + 4xTB′
kx

′ + 2x′TBkx
′ + 2xTBkx

′′ + θ)/σ,(4.9)

where (μI −B)x′′ = −(μI −B)′′x− 2(μI −B)′x′ and xTx′′ = −x′Tx′.
The first formula for μ′′

k in (4.8) comes from differentiating (4.5) with respect to
the design parameter, but it can be the less efficient approach. The second formula
in (4.9) reverses the order of differentiation and comes from twice differentiating with
respect to ω the formula for μk in (4.7). The formula in (4.8) requires x, x′, and for
the kth design parameter xk and x′

k. For 20 design parameters one must solve for 42
vectors. The second formula for μ′′

k requires x, x′, x′′. Thus for 20 design parameters
the formula in (4.9) requires 3 vectors. Theoretically, (4.8) requires at least twice as
much work as (4.9).
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Abstract. We consider bivariate real valued polynomials orthogonal with respect to a posi-
tive linear functional. The lexicographical and reverse lexicographical orderings are used to order
the monomials. Recurrence formulas are derived between polynomials of different degrees. These
formulas link the orthogonal polynomials constructed using the lexicographical ordering with those
constructed using the reverse lexicographical ordering. Relations between the coefficients in the re-
currence formulas are established and used to give necessary and sufficient conditions for the existence
of a positive linear functional. Links to the theory of matrix orthogonal polynomials are developed as
well the consequences of a zero assumption on one of the coefficients in the the recurrence formulas.
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1. Introduction. Bivariate orthogonal polynomials have been investigated by
many authors. Special examples of these types of polynomials have arisen in studies
related to symmetry groups [3], [14], [20], as extensions of one variable polynomials
[5], [13], and as eigenfunctions of partial differential equations [12], [17], [11], [19] (see
also the references in [4]). The general theory of these polynomials can trace its origins
back to [10] and an excellent review of the theory can be found in [4] (see also [21]).
A major difficulty encountered in the theory of orthogonal polynomials of more than
one variable is which monomial ordering to use. Except for the special cases that have
arisen from the subject mentioned above, the preferred ordering is the total degree or-
dering which is the one set by Jackson [4]. For polynomials with the same total degree
the ordering is lexicographical. There is a good reason to use this ordering, which is
that if new orthogonal polynomials of higher degree are to be constructed, then their
orthogonality relations will not affect the relations governing the lower degree polyno-
mials. This can be seen especially in Xu’s vector formulation of the problem [22] (see
also [2], [6], and [15], [16]). However, in their work on the Fejér–Riesz factorization
problem, Geronimo and Woerdeman [8], [9] noticed that the most useful ordering was
the lexicographical ordering and reverse lexicographical ordering. Important in their
work were the relations of the orthogonal polynomials in these orderings. The reason
for this is that in these orderings the moment matrix is a structured matrix, i.e., it
is a block Toeplitz matrix where the blocks are themselves Toeplitz matrices. In the
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one variable case the connection between orthogonal polynomials and the Hankel or
Toeplitz matrices associated with them plays an important role in the theory. The
coefficients in the recurrence formulas for the orthogonal polynomials give a param-
eterization of positive definite Hankel or Toeplitz matrices. Furthermore, structured
matrices come up in a variety of engineering and physics problems and so the orthog-
onal polynomials associated with them need to be investigated. The aim of this paper
is to study orthogonal polynomials associated with positive definite block Hankel ma-
trices whose entries are also Hankel and to develop methods for constructing such
matrices. We proceed as follows. In section 2 we consider finite subspaces of mono-
mials of the form xiyj , 0 ≤ i ≤ 2n, 0 ≤ j ≤ 2m, and show the connection between
positive linear functionals defined on this space and positive doubly Hankel matrices,
i.e., block Hankel matrices whose blocks are Hankel matrices. These structured ma-
trices arise when using the lexicographical or reverse lexicographical ordering on the
monomials. We then introduce certain matrix orthogonal polynomials and show how
they give the Cholesky factors for the doubly Hankel matrix considered above. These
polynomials may be thought of as arising from a parameterized moment problem.
In section 3 we construct two variable orthogonal polynomials, where the monomi-
als are ordered according to the lexicographical ordering. When these polynomials
are organized into vector orthogonal polynomials they can be related to the matrix
orthogonal polynomials constructed previously. From this relation it is shown that
these vector polynomials are the minimizers of a certain quadratic functional. Using
the orthogonality relation, recurrence relations satisfied by the vector polynomials
and their counterparts in the reverse lexicographical ordering are derived and some
elementary properties of the matrices entering these recurrence relations are deduced.
Because of the size and shape of the coefficients in the recurrence formulas they must
be related. In section 4 we derive and examine these relations, and in section 5 a
number of Christoffel–Darboux-like formulas are derived. In section 6 we use the
relations between the coefficients derived in section 4 to develop an algorithm to con-
struct the coefficients in the recurrence formulas at a particular level, (n,m), say, in
terms of the coefficients at the previous levels plus a certain number of unknowns.
The collection of these unknowns is in one-to-one correspondence with the number
of moments needed to construct the vector polynomials up to level (n,m). This is
used in section 7 to construct a positive linear functional from the recurrence coeffi-
cients. The construction allows us to find necessary and sufficient conditions on the
recurrence coefficients for the existence of a positive linear functional which is in one
to one correspondence with the set of positive definite “doubly” Hankel matrices. In
the above construction an important role is played by a set of matrices that must be
contractions. In section 8 we explore the consequences of setting these contractive
matrices equal to zero and show that this condition characterizes product measures.
Finally in section 9 we give a numerical example for the case n = 2, m = 2, which
illustrates the above algorithm. We also present an example for which the moment
problem is not extendable.

2. Positive linear functionals and Hankel matrices. In this section we con-
sider moment matrices associated with the lexicographical ordering which is defined
by

(k, �) <lex (k1, �1) ⇔ k < k1 or (k = k1 and � < �1)

and the reverse lexicographical ordering defined by

(k, �) <revlex (k1, �1) ⇔ (�, k) <lex (�1, k1).
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Both of these orderings are linear orders and in addition satisfy

(k, �) < (m,n) ⇒ (k + p, � + q) < (m + p, n + q).

Note that none of these orderings respects the total degree. Denote
∏n,m

(x, y) as
the span{xiyj , 0 ≤ i ≤ n, 0 ≤ j ≤ m}. Let Ln,m be a linear functional defined on∏2n,2m

(x, y) by

Ln,m(xiyj) = hi,j .

We will call hi,j the (i, j) moment of Ln,m and Ln,m a moment functional. If we
form the (n+1)(m+1)× (n+1)(m+1) matrix Hn,m for Ln,m in the lexicographical
ordering then, as noted in the introduction, it has the special form

Hn,m =

⎡
⎢⎢⎢⎣

H0 H1 . .
.

Hn

H1 H2 Hn+1

. .
.

. .
.

. .
.

Hn Hn+1 . .
.

H2n

⎤
⎥⎥⎥⎦ ,(2.1)

where each Hi is a (m + 1) × (m + 1) matrix of the form

Hi =

⎡
⎢⎢⎢⎣

hi,0 hi1 . .
.

hi,m

hi1 hi2 . .
.

. .
.

. .
.

. .
.

hi,m . .
.

hi,2m

⎤
⎥⎥⎥⎦ , i = 0, . . . , 2n.(2.2)

Thus Hn,m is a block Hankel matrix where each block is a Hankel matrix so it has a
doubly Hankel structure. If the reverse lexicographical ordering is used in place of the
lexicographical ordering we obtain another moment matrix H̃n,m where the roles of
n and m are interchanged. We have the following useful lemmas, which characterize
doubly Hankel matrices. An analogous characterization of doubly Toeplitz matrices
was given in [9].

Lemma 2.1. Let H be a real square k×k matrix and H1 be the same as H except
with the first row and last column removed. Then H is a Hankel matrix if and only
if H = H� and H1 = H1�.

Proof. Recall that H = (hi,j) = (hi+j) characterizes a Hankel matrix. Thus the
necessary conditions of the lemma follow immediately. To prove the converse, note
that H = H� implies that hi,j = hj,i. Since H1 = (h1

i,j) = (hi+1,j), i = 1, . . . , k − 1,
j = 1, . . . , k − 1, the second condition implies that

hi+1,j = hj+1,i.

Thus hi+1,j = hi,j+1, which completes the result.
Lemma 2.2. Let H = (Hi,j), i = 1, . . . , k, j = 1, . . . , k, where each Hi,j is a real

m×m matrix. Then H is a doubly Hankel matrix if and only if H = H�, H1 = H1�,
and H2 = H2�. Here H1 is obtained from H by deleting the first block row and last
block column and H2 is obtained from H by removing the first row and last column
of each Hi,j.

Proof. Again the necessary conditions follow from the structure of H. To see
the converse, note that H� = H implies that Hi,j = H�

j,i so that Hi,i = H�
i,i. The
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condition on H1 shows that Hi+1,j = Hi,j+1. Thus H is block Hankel with each entry
being symmetric. The result now follows from Lemma 2.1.

Remark 2.3. The above results are true if the roles of the rows and columns are
interchanged.

We say that the moment functional Ln,m :
∏2n,2m → R is positive definite if

Ln,m(p2) > 0(2.3)

for all nonzero p ∈
∏n,m

. Likewise, the moment functional Ln,m :
∏2n,2m → R is

nonnegative definite if Ln,m(p2) ≥ 0 for every p ∈
∏n,m

. Note that it follows from a
simple quadratic form argument that Ln,m is positive definite or nonnegative definite
if and only if its moment matrix Hn,m is positive definite or nonnegative definite,
respectively.

We will say that L is positive definite or nonnegative definite if

L(p2) > 0 or L(p2) ≥ 0,

respectively, for all nonzero polynomials. Again these conditions are equivalent to the
moment matrices Hn,m being positive definite or nonnegative definite for all positive
integers n and m.

From the above remark we easily find the next lemma.
Lemma 2.4. Let Hn,m be a positive (nonnegative) definite (n + 1)(m + 1) ×

(n+1)(m+1) matrix given by (2.1) and (2.2). Then there is a positive (nonnegative)

moment functional Ln,m :
∏2n,2m

(x, y) → R associated with Hn,m given by

hi,j = Ln,m(xiyj), 0 ≤ i ≤ 2n, 0 ≤ j ≤ 2m.

If the positive moment functional Ln,m :
∏2n,2m → R is extended to two variable

polynomials with matrix coefficients in the obvious way, we can associate to it a
positive matrix function Lm :

∏n
m+1(x) ×

∏n
m+1(x) → Mm+1,m+1 defined by

Lm(P (x), Q(x)) = Ln,m(P (x, y) Q�(x, y)),(2.4)

where

P (x, y) = P (x)

⎡
⎢⎣

1
...

ym

⎤
⎥⎦ and Q(x, y) = Q(x)

⎡
⎢⎣

1
...

ym

⎤
⎥⎦ .

Here,
∏n

m+1(x) is the set of all (m + 1) × (m + 1) real valued matrix polynomials of
degree n or less and Mm,n is the space of m×n matrices. Because of the structure of
Hn,m we can associate to Lm matrix valued orthogonal polynomials in the following
manner. Let {Ri(x)}ni=0 and {Li(x)}ni=0 be (m + 1) × (m + 1) real valued matrix
polynomials given by

Ri(x) = Ri,ix
i + Ri,i−1x

i−1 + · · · , i = 0, . . . , n,(2.5)

and

Li(x) = Li,ix
i + Li,i−1x

i−1 + · · · , i = 0, . . . , n,(2.6)
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satisfying

Lm(R�
i , R

�
j ) = δijIm+1(2.7)

and

Lm(Li, Lj) = δijIm+1,(2.8)

respectively, where Im+1 denotes the (m + 1) × (m + 1) identity matrix. The above
relations uniquely determine the sequences {Ri}ni=0 and {Li}ni=0 up to a unitary factor
and we fix this factor by requiring Ri,i to be an upper triangular matrix with positive
diagonal entries and Li,i to be a lower triangular matrix also with positive diagonal
entries. From the defining equations (2.7) and (2.8) it follows that R�

i = Li hence we
will concentrate on Li. We write

Li(x) = [Li,0 Li,1 · · · Li,i 0 · · · 0]

⎡
⎢⎢⎢⎣

Im+1

xIm+1

...
xnIm+1

⎤
⎥⎥⎥⎦(2.9)

and

Ln(x) =

⎡
⎢⎢⎢⎣

L0(x)
L1(x)

...
Ln(x)

⎤
⎥⎥⎥⎦ = L

⎡
⎢⎢⎢⎣

Im+1

xIm+1

...
xnIm+1

⎤
⎥⎥⎥⎦ ,(2.10)

where

L =

⎡
⎢⎢⎢⎣

L0,0 0 · · · 0
L1,0 L1,1 · · · 0

...
. . .

Ln,0 · · · Ln,n

⎤
⎥⎥⎥⎦ .(2.11)

By lower A (respectively, upper B) Cholesky factor of a positive definite matrix M
we mean

M = AA� = BB�,(2.12)

where A is a lower triangular matrix with positive diagonal elements and B is an
upper triangular matrix with positive diagonal elements. With the above we have the
following lemma.

Lemma 2.5. With the above normalization, L� is the upper Cholesky factor of
H−1

n,m.
Proof. Note that (2.8) implies that

I = Lm(Ln, Ln) = LLm

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

Im+1

xIm+1

...
xnIm+1

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

Im+1

xIm+1

...
xnIm+1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠L� = LHn,mL�,
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where I is the (n + 1)(m + 1) × (n + 1)(m + 1) identity matrix. Thus

H−1
n,m = L�L.

From this formula and the fact that L is upper triangular we see that L�
n,n is

the upper Cholesky factor of [0, . . . , Im+1]H
−1
n,m [0, . . . , Im+1]

�. Hence from (2.11)
we find

Ln(x) =
[
0, 0, . . . , 0, (L�

n,n)−1
]
H−1

n,m[Im+1, xIm+1, . . . , x
nIm+1]

�.(2.13)

The theory of matrix orthogonal polynomials [1], [7], [18] can be applied to obtain
the recurrence formula

xLi(x) = Ai+1,mLi+1(x) + Bi,mLi(x) + A�
i,mLi−1(x), i = 0, . . . , n− 1,

L−1 = 0,
(2.14)

where

Ai+1,m = Lm(xLi, Li+1) = Li,iL
−1
i+1,i+1(2.15)

and

Bi,m = Lm(xLi, Li).(2.16)

The above equations show that Bi,m is an (m + 1) × (m + 1) real symmetric matrix
and Ai,m is an (m + 1) × (m + 1) real lower triangular matrix.

Routine manipulations of (2.14) using the fact that Bn,m is self-adjoint give

L�
i (x1)Ai+1,mLi+1(x) − L�

i+1(x1)A
�
i+1,mLi(x)

= (x− x1)L
�
i (x1)Li(x) + L�

i−1(x1)Ai,mLi(x) − L�
i (x1)A

�
i,mLi−1(x),(2.17)

and iteration of this formula to i = 0 yields the important Christoffel–Darboux for-
mula.

We note that the same results hold for the reverse lexicographical ordering with
x replaced by y and the roles of n and m interchanged.

As in the scalar case, matrix orthogonal polynomials satisfy a minimization prin-
ciple [7]. Let sym Rm+1 be the space of (m + 1) × (m + 1) real symmetric matrices
and let L :

∏n
m+1 → sym Rm+1 be given by

L(Y ) = Lm(Y, Y ) − 2sym Yn.(2.18)

Here

Y (x) = Ynx
n + · · · + Y0 = [Y0, Y1, . . . , Yn][Im+1, xIm+1, . . . , x

nIm+1]
�

and

sym Yn =
Yn + Y �

n

2
.

The equation (2.18) can be evaluated as

L(Y (x)) = [Y0, Y1, . . . , Yn]Hn,m[Y0, Y1, . . . , Yn]� − 2sym Yn.



124 A. DELGADO, J. GERONIMO, P. ILIEV, AND F. MARCELLÁN

Set

X = [Y0, Y1, . . . , Yn]H1/2
n,m − VnH

−1/2
n,m ,

where any square root of Hn,m may be used and where Vn = [0, 0, . . . , Im+1]. Then
(2.18) becomes

L(Y ) = XX� − VnH
−1
n,mV �

n .(2.19)

Thus there is a unique W ∈
∏n

m+1, corresponding to X = 0 given by

W (x) = VnH
−1
n,m[Im+1, xIm+1, . . . , x

nIm+1]
�,(2.20)

that minimizes L in the sense that

L(W ) ≤ L(Y )(2.21)

for all Y ∈
∏n

m+1. From formula (2.13) we find

Ln(x) = (L�
n,n)−1W (x).(2.22)

3. Lexicographic order and orthogonal polynomials. In this section we
examine the properties of two variable orthogonal polynomials where the monomial
ordering is either the lexicographical or reverse lexicographical. Given a positive
definite linear functional LN,M :

∏2N,2M → R we perform the Gram–Schmidt pro-
cedure using the lexicographical ordering and define the orthonormal polynomials
pln,m(x, y), 0 ≤ n ≤ N, 0 ≤ m ≤ M, 0 ≤ l ≤ m, by the equations

LN,M (pln,m, xiyj) = 0, 0 ≤ i < n and 0 ≤ j ≤ m or i = n and 0 ≤ j < l,

LN,M (pln,m, pln,m) = 1,
(3.1)

and

pln,m(x, y) = kn,ln,m,lx
nyl +

∑
(i,j)<lex(n,l)

ki,jn,m,lx
iyj .(3.2)

With the convention kn,ln,m,l > 0, the above equations uniquely specify pln,m. Polynomi-
als orthonormal with respect to LN,M but using the reverse lexicographical ordering
will be denoted by p̃ln,m. They are uniquely determined by the above relations with
the roles of n and m interchanged.

Set

Pn,m =

⎡
⎢⎢⎢⎣

p0
n,m

p1
n,m
...

pmn,m

⎤
⎥⎥⎥⎦ = Kn,m

⎡
⎢⎢⎢⎣

1
y
...

xnym

⎤
⎥⎥⎥⎦ ,(3.3)

where the (m + 1) × [(n + 1)(m + 1)] matrix Kn,m is given by

Kn,m =

⎡
⎢⎢⎢⎢⎣

k0,0
n,m,0 k0,1

n,m,0 · · · kn,0n,m,0 0 · · ·

k0,0
n,m,1 k0,1

n,m,1 · · · kn,0n,m,1 kn,1n,m,1

. . .
...

...
. . .

. . .
. . .

. . .

k0,0
n,m,m k0,1

n,m · · · · · · · · · kn,mn,m,m

⎤
⎥⎥⎥⎥⎦
.(3.4)
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As indicated above denote

P̃n,m =

⎡
⎢⎢⎢⎣

p̃0
n,m

p̃1
n,m
...

p̃nn,m

⎤
⎥⎥⎥⎦ = K̃n,m

⎡
⎢⎢⎢⎣

1
x
...

xnym

⎤
⎥⎥⎥⎦ ,(3.5)

where the (n + 1) × [(n + 1)(m + 1)] matrix K̃n,m is given similarly to (3.4) with the
roles of n and m interchanged. In order to find recurrence formulas for the vector
polynomials Pn,m we introduce the inner product

〈X,Y 〉 = LN,M (XY �).(3.6)

Let
∏(n,m)

(k) be the vector space of k dimensional vectors with entries in
∏n,m

(x, y).

Utilizing the orthogonality relations (3.1) we see as in the next lemma.

Lemma 3.1. Suppose P ∈
∏(n,m)

(k) . If P satisfies the orthogonality relations,

〈P, xiyj〉 = 0, 0 ≤ i < n, 0 ≤ j ≤ m,(3.7)

then P = CPn,m, where C is an k×(m+1) matrix. If k = m+1, C is lower triangular
with positive diagonal entries, and 〈P,P〉 = Im+1, then C = Im+1.

Likewise we have the next lemma.

Lemma 3.2. Suppose P̃ ∈
∏(n,m)

(k) . If P̃ satisfies the orthogonality relations,

〈P̃, xiyj〉 = 0, 0 ≤ i ≤ n, 0 ≤ j < m,(3.8)

then P̃ = CP̃n,m, where C is an k× (n+1) matrix. If k = n+1, C is lower triangular

with positive diagonal entries, and 〈P̃, P̃〉 = In+1, then C = In+1.

The discussion above allows us to make contact with the matrix orthogonal poly-
nomials introduced in section 2.

Lemma 3.3. Let Pn,m be given by (3.3). Then

Pn,m = Ln(x)[1, y, y2, . . . , ym]�(3.9)

and

⎡
⎢⎢⎢⎣

P0,m(x, y)
P1,m(x, y)

...
Pn,m(x, y)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

L0(x)
L1(x)

...
Ln(x)

⎤
⎥⎥⎥⎦ [1, y, . . . , ym]� = L

⎡
⎢⎢⎢⎣

Im+1

xIm+1

...
xnIm+1

⎤
⎥⎥⎥⎦ [1, y, . . . , ym]�.(3.10)

Proof. If we substitute the equation

Pn,m = L̂n(x)[1 · · · ym]� =
∑
i

L̂n,ix
i[1 · · · ym]�

into (3.7), where L̂n(x) is some (m+ 1)× (m+ 1) matrix polynomial of degree n, we
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find, for j = 0, . . . , n− 1,

0 =

〈
Pn,m, xj

⎡
⎢⎣

1
...

ym

⎤
⎥⎦

〉
=

n∑
i=0

L̂n,i

〈
xi

⎡
⎢⎣

1
...

ym

⎤
⎥⎦ , xj

⎡
⎢⎣

1
...

ym

⎤
⎥⎦

〉

=

n∑
i=1

L̂n,i

⎡
⎢⎣

LNM (xi+j) · · · LNM (xi+jym)
...

...
LNM (xi+jym) · · · LNM (xi+jy2m)

⎤
⎥⎦

=

n∑
i=1

L̂n,iLm(xi, xj) = Lm(L̂n(x), xj).

Similarly,

〈Pn,m, Pn,m〉 = Im+1 = Lm〈L̂n(x), L̂n(x)〉.

This coupled with (2.8) and the fact that (3.3) implies that L̂n,m is lower triangular
with positive diagonal entries, gives the result.

As mentioned earlier, analogous formulas exist for orthogonal polynomials in the
reverse lexicographical ordering with the roles of n and m interchanged.

Theorem 3.4. Given {Pn,m} and {P̃n,m}, 0 ≤ n ≤ N , 0 ≤ m ≤ M , the following
recurrence formulas hold:

xPn,m = An+1,mPn+1,m + Bn,mPn,m + A�
n,mPn−1,m,(3.11)

Γn,mPn,m = Pn,m−1 − Kn,mP̃n−1,m,(3.12)

J1
n,mPn,m = yPn,m−1 + J2

n,mP̃n−1,m + J3
n,mP̃n−1,m−1,(3.13)

Pn,m = In,mP̃n,m + Γ�
n,mPn,m−1,(3.14)

where

An,m = 〈xPn−1,m,Pn,m〉 ∈ Mm+1,m+1,(3.15)

Bn,m = 〈xPn,m,Pn,m〉 ∈ Mm+1,m+1,(3.16)

J1
n,m = 〈yPn,m−1,Pn,m〉 ∈ Mm,m+1,(3.17)

J2
n,m = −〈yPn,m−1, P̃n−1,m〉 ∈ Mm,n,(3.18)

J3
n,m = −〈yPn,m−1, P̃n−1,m−1〉 ∈ Mm,n,(3.19)

Γn,m = 〈Pn,m−1,Pn,m〉 ∈ Mm,m+1,(3.20)

Kn,m = 〈Pn,m−1, P̃n−1,m〉 ∈ Mm,n,(3.21)

In,m = 〈Pn,m, P̃n,m〉 ∈ Mm+1,n+1.(3.22)

Similar formulas hold for P̃n,m(x, y) and will be denoted by (3̃.11), (3̃.12), etc.
Proof. (3.11) follows from Lemma 3.3 and (2.14). To prove (3.12) note that

because of the linear independence of the entries of Pn,m, there is an m × (m + 1)

matrix Γn,m such that Γn,mPn,m − Pn,m−1 ∈
∏(n−1,m)

(m) (x, y). Furthermore,

〈Γn,mPn,m − Pn,m−1, x
iyj〉 = 0, 0 ≤ i ≤ n− 1 0 ≤ j ≤ m− 1.
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Thus Lemma 3.2 implies that

ΓnmPn,m − Pn,m−1 = Kn,mP̃n−1,m.

The remaining recurrence formulas follow in a similar manner.
Remark 3.5. As indicated in the proof, formula (3.11) follows from the theory of

matrix orthogonal polynomials and so allows us to move along a strip of size m + 1.
This formula does not mix the polynomials in the two orderings. However, to increase
m by one for polynomials constructed in the lexicographical ordering, the remaining
relations show that orthogonal polynomials in the reverse lexicographical ordering
must be used.

Remark 3.6. We saw in the previous section that An,m is a lower triangular matrix
with positive entries on the main diagonal, and Bn,m is a symmetric matrix. From the
orthogonality relations it follows immediately that (J1

n,m)ij = 〈ypi−1
n,m−1, p

j−1
n,m〉 = 0 if

i + 1 < j, and (J1
n,m)i,i+1 > 0. Thus J1

n,m has the form

J1
n,m =

⎡
⎢⎢⎢⎣

(J1
n,m)1,1 (J1

n,m)1,2 0 0 0
(J1

n,m)2,1 (J1
n,m)2,2 (J1

n,m)2,3 0 0
...

...
...

. . .
...

(J1
n,m)m,1 (J1

n,m)m,2 (J1
n,m)m,3 · · · (J1

n,m)m,m+1

⎤
⎥⎥⎥⎦ .

Similarly, (Γn,m)ij = 〈pi−1
n,m−1, p

j−1
n,m〉 = 0 if i < j, and (Γn,m)i,i > 0, i.e., Γn,m has the

form

Γn,m =

⎡
⎢⎢⎢⎣

(Γn,m)11 0 · · · 0 0
(Γn,m)21 (Γn,m)22 · · · 0 0

...
...

. . .
...

...
(Γn,m)m1 (Γn,m)m2 · · · (Γn,m)mm 0

⎤
⎥⎥⎥⎦ .

Finally notice that pmn,m = p̃nn,m and therefore (In,m)m+1,n+1 = 1, (In,m)m+1,j = 0
for j ≤ n and (In,m)i,n+1 = 0 for i ≤ m, i.e.,

In,m =

⎡
⎢⎢⎢⎣

∗ ∗ · · · ∗ 0
...

...
... 0

∗ ∗ · · · ∗ 0
0 0 · · · 0 1

⎤
⎥⎥⎥⎦ .

Using the orthogonality relations and Theorem 3.4 one can verify the following.
Proposition 3.7. The following relations hold:

K̃n,m = K�
n,m,(3.23)

Kn,mK�
n,m + Γn,mΓ�

n,m = Im,(3.24)

J3
n,m = −Kn,mÃ�

n−1,m,(3.25)

Ĩn,m = I�n,m,(3.26)

In,mI�n,m + Γ�
n,mΓn,m = Im+1.(3.27)

Proof. We prove only (3.25) since the others are obvious from their defining
relations. Beginning with (3.19) we find

J3
n,m = −〈Pn,m−1, yP̃n−1,m−1〉.
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The result now follows by using the counterpart of (3.11) for P̃ and the defining
equation for Kn,m.

The function L given by (2.18) can be used to show that Pn,m satisfies a certain

minimization condition. Define L̂ :
∏(n,m)

(m+1) → sym Rm+1 by

L̂(P ) = 〈P, P 〉 − 2sym Kn,(3.28)

where P ∈
∏(n,m)

(m+1) is written as

P (x, y) = Knx
n

⎡
⎢⎣

1
...

ym

⎤
⎥⎦ + R(x, y)(3.29)

with R ∈
∏(n−1,m)

(m+1) . We find,

Lemma 3.8. The polynomial P̂n,m(x, y) = L−1
n,nPn,m(x, y) is the unique minimizer

of L̂ in the sense of (2.21).
Proof. Write P as

P (x, y) =
n∑

i=0

Kix
i

⎡
⎢⎣

1
...

ym

⎤
⎥⎦ .

Since

〈
xi

⎡
⎢⎣

1
...

ym

⎤
⎥⎦ , xj

⎡
⎢⎣

1
...

ym

⎤
⎥⎦

〉
=

⎡
⎢⎣

LN,M (xi, xj) · · · LN,M (xi, xjym)
...

...
LN,M (xiym, xj) · · · LN,M (xiym, xjym)

⎤
⎥⎦= Lm(xi, xj),

we see that L̂(P ) can be written as L̂(P ) = L(K), where K(x) = Knx
n+ · · · ∈

∏n
m+1.

The result now follows from (2.22) and Lemma 3.3.

4. Relations. As is evident from the previous section, there are relations be-
tween the various coefficients in (3.11)–(3.14) and their (3̃.11)–(3̃.14) analogues. In
this section we exhibit these relations.

Lemma 4.1 (relations for Kn,m).

Γn,m−1Kn,mÃ�
n−1,m = −J2

n,m−1 − Kn,m−1B̃n−1,m−1,(4.1)

An,m−1Kn,mΓ̃�
n−1,m = −J̃2�

n−1,m −Bn−1,m−1Kn−1,m.(4.2)

Proof. We have

Kn,mÃ�
n−1,m = 〈Pn,m−1, Ãn−1,mP̃n−1,m〉

= 〈Pn,m−1, yP̃n−1,m−1 − B̃n−1,m−1P̃n−1,m−1 − Ã�
n−1,m−1P̃n−1,m−2〉

= 〈Pn,m−1, yP̃n−1,m−1〉.

Thus,

Γn,m−1Kn,mÃ�
n−1,m = 〈Γn,m−1Pn,m−1, yP̃n−1,m−1〉

= 〈Pn,m−2 − Kn,m−1P̃n−1,m−1, yP̃n−1,m−1〉
= −J2

n,m−1 − Kn,m−1B̃n−1,m−1,
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which completes the proof of (4.1). Writing (4.1) for K̃n,m and using (3.23) we obtain
(4.2).

Lemma 4.2 (relations for J2
n,m).

Γn,m−1J
2
n,m = −J1

n,m−1Kn,m + Kn,m−1Ãn−1,m,(4.3)

−An,m−1J
2
n,mΓ̃�

n−1,m = J1
n−1,mA�

n−1,mIn−2,m − J2
n−1,mΓ̃n−1,mJ̃1�

n−1,m

+ J2
n−1,mK�

n−1,mJ̃2�
n−1,m + J3

n−1,mI�n−2,m−1J̃
3�
n−1,m

+ Bn−1,m−1J
2
n−1,m −A�

n−1,m−1In−2,m−1Ãn−2,m

+ An,m−1J
3
n,mI�n−1,m−1Kn−1,m.(4.4)

Proof. The first equation can be derived by multiplying (3.18) on the left by
Γn,m−1 then using (3̃.15) to obtain

Γn,m−1J
2
n,m = −〈yPn,m−2, P̃n−1,m〉 + Kn,m−1Ãn−1,m.

Eliminating yPn,m−2 using (3.13), then using the orthogonality of the polynomials
and (3.19) yields (4.3).

To derive (4.4) notice that

−An,m−1J
2
n,mΓ̃�

n−1,m = An,m−1〈yPn,m−1, Γ̃n−1,mP̃n−1,m〉
= An,m−1〈yPn,m−1, P̃n−2,m〉

−An,m−1〈yPn,m−1,Pn−1,m−1〉Kn−1,m.

(4.5)

Using (3.11) in the first term on the right-hand side of (4.5) gives

An,m−1〈yPn,m−1, P̃n−2,m〉 = 〈xPn−1,m−1, yP̃n−2,m〉 −Bn−1,m−1J
2
n−1,m

−A�
n−1,m−1〈Pn−2,m−1, yP̃n−2,m〉.(4.6)

Interchanging the positions of x and y in the first term on the right-hand side of (4.6),
then using (3.13) and its (3̃.13) analogue yield

〈xPn−1,m−1, yP̃n−2,m〉 = J1
n−1,m(In−1,mJ̃1�

n−1,m − Γ�
n−1,mJ̃2�

n−1,m)

− J2
n−1,mΓ̃n−1,mJ̃1�

n−1,m + J2
n−1,mK�

n−1,mJ̃2�
n−1,m + J3

n−1,mI�n−2,m−1J̃
3�
n−1,m,

where (3.21), (3.22), and their (3̃.21), (3̃.22) analogues have been used.
Substituting (3.26) as well as the transpose of (4̃.18) into the above equation

yields

〈xPn−1,m−1, yP̃n−2,m〉 = J1
n−1,mA�

n−1,mIn−2,m − J2
n−1,mΓ̃n−1,mJ̃1�

n−1,m

+ J2
n−1,mK�

n−1,mJ̃2�
n−1,m + J3

n−1,mI�n−2,m−1J̃
3�
n−1,m.(4.7)

The last term in (4.6) can be computed using (3̃.11) and (3.22), which gives

〈Pn−2,m−1, yP̃n−2,m〉 = In−2,m−1Ãn−2,m.(4.8)

Substituting (4.7) and (4.8) into (4.6) we see that the first term of (4.5) is

An,m−1〈yPn,m−1,P̃n−2,m〉 = J1
n−1,mA�

n−1,mIn−2,m − J2
n−1,mΓ̃n−1,mJ̃1�

n−1,m

+ J2
n−1,mK�

n−1,mJ̃2�
n−1,m + J3

n−1,mI�n−2,m−1J̃
3�
n−1,m

+ Bn−1,m−1J
2
n−1,m −A�

n−1,m−1In−2,m−1Ãn−2,m.(4.9)
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Substituting (3.13) in the second term on the right-hand side of (4.5) and using the
equations

〈Pn,m−1,Pn−1,m〉 = Kn,mI�n−1,m(4.10)

and

〈Pn,m−1, P̃n−2,m〉 = Kn,mΓ̃�
n−1,m,(4.11)

which follow easily from (3.12), yields

An,m−1〈yPn,m−1,Pn−1,m−1〉Kn−1,m

= An,m−1Kn,mI�n−1,mJ1�
n−1,mKn−1,m −An,m−1Kn,mΓ̃�

n−1,mJ2�
n−1,mKn−1,m

= An,m−1Kn,m(I�n−1,mJ1�
n−1,m − Γ̃�

n−1,mJ2�
n−1,m)Kn−1,m

= −An,m−1J
3
n,mI�n−1,m−1Kn−1,m.

(4.12)

In the last equality we used (3.25) and (4.18). Finally, combining (4.9) and (4.12) we
obtain (4.4).

Lemma 4.3 (relations for J1
n,m).

Γn,m−1J
1
n,m = J1

n,m−1Γn,m,(4.13)

J1
n,mΓ�

n,mΓ�
n,m−1 = J1�

n,m−1 + J3
n,mK�

n,m−1 + J2
n,mK�

n,mΓ�
n,m−1.(4.14)

Proof. (4.13) can be derived by multiplying (3.17) by Γn,m−1 then using (3.13).
For the second equality we multiply (3.17) by Γ�

n,m then use (3.12) to obtain

J1
n,mΓ�

n,m = 〈yPn,m−1,Γn,mPn,m〉 = 〈yPn,m−1,Pn,m−1〉 + J2
n,mK�

n,m.

Multiplying on the right of the above formula by Γ�
n,m−1, then using (3.12) followed

by (3.13) twice, leads to the result.
Lemma 4.4 (relations for An,m).

Γn−1,mAn,m = An,m−1Γn,m,(4.15)

J1
n−1,mAn,m = An,m−1J

1
n,m.(4.16)

Proof. First we compute

〈Pn−1,m−1, xPn,m〉 = 〈Pn−1,m−1,Pn−1,m〉An,m = Γn−1,mAn,m.

On the other hand,

〈Pn−1,m−1, xPn,m〉 = An,m−1Γn,m.

This gives (4.15). If we use (3.17) with n changed to n−1, then multiply on the right
by An,m and use (3.11), we find

J1
n−1,mAn,m = 〈xPn−1,m−1, yPn,m〉.

Now eliminating xPn−1,m−1 using (3.11), then applying (3.17), yields (4.16).
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Lemma 4.5 (relations for In,m).

Γn,mIn,m = −Kn,mΓ̃n,m,(4.17)

J1
n,mIn,m = In,m−1Ãn,m + J2

n,mΓ̃n,m.(4.18)

Proof. The first relation follows in a straightforward manner by multiplying (3.22)
on the left by Γn,m and then using (3.12).

For (4.18) we first compute

In,m−1Ãn,m = 〈Pn,m−1, yP̃n,m〉,

which follows by using (3̃.11) to eliminate yP̃n,m. Next, in the above equation use
(3.17) to obtain

〈yPn,m−1, P̃n,m〉 = J1
n,mIn,m − J2

n,mΓ̃n,m,

which gives (4.18).
Lemma 4.6 (relations for Bn−1,m).

Γn−1,mBn−1,m = − Kn−1,mI �
n−2,mAn−1,m + Bn−1,m−1Γn−1,m

+ An,m−1Kn,mI �
n−1,m,(4.19)

J1
n−1,mBn−1,m = Bn−1,m−1J

1
n−1,m + J2

n−1,mI �
n−2,mAn−1,m

+ J3
n−1,mI �

n−2,m−1An−1,m−1Γn−1,m −An,m−1J
2
n,mI �

n−1,m

−An,m−1J
3
n,mI �

n−1,m−1Γn−1,m.(4.20)

Proof. We begin by multiplying (3.20) on the left by Bn−1,m and then using
(3.11) to obtain

Γn−1,mBn−1,m = 〈Pn−1,m−1, xPn−1,m〉 − 〈Pn−1,m−1,Pn−2,m〉An−1,m.

We see from (4.10) that the second term on the right-hand side of the above formula
gives the first term on the right-hand side in (4.19). We can compute the first term
on the right-hand side of the above formula by eliminating xPn−1,m using (3.11) to
find

〈Pn−1,m−1, xPn−1,m〉 = An,m−1〈Pn,m−1,Pn−1,m〉 + Bn−1,m−1〈Pn−1,m−1,Pn−1,m〉
= An,m−1Kn,mI�n−1,m + Bn−1,m−1Γn−1,m,

where in the last equality we used again (4.10). This completes the proof of (4.19).
Relation (4.20) can be derived as follows. First we multiply (3.16) with n reduced by
one on the left by J1

n−1,m to obtain

J1
n−1,mBn−1,m = 〈yPn−1,m−1, xPn−1,m〉 + J2

n−1,m〈P̃n−2,m, xPn−1,m〉(4.21)

+ J3
n−1,m〈P̃n−2,m−1, xPn−1,m〉.

Next we compute the three terms on the right-hand side of the above formula. For
the first term we eliminate xPn−1,m−1 using (3.11) to find

〈yPn−1,m−1, xPn−1,m〉 = An,m−1〈Pn,m−1, yPn−1,m〉 + Bn−1,m−1J
1
n−1,m.
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The term 〈Pn,m−1, yPn−1,m〉 can be computed using (3.13) so that

〈yPn−1,m−1, xPn−1,m〉 = −An,m−1J
2
n,mI�n−1,m −An,m−1J

3
n,mĨn−1,m−1Γn−1,m

+ Bn−1,m−1J
1
n−1,m.(4.22)

Next we compute the second term in (4.21) using (3.13) to obtain

〈P̃n−2,m, xPn−1,m〉 = J̃1
n−1,mI�n−1,m − J̃2

n−1,mΓn−1,m.

Using (4.18) for Ĩn−1,m and (3.26) we obtain the following formula for the second
term

J2
n−1,m〈P̃n−2,m, xPn−1,m〉 = J2

n−1,mI�n−2,mAn−1,m.(4.23)

Finally, the third term in (4.21) can be computed with the help of (3̃.13),

〈P̃n−2,m−1, xPn−1,m〉 = J̃1
n−1,m−1〈P̃n−1,m−1,Pn−1,m〉 − J̃2

n−1,m−1〈Pn−1,m−2,Pn−1,m〉.

Notice that

〈P̃n−1,m−1,Pn−1,m〉 = Ĩn−1,m−1Γn−1,m,

and using (3.14) for Pn−1,m, we get

〈Pn−1,m−2,Pn−1,m〉 = Γn−1,m−1Γn−1,m.

Thus we have

J3
n−1,m〈P̃n−2,m−1, xPn−1,m〉 = J3

n−1,mĨn−2,m−1An−1,m−1Γn−1,m,

where in the last equality we used again (4̃.18). Combining the above equation, (4.22),
and (4.23), we obtain (4.20).

Lemma 4.7 (relations for J̃1
n,m).

J̃1
n,m = I�n−1,mAn,mIn,m + I�n−1,mBn−1,mIn−1,mΓ̃n,m

+ I�n−1,mA�
n−1,mIn−2,mΓ̃n−1,mΓ̃n,m + Γ̃�

n−1,mJ̃1
n−1,mΓ̃n,m.

(4.24)

Proof. We begin by eliminating P̃n−1,m and P̃n,m in (3̃.17) using (3̃.14) and (3̃.13),

J̃1
n,m =I�n−1,m〈xPn−1,m, I�n,mPn,m + Γ̃�

n,mP̃n−1,m〉
+ Γ̃�

n−1,m〈J̃1
n−1,mP̃n−1,m − J̃2

n−1,mPn−1,m−1 − J̃3
n−1,mPn−2,m−1, P̃n,m〉,

which simplifies to

J̃1
n,m = I�n−1,mAn,mIn,m + I�n−1,m〈xPn−1,m, P̃n−1,m〉Γ̃n,m + Γ̃�

n−1,mJ̃1
n−1,mΓ̃n,m.

In the above equation, (3.15) and (3̃.20) have been used. Next use (3.11) to elim-
inate xPn−1,m. All terms can be evaluated using (3.15)–(3.22) except the term

〈Pn−2,m, P̃n−1,m〉, which can be evaluated by applying (3̃.14) to P̃n−1,m.
Similar arguments show the next lemma.
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Lemma 4.8 (relations for J̃2
n,m).

J̃2
n,m = − (I�n−1,mAn,mΓ�

n,m + I�n−1,mBn−1,mIn−1,mK�
n,m

+ I�n−1,mA�
n−1,mIn−2,mΓ̃n−1,mK�

n,m + Γ̃�
n−1,mJ̃1

n−1,mK�
n,m).

(4.25)

Lemma 4.9 (relations for Ãn,m).

Ãn,m = I�n,m−1J
1
n,mIn,m − I�n,m−1J

2
n,mΓ̃n,m + Γ̃�

n,m−1Ãn−1,mΓ̃n,m.(4.26)

Proof. From (3̃.15) we obtain

Ãn,m = I�n,m−1〈yPn,m−1, P̃n,m〉 + Γ̃�
n,m−1〈yP̃n−1,m−1, P̃n,m〉.

Eliminate yPn,m−1 using (3.13) and yP̃n−1,m−1 using (3̃.11) leads to the result.
Again in an analogous fashion, we have the next lemma.
Lemma 4.10 (relations for B̃n,m).

B̃n,m−1 = I�n,m−1Γn,mJ1�
n,mIn,m−1 − I�n,m−1Kn,mJ2�

n,mIn,m−1

(4.27)

− Γ̃�
n,m−1J

3�
n,mIn,m−1 − I�n,m−1J

3
n,mΓ̃n,m−1 + Γ̃�

n,m−1B̃n−1,m−1Γ̃n,m−1.

5. Christoffel–Darboux-like formulas. It is well known that the Christoffel–
Darboux formula plays an important role in the theory of orthogonal polynomials of
one variable. Using the connection between matrix orthogonal polynomials and two
variable orthogonal polynomials developed in section 3 we will present two variable
analogues of this celebrated formula.

Theorem 5.1 (Christoffel–Darboux formula).

P
�
n,m(x1, y1)An+1,mPn+1,m(x, y) − P

�
n+1,m(x1, y1)A

�
n+1,mPn,m(x, y)

x− x1

=

n∑
k=0

P
�
k,m(x1, y1)Pk,m(x, y)

=

m∑
j=0

P̃
�
n,j(x1, y1)P̃n,j(x, y).

Proof. The first equality follows from (3.11) and standard manipulations. The sec-
ond equality follows since both sums are reproducing kernels for the same
space.

An analogous result holds for the reverse lexicographical ordering. The above
Theorem also implies the next lemma.

Lemma 5.2.

(5.1)

P
�
n,m(x1, y1)An+1,mPn+1,m(x, y) − P

�
n+1,m(x1, y1)A

�
n+1,mPn,m(x, y)

= (x− x1)P̃
�
n,m(x1, y1)P̃n,m(x, y)

+ P
�
n,m−1(x1, y1)An+1,m−1Pn+1,m−1(x, y) − P

�
n+1,m−1(x1, y1)A

�
n+1,m−1Pn,m−1(x, y),
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and

P
�
n+1,m+1(x1, y1)Pn+1,m+1(x, y) − P

�
n+1,m(x1, y1)Pn+1,m(x, y)

= P̃
�
n+1,m+1(x1, y1)P̃n+1,m+1(x, y) − P̃

�
n,m+1(x1, y1)P̃n,m+1(x, y).(5.2)

Proof. To prove the first formula let

Zn,m(x, y) = [1, y, . . . , ym][Im+1, xIm+1, . . . , x
nIm+1],

and let Z̃n,m(x, y) be given by a similar formula with the roles of x and y, and n and
m interchanged. Then from the Christoffel–Darboux formula, Lemma 2.5, and (3.10)
we find

P
�
n,m(x1, y1)An+1,mPn+1,m(x, y) − P

�
n+1,m(x1, y1)A

�
n+1,mPn,m(x, y)

x− x1

= Zn,m(x1, y1)H
−1
n,mZn,m(x, y)� = Z̃n,m(x1, y1)H̃

−1
n,mZ̃n,m(x, y)�

= P̃
�
n,m(x1, y1)P̃n,m(x, y) + Z̃n,m−1(x1, y1)H̃

−1
n,m−1Z̃n,m−1(x, y)

�.

Switching back to the lexicographical ordering in the second term in the last equa-
tion implies the result. (5.2) can be obtained by using the equality of the sums in
Theorem 5.1 to find

P
�
n+1,m+1(x1, y1)Pn+1,m+1(x, y) −

m∑
j=0

P̃
�
n+1,j(x1, y1)P̃n+1,j(x, y)

= P̃
�
n+1,m+1(x1, y1)P̃n+1,m+1(x, y) −

n∑
j=0

P
�
j,m+1(x1, y1)Pj,m+1(x, y).

Switching to the lexicographical ordering in the sum on the left-hand side of the above
equation and reverse lexicographical ordering in the sum on the right-hand side then
extracting out the highest terms and using Theorem 5.1 gives the result.

Remark 5.3. The above equations can be derived from the recurrence formulas in
the previous sections. (5.2) follows easily from (3.12) and Proposition 3.7. However,
the derivation of (5.1) is rather tedious.

6. Algorithm. With the use of the relations derived in the previous section we
develop an algorithm that allows us to compute the coefficients in the recurrence
formulas at higher levels in terms of those at lower levels plus some indeterminates
that are equivalent to the moments (see Theorem 7.1). More precisely, at each level
(n,m) we construct the matrices Kn,m, Γn,m, J2

n,m, J1
n,m, An,m, In,m, Bn−1,m, Ãn,m,

J̃1
n,m, J̃2

n,m, B̃n,m−1 and the polynomials Pn,m(x, y) and P̃n,m(x, y) recursively, using
the matrices at levels (n − 1,m) and (n,m − 1). In order to construct the above
matrices we will have need of the m× (m + 1) matrix Um given by

Um = [Im|0] = [δi,j ] =

⎡
⎢⎢⎢⎣

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎦

and the m × m elementary matrix Em,m having just one nonzero entry at (m,m).
The matrix norm used in that and the remaining sections is the l2 norm.
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At level (0, 0) we have just one free parameter (corresponding to h0,0 = 〈1〉), at
level (n, 0) (resp., (0,m)) we have two new parameters corresponding to h2n−1,0 =
〈x2n−1〉 and h2n,0 = 〈x2n〉 (resp., h0,2m−1 = 〈y2m−1〉, and h0,2m = 〈y2m〉), and,
if n > 0 and m > 0, we have four new parameters corresponding to the mo-
ments h2n−1,2m−1 = 〈x2n−1y2m−1〉, h2n−1,2m = 〈x2n−1y2m〉, h2n,2m−1 = 〈x2ny2m−1〉,
h2n,2m = 〈x2ny2m〉.

Level(0,0). When n = m = 0 we simply put

P0,0(x, y) = P̃0,0(x, y) = s0,0,(6.1)

where s0,0 is the new parameter corresponding to the moment 〈1〉.

Level(n,0). When m = 0, Pn,0 = (p0
n,0) is just a scalar valued function in x and

clearly

P̃n,0 =

⎡
⎢⎢⎢⎣

p0
0,0

p0
1,0
...

p0
n,0

⎤
⎥⎥⎥⎦ , i.e., p̃kn,0 = p0

k,0.(6.2)

Thus In,0 = (0, 0, . . . , 0, 1) (1 × (n + 1) matrix).
To construct all other matrices at level (n, 0) from (n − 1, 0) we have two new

parameters, s2n−1,0 and s2n,0, corresponding to the moments 〈x2n−1〉 and 〈x2n〉.
We take An,0 = s2n,0 > 0 and Bn−1,0 = s2n−1,0. Then,

p0
n,0 = A−1

n,0(xp
0
n−1,0 −Bn−1,0p

0
n−1,0 −An−1,0p

0
n−2,0),(6.3)

and J̃1
n,0 is the tridiagonal matrix

J̃1
n,0 =

⎡
⎢⎢⎢⎢⎢⎣

B0,0 A1,0

A1,0 B1,0 A2,0

A2,0 B2,0 A3,0

. . .
. . .

. . .

An−1,0 Bn−1,0 An,0

⎤
⎥⎥⎥⎥⎥⎦
.

Level(0,m). In this case P̃0,m = (p̃0
0,m) is a scalar function in y and

P0,m =

⎡
⎢⎢⎢⎣

p̃0
0,0

p̃0
0,1
...

p̃0
0,m

⎤
⎥⎥⎥⎦ , i.e., pk0,m = p̃0

0,k.(6.4)

We have two new parameters, s0,2m−1 and s0,2m, corresponding to the moments
〈y2m−1〉 and 〈y2m〉.

Clearly Γ0,m = Um, I0,m is the (m + 1) × 1 matrix (0, 0, . . . , 0, 1)�.

We take Ã0,m = s0,2m > 0 and B̃0,m−1 = s2m−1,0. Then

p̃0
0,m = Ã−1

0,m(yp̃0
0,m−1 − B̃0,m−1p̃

0
0,m−1 − Ã0,m−1p̃

0
0,m−2)(6.5)
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and

J1
0,m =

⎡
⎢⎢⎢⎢⎢⎣

B̃0,0 Ã0,1

Ã0,1 B̃0,1 Ã0,2

Ã0,2 B̃0,2 Ã0,3

. . .
. . .

. . .

Ã0,m−1 B̃0,m−1 Ã0,m

⎤
⎥⎥⎥⎥⎥⎦
.

Level(n,m). If n ≥ 1 and m ≥ 1 we have four new parameters s2n−1,2m−1,
s2n−1,2m, s2n,2m−1, and s2n,2m, corresponding to the moments 〈x2n−1y2m−1〉,
〈x2n−1y2m〉, 〈x2ny2m−1〉, and 〈x2ny2m〉.

Computation of Kn,m. In Kn,m the only new entry is (Kn,m)m,n. (Everything
else can be recovered from the previous levels.) Indeed, if m > 1 we show below that
all rows except the last one can be obtained from (4.1). Notice that Γn,m−1Em,m = 0
and therefore

Γn,m−1 = Γn,m−1(U
�
m−1Um−1 + Em,m) = Γn,m−1U

�
m−1Um−1.

But we know that Γn,m−1U
�
m−1 is an invertible matrix, which allows us to rewrite

(4.1) as follows:

Um−1Kn,m = −(Γn,m−1U
�
m−1)

−1(J2
n,m−1 + Kn,m−1B̃n−1,m−1)Ã

�−1
n−1,m.

The matrix Um−1Kn,m is the (m− 1)×n matrix obtained from Kn,m by deleting the
last row.

Similarly, if n > 1 we can write

Γ̃n−1,m = Γ̃n−1,m(U�
n−1Un−1 + En,n) = Γ̃n−1,mU�

n−1Un−1,

i.e., Γ̃�
n−1,m = U�

n−1(Un−1Γ̃
�
n−1,m), and (4.2) can be rewritten as

Kn,mU�
n−1 = −A−1

n,m−1(J̃
2�
n−1,m + Bn−1,m−1Kn−1,m)(Un−1Γ̃

�
n−1,m)−1.

Thus the m× (n−1) matrix Kn,mU�
n−1, which is obtained from Kn,m by deleting the

last column, is known from the previous levels. This allows us to compute all entries
in the last row of Kn,m except (Kn,m)m,n. Finally we put (Kn,m)m,n = s2n−1,2m−1.
From the computation of Γn,m below we see that the parameters must be chosen so
that I − Kn,mK�

n,m is positive definite.

Computation of Γn,m. If ||Kn,m|| < 1, the matrix I − Kn,mK�
n,m is symmetric

and positive definite. Rewriting (3.24) as

I − Kn,mK�
n,m = (Γn,mU�

m)(Γn,mU�
m)�,

we see that Γn,mU�
m (which is Γn,m except the last zero column) is the lower-triangular

factor in the Cholesky factorization of the matrix I − Kn,mK�
n,m.

Computation of J2
n,m. The computation of J2

n,m is similar to the computation of
Kn,m. First, if m > 1 we can write (4.3) in the form

Um−1J
2
n,m = (Γn,m−1U

�
m−1)

−1(−J1
n,m−1Kn,m + Kn,m−1Ãn−1,m),
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which gives all entries of J2
n,m except the entries in the last row. Rewriting equation

(4.4) as

J2
n,mU�

n−1 = −A−1
n,m−1(J

1
n−1,mA�

n−1,mIn−2,m − J2
n−1,mΓ̃n−1,mJ̃1�

n−1,m

+ J2
n−1,mK�

n−1,mJ̃2�
n−1,m + J3

n−1,mI�n−2,m−1J̃
3�
n−1,m

+ Bn−1,m−1J
2
n−1,m −A�

n−1,m−1In−2,m−1Ãn−2,m

+ An,m−1J
3
n,mI�n−1,m−1Kn−1,m)(Un−1Γ̃

�
n−1,m)−1

allows us to compute everything except the last column of J2
n,m.

Finally, we put (J2
n,m)m,n = s2n−1,2m.

Computation of J1
n,m. We put (J1

n,m)m,m = s2n,2m−1 and (J1
n,m)m,m+1 = s2n,2m

using the last two parameters. Everything else can be recovered from the previous
levels. Rewriting (4.13) as

Um−1J
1
n,m = (Γn,m−1U

�
m−1)

−1J1
n,m−1Γn,m,

we get the matrix obtained from J1
n,m by deleting the last row.

Consider now the (m + 1) × (m − 1) matrix Γ�
n,mΓ�

n,m−1. It is easy to see that
the last two rows of this matrix are zeros and deleting these two rows we obtain an
(m−1)× (m−1) upper-triangular matrix with positive entries on the main diagonal.
Therefore the matrix Um−1UmΓ�

n,mΓ�
n,m−1 is invertible. Since U�

mU�
m−1Um−1Um =

Im+1 − Em,m − Em+1,m+1, we can write

Γ�
n,mΓ�

n,m−1 = U�
mU�

m−1(Um−1UmΓ�
n,mΓ�

n,m−1).

Combining this with formula (4.14) we see that

J1
n,mU�

mU�
m−1 = (J1�

n,m−1 + J3
n,mK�

n,m−1 + J2
n,mK�

n,mΓ�
n,m−1)(Um−1UmΓ�

n,mΓ�
n,m−1)

−1.

The matrix J1
n,mU�

mU�
m−1 is obtained from J1

n,m by deleting the last two columns.
This completes the computation of J1

n,m.
Computation of An,m. Let us denote by Mn−1,m the (m + 1) × (m + 1) matrix

obtained by adding the last row of J1
n−1,m to the bottom of Γn−1,m. This is an

upper-triangular invertible matrix. Using (4.15) and the last row of (4.16) we obtain
a formula for Mn−1,mAn,m in terms of known matrices, which allows us to compute
An,m.

Computation of In,m. Writing (4.17) as

UmIn,m = −(Γn,mU�
m)−1Kn,mΓ̃n,m,

we can compute all entries of In,m except the last row. But the last row is simply
(0, 0, . . . , 0, 1), which completes the computation of In,m.

Computation of Bn−1,m. Similarly to An,m, we can combine (4.19) and the last
of (4.20) to obtain a formula for Mn−1,mBn−1,m in terms of known matrices.

We can compute Ãn,m, J̃1
n,m, J̃2

n,m, and B̃n,m−1 from (4.26), (4.24), (4.25), and
(4.27).

Finally, we compute Pn,m(x, y) using (3.13) and (3.12). Similar to the computa-
tion of An,m we obtain a formula for Mn,mPn,m in terms of known expressions, where
Mn,m denotes the (m+1)×(m+1) matrix obtained by adding the last row of J1

n,m to

the bottom of Γn,m. P̃n,m(x, y) can be computed from the relation (3̃.14) analogous

to (3.14) for P̃n,m.
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7. Construction of the linear functional. The above algorithm allows us
to find a linear functional given the coefficients in the recurrence formulas. More
precisely, we have the next theorem.

Theorem 7.1. Given parameters s0,0, . . . , s2n,2m ∈ R, we construct

• scalars Ai+1,0, Bi,0, i = 0, . . . , n− 1, and Ã0,j+1, B̃0,j, j = 0, . . . ,m− 1;
• j × i matrices Ki,j and J2

i,j, i = 1, . . . , n, j = 1, . . . ,m;

• j × (j + 1) matrices J1
i,j for i = 1, . . . , n, j = 1, 2 . . . ,m.

If

s2i,2j > 0 and ||Ki,j || < 1,(7.1)

then there exists a positive linear functional L such that

L(Pi,m,Pj,m) = δi,jIm+1 and L(P̃n,i, P̃n,j) = δi,jIn+1.(7.2)

The conditions (7.1) are also necessary.
Remark 7.2. The condition ||Ki,j || < 1 imposes restrictions on the parameters

si,j . In particular, it forces |s2i−1,2j−1| < 1 for i = 1, . . . , n, and j = 1, . . . ,m.
Proof. We construct the linear functional by induction. First, if n = m = 0 we

set

L(1) =
1

s2
0,0

and p0,0 = p̃0,0 = s0,0,

and thus L(p0,0, p0,0) = L(p̃0,0, p̃0,0) = 1.
If m = 0, we construct Pn,0 = p0

n,0 using (6.3) and then we define

L(Pi,0,Pj,0) = δi,j .

This gives a well-defined positive linear functional on xj for j = 0, 1 . . . , n.
Likewise, if n = 0, we construct P̃0,k = p̃0

0,k using (6.5) and define

L(P̃0,i, P̃0,j) = δi,j ,

which defines the linear functional on yj for j = 0, 1 . . . ,m. Thus formula (7.2) will
hold if m = 0 or n = 0.

Assume now that the functional L is defined for all levels before (n,m). We first
extend L so that

L(Pn,m−1, P̃n−1,m) = Kn,m.(7.3)

To check that the above equation is consistent with how L is defined on the previous
levels, note that

L(Γn,m−1Pn,m−1, P̃n−1,m) = Γn,m−1Kn,m,(7.4)

which follows from the construction of Kn,m and the definition of L on the previous
levels (see Lemma 4.1). Similarly, using the second defining relation of Kn,m (i.e., the
last row of (4.2)) we see that

L(Em,mPn,m−1, P̃n−1,mΓ̃�
n−1,m) = Em,mKn,mΓ̃�

n−1,m.(7.5)
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Equations (7.4) and (7.5) show that (7.3) is automatically true except the equality of
the entries at (m,n) place (i.e., the definition of the linear functional on the previous
levels and the construction of Kn,m imply most of (7.3)). We use the (m,n) entry
to extend the functional on x2n−1y2m−1, i.e., we define L(x2n−1y2m−1) so that (7.3)
holds.

Using the same arguments as in the proof of (3.25) we show that

J3
n,m = −Kn,mÃ�

n−1,m = −L(yPn,m−1, P̃n−1,m−1).(7.6)

Similar to Kn,m we can use the construction of J2
n,m to extend the functional on

x2n−1y2m so that

J2
n,m = −L(yPn,m−1, P̃n−1,m).(7.7)

Finally we use J1
n,m to extend the functional on x2ny2m−1 and x2ny2m in such a

way that

J1
n,m = L(yPn,m−1,Pn,m).(7.8)

This completes the extension of the linear functional. It remains to show that the
orthogonality relations (7.2) hold. Recall that Pn,m is constructed by using (3.12) and
the last row of (3.13). The orthogonality relations in the previous levels and (7.3),
(7.6), and (7.7) imply that

L(Γn,mPn,m, P̃n−1,k) = L(Em,mJ1
n,mPn,m, P̃n−1,k) = 0 for k = 0, 1, . . . ,m,

hence

L(Pn,m, P̃n−1,k) = 0 for k = 0, 1, . . . ,m.

From the last equation it follows that

L(Pn,m,Pk,m) = 0 for k = 0, 1, . . . , n− 1.(7.9)

It remains to show that

L(Pn,m,Pn,m) = Im+1.(7.10)

This can be derived from the two equalities

L(Γn,mPn,m, Γn,mPn,m) = Γn,mΓ�
n,m,

L(Em,mJ1
n,mPn,m, Pn,m) = Em,mJ1

n,m.

Conversely, one can easily show that conditions (7.1) are necessary. Indeed, s2i,2j > 0
follows from the normalization in (3.2) that the coefficient of the highest term is
positive and (3.13). (3.24) shows that Ki,j must be a contraction, i.e., ||Ki,j || < 1.

Remark 7.3. The above construction gives simple criteria for the existence of a
one-step extension of the functional. That is, given moments so that there exists a
positive linear functional on

∏2n−2,2m ∪
∏2n,2m−2

, any set

{h2n−1,2m−1, h2n−1,2m, h2n,2m−1, h2n,2m}

that satisfies (7.1) can be used to extend the functional to
∏2n,2m

.
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8. Interpretation of the condition Kn,m = 0. In this section we classify
two variable orthogonal polynomials, which can be obtained as a tensor product of
two sets of (one variable) orthogonal polynomials. In other words, we want to see
when Pi,m(x, y) can be written as

Pi,m(x, y) = pi(x)

⎡
⎢⎣
p̃0(y)

...
p̃m(y)

⎤
⎥⎦(8.1)

for some orthogonal polynomials pi(x) and p̃j(y). The next proposition lists simple
implications of (8.1).

Proposition 8.1. Assume that (8.1) holds for i = 1, 2, . . . ,m. Then, for all
i = 1, 2, . . . ,m, and j = 1, 2, . . . , n, we have

Pi,j(x, y) = pi(x)

⎡
⎢⎣
p̃0(y)

...
p̃j(y)

⎤
⎥⎦ , P̃i,j(x, y) = p̃j(y)

⎡
⎢⎣
p0(x)

...
pi(x)

⎤
⎥⎦ ,(8.2)

and

(8.3)

Kij = 0, J2
i,j = 0, Ai,j = aiIj+1, Ãi,j = ãjIi+1,

J1
i,j =

⎡
⎢⎢⎢⎢⎢⎣

b̃0 ã1

ã1 b̃1 b̃2
ã2 b̃2 ã3

. . .
. . .

. . .

ãj−1 b̃j−1 ãj

⎤
⎥⎥⎥⎥⎥⎦
, J̃1

i,j =

⎡
⎢⎢⎢⎢⎢⎣

b0 a1

a1 b1 b2
a2 b2 a3

. . .
. . .

. . .

ai−1 bi−1 ai

⎤
⎥⎥⎥⎥⎥⎦
.

The scalars ai, bi−1 for i = 1, 2, . . . , n and ãj , b̃j−1 for j = 1, 2, . . . ,m, are the coeffi-
cients in the three term recurrence formulas for the orthogonal polynomials pi(x) and
p̃j(y) respectively, i.e.,

xpi(x) = ai+1pi+1(x) + bipi(x) + aipi−1(x),(8.4)

yp̃j(x) = ãj+1p̃j+1(y) + b̃j p̃j(y) + ãj p̃j−1(y).(8.5)

Proof. If (8.1) holds, then the orthogonality 〈Pi1,m,Pi2,m〉 = δi1,i2Im+1 is equiv-
alent to

〈pi1(x)p̃j1(y), pi2(x)p̃j2(y)〉 = δi1,i2δj1,j2 .(8.6)

From this relation one can easily obtain (8.2) and (8.3).
Remark 8.2. Notice that if pi(x) and p̃j(y) satisfy (8.2) and c is a nonzero

constant, then the polynomials

qi(x) = cpi(x) and q̃j(y) = p̃j(y)/c(8.7)

also satisfy (8.2). Conversely, if two pairs pi, p̃j and qi, q̃j of scalar orthogonal polyno-
mials satisfy (8.2), then there is a nonzero constant such that (8.7) holds. Thus the
polynomials pi, p̃j are unique up to a multiplicative constant.
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Lemma 8.3. If Ki,j = 0 for i = 1, . . . , (n+ 1), and j = 1, . . . , (m+ 1), then (8.2)
holds for i ≤ n and j ≤ m.

Proof. The proof is by induction. This is obvious if n = 0 or m = 0. Assume now
that this is true for levels (n− 1,m) and (n,m− 1). We need to show that it is also
true for level (n,m). The induction hypothesis and Proposition 8.1 show that (8.2)
and (8.3) hold

• if i ≤ n− 1 and j ≤ m, or
• if i ≤ n and j ≤ m− 1.

In particular, An,m−1 = anIm. (3.24), (3.25), (4.1), and (4.2), combined with Ki,j = 0
for i ≤ n + 1 and j ≤ m + 1, imply that

Γi,j = [Ij |0], J3
i,j = 0, and J2

i,j = 0 for i ≤ n + 1, j ≤ m.(8.8)

Using (8.8) and the defining relations (4.13)–(4.14) for J1
n,m we see that J1

n,m has
the form

J1
n,m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b̃0 ã1

ã1 b̃1 b̃2
ã2 b̃2 ã3

. . .
. . .

. . .

ãm−2 b̃m−2 ãm−1

ãm−1 c1 c2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(8.9)

for some scalars c1, c2. (4.15) combined with (8.3) and (8.8) shows that

An,m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

an
an

an
. . .

an
d1 d2 . . . dm−1 dm d

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(8.10)

for some scalars d1, d2, . . . , dm, d. Plugging (8.9), (8.10), and An,m−1 = anIm into
(4.16) and comparing the entries on the last row, we get the equalities

ãmd1 = 0,

ãmd2 = 0,

...

ãmdm−2 = 0,

ãm−1an + ãmdm−1 = anãm−1,

b̃m−1an + ãmdm = anc1,

ãmd = anc2.

(8.11)

The first (m− 1) equations simply imply that d1 = d2 = · · · = dm−1 = 0.
Formula (4.4) (for J2

n+1,m) becomes

0 = J1
n,mA�

n,mIn−1,m −A�
n,m−1In−1,m−1Ãn−1,m.
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Using (8.3) we can rewrite the last equation as

J1
n,mA�

n,mIn−1,m = anãmIn−1,m−1.

On the other hand, from (4.17) it follows that for i ≤ n and j ≤ m all entries, except
(j+1, i+1), of the matrix Ii,j are equal to zero. Thus the last equality simply means
that the last column of the matrix J1

n,mA�
n,m is equal to (0, 0, . . . , 0, anãm)�. Using

(8.9) and (8.10) we see that the bottom two entries of the last column of the matrix
J1
n,mA�

n,m are ãm−1dm and c2d, i.e., we have

ãm−1dm = 0,

c2d = anãm.
(8.12)

The first equation implies that dm = 0, while the second one combined with (8.15)
implies that d2 = a2

n and c22 = ã2
m. Since all the numbers d, c2, an, and ãm are positive,

it follows that d = an and c2 = ãm. Finally notice that the (m − 1)st equation in
formula (8.11) gives c1 = b̃m−1. Thus we proved that

An,m = anIm+1 and J1
n,m =

⎡
⎢⎢⎢⎢⎢⎣

b̃0 ã1

ã1 b̃1 b̃2
ã2 b̃2 ã3

. . .
. . .

. . .

ãm−1 b̃m−1 ãm

⎤
⎥⎥⎥⎥⎥⎦
.(8.13)

From the last formula and (3.12), (3.13), and (3.14), one can easily see that (8.2)–(8.3)
hold for i = n and j = m, which completes the proof.

As a corollary we get the following theorem.

Theorem 8.4. The following conditions are equivalent:

(i) For all n and m, Pn,m is a tensor product of scalar polynomials pk(x) and
p̃j(y), i.e., we have

Pn,m(x, y) = pn(x)

⎡
⎢⎣
p̃0(y)

...
p̃m(y)

⎤
⎥⎦ .(8.14)

(ii) Kn,m = 0 for all n,m = 1, 2, . . . .

Next we want to prove a finite analogue of Theorem 8.4, i.e., to give necessary
and sufficient conditions for (8.4) to hold up to a given level (n,m). We need the
following lemma.

Lemma 8.5. If Ki,j = 0 and (J2
i,j)j,i = 0 for i = 1, . . . , n, and j = 1, . . . ,m, then

(8.2) holds if i < n and j ≤ m or if i ≤ n and j < m.

Proof. We prove the statement by induction. If n = 0 or m = 0 this is a trivial
statement. Assume now that this is true for levels (n− 1,m) and (n,m− 1). We will
show that it also holds for level (n,m). The induction hypothesis means that (8.2)
and (8.3) hold

• if i ≤ n− 2 and j ≤ m, or
• if i ≤ n− 1 and j ≤ m− 1, or
• if i ≤ n and j ≤ m− 2.
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As before, the condition Ki,j = 0 for i = 1, . . . , n and j = 1, . . . ,m implies that

J3
i,j = 0 and Γi,j = [Ij |0] for i = 1, . . . , n and j = 1, . . . ,m.(8.15)

Formula (4.2) gives

J̃2
n−1,m = 0,

which combined with (4.25) for J̃2
n−1,m shows that

I�n−2,mAn−1,mΓ�
n−1,m = 0.(8.16)

Using the induction hypothesis and (4.3)–(4.4) one can prove that J2
n−1,m = 0. Indeed,

the right-hand side of (4.3) is obviously zero, while on the right-hand side of (4.4)
there are only two nonzero terms:

J1
n−2,mA�

n−2,mIn−3,m −A�
n−2,m−1In−3,m−1Ãn−3,m.

Using (8.3) one can easily see that the above expression vanishes. This shows that all
entries of J2

n−1,m are equal to 0, except probably (J2
n−1,m)m,n−1, but we know that

this entry is 0, because this is one of the assumptions in the lemma.
Formula (8.3) and the defining relations (4.13)–(4.14) for J1

n−1,m show that it has
the form

J1
n−1,m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b̃0 ã1

ã1 b̃1 b̃2
ã2 b̃2 ã3

. . .
. . .

. . .

ãm−2 b̃m−2 ãm−1

ãm−1 c1 c2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(8.17)

for some scalars c1, c2. (4.15) for An−1,m together with (8.3) imply

An−1,m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

an−1

an−1

an−1

. . .

an−1

d1 d2 . . . dm−1 dm d

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(8.18)

for some scalars d1, d2, . . . , dm, d. Plugging (8.18) into (8.16) and using (8.15) we see
that d1 = d2 = · · · = dm = 0 and An−1,m is a diagonal matrix of the form

An−1,m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

an−1

an−1

an−1

. . .

an−1

d

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.(8.19)
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Writing (4.16) for n− 1, plugging (8.17) and (8.19), and comparing the last two
entries on the last row we get the equalities

b̃m−1an−1 = an−1c1,(8.20)

ãmd = an−1c2.(8.21)

The first equality gives c1 = b̃m−1.
Finally, notice that the last column of the left-hand side of (4.4) must be 0, which,

in particular, implies that the last entry in the last column on the right-hand side of
(4.4) must be zero. Computing this entry we get

c2d− an−1ãm = 0.(8.22)

(8.21) and (8.22) show that c2 = ãm and d = an−1. Thus

An−1,m = an−1Im+1 and J1
n−1,m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b̃0 ã1

ã1 b̃1 b̃2
ã2 b̃2 ã3

. . .
. . .

. . .

ãm−2 b̃m−2 ãm−1

ãm−1 b̃m−1 ãm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which combined with (3.13) shows that (8.2)–(8.3) hold also for i = n− 1 and j = m.
Similarly one can show that (8.2)–(8.3) hold for i = n and j = m− 1, completing the
induction.

Corollary 8.6. For given n,m ≥ 0, the following conditions are equivalent:
(i) For all i = 0, 1, 2, . . . , n, Pi,m is a tensor product of scalar polynomials pk(x)

and p̃j(y), i.e., (8.1) holds.
(ii) – Ki,j = 0 for all i ≤ n, j ≤ m;

– (J2
i,j)j,i = 0 if i = n or j = m;

– (J1
n,m)m,m+1 = Ã0,m and (J1

n,m)m,m = B̃0,m−1.

9. Numerical examples. In this last section we give several numerical exam-
ples which illustrate the algorithm.

Example 9.1. Let us choose parameters si,j as follows:

s0,0 = 0.7543 s0,1 = 0 s0,2 = 0.4633 s0,3 = 0 s0,4 = 0.4997

s1,0 = 0 s1,1 = −0.1185 s1,2 = 0 s1,3 = −0.1128 s1,4 = 0

s2,0 = 0.4634 s2,1 = 0 s2,2 = 0.4681 s2,3 = 0 s2,4 = 0.4998

s3,0 = 0 s3,1 = −0.1128 s3,2 = 0 s3,3 = −0.1073 s3,4 = 0

s4,0 = 0.4997 s4,1 = 0 s4,2 = 0.4682 s4,3 = 0 s4,4 = 0.4997

First we apply the algorithm at levels (0, 0), (0, 1), (0, 2), (1, 0), (2, 0). (There is no
restriction on the parameters at these levels.) Next we compute K1,1 = [s1,1]:

K1,1 = [−0.1185].

Since |s1,1| < 1, K1,1 is a contraction and we can compute all other matrices and the
polynomials at level (1, 1). Then we proceed to levels (1, 2) and (2, 1). We obtain

K1,2 =

[
0

−0.1128

]
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and

K2,1 =
[
0 −0.1128

]
,

which are obviously contractions, hence we can compute everything else at these levels
using the algorithm. Finally, at level (2, 2) we get

K2,2 =

[
0.0174 0

0 −0.1073

]
,

which again is a contraction and allows us to apply the algorithm.
The example described above corresponds to the following moment problem:

h0,0 = 1.7575 h0,1 = 0 h0,2 = 0.3773 h0,3 = 0 h0,4 = 0.1752

h1,0 = 0 h1,1 = −0.0447 h1,2 = 0 h1,3 = −0.0196 h1,4 = 0

h2,0 = 0.3773 h2,1 = 0 h2,2 = 0.0838 h2,3 = 0 h2,4 = 0.0395

h3,0 = 0 h3,1 = −0.0196 h3,2 = 0 h3,3 = −0.0087 h3,4 = 0

h4,0 = 0.1752 h4,1 = 0 h4,2 = 0.0395 h4,3 = 0 h4,4 = 0.0188.

Next we present an example of a moment problem which cannot be extended.
Example 9.2. Let us fix the free parameters at levels (0, 0), (0, 1), (0, 2), (1, 0),

(2, 0), and (1, 1) as follows:
Level (0, 0): s0,0 = 1;
Level (0, 1): s0,1 = 1/7, s0,2 = 2;
Level (0, 2): s0,3 = 1/3, s0,4 = 7;
Level (1, 0): s1,0 = 1, s2,0 = 3;
Level (2, 0): s3,0 = 0, s4,0 = 0.33;
Level (1, 1): s1,1 = 0.5, s1,2 = 0, s2,1 = 0, s2,2 = 1.

Applying the algorithm described in section 6, we obtain a functional L defined
on the space {xiyj : i+j ≤ 2} and the orthogonal polynomials P and P̃ corresponding
to this functional.

Computing K2,1 and K1,2 we obtain

K2,1 =
[
0.9997407262 s3,1

]
, K1,2 =

[
−0.02749286996

s1,3

]
,

which shows that if we pick s3,1 and s1,3 with absolute value less than 1 and such
that K2,1 and K1,2 are contractions, we can extend the functional to the space {xiyj :
i+ j ≤ 3}. All other parameters at levels (0, 3), (1, 2), (2, 1), and (3, 0) can be chosen
arbitrary. (Of course s0,6, s2,4, s4,2 and s6,0 must be positive.)

Finally let us compute K2,2. Entry (1, 1) of this matrix is

(K2,2)1,1

=
−59.47189 − 0.2717694 × 10−10s1,3 + 0.1087078 × 10−11s3,1s

2
1,3 − 43.93372s3,1s1,3√

1 − 1928.713s2
3,1)

√
1 − 1.000756s2

1,3(1 + 1.237179 × 10−14s1,3)
.

From the above formula it is clear that |(K2,2)1,1| > 1, which means that K2,2

is not a contraction. Thus, we see that the functional L cannot be extended to level
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(2, 2) no matter how we choose the parameters at levels (1, 2) and (2, 1). In particular,
it follows that L cannot be extended to the space of polynomials of (total) degree 3.

Remark 9.3. The above example shows that not every functional defined on
levels (n,m− 1) and (n− 1,m) can be extended to level (n,m) even if we modify the
parameters entering one step back in each direction, that is, at levels (n,m− 1) and
(n − 1,m). Several numerical experiments indicate that deforming the parameters
two steps back in each direction is enough to extend the functional. Whether this is
true or false in general is an interesting open problem.

Remark 9.4. Example 9.2 shows the simplest possible case of a moment problem
which cannot be extended to a level (n,m) even if we modify the parameters entering
one step back in each direction. More precisely, one can easily show that if n = 1 or
m = 1 the moment problem can always be extended by deforming just one parameter
entering one step back. Indeed, if, for example, m = 1, then Kn,1 is a 1 × n matrix.
The first (n − 1) entries are computed from (4.2). Notice that in this equation the
only matrix coming from level (n, 0) is An,0 = (s2n,0). Thus, if we make s2n,0 large
enough, Kn,1 will be a contraction.
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1. Introduction. In this paper we study the effects of linear perturbations on
the spectra of structured matrix pencils arising in control theory. The results that
we present complement and generalize general perturbation results for Hamiltonian
matrices as they were recently studied in [14] and we also extend results in [21, 22, 23].

Our main motivation arises from the following classical problems in optimal and
robust control. Consider a linear constant coefficient dynamical system of the form

(1.1) Eẋ = Ax + Bu, x(τ0) = x0,

where x(τ) ∈ C
n is the state, x0 is an initial vector, u(τ) ∈ C

m is the control input
of the system and the matrices E,A ∈ C

n,n, B ∈ C
n,m are constant. Here we discuss

only the case that the matrix E is nonsingular; thus we allow implicit systems but we
do not discuss descriptor systems.

The objective in linear quadratic optimal control, see e.g., [12, 17] is to find a
control law u(τ) such that the closed loop system is asymptotically stable and such
that the performance criterion

(1.2) S(x, u) =

∫ ∞

τ0

[
x(τ)
u(τ)

]T [
Q S
SH R

] [
x(τ)
u(τ)

]
dτ

is minimized, where Q = QH ∈ C
n,n, R = RH ∈ C

m,m is positive definite and
[
Q S
SH R

]
is positive semidefinite. Here AH denotes the transpose of the complex conjugate of
A ∈ C

n,n.
Application of the maximum principle [17, 20] leads to the problem of finding a

stable solution to the two-point boundary value problem of Euler-Lagrange equations

(1.3) Nc

⎡
⎣

μ̇
ẋ
u̇

⎤
⎦ = Hc

⎡
⎣

μ
x
u

⎤
⎦ , x(τ0) = x0, lim

τ→∞
μ(τ) = 0,
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with the matrix pencil

(1.4) Hc − λNc :=

⎡
⎣

0 A B
AH Q S
BH SH R

⎤
⎦− λ

⎡
⎣

0 E 0
−EH 0 0

0 0 0

⎤
⎦ .

It is well known that the finite eigenvalues of Hc−λNc are symmetric with respect
to the imaginary axis (and if the problem is real then also with respect to the real axis).
If E is invertible, then under the usual control theoretic assumptions [17, 26, 27], this
pencil has exactly n eigenvalues in the left half plane and n eigenvalues in the right
half plane plus m infinite eigenvalues. Clearly then the pencil has a unique deflating
subspace associated with the eigenvalues in the open left half complex plane. If E or
R are not invertible, then the situation is more complex and different approaches can
be taken, [4, 6, 7, 17]. In this paper we discuss mainly the case that E and R are
invertible.

The solution of the boundary value problem (1.3) can be obtained in many dif-
ferent ways. The approach in most computer aided control design packages is to
decouple the boundary value problem via the computation of the solution of an as-
sociated algebraic Riccati equation. But one may also directly solve the boundary
value problem (1.3) by computing the generalized Schur form of the pencil Hc−λNc,
[2, 17, 27, 26], i.e., one determines unitary matrices P,Q ∈ C

2n+m,2n+m such that

PNcQ =

⎡
⎣

N11 N12 N13

0 N22 N23

0 0 N33

⎤
⎦ , PHcQ =

⎡
⎣

H11 H12 H13

0 H22 H23

0 0 H33

⎤
⎦ ,

where the subpencil H11−λN11 has all its eigenvalues in the left half plane, to decouple
the forward and backward integration in the boundary value problem.

In this paper we study the perturbation theory for the eigenvalue problem (1.4).
For this, several different types of perturbations should be considered as separate
cases. If one uses classical methods that do not preserve the structure, like the QZ-
algorithm [9], to compute the generalized Schur form in finite precision arithmetic,
then the special structure of the pencil is ignored and hence the whole matrices Hc, Nc

are subject to perturbations. We do not discuss this case here, since it is well analyzed
in the monograph [24].

If one studies perturbation theory in order to deal with uncertainties in the data
of the system, then the blocks E,A,B,Q, S,R are subject to perturbations of only the
blocks E,A,B, since typically the matrices of the cost function are free to be chosen
under the constraints that

[
Q S
SH R

]
is positive semidefinite and R positive definite.

Also one may study the particular case that E = I is not perturbed.
In all cases it is essential to analyze whether the perturbations can lead to eigenval-

ues on the imaginary axis, in which case the spectral symmetry and the uniqueness
of the deflating subspace associated with the open left half plane may be lost; see
[8, 17, 21, 22, 23].

It is well known, see [17, 18], that the discrete-time analogue to the linear qua-
dratic control problem leads to slightly different matrix pencils of the form

(1.5) Hd − λNd =

⎡
⎣

0 A B
−EH Q S

0 SH R

⎤
⎦− λ

⎡
⎣

0 E 0
−AH 0 0
−BH 0 0

⎤
⎦ .

Here the spectral symmetry is with respect to the unit circle, i.e., the finite
eigenvalues come in pairs λ, 1

λ or quadruples λ, λ̄, 1
λ ,

1
λ̄

in the case of real matrices.
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The perturbation problems can be discussed analogously and here the important
question that arises is the study of perturbations which lead to eigenvalues on the
unit circle, where again the spectral symmetry and the uniqueness of the deflating
subspace associated with the eigenvalues in the open unit disk may be disturbed.

The second motivation comes from the optimal H∞-control problem which arises
in the context of robust control in frequency domain, see, e.g., the recent monographs
[10, 28]. In the context of the so-called γ-iteration, in the newly developed approach
suggested in [5], generalized Schur forms have to be computed for matrix pencils of
the form

(1.6) Ĥc(t) − λN̂c :=

⎡
⎣

0 A B
AH 0 S
BH SH R(t)

⎤
⎦− λ

⎡
⎣

0 E 0
−EH 0 0

0 0 0

⎤
⎦

with an indefinite Hermitian matrix

R(t) =

[
R11 − tI R12

RH
12 R22

]

which varies with the positive parameter t (playing the role of the parameter γ in the
γ-iteration), while the other coefficients are constant in t. Here, besides the classical
questions of perturbation theory as above, we are interested in the eigenvalues and
deflating subspaces as functions of t and we want to study the size of perturbations
that is needed to bring any of the finite eigenvalues to the imaginary axis.

Again there is a discrete-time H∞ analogue to this case [10] which leads to matrix
pencils

(1.7) Ĥd(t) − λN̂d =

⎡
⎣

0 A B
−EH 0 S

0 SH R(t)

⎤
⎦− λ

⎡
⎣

0 E 0
−AH 0 0
−BH 0 0

⎤
⎦ .

Here again we are interested in the eigenvalues and deflating subspaces as func-
tions of t and we want to study the size of perturbations that is needed to bring any
of the finite eigenvalues to the unit circle.

The paper is organized as follows. First we introduce the notation and give some
preliminary results in section 2. In section 3 we formulate a framework for analyzing
the effect of linear perturbations on general matrix pencils. We then study the special
cases of perturbations for general skew-symmetric/symmetric pencils arising from
continuous-time problems in section 4 and the corresponding discrete-time problems
in section 5.

2. Notation and preliminaries. We denote the set of all complex (real) ma-
trices of size n by C

n,n (Rn,n). Given a matrix A, we denote its complex conjugate
by A, its transpose by AT and the transpose of its complex conjugate by AH . We
denote the identity matrix of size n by In. Also we consider the “flip” permutation
matrix

Fn :=

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦
∈ C

n,n.
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We denote the spectrum of a square matrix A and a pencil (A,B) by σ(A) and
σ(A,B), respectively. Given a set S we denote its boundary by ∂S. For A ∈ C

n,n,
we define the spectral radius of A as r(A) := max{|λ| : λ ∈ σ(A)}.

Also, given z ∈ C, we define

sepR(z,ΔH,ΔN) := min{|t| : z ∈ σ(H + tΔH,N + tΔN), t ∈ R}.

It is well known (see, e.g., [25]) that for every matrix A ∈ C
n,n(Rn,n) there exist

symmetric matrices T = TT and S = ST , where S is also nonsingular, such that
A = TS−1. Note that if A is not real then these factors in general are complex
symmetric but not Hermitian. Furthermore, if A ∈ R

n,n, then T and S can be chosen
to be real matrices. Since this result is due to Frobenius, we refer to T and S as
Frobenius factors of A. In our work, we will need similar factorizations, however with
Frobenius factors that are Hermitian. It is easy to see that if A ∈ R

n,n, then A always
has Hermitian Frobenius factors. However, if A ∈ C

n,n, then Hermitian factors need
not exist. This follows by observing the fact that if A = TS−1 with TH = T and
SH = S, then we must have AS = SAH , that is, A = SAHS−1. This implies that the
matrices A and AH must be similar and hence they must have the same eigenvalues.
Thus, a necessary condition for the existence of Hermitian Frobenius factors T and S
is that σ(A) = σ(AH).

We show that σ(A) = σ(AH) is also a sufficient condition for A to have Hermitian
Frobenius factors. For this, we first observe that σ(A) = σ(AH) implies that for every
nonreal eigenvalue of A its complex conjugate is also an eigenvalue with the same
multiplicity.

Proposition 2.1. Let A ∈ C
n,n be such that σ(A) = σ(AH). Let η1, η2, . . . , ηr

be the pairwise distinct real eigenvalues of A and let λ1, λ2, . . . , λp, λ1, λ2, . . . , λp, be
the pairwise distinct nonreal eigenvalues of A. Furthermore, let m1,m2, . . . ,mp be the
multiplicities of the eigenvalues λ1, λ2, . . . , λp, respectively, such that

∑p
i=1 mi = m,

and let k1, k2, . . . , kr be the multiplicities of η1, η2, . . . , ηr, such that
∑r

j=1 kj = k, and
n = 2m + k. Then, with the permutation matrix

U = diag
(
F2m1

, F2m2
, . . . , F2mp

, Fn1
, Fn2

, . . . , Fns

)
,

we have that A and AH have the Jordan decompositions

A = PJP−1, AH = (P−HU)J(P−HU)−1,

where the blocks are ordered as in

J := diag
(
Jm1

(λ1), Jm1
(λ1), . . . , Jmp

(λp), Jmp
(λp),

Jn1(η1), Jn2(η2), . . . , Jnr (ηr))(2.1)

such that for i = 1, 2, . . . , p, j = 1, 2, . . . , r,

Jmi(λi) :=

⎡
⎢⎢⎢⎢⎢⎣

λi ϕ 0 · · · 0 0
0 λi ϕ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λi ϕ
0 0 0 · · · 0 λi

⎤
⎥⎥⎥⎥⎥⎦
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and

Jnj (ηj) :=

⎡
⎢⎢⎢⎢⎢⎣

ηj ϕ 0 · · · 0 0
0 ηj ϕ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · ηj ϕ
0 0 0 · · · 0 ηj

⎤
⎥⎥⎥⎥⎥⎦

with ϕ = 0 or ϕ = 1 and U satisfies JU − UJH = 0.
Proof. Let A = PJP−1 with J as in (2.1) be a Jordan decomposition of A. Then,

AH = P−HJHPH with

JH = (J)T = diag
(
Jm1

(λ1), Jm1
(λ1), . . . , Jmp

(λp), Jmp
(λp),

Jn1(η1), Jn2(η2), . . . , Jnr (ηr))
T
,

and for i = 1, 2, . . . , p,

[
Jmi

(λi) 0
0 Jmi(λi)

]
F2mi =

⎡
⎢⎢⎢⎢⎢⎣

λi ϕ

λi ϕ
. . .

. . .

λi ϕ
λi

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 ϕ λi

0 0 · · · ϕ λi 0
...

...
. . .

...
...

...
ϕ λi · · · 0 0 0

λi 0 · · · 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

λi

ϕ λi

. . .
. . .

ϕ λi

ϕ λi

⎤
⎥⎥⎥⎥⎥⎦

= F2mi

[
Jmi

(λi) 0
0 Jmi(λi)

]T
.

Similarly for j = 1, 2, . . . , s, we have Jnj
Fnj

= Fnj
JT
nj

and thus it follows that JU −
UJH = 0.

Using Proposition 2.1 together with Theorem 12.5.1 of [16] we then construct a
nonsingular Hermitian solution S of the equation AS − SAH = 0.

Theorem 2.2. Let A ∈ C
n,n be such that σ(A) = σ(AH). Then there exists a

nonsingular Hermitian matrix S such that AS = SAH .
Proof. Using the notation of Proposition 2.1, it follows by Theorem 12.5.1

in [16] that all solutions of the equation AS − SAH = 0 are of the form S =
PY (P−HU)−1 = PY UPH . Here Y satisfies JY − Y J = 0 and has the block form
Y = diag (Y1, Y2, . . . , Yp, Ik), where Yi =

[
0 Yi,i

Yi,i 0

]
∈ C

2mi,2mi , each Yi,i being an

arbitrary upper triangular Toeplitz matrix for i = 1, 2, . . . , p. Since we want Y U to
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be Hermitian, a possible choice is Yi,i = Imi
. Then for i = 1, 2, . . . , p, we have

YiF2mi
= diag (Fmi

, Fmi
) = F2mi

Yi,

which implies that (Y U)H = UHY H = UY = Y U . Thus, S := PY UPH is nonsingu-
lar and Hermitian.

Theorem 2.2 immediately provides a necessary and sufficient condition for A ∈
C

n,n to have Hermitian Frobenius factors.
Corollary 2.3. Given A ∈ C

n,n, there exist Hermitian matrices, T and S
where S is also nonsingular such that A = TS−1 if and only if σ(A) = σ(AH).

Proof. Suppose that there exist Hermitian matrices T and S, where S is also
nonsingular such that A = TS−1. Then T = AS and T = TH and hence AS = SAH

or A = SAHS−1, i.e., σ(A) = σ(AH). For the converse, suppose that σ(A) =
σ(AH). Then by Theorem 2.2, there exists a nonsingular Hermitian matrix S such
that AS = SAH . This implies that A = (SAH)S−1 and the proof follows by setting
T = SAH .

Since the factorization A = TS−1 with SH = S and TH = T , if it exists, depends
on the choice of S as a solution of AX −XAH = 0, it is evident from Theorem 2.2
that this factorization is, in general, not unique.

In the following we will need Frobenius factorizations for matrices that depend on
a complex parameter. Suppose that A depends smoothly upon a complex parameter
z and σ(A(z)) = σ(A(z)H), and let A(z) = T (z)S(z)−1 be a Frobenius factorization
of A(z) with T (z) = T (z)H and S(z) = S(z)H . Using the spectral factorization of
T (z), there exists a unitary matrix U(z) such that

T (z) = U(z)

⎡
⎣

D+(z)
D−(z)

0

⎤
⎦U(z)H ,

where D+(z) ∈ C
π,π,−D−(z) ∈ C

ν,ν are diagonal matrices with positive diagonal
elements and π(z) ≥ ν(z), where (π(z), ν(z), ω(z)) with π(z) + ν(z) +ω(z) = n is the
inertia-index of T (z); see [16].

Setting

Q(z) := U(z)

⎡
⎣

(D+(z))
1
2

(−D−(z))
1
2

Iω(z)

⎤
⎦ , ĨT (z) :=

⎡
⎣
Iπ(z)

−Iν(z)
0

⎤
⎦ ,

we have for given z a factorization

(2.2) A(z) = Q(z)ĨT (z)QH(z)S(z)−1.

Note that the choice π ≥ ν makes the matrix ĨT (z) unique, while there is still much
freedom in the choice of the transformation matrix Q(z). In an analogous way we can
construct a factorization

(2.3) A(z) = T (z)(V (z)(ĨS(z))V (z)H)−1 = T (z)V (z)−H(ĨS(z))V (z)−1

by using the spectral factorization and the inertia index of S(z).
An interesting open question that one may discuss in this context is how to obtain

a smooth Frobenius factorization when the matrix depends smoothly on a parameter,
as in our case.
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3. Linear perturbation of general matrix pencils. In this section we con-
sider the effect of perturbing a regular square matrix pencil (H,N) where H,N ∈
C

n,n (Rn,n) by linear perturbations (H+tΔH,N+tΔN). Here ΔH,ΔN ∈ C
n,n(Rn,n)

are fixed perturbation matrices and the parameter t varies over the real numbers.
Lemma 3.1. For every z ∈ C we have sepR(z,ΔH,ΔN) < ∞ if and only if (ΔH−

zΔN)(H−zN)−1 has a nonzero real eigenvalue. Moreover, if sepR(z,ΔH,ΔN) < ∞,
then

sepR(z,ΔH,ΔN) =

[
max
λ∈R

{λ ∈ σ((ΔH − zΔN)(H − zN)−1)}
]−1

.

Proof. The proof follows immediately from the fact that, for λ �∈ σ(H,N), we
have

H + tΔH − λ(N + tΔN) =
[
I + t(ΔH − λΔN)(H − λN)−1

]
(H − λN).

Therefore, λ ∈ σ(H + tΔH,N + tΔN) if and only if −1/t ∈ σ((ΔH − λΔN)(H −
λN)−1).

As discussed in the introduction, we are interested in conditions which guarantee
that all the eigenvalues of the perturbed pencils (H + tΔH,N + tΔN), t ∈ R, remain
within a particular open subset, say, Cg, of the complex plane. Since the eigenvalues
of (H + tΔH,N + tΔN) move continuously as t varies in R, the smallest value of |t|
for which these eigenvalues move out of Cg is evidently equal to

r(Cg,ΔH,ΔN) := inf
z∈δCg

sep(z,ΔH,ΔN).

Note that similar distances are very important in other contexts of control theory,
where the smallest perturbation that makes a system unstable is called the stability
radius [11] and the smallest perturbation that makes a system nonpassive is called
the passivity radius [19].

Since a complex number z becomes an eigenvalue of the perturbed pencil (H +
tΔH,N + tΔN) for some t ∈ R if and only if the matrix (ΔH − zΔN)(H − zN)−1

has a nonzero real eigenvalue, it is possible that there exist pencils (H,N) with corre-
sponding perturbations (ΔH,ΔN) and sets Cg such that r(Cg,ΔH,ΔN) = ∞, that
is, the eigenvalues of the perturbed pencils (H + tΔH,N + tΔN) always remain in-
side Cg as t varies over the real numbers. In such cases, sep(z,ΔH,ΔN) = ∞ for all
z ∈ ∂Cg. This is illustrated by the following example.

Example 3.2. Consider the pencil (H,N), where

H :=

[
1 2
2 1

]
, and N :=

[
0 1
−1 0

]
.

Its eigenvalues are
√

3 and −
√

3. Let

ΔH :=

[
1 0
0 −1

]
, ΔN := 0

be the perturbations to H and N , respectively.
Let Cg := C\{z ∈ C : Re(z) = 0}. Then the boundary ∂Cg of Cg is evidently the

imaginary axis. Therefore, by Lemma 3.1 for all t ∈ R, the eigenvalues of the pencils
(H + tΔH,N + tΔN) are always in Cg, if and only if the matrix

(ΔH − zΔN)(H − zN)−1 =
1

3 − z2

[
−1 2 − z
−(2 + z) 1

]
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has no nonzero real eigenvalue for every z ∈ C lying on the imaginary axis. The
eigenvalues of (ΔH− zΔN)(H− zN)−1 are i/

√
(3 − z2) and −i/

√
(3 − z2). Now for

every z lying on the imaginary axis, there exists a real number γ, such that z = iγ.
Therefore, for z ∈ ∂Cg, the eigenvalues of (ΔH − zΔN)(H − zN)−1 are i/

√
(3 + γ2)

and −i/
√

(3 + γ2). This shows that (ΔH−zΔN)(H−zN)−1 has no real eigenvalues
for all z ∈ ∂Cg. Hence, σ(H + tΔH,N + tΔN) ⊂ Cg for all t ∈ R.

Since z ∈ σ(H + tΔH,N + tΔN) for some t ∈ R if and only if the matrix F (z) :=
(ΔH−zΔN)(H−zN)−1 has a real eigenvalue, we identify conditions under which the
latter matrix has a real eigenvalue. Under the assumption that σ(F (z)) = σ(F (z)H),
let F (z) = T (z){S(z)}−1 be a Frobenius factorization of F (z) where T (z)H = T (z)
and S(z)H = S(z). The following result gives a necessary and sufficient condition for
this matrix to have a real eigenvalue.

Lemma 3.3. For a fixed z ∈ C, let T (z) and S(z) be Frobenius factors of
F (z) := (ΔH − zΔN)(H − zN)−1, where T (z)H = T (z), S(z)H = S(z) and S(z)
is nonsingular. Let (πT (z), νT (z), ωT (z)) with πT (z) ≥ νT (z) be the inertia index of
T (z). Furthermore, let ĨT (z), Q(z) be as in a factorization of the form (2.2) of F (z).

Then (ΔH − zΔN)(H − zN)−1 has a nonzero real eigenvalue if and only if the
matrix ĨT (z)Q(z){S(z)}−1Q(z)H has a nonzero real eigenvalue.

Proof. The proof follows, since F (z) and ĨT (z)Q(z){S(z)}−1Q(z)H are
similar.

It is evident that the roles of the matrices T (z) and S(z) in Lemma 3.3 can be
interchanged.

Lemma 3.4. For a fixed z ∈ C, let the matrix T (z) and S(z) be Frobenius factors
of F (z) := (ΔH − zΔN)(H − zN)−1 such that T (z)H = T (z), S(z)H = S(z) and
S(z) is invertible. Let (πS(z), νS(z), ωS(z)) with πS(z) ≥ νS(z) be the inertia index
of S(z). Let, furthermore, ĨS(z), V (z) be the factors in a factorization of the form
(2.3) of F (z). Then (ΔH − zΔN)(H − zN)−1 has a nonzero real eigenvalue if and
only if the matrix V (z)−1T (z)V (z)−H ĨS(z) has a nonzero real eigenvalue.

In general, the function sepR(z,ΔH,ΔN) is discontinuous as a function of z, since
it depends on the matrix (ΔH−zΔN)(H−zN)−1 having a real eigenvalue. However,
it is possible that given a set Cg ⊂ C, the structure of the matrices H,N,ΔH, and
ΔN are such that the matrix (ΔH − zΔN)(H − zN)−1 always has one or more real
eigenvalues for z ∈ ∂Cg. Let these eigenvalues be h1(z), . . . , hp(z). Then (ΔH −
zΔN)(H − zN)−1 is an analytic function of z ∈ C \ σ(H,N), and hence in particular
of z ∈ ∂Cg (Theorem 1.5, pp. 66, [13]) and the eigenvalues h1(z), . . . , hp(z) are
continuous (Corollary 3, pp. 105, [3]). Therefore, for such cases we have for z ∈ ∂Cg,

sepR(z,ΔH,ΔN) = {max{|hk(z)| : k = 1, . . . , p}}−1,

which implies that sepR(z,ΔH,ΔN) is a continuous function of z. In the special
situation that all the eigenvalues of (ΔH − zΔN)(H − zN)−1 are real, we have
sepR(z,ΔH,ΔN) = {r((ΔH − zΔN)(H − zN)−1)}−1 for all z ∈ ∂Cg. In such cases,
the distribution of the eigenvalues of (H+tΔH,N+tΔN) on ∂Cg may be analyzed by
plotting the level curves of the spectral radius function r((ΔH − zΔN)(H − zN)−1)
in neighborhoods of ∂Cg. Then the smallest value of |t| for which some z ∈ ∂Cg is an
eigenvalue of (H + tΔH,N + tΔN) is evidently given by the smallest value of ε for
which the level set

L(ε,ΔH,ΔN) := {z ∈ C \ σ(H,N) : r((ΔH − zΔN)(H − zN)−1) = ε−1}

intersects ∂Cg. In other words, for such problems, the distance to the boundary of
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Cg is given by

(3.1) r(Cg,ΔH,ΔN) := min{ε ∈ R : L(ε,ΔH,ΔN) ∩ ∂Cg �= 0}.

By Proposition 2.1 of [1] the spectral radius function r((ΔH − zΔN)(H − zN)−1) is
nonconstant on open subsets of C \ σ(H,N). This together with the fact that it is
also continuous on C \ σ(H,N) implies that the level sets L(ε,ΔH,ΔN) are closed
sets which have no interior points. In other words, they are curves on the complex
plane. Furthermore, the curve L(ε,ΔH,ΔN) intersects ∂Cg at only a finite number
of points, since at each such point we must either have z ∈ σ(H + εΔH,N + εΔN) or
z ∈ σ(H− εΔH,N − εΔN). This justifies the use of “minimum” instead of “infimum”
in (3.1).

In the following theorem, we give sufficient conditions for all the eigenvalues of
the matrix (ΔH − zΔN)(H − zN)−1 to be real.

Theorem 3.5. All the eigenvalues of the matrix F (z) = (ΔH − zΔN)(H −
zN)−1, z ∈ C, are real if there exists a Frobenius factorization F (z) = T (z)S(z)−1,
with T (z)H = T (z), and S(z)H = S(z), and the Frobenius factors T (z) and S(z)
satisfy any of the following conditions:

(i) T (z) and S(z)−1 commute.
(ii) T (z) is positive semidefinite.
(iii) S(z) is positive definite.
Proof.
(i) Since (ΔH − zΔN)(H − zN)−1 = T (z)S(z)−1, where T (z) and S(z) are Her-

mitian, the matrix (ΔH−zΔN)(H−zN)−1 is Hermitian if T (z)S(z)−1 = S(z)−1T (z)
and therefore all its eigenvalues are real. This proves (i).

(ii) If T (z) and S(z) do not commute but T (z) is positive semidefinite with
π(z) nonzero eigenvalues, then we obtain the Frobenius factorization (2.2) as F (z) =

Q(z)ĨT (z)Q(z)
H
S(z)

−1
with ĨT (z) =

[
Iπ 0
0 0

]
. If we partition

Q(z)HS(z)−1Q(z) =

[
S11(z) S12(z)
S21(z) S22(z)

]

conformally with ĨT (z), then S11(z) is Hermitian and

Q(z)HT (z){S(z)}−1Q(z) =

[
S11(z) S12(z)

0 0

]
.

Therefore, σ((ΔH − zΔN)(H − zN)−1) = σ(S11(z)) ∪ {0}, which is real.
(iii) The proof follows as in (ii) by exchanging the roles of S and T and using the

factorization (2.3).
Note that Theorem 3.5 also holds if the condition of positive semidefiniteness

in (ii) and positive definiteness in (iii) are replaced by negative semidefiniteness and
negative definiteness, respectively.

4. Linear perturbation of structured matrix pencils arising from contin-
uous-time control problems. In this section we apply the results from section 3 to
the specific pencils from control theory that we introduced in section 1. The matrices
H and N then have special structure and, in order not to destroy the properties of
the pencils, it should be guaranteed that the perturbations preserve this structure.

This means that we study the effect of perturbations (H+tΔH,N+tΔN), t ∈ R,
where the matrices ΔH and ΔN have the same structure as H and N , respectively.
Although we consider complex pencils, the results of this section also hold for real
pencils.
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4.1. Perturbation of pencils arising in continuous-time control. The first
application that we discuss are matrix pencils of the form (1.4), where we perturb only
the blocks E,A,B,Q, S,R but such that Q and R stay Hermitian, i.e., we consider
the case

(4.1) H =

⎡
⎣

0 A B
AH Q S
BH SH R

⎤
⎦ , N =

⎡
⎣

0 E 0
−EH 0 0

0 0 0

⎤
⎦ ,

with A,Q,E ∈ C
n,n, B,SH ∈ C

n,m, R ∈ C
m,m, Q = QH , R = RH and we assume

that E is invertible. The perturbation matrices are

(4.2) ΔH =

⎡
⎣

0 ΔA ΔB
(ΔA)H ΔQ ΔS
(ΔB)H (ΔS)H ΔR

⎤
⎦ , ΔN :=

⎡
⎣

0 ΔE 0
−(ΔE)H 0 0

0 0 0

⎤
⎦ ,

where the dimensions are analogous and where we assume that (ΔQ)H = ΔQ,
(ΔR)H = ΔR and that E + ΔE is still invertible. The pencils (H,N) and (H +
ΔH,N + ΔN) are then both Hermitian/skew-Hermitian pencils and we are inter-
ested in the set Cg := C \ {z ∈ C : Re(z) = 0}. Hence, the quantity of interest is
the smallest value |t|, t ∈ R, such that (H + tΔH,N + tΔN) has a purely imaginary
eigenvalue. In view of Lemma 3.1 (with z = iγ, γ ∈ R) this is equivalent to finding
the smallest |γ| such that the matrix (ΔH − iγΔN)(H − iγN)−1 has a nonzero real
eigenvalue.

Evidently, we have the following expressions for Hermitian Frobenius factors T (iγ)
and S(iγ) of the matrix (ΔH − iγΔN)(H − iγN)−1.

T (iγ) =

⎡
⎣

0 ΔA− iγΔE ΔB
(ΔA− iγΔE)H ΔQ ΔS

(ΔB)H (ΔS)H ΔR

⎤
⎦ ,

S(iγ) =

⎡
⎣

0 A− iγE B
(A− iγE)H Q S

BH SH R

⎤
⎦ .

We may directly use Lemmas 3.3 and 3.4 to obtain conditions for (H+tΔH,N+tΔN)
to have a purely imaginary eigenvalue, as t varies in R. But the special structure of
the Frobenius factors provides another condition that is more specific to the problem
at hand. To obtain it, we assume without loss of generality that the matrix [A B] is
not a square matrix, i.e., that the matrix B has at least one column.

Theorem 4.1. Consider a matrix pencil (H,N) and associated perturbations
ΔH and ΔN as in (4.1) and (4.2). Let

P (t, γ) := [A− iγE + t(ΔA− iγΔE) B + tΔB],

Z(t) :=

[
Q + tΔQ S + tΔS

(S + tΔS)H R + tΔR

]
.

Let V (t, γ) be the set of right singular vectors of P (t, γ) corresponding to the singular
value 0, and let W (t, γ) be the range of P (t, γ)H .

Then for given real numbers t �= 0 and γ, the purely imaginary number iγ is an
eigenvalue of the matrix pencil (H + tΔH,N + tΔN) if and only if

Z(t)(V (t, γ)) ∩W (t, γ) �= ∅.
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Proof. We make use of the fact (H + tΔH,N + tΔN), t ∈ R has a purely
imaginary eigenvalue iγ, γ ∈ R if and only if −1/t is an eigenvalue of the matrix
(ΔH − iγΔN)(H − iγN)−1. Considering a Frobenius factorization

(ΔH − iγΔN)(H − iγN)−1 = T (iγ)(S(iγ))−1,

it follows that iγ is an eigenvalue of (H + tΔH,N + tΔN) if and only −1/t is an
eigenvalue of T (iγ)S(iγ)−1, i.e., if and only if there exists a vector x �= 0 such that
T (iγ)S(iγ)−1x = − 1

tx. Setting y := S(iγ)−1x, this, in turn, implies that iγ is an
eigenvalue of (H + tΔH,N + tΔN), if and only if there exists a vector y �= 0 such
that S(iγ)y = −tT (iγ)y. Writing down the expressions for T (iγ) and S(iγ), we have

⎡
⎣

0 A− iγE + t(ΔA− iγΔE) B + tΔB

(A− iγE + t(ΔA− iγΔE)H Q + tΔQ S + tΔS
(B + tΔB)H (S + tΔS)H R + tΔR

⎤
⎦ y = 0.

This in turn can be written as

[
0 P (t, γ)

P (t, γ)H Z(t)

] [
y1

y2

]
= 0.

Hence, we have the following system of equations:

P (t, γ)y2 = 0

P (t, γ)Hy1 + Z(t)y2 = 0.

From the first equation we have that either y2 = 0 or 0 is a singular value of P (t, γ)
and y2 a corresponding singular vector. But as [A B] is not a square matrix, neither
is P (t, γ) = [A− iγE + t(ΔA− iγΔE) B + tΔB]. As a consequence a nonzero vector
y2 satisfying the first equation always exists. Therefore, a necessary and sufficient
condition for iγ to be an eigenvalue of (H + tΔH,N + tΔN) is that, for every right
singular vector y2 of P (t, γ) corresponding to the singular value 0, there exists some
vector y1 such that −P (t, γ)Hy1 = Z(t)y2. This implies that the matrix Z(t) maps
at least one right singular vector of P (t, γ) corresponding to the singular value 0,
to the range of P (t, γ)H . Since V (t, γ) is the set of all these right singular vectors
of P (t, γ), it follows that iγ is an eigenvalue of (H + tΔH,N + tΔN) if and only if
Z(t)(V (t, γ)) ∩W (t, γ) �= ∅.

In the applications from control theory, the matrices Q,R and S are associated
with the cost function and often these cost functions can be chosen. If this is the case,
then we may assume that the corresponding perturbations ΔQ,ΔR and ΔS are all
equal to zero. Under this assumption, we have the following immediate corollary of
Theorem 4.1.

Corollary 4.2. Suppose that W (t, γ) and V (t, γ) are as in Theorem 4.1 and
that Z0 :=

[
Q S
SH R

]
. Then the matrix pencil (H + tΔH,N + tΔN) has an eigenvalue

iγ if and only if Z0(V (t, γ)) ∩W (t, γ) �= ∅.
Proof. The proof follows immediately from Theorem 4.1 by noticing the fact that

Z(0) = Z0.
Corollary 4.2 implies that for a given fixed real number t, the matrices Q,S and R

of the cost functional can be chosen in such a way that the pencil (H+tΔH,N+tΔN)
does not have any purely imaginary eigenvalues, cp. [15].
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Corollary 4.3. If P (t, γ) and V (t, γ) are as in Theorem 4.1 and Z0 :=
[
Q S
SH R

]
,

then for a fixed t ∈ R the matrix pencil (H+ tΔH,N + tΔN) has no purely imaginary
eigenvalues if and only if

Z0(∪γ∈RV (t, γ)) ∩ (∪γ∈RW (t, γ)) = ∅.

The condition of Corollary 4.3 is necessary and sufficient for a pencil (H̃, Ñ) :=
(H + tΔH,N + tΔN) to have no imaginary eigenvalues. Thus, this condition general-
izes well-known classical conditions that guarantee that the considered pencil has no
purely imaginary eigenvalue, see, e.g., [15, 17].

For instance, it is well known that a matrix pencil (H,N), with H and N as in
(4.1), has no purely imaginary eigenvalues if its blocks satisfy the following conditions:

(i) The matrix R is positive definite and the matrix Q − SR−1SH is positive
semidefinite.

(ii) The triple (E,A,B) where A has size n, is stabilizable, i.e., for all complex
numbers λ in the closed right half plane the rank of [A− λE,B] is n.

(iii) If Q − SR−1SH = CHC is a full rank factorization of Q − SR−1SH , then
(E,A,C) is detectable, i.e., (EH , AH , CH) is stabilizable.

The following example shows that there exist pencils (H,N) which arise from sys-
tems that are not stabilizable and detectable and yet they do not have any purely
imaginary eigenvalues. This is due to the fact that they satisfy the condition given in
Corollary 4.3.

Example 4.4. Let

H :=

⎡
⎢⎢⎢⎢⎣

0 0 2 3 2
0 0 0 5 2
2 0 1 −1 1
3 5 −1 1 −1
2 2 1 −1 5

⎤
⎥⎥⎥⎥⎦
, N :=

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
0 0 0 1 0
−1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
.

The eigenvalues of the pencil (H,N) are 2,−2, 5,−3 and ∞. For this pencil we have,

A :=

[
2 3
0 5

]
, E :=

[
1 0
0 1

]
, B :=

[
2
2

]
,

Q :=

[
1 −1
−1 1

]
, R := [5], S :=

[
1
−1

]
.

It is easy to see that (E,A,B) is not stabilizable, as the matrix [A−2I,B] =
[
0 3 2
0 3 2

]
,

evidently has rank 1. We also note that

[
− 2√

5
2√
5

]H [
− 2√

5
− 2√

5

]
=

[
4
5 − 4

5
− 4

5
4
5

]
= Q− SR−1SH .

Setting C :=
[
− 2√

5
2√
5

]
we observe that (E,A,C) is not detectable, since

[AH − 5I, CH ] =

[
−3 0 − 2√

5

3 0 2√
5

]

has rank 1. Hence the triples (E,A,B) and (E,A,C) are also not completely con-
trollable and completely observable, respectively; see [15]. In this case, 0 is a simple
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singular value of

[A− iγE B] :=

[
2 − iγ 3 2

0 5 − iγ 2

]

with corresponding singular vector v := [−2, −2, 5+iγ]T . The range of [A−iγE B]H

is spanned by the vectors u1 := [2 + iγ, 3, 2]T and u2 := [0, 5 + iγ, 2]T . Therefore,
(H,N) has a purely imaginary eigenvalue if and only if some linear combination of u1

and u2 is equal to
[
Q S
SH R

]
v. This gives rise to the following equations:

(2 + iγ)x1 = 5 + iγ,

3x1 + (5 + iγ)x2 = −(5 + iγ),

2x1 + 2x2 = 5(5 + iγ).

Eliminating x1 and x2 from these equations, we get the relation γ = 5i /∈ R.
We note that Theorem 4.1 may be generalized to the case when the zero blocks of

the perturbation matrix ΔN are filled in such a way that the resulting matrix remains
skew-Hermitian, that is, ΔN is replaced by ΔN̂ where

(4.3) ΔN̂ :=

⎡
⎣

0 ΔE ΔF
−(ΔE)H 0 ΔG
−(ΔF )H −(ΔG)H 0

⎤
⎦ .

In this case, the matrix (ΔH− iγΔN̂)(H− iγN)−1 has a Frobenius factorization

(ΔH − iγΔN̂)(H − iγN)−1 = T̂ (iγ){S(iγ)}−1,

where

T̂ (iγ) =

⎡
⎣

0 ΔA− iγΔE ΔB − iγΔF
(ΔA− iγΔE)H 0 ΔS − iγΔG
(ΔB − iγΔF )H (ΔS − iγΔG)H 0

⎤
⎦ .

Theorem 4.5. Consider a matrix pencil (H,N) and associated perturbations
ΔH and ΔN̂ as given in (4.1), (4.2) and (4.3). Let

P̂ (t, γ) := [A− iγE + t(ΔA− iγΔE) B + t(ΔB − iγΔF )], and

Ẑ(t, γ) :=

[
Q + tΔQ S + t(ΔS − iγΔG)

(S + t(ΔS − iγΔG))H R + tΔR

]
.

Denote by V̂ (t, γ) the set of right singular vectors of P̂ (t, γ) corresponding to the
singular value 0 and the range of P̂ (t, γ)H by Ŵ (t, γ).

Then, for given real numbers t �= 0 and γ, the purely imaginary number iγ is an
eigenvalue of the matrix pencil (H + tΔH,N + tΔN̂) if and only if Ẑ(t, γ)(V̂ (t, γ))∩
Ŵ (t, γ) �= ∅.

Proof. The proof follows by replacing the set T (iγ) by T̂ (iγ) in the proof of
Theorem 4.1.

It follows trivially that all the results of this section also hold for those special
cases when one or more of the blocks ΔA,ΔB,ΔQ,ΔR and ΔS in the perturbation
matrix ΔH or the block ΔE in the perturbation matrix ΔN are equal to 0.
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4.2. The continuous-time H∞ problem. As mentioned in the introduction,
in the case of the continuous-time, optimal H∞-control problem, from (1.6) we have
ΔN = 0. Furthermore, the perturbation ΔH of H has a very special structure. All
its entries are zero, except for the entries of the block ΔR which is itself a special
diagonal matrix, the first few entries on the main diagonal being each equal to −1 and
the remaining all being equal to zero. Due to this special structure, all the eigenvalues
of (ΔH − zΔN)(H − zN)−1 are real and its nonzero eigenvalues are precisely the
nonzero eigenvalues of a leading principal submatrix of a Hermitian matrix whose
size is the same as that of the block R of H.

Theorem 4.6. Let the matrices H and N be as in (4.1) with R :=
[
R11 R12

R21 R22

]
.

Let ΔH and ΔN be as in (4.2) with ΔA = ΔB = ΔQ = ΔS = ΔE = 0 and ΔR :=[−Ij 0
0 0

]
, where Ij is an identity matrix of size j, the partition being conformal with

that of R. Then for γ ∈ R, all the eigenvalues of the matrix (ΔH−iγΔN)(H−iγN)−1

are real. In particular, the nonzero eigenvalues are the same as those of the leading
principal submatrix of size j of the Hermitian matrix

W (γ) := R−1

([
B
S

]H [ −BR−1BH A− iγE −BR−1SH

(
A− iγE −BR−1SH

)H
Q− SR−1SH

]−1

×
[

B
S

]
+ R

)
R−1.

Proof. For γ ∈ R,

H − iγN =

⎡
⎣

0 A− iγE B
AH + iγEH Q S

BH SH R

⎤
⎦

=

⎡
⎣

I 0 BR−1

0 I SR−1

0 0 I

⎤
⎦

×

⎡
⎣

−BR−1BH A− iγE −BR−1SH 0
AH + iγEH − SR−1BH Q− SR−1SH 0

BH SH R

⎤
⎦ .

Therefore,

(H − iγN)−1 =

⎡
⎣

−BR−1BH A− iγE −BR−1SH 0
AH + iγEH − SR−1BH Q− SR−1SH 0

BH SH R

⎤
⎦
−1

×

⎡
⎣

I 0 −BR−1

0 I −SR−1

0 0 I

⎤
⎦ .

Let

H̃ :=

[
−BR−1BH A− iγE −BR−1SH

AH + iγEH − SR−1BH Q− SR−1SH

]
, M :=

[
−BR−1

−SR−1

]
,
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and Z :=
[
BH SH

]
. Then

(H − iγN)−1 =

[
H̃ 0
Z R

]−1 [
I M
0 I

]
=

[
H̃−1 0

−R−1ZH̃−1 R−1

] [
I M
0 I

]

=

[
H̃−1 H̃−1M

−R−1ZH̃−1 −R−1ZH̃−1M + R−1

]

=

[
H̃−1 H̃−1M

MHH̃−1 −MHH̃−1M + R−1

]
,

which is Hermitian, since H̃ is Hermitian. Then, we obtain

(ΔH − iγΔN)(H − iγN)−1 =

[
0 0
0 ΔR

] [
H̃−1 H̃−1M

MH(H̃)−1 MHH̃−1M + R−1

]

=

[
0 0

(ΔR)MHH̃−1 (ΔR)(MHH̃−1M + R−1)

]
.

Therefore, the matrix (ΔH− iγΔN)(H− iγN)−1 has a nonzero real eigenvalue if and
only if the matrix (ΔR)(MHH̃−1M +R−1) has a nonzero real eigenvalue. Replacing

M by
[−BR−1

−SR−1

]
we have

(ΔR)(MHH̃−1M + R−1) = (ΔR)R−1

([
B
S

]H
H̃−1

[
B
S

]
+ R

)
R−1

= (ΔR)W (γ).

Note that since the matrices R and Q are Hermitian, W (γ) is also Hermitian and
hence all its eigenvalues are real. Let

(4.4) W (γ) :=

[
W11(γ) W12(γ)
W21(γ) W22(γ)

]

be a partition of W (γ), conformal with that of ΔR. In view of the structure of ΔR,
it follows that

(ΔR)W (γ) =

[
−W11(γ) −W12(γ)

0 0

]
.

Hence (ΔH − iγΔN)(H − iγN)−1 has a nonzero real eigenvalue if and only if the
block W11(γ) has a nonzero real eigenvalue. The proof follows from the fact that
W11(γ) is Hermitian.

From Theorem 4.6 it follows that for the continuous time H∞-control problem we
have sepR(z,ΔH,ΔN) = {r((ΔH − zΔN)(H − zN)−1)}−1 for all purely imaginary
complex numbers z. However, for these problems we are interested only in positive
values of the parameter t for which (H + tΔH,N + tΔN) has a purely imaginary
eigenvalue. The following immediate corollary of Theorem 4.6 suggests a procedure
for obtaining the exact value of the smallest positive parameter t for which the pencil
(H + tΔH,N + tΔN) has a purely imaginary eigenvalue or an upper or lower bound
of this value.

Corollary 4.7. Let H,N,ΔH and ΔN be as in Theorem 4.6. The smallest
positive parameter t for which (H+tΔH,N+tΔN) has a purely imaginary eigenvalue
is, say, t = t0 if and only if:
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(i) 1/t0 is the smallest value of ε for which the set

L(ε,ΔH,ΔN) := {z ∈ C \ σ(H,N) : r((ΔH − zΔN)(H − zN)−1) = ε−1}

touches the imaginary axis, and
(ii) 1/t0 is an eigenvalue of largest magnitude of the matrix W11(γ0), given by (4.4),

iγ0 being the point at which L(1/t0,ΔH,ΔN) touches the imaginary axis.
If all the eigenvalues of W11(γ0) are negative real numbers, then the smallest

positive parameter t for which (H+tΔH,N+tΔN) has a purely imaginary eigenvalue
is larger than {r(W11(γ0))}−1.

If W11(γ0) has positive eigenvalues but none of them is equal to r(W11(γ0)), and
α is the largest among these eigenvalues, then the smallest positive parameter t for
which (H + tΔH,N + tΔN) has a purely imaginary eigenvalue is less than or equal
to 1/α.

Proof. The proof follows immediately from Theorem 4.6 in view of the fact that
given a positive real number t0, iγ0 is a purely imaginary eigenvalue of (H+t0ΔH,N+
t0ΔN) if and only if 1/t0 is an eigenvalue of W11(γ0).

In this section we have discussed linear perturbation theory for structured pencils
arising in continuous-time control theory. In the next section we discuss analogous
results for discrete-time control problems.

5. Perturbation of structured pencils arising from discrete-time con-
trol. There is a well-known analogy between continuous- and discrete-time linear-
quadratic optimal control problems, given by the Cayley transformation; see [17, 18].
Thus, we expect similar results for the discrete-time case. For these problems the
pencils have the following structures:

(5.1) H :=

⎡
⎣

0 A B
−EH Q S

0 SH R

⎤
⎦ , N :=

⎡
⎣

0 E 0
−AH 0 0
−BH 0 0

⎤
⎦ ,

(5.2) ΔH:=

⎡
⎣

0 ΔA ΔB
−(ΔE)H ΔQ ΔS

0 (ΔS)H ΔR

⎤
⎦ , ΔN:=

⎡
⎣

0 ΔE 0
−(ΔA)H 0 0
−(ΔB)H 0 0

⎤
⎦ ,

where again QH = Q, RH = R, (ΔQ)H = ΔQ, and (ΔR)H = ΔR have the same
dimensions as in (4.1). Although we consider complex matrices, the results of this
section are true for real matrices as well.

In this case Cg := {z ∈ C : |z| �= 1}, and the smallest |t|, t ∈ R such that the
perturbed pencil (H+tΔH,N+tΔN) has an eigenvalue z ∈ C, |z| = 1 is the quantity
of interest for these problems. This is equivalent to the matrix (ΔH − zΔN)(H −
zN)−1 having a real eigenvalue for some z ∈ C such that |z| = 1. We show first that
for any z ∈ C on the unit circle, Hermitian Frobenius factors T (z) and S(z) of the
matrix (ΔH− zΔN)(H− zN)−1 may be obtained from the matrices ΔH− zΔN and
H − zN by a simple scaling.

Theorem 5.1. Let the matrices H,N,ΔH and ΔN be as given in (5.1) and
(5.2). Then for z ∈ C, |z| = 1,

(ΔH − zΔN)(H − zN)−1

=

⎡
⎣

0 ΔA− zΔE ΔB
(ΔA− zΔE)H ΔQ ΔS

(ΔB)H (ΔS)H ΔR

⎤
⎦
⎡
⎣

0 A− zE B
(A− zE)H Q S

BH SH R

⎤
⎦
−1

.
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Proof. For |z| = 1, we have

H − zN =

⎡
⎣

0 A− zE B
z(A− zE)H Q S

zBH SH R

⎤
⎦

=

⎡
⎣

0 A− zE B
(A− zE)H Q S

BH SH R

⎤
⎦
⎡
⎣

zI 0
0 I 0
0 0 I

⎤
⎦ .

Similarly,

ΔH − zΔN =

⎡
⎣

0 ΔA− zΔE ΔB
(ΔA− zΔE)H ΔQ ΔS

(ΔB)H (ΔS)H ΔR

⎤
⎦
⎡
⎣

zI 0 0
0 I 0
0 0 I

⎤
⎦ .

The proof follows from the fact that the matrix
⎡
⎣

zI 0 0
0 I 0
0 0 I

⎤
⎦

is unitary, since |z| = 1.
Hence, for all z ∈ C such that |z| = 1, we get Hermitian Frobenius factors T (z)

and S(z) of (ΔH − zΔN)(H − zN)−1 as

T (z) :=

⎡
⎣

0 ΔA− zΔE ΔB
(ΔA− zΔE)H ΔQ ΔS

(ΔB)H (ΔS)H ΔR

⎤
⎦ ,

S(z) :=

⎡
⎣

0 A− zE B
(A− zE)H Q S

BH SH R

⎤
⎦ .

Thus, given a complex number z lying on the unit circle, the results of section 3 may
be applied to these Frobenius factors to obtain necessary and sufficient conditions for
the matrix (ΔH − zΔN)(H − zN)−1 to have a real eigenvalue. This in turn gives us
necessary and sufficient conditions for the matrix pencil (H+ tΔH,N + tΔN) to have
an eigenvalue on the unit circle. However, as in the continuous-time case, the special
structure of the Frobenius factors leads to another necessary and sufficient condition
for the pencil (H + tΔH,N + tΔN) to have an eigenvalue on the unit circle on the
lines of Theorem 4.1.

Theorem 5.2. Consider a matrix pencil (H,N) and associated perturbations
ΔH and ΔN as in (5.1) and (5.2). Let z ∈ C such that |z| = 1, and

P (t, z) := [A− zE + t(ΔA− zΔE) B + tΔB],

Z(t) :=

[
Q + tΔQ S + tΔS

(S + tΔS)H R + tΔR

]
.

Let V (t, z) be the set of right singular vectors of P (t, z) corresponding to the singular
value 0 and let W (t, z) be the range of P (t, z)H .

Then, for a given real number t �= 0 and a complex number z ∈ C, |z| = 1 is an
eigenvalue of the matrix pencil (H + tΔH,N + tΔN) if and only if Z(t)(V (t, z)) ∩
W (t, z) �= ∅.
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Proof. The proof follows by replacing iγ by z ∈ C, |z| = 1 in the proof of
Theorem 4.1.

As in the continuous-time case, if we assume that the matrices Q,S, and R which
are associated with the cost function are unperturbed, that is, if ΔQ = ΔS = ΔR = 0,
then we have the following corollary to Theorem 5.2. It characterizes the choice of a
cost function such that given t ∈ R, and z ∈ C such that |z| = 1, z is not an eigenvalue
of (H + tΔH,N + tΔN).

Corollary 5.3. Let W (t, z), and V (t, z) be as in Theorem 5.2 and let Z0 :=[
Q S
SH R

]
. The matrix pencil (H + tΔH,N + tΔN) has an eigenvalue z with |z| = 1 if

and only if Z0(V (t, z)) ∩W (t, z) �= ∅.
Proof. The proof follows immediately from Theorem 5.2 by the fact that Z(0) =

Z0.
The next corollary provides a characterization of all cost functions such that for

a fixed t ∈ R, the pencil (H + tΔH,N + tΔN) does not have any eigenvalues on the
unit circle.

Corollary 5.4. Suppose that P (t, z) and V (t, z) are as in Theorem 5.2 and that
Z0 :=

[
Q S
SH R

]
. Then, for a fixed t ∈ R, the matrix pencil (H + tΔH,N + tΔN) has

no eigenvalues on the unit circle if and only if

Z0(∪|z|=1V (t, z)) ∩ (∪|z|=1W (t, z)) = ∅.

The results of this section also hold if the perturbation matrices ΔH and ΔN are
replaced by the matrices ΔĤ and ΔN̂ , respectively, which are given by

(5.3) ΔĤ:=

⎡
⎣

0 ΔA ΔB
−(ΔE)H ΔQ ΔS
−(ΔF )H (ΔS)H ΔR

⎤
⎦ , ΔN̂:=

⎡
⎣

0 ΔE ΔF
−(ΔA)H 0 0
−(ΔB)H 0 0

⎤
⎦ .

Then for z ∈ C such that |z| = 1, (ΔĤ − zΔN̂)(H − zN)−1 = T̂ (z)S(z)−1 is a
Frobenius factorization of (ΔĤ − zΔN̂)(H − zN)−1, where

T̂ (z) :=

⎡
⎣

0 ΔA− zΔE ΔB − zΔF
(ΔA− zΔE)H ΔQ ΔS
(ΔB − zΔF )H (ΔS)H ΔR

⎤
⎦ .

With these new perturbation matrices, Theorem 5.2 takes the following form.
Theorem 5.5. Consider a matrix pencil (H,N) and associated perturbations

ΔĤ and ΔN̂ as given in (5.1) and (5.3). Let

P̂ (t, z) := [A− zE + t(ΔA− zΔE) B + t(ΔB − zΔF )],

Z(t) :=

[
Q + tΔQ S + tΔS

(S + t(ΔS))H R + tΔR

]
.

Let V̂ (t, z) be the set of right singular vectors of P̂ (t, z) corresponding to the
singular value 0, and let Ŵ (t, z) be the range of P̂ (t, z)H .

Then, for a given real number t �= 0, a complex number z ∈ C with |z| = 1 is an
eigenvalue of the matrix pencil (H + tΔĤ,N + tΔN̂) if and only if Z(t)(V̂ (t, z)) ∩
Ŵ (t, z) �= ∅.
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Proof. The proof follows by using arguments similar to those of Theorem 4.1 with
the matrix P (t, iγ) being replaced by P̂ (t, z).

Given t ∈ R and z ∈ C, |z| = 1, the following corollary provides a characterization
of the cost function such that z /∈ σ(H + tΔĤ,N + tΔN̂).

Corollary 5.6. Let P̂ (t, z), V̂ (t, z) and Ŵ (t, z) be as in Theorem 5.5 and let
Z0 :=

[
Q S
SH R

]
. Then, for a fixed real number t and z ∈ C, such that |z| = 1, we have

z /∈ σ(H + tΔĤ,N + tΔN̂) if and only if Z0(V̂ (t, z)) ∩ Ŵ (t, z) �= ∅.
Finally we have a characterization of the cost function such that for a given t ∈ R,

the pencil (H + tΔĤ,N + tΔN̂) has no eigenvalues on the unit circle.
Corollary 5.7. Let P̂ (t, z), V̂ (t, z) and Ŵ (t, z) be as in Theorem 5.5 and let

Z0 :=
[
Q S
SH R

]
. Then for a fixed real number t, the pencil (H + tΔĤ,N + tΔN̂) has

no eigenvalues on the unit circle if and only if

Z0(∪|z|=1V̂ (t, z)) ∩ (∪|z|=1Ŵ (t, z)) �= ∅.

Note that all results hold if any one or more of the blocks in the perturbation
matrices ΔH and ΔN are equal to 0.

6. The discrete-time H∞ problem. In the discrete-time optimal H∞-control
problem, the matrices H and N of the pencil (H,N) are also given by (5.1). But as
in the case of its continuous time analogue, the perturbations ΔN and ΔH are very
special. From equation (1.7) we have ΔN = 0 and all the blocks of ΔH are zero
except for ΔR which is a special diagonal matrix. Only the first few diagonal entries
of ΔR are nonzero and these are each equal to −1. We show that given |z| = 1, all the
eigenvalues of the matrix (ΔH−zΔN)(H−zN)−1 are real and the nonzero eigenvalues
are precisely the same as those of a leading principal submatrix of a Hermitian matrix
which is of the same size as the block R of H.

Theorem 6.1. Let the matrices H and N be as in (5.1) with R :=
[
R11 R12

R21 R22

]
.

Let ΔH and ΔN be as in (5.2) with ΔA = ΔB = ΔQ = ΔS = ΔE = 0 and
ΔR :=

[−Ij 0
0 0

]
, where Ij is an identity matrix of size j, the partition being conformal

with that of R. Then, for z ∈ C such that |z| = 1, all eigenvalues of the matrix
(ΔH − zΔN)(H − zN)−1 are real. In particular its nonzero real eigenvalues are the
same as those of the leading principal submatrix of size j of the Hermitian matrix

W (z) := R−1

([
B
S

]H [ −BR−1BH A− zE −BR−1SH

(
A− zE −BR−1SH

)H
Q− SR−1SH

]−1

×
[

B
S

]
+ R

)
R−1.

Proof. Since R and Q are Hermitian, it is clear that W (z) is a Hermitian matrix.
For z ∈ C, |z| = 1, we have,

H − zN =

⎡
⎣

0 A− zE B
−EH + zAH Q S

zBH SH R

⎤
⎦

=

⎡
⎣

I 0 BR−1

0 I SR−1

0 0 I

⎤
⎦×

⎡
⎣

−zBR−1BH A− zE −BR−1SH 0
z(A− zE −BR−1SH)H Q− SR−1SH 0

zBH SH R

⎤
⎦ .
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Therefore,

(H − zN)−1 =

⎡
⎣

−zBR−1BH A− zE −BR−1SH 0
−EH + zAH − zSR−1BH Q− SR−1SH 0

zBH SH R

⎤
⎦
−1

×

⎡
⎣

I 0 −BR−1

0 I −SR−1

0 0 I

⎤
⎦ .

Let

H̃ =

[
−zBR−1BH A− zE −BR−1SH

z(AH − zEH − SR−1BH) Q− SR−1SH

]
, M =

[
−BR−1

−SR−1

]

and Z =
[
zBH SH

]
. Then,

(H − zN)−1 =

[
H̃ 0
Z R

]−1 [
I M
0 I

]
=

[
H̃−1 0

−R−1ZH̃−1 R−1

] [
I M
0 I

]

=

[
H̃−1 H̃−1M

−R−1ZH̃−1 −R−1ZH̃−1M + R−1

]
.

Let J̃ =
[
zI 0
0 I

]
where the partitioning is conformal with that of M . Since |z| = 1, it is

clear that J̃ is unitary and R−1Z = −MH J̃−1. This gives R−1ZH̃−1 = −MH(H̃J̃)−1

and hence,

(H − zN)−1 =

[
H̃−1 H̃−1M

MH(H̃J̃)−1 MH(H̃J̃)−1M + R−1

]
.

Therefore,

(ΔH − zΔN)(H − zN)−1 =

[
0 0
0 ΔR

] [
H̃−1 H̃−1M

MH(H̃J̃)−1 MH(H̃J̃)−1M + R−1

]
.

This shows that the matrix (ΔH−zΔN)(H−zN)−1 has nonzero real eigenvalues
if and only if the matrix

(ΔR)(MH(H̃J̃)−1M + R−1)

has nonzero real eigenvalues or equivalently

(ΔR)R−1

([
B
S

]H
(H̃J̃)−1

[
B
S

]
+ R

)
R−1

has nonzero real eigenvalues. Since,

H̃J̃ =

[ −BR−1BH A− zE −BR−1SH

(
A− zE −BR−1SH

)H
Q− SR−1SH

]
,

we have

(ΔR)R−1

([
B
S

]H
(H̃J̃)−1

[
B
S

]
+ R

)
R−1 = (ΔR)W (z).
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Let

(6.1) W (z) :=

[
W11(z) W12(z)
W21(z) W22(z)

]

be a partition of W (z) conformal with that of ΔR. In view of the structure of ΔR,
we have

(ΔR)W (z) =

[
−W11(z) W12(z)

0 0

]
.

Hence the nonzero real eigenvalues of (ΔH−zΔN)(H−zN)−1 are the same as those
of −W11(z) and the proof follows from the fact that W11(z) is Hermitian.

By Theorem 6.1, it is clear that every point on the unit circle becomes an eigen-
value of (H + tΔH,N + tΔN) for some real number t. However, as in the case of
the continuous-time H∞ problem, we are interested only in the positive values of the
parameter t for which the pencil (H + tΔH,N + tΔN) has eigenvalues on the unit
circle. Since, for any z �∈ σ(H,N), we have z ∈ σ(H + tΔH,N + tΔN) if and only
if −1/t ∈ σ(ΔH − zΔN)(H − zN)−1, it follows from Theorem 6.1 that there exists
t > 0 such that some z ∈ C with |z| = 1 is an eigenvalue of (H + tΔH,N + tΔN) if
and only if the matrix W11(z) has a positive eigenvalue. This suggests the following
procedure for finding the smallest positive number t for which (H + tΔH,N + tΔN)
has an eigenvalue on the unit circle on the lines of Corollary 4.7.

Corollary 6.2. Let H,N,ΔH and ΔN be as in Theorem 6.1. The smallest
positive parameter t for which (H + tΔH,N + tΔN) has an eigenvalue z with |z| = 1
is, say, t = t0 if and only if

(i) 1/t0 is the smallest value of ε for which the set

L(ε,ΔH,ΔN) := {z ∈ C \ σ(H,N) : r((ΔH − zΔN)(H − zN)−1) = ε−1}

touches the imaginary axis, and
(ii) 1/t0 is an eigenvalue with largest magnitude of the matrix W11(z0), given

by (6.1), z0 being the point at which L(1/t0,ΔH,ΔN) touches the unit circle.
If all the eigenvalues of W11(z0) are negative real numbers, then the smallest

positive parameter t, for which (H + tΔH,N + tΔN) has an eigenvalue on the unit
circle, is larger than {r(W11(z0))}−1.

If W11(z0) has positive eigenvalues but none of them is equal to r(W11(z0)), and
α is the largest among these eigenvalues, then the smallest positive parameter t for
which (H + tΔH,N + tΔN) has an eigenvalue on the unit circle is less than or equal
to 1/α.

Proof. The proof is an immediate consequence of Theorem 6.1.

7. Conclusion and future work. We have studied the effect of linear pertur-
bations on several structured matrix pencils arising in control theory. These include
skew-symmetric/symmetric pencils arising in the computation of optimal H∞ control
and linear-quadratic control for continuous- and discrete-time systems. We have given
characterizations when these pencils have eigenvalues on the imaginary axis or the
unit circle, respectively.

But several important questions remain open. Among these are a characterization
of the Kronecker structure associated with eigenvalues on the imaginary axis and
the development of numerical methods for the efficient computation of the smallest
perturbations that move eigenvalues to the imaginary axis or unit circle, respectively.
We will address these issues in our future work.
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Switzerland, 1999, pp. 203–222.

[5] P. Benner, R. Byers, V. Mehrmann, and H. Xu, Robust method for robust control, preprint
2004-6, Institut für Mathematik, TU Berlin, FRG, 2004.

[6] A. Bunse-Gerstner, R. Byers, V. Mehrmann, and N. K. Nichols, Feedback design for
regularizing descriptor systems, Linear Algebra Appl., 299 (1999), pp. 119–151.

[7] R. Byers, T. Geerts, and V. Mehrmann, Descriptor systems without controllability at in-
finity, SIAM J. Control Optim., 35 (1997), pp. 462–479.

[8] G. Freiling, V. Mehrmann, and H. Xu, Existence, uniqueness and parametrization of La-
grangian invariant subspaces, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 1045–1069.

[9] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, 1996.

[10] M. Green and D. J. N Limebeer, Linear Robust Control, Prentice-Hall, Englewood Cliffs,
NJ, 1995.

[11] D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory I. Modelling, State Space
Analysis, Stability and Robustness, Springer-Verlag, Berlin, 2005.

[12] T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.
[13] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.
[14] M. M. Konstantinov, V. Mehrmann, and P. Hr. Petkov, Perturbation analysis for the

Hamiltonian Schur form, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 387–424.
[15] P. Lancaster and L. Rodman, The Algebraic Riccati Equation, Oxford University Press,

Oxford, 1995.
[16] P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd ed., Academic Press, Or-

lando, FL, 1985.
[17] V. Mehrmann, The Autonomous Linear Quadratic Control Problem: Theory and Numerical

Solution, Lecture Notes in Control and Inform. Sci. 163, Springer-Verlag, New York, 1991.
[18] V. Mehrmann, A step towards a unified treatment of continuous and discrete time control

problems, Linear Algebra Appl., 241–243 (1996), pp. 749–779.
[19] M. L. Overton and P. Van Dooren, On computing the complex passivity radius, in Proceed-

ings of the IEEE Conference on Decision and Control, 2005, Sevilla, Spain, pp. 7960–7964.
[20] L. S. Pontryagin, V. Boltyanskii, R. Gamkrelidze, and E. Mishenko, The Mathematical

Theory of Optimal Processes, Interscience, New York, 1962.
[21] A. C. M. Ran and L. Rodman, Stability of invariant maximal semidefinite subspaces, Linear

Algebra Appl., 62 (1984), pp. 51–86.
[22] A. C. M. Ran and L. Rodman, Stability of invariant Lagrangian subspaces i, in Topics in Oper-

ator Theory, Oper. Theory Adv. Appl. 32, I. Gohberg, ed., Birkhäuser, Basel, Switzerland,
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Abstract. We consider conjugate-gradient like methods for solving block symmetric indefinite
linear systems that arise from saddle-point problems or, in particular, regularizations thereof. Such
methods require preconditioners that preserve certain sub-blocks from the original systems but allow
considerable flexibility for the remaining blocks. We construct a number of families of implicit factor-
izations that are capable of reproducing the required sub-blocks and (some) of the remainder. These
generalize known implicit factorizations for the unregularized case. Improved eigenvalue clustering is
possible if additionally some of the noncrucial blocks are reproduced. Numerical experiments confirm
that these implicit-factorization preconditioners can be very effective in practice.
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1. Introduction. Given a symmetric n by n matrix H, a symmetric m by m
(m ≤ n) matrix C and a full-rank m (≤ n) by n matrix A, we are interested in solving
structured linear systems of equations

(
H AT

A −C

)(
x
y

)
= −

(
g
0

)
(1.1)

by iterative methods, in which preconditioners of the form

MG =

(
G AT

A −C

)
(1.2)

are used to accelerate the iteration for some suitable symmetric G. We denote the
coefficient matrix in (1.1) by MH . There is little loss of generality in assuming the
right-hand side of (1.1) has the form given rather than with the more general

(
H AT

A −C

)(
x̄
ȳ

)
=

(
b
c

)
.(1.3)

For, so long as we have some mechanism for finding an initial (x0, y0) for which
Ax0 − Cy0 = c, linearity of (1.1) implies that (x̄, ȳ) = (x0 − x, y0 − y) solves (1.3)
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when b = g + Hx0 + AT y0. In particular, since we intend to use the preconditioner
(1.2), solving

(
G AT

A −C

)(
x0

y0

)
=

(
0
c

)
or =

(
b
c

)
(1.4)

to find suitable (x0, y0) are distinct possibilities.
When C = 0, (1.2) is commonly known as a constraint preconditioner [35] and in

this case systems of the form (1.1) arise as stationarity (KKT) conditions for equality-
constrained optimization [40, section 18.1], in mixed finite-element approximation of
elliptic problems [6], including, in particular, problems of elasticity [41] and incom-
pressible flow [23], as well as other areas. In practice C is often positive semi-definite
(and frequently diagonal)—such systems frequently arise in interior-point and regu-
larization methods in optimization, the simulation of electronic circuits [47] and other
related areas; see [3] for an encyclopedic review of (regularized) saddle-point systems.
Although such problems may involve m by n A with m > n, this is not a restriction,
for in this case we might equally solve

(
C A
AT −H

)(
y
−x

)
=

(
0
g

)
,

for which AT has more columns than rows. We place no restrictions on H, although
we recognize that in some applications H may be positive (semi-) definite.

Notation. Let I be the (appropriately dimensioned) identity matrix. Given a
symmetric matrix M with, respectively, m+, m− and m0 positive, negative and zero
eigenvalues, we denote its inertia by In(M) = (m+,m−,m0).

2. Suitable iterative methods. While it would be perfectly possible to apply
general preconditioned iterative methods like GMRES [45] or the symmetric QMR
method [25] to (1.1) with the indefinite preconditioner (1.2), the specific form of
(1.2) allows the use of the more efficient preconditioned conjugate-gradient (PCG)
method [12] instead. Use of GMRES would have the disadvantage that storage and
orthogonalization of a set of k vectors would be required at the kth iteration, so
that the work per iteration increases at each iteration. The symmetric QMR method
does not suffer from this difficulty, though it does not minimize a quantity of interest
(such as the residual) unlike GMRES and PCG. Because PCG has such a minimizing
property and requires a fixed amount of work per iteration, we shall focus on this
approach in this paper. We thus need to derive conditions for which PCG is an
appropriate method.

Suppose that C is of rank l, and that we find a decomposition

C = EDET ,(2.1)

where E is m by l and D is l by l and invertible—either a spectral decomposition or
an LDLT factorization with pivoting are suitable—but the exact form is not relevant.
In this case, on defining additional variables

z = −DET y,

we may rewrite (1.1) as
⎛
⎝

H 0 AT

0 D−1 ET

A E 0

⎞
⎠

⎛
⎝

x
z
y

⎞
⎠ =

⎛
⎝

g
0
0

⎞
⎠ .(2.2)
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Noting the trailing zero block in the coefficient matrix of (2.2), we see that the required
(x, z) components of the solution lie in the nullspace of (A E).

Let the columns of the matrix

N =

(
N1

N2

)

form a basis for this null space. Then

(
x
z

)
=

(
N1

N2

)
w(2.3)

for some w, and (2.2) implies

HNw = NT
1 g,(2.4)

where

HN
def
= NT

1 HN1 + NT
2 D−1N2.(2.5)

Since we would like to apply PCG to solve (2.4), our fundamental assumption is then
that

A1: the matrix HN is positive definite.

Fortunately assumption A1 is often easy to verify.
Theorem 2.1. Suppose that the coefficient matrix MH of (1.1) is nonsingular

and has mH− negative eigenvalues and that C has c− negative ones, then A1 holds
if and only if

mH− + c− = m.(2.6)

Proof. It is well known [29, Thm. 2.1] that under assumption A1 the coefficient
matrix EH of (2.2) has inertia (n + l,m, 0). The result then follows directly from
Sylvester’s law of inertia, since then In(EH) = In(D−1) + In(MH) and D−1 has as
many negative eigenvalues as C has.

Under assumption A1, we may apply the PCG method to find w, and hence
recover (x, z) from (2.3). Notice that such an approach does not determine y, and
additional calculations may need to be performed to recover it if it is required.

More importantly, it has been shown [8, 11, 31, 43] that rather than computing
the iterates explicitly within the nullspace via (2.3), it is possible to perform the
iteration in the original (x, z) space so long as the preconditioner is chosen carefully.
Specifically, let G be any symmetric matrix for which

A2: the matrix

GN
def
= NT

1 GN1 + NT
2 D−1N2(2.7)

is positive definite,

which we can check using Theorem 2.1. Then the appropriate projected precondi-
tioned conjugate-gradient (PPCG) algorithm follows [31].
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Projected Preconditioned Conjugate Gradients (variant 1):
Given x = 0, z = 0 and h = 0, solve

⎛
⎝

G 0 AT

0 D−1 ET

A E 0

⎞
⎠

⎛
⎝

r
d
u

⎞
⎠ =

⎛
⎝

g
h
0

⎞
⎠ ,(2.8)

and set (p, v) = −(r, d) and σ = gT r + hT d.
Iterate until convergence:

Form Hp and D−1v.

Set α = σ/(pTHp + vTD−1v).
Update x ← x + αp,

z ← z + αv,
g ← g + αHp

and h ← h + αD−1v.
Given g and h, solve (2.8) to find r and d.
Set σnew = gT r + hT d
and β = σnew/σ.
Update σ ← σnew,

p ← −r + βp
and v ← −d + βv.

We note in passing that the algorithm above may be generalized by replacing D in
the preconditioning step (2.8) by any nonsingular T for which NT

1 GN1 + NT
2 T−1N2

is positive definite. The scalar σ gives an appropriate optimality measure [31], and a
realistic termination rule is to stop when σ is small relative to its original value.

While this method is acceptable when a decomposition (2.1) of C is known, it
is preferable to be able to work directly with C. To this end, suppose that at each
iteration

h = −ETa, v = −DET q and d = −DET t

for unknown vectors a, q and t—this is clearly the case at the start of the algorithm.
Then, letting w = Ca, it is straightforward to show that t = u + a, and that we can
replace our previous algorithm with the following equivalent one.

Projected Preconditioned Conjugate Gradients (variant 2):
Given x = 0, and a = w = 0, solve

(
G AT

A −C

)(
r
u

)
=

(
g
w

)
,(2.9)

and set p = −r, q = −u and σ = gT r.
Iterate until convergence:



174 H. DOLLAR, N. GOULD, W. SCHILDERS, AND A. WATHEN

Form Hp and Cq.

Set α = σ/(pTHp + qTCq).
Update x ← x + αp,

a ← a + αq,
g ← g + αHp

and w ← w + αCq.
Given g and w, solve (2.9) to find r and u.
Set t = a + u,

σnew = gT r + tTw
and β = σnew/σ.
Update σ ← σnew,

p ← −r + βp
and q ← −t + βq.

Notice now that z no longer appears, and that the preconditioning is carried out using
the matrix MG mentioned in the introduction. Also note that although this variant
involves two more vectors than its predecessor, t is simply used as temporary storage
and may be omitted if necessary, while w may also be replaced by Ca if storage is
tight.

When C = 0, this is essentially the algorithm given by [31], but for this case the
updates for v and w are unnecessary and may be discarded. At the other extreme,
when C is nonsingular the algorithm is precisely that proposed by [30, Alg. 2.3], and
is equivalent to applying PCG to the system

(H + ATC−1A)x = g,

using a preconditioner of the form G + ATC−1A.
Which of the two variants is preferable depends on whether we have a decomposi-

tion (2.1) and whether l is small relative to m: the vectors h and v in the first variant
are of length l, while the corresponding a and q in the second are of length m. Notice
also that although the preconditioning steps in the first variant require that we solve
(2.8) this is entirely equivalent to solving (2.9), where w = −EDh, and recovering

d = D(h− ET v).

Thus our remaining task is to consider how to build suitable and effective pre-
conditioners of the form (1.2). We recall that it is the distribution of the generalized
eigenvalues λ for which

HN v̄ = λGN v̄(2.10)

that determines the convergence of the preceding PPCG algorithms, and thus we
will be particularly interested in preconditioners which cluster these eigenvalues. In
particular, if we can efficiently compute GN so that there are few distinct eigenvalues
λ in (2.10), then PPCG convergence (termination) will be rapid.

3. Eigenvalue considerations. We first consider the spectral implications of
preconditioning (1.1) by (1.2).

Theorem 3.1 (see [16, Thm. 3.1] or, in special circumstances, [4, 44]). Suppose
that MH is the coefficient matrix of (1.1). Then M−1

G MH has m unit eigenvalues,
and the remaining n eigenvalues satisfy

(H − λG)v = (λ− 1)ATw, where Av − Cw = 0.
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If C is invertible, the nonunit eigenvalues satisfy

(H + ATC−1A)v = λ(G + ATC−1A)v.(3.1)

Our goal in this section is to improve upon this result in the general case C �= 0.
For the special case in which C = 0, results are already known [18] concerning the
eigenvalues of K−1

G KH for the pair of matrices

KH =

(
H AT

A 0

)
and KG =

(
G AT

A 0

)
.

These results refer to a partitioning of A as

A = (A1 A2),(3.2)

so that its leading m by m submatrix

A3: A1 is nonsingular;

and a similar partitioning of G and H as

G =

(
G11 GT

21

G21 G22

)
and H =

(
H11 HT

21

H21 H22

)
,(3.3)

where G11 and H11 are, respectively, the leading m by m submatrices of G and H.
In practice, the partitioning of A to ensure A3 may involve column permutations,

but without loss of generality we simply assume here that any required permutations
have already been carried out. Given A3, we shall be particularly concerned with the
reduced-space basis matrix

N =

(
R
I

)
, where R = −A−1

1 A2.(3.4)

Such basis matrices play vital roles in simplex (pivoting)-type methods for linear pro-
gramming [2, 24], and more generally in active-set methods for nonlinear optimization
[27, 38, 39].

Theorem 3.2 (see [18, Thm. 2.3]). Suppose that G and H are as in (3.3), that
A3 holds and that

G22 = H22, but G11 = 0 and G21 = 0.(3.5)

Suppose furthermore that H22 is positive definite, and let

ρ
def
= min

[
rank(A2), rank(H21)

]

+ min
[
rank(A2), rank(H21) + min[rank(A2), rank(H11)]

]
.

Then K−1
G KH has at most

rank(RTHT
21 + H21R + RTH11R) + 1 ≤ min(ρ, n−m) + 1 ≤ min(2m,n−m) + 1

distinct eigenvalues.
The restriction that H22 be positive definite is not as severe as it might first seem

because the problem may be reformulated to use H22 + AT
2 ΔA2 for any symmetric
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positive definite weight matrix Δ instead [18, Thm. 2.2]—this corresponds to the
so-called augmented Lagrangian approach [33].

Theorem 3.3 (see [18, Thm. 2.4]). Suppose that G and H are as in (3.3), that
A3 holds and that

G22 = H22 and G11 = H11 but G21 = 0.(3.6)

Suppose furthermore that H22 + RTHT
11R is positive definite, and that

ν
def
= 2 min

[
rank(A2), rank(H21)

]
.

Then K−1
G KH has at most

rank(RTHT
21 + H21R) + 1 ≤ ν + 1 ≤ min(2m,n−m) + 1

distinct eigenvalues.
Theorem 3.4 (see [18, Thm. 2.5]). Suppose that G and H are as in (3.3), that

A3 holds and that

G22 = H22 and G21 = H21 but G11 = 0.(3.7)

Suppose furthermore that H22 + RTHT
21 + H21R is positive definite, and that

μ
def
= min

[
rank(A2), rank(H11)

]
.

Then K−1
G KH has at most

rank(RTH11R) + 1 ≤ μ + 1 ≤ min(m,n−m) + 1

distinct eigenvalues.
Turning to the general case of C �= 0, denote the coefficient matrices of the systems

(2.2) and (2.8) by

K̄H
def
=

⎛
⎝

H 0 AT

0 D−1 ET

A E 0

⎞
⎠ and K̄G

def
=

⎛
⎝

G 0 AT

0 D−1 ET

A E 0

⎞
⎠ ,

respectively. Recalling the definitions (2.5) and (2.7) of HN and GN , the following
result is a direct consequence of [35, Thm. 2.1].

Theorem 3.5. Suppose that N is any (n by n+ l−m) basis matrix for the null
space of (A E). Then K̄−1

G K̄H has 2m unit eigenvalues, and the remaining n+ l−m
eigenvalues are those of the generalized eigenproblem (2.10).

We may improve on Theorem 3.5 by applying Theorems 3.2–3.4 in our more
general setting. To do so, let

R̄ = −A−1
1 (A2 E),

and note that (3.2) implies the partitioning

K̄H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

H11 HT
21 0 AT

1

H21 HT
22 0 AT

2

0 0 D−1 ET

A1 A2 E 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and K̄G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

G11 GT
21 0 AT

1

G21 GT
22 0 AT

2

0 0 D−1 ET

A1 A2 E 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We then have the following immediate consequences.



IMPLICIT-FACTORIZATION PRECONDITIONERS 177

Corollary 3.6. Suppose that G and H are as in (3.3) and that (3.5) and A3
hold. Suppose furthermore that

(
H22 0
0 D−1

)
(3.8)

is positive definite, and let

ρ̄ = min
[
η, rank(H21)

]
+ min

[
η, rank(H21) + min[η, rank(H11)]

]
,

where η = rank(A2 E). Then K̄−1
G K̄H has at most

rank(R̄THT
21 + H21R̄ + R̄TH11R̄) + 1 ≤ min(ρ̄, n + l −m) + 1 ≤ min(2m,n + l −m) + 1

distinct eigenvalues.
Corollary 3.7. Suppose that G and H are as in (3.3) and that (3.6) and A3

hold. Suppose furthermore that

(
H22 0
0 D−1

)
+ R̄THT

11R̄(3.9)

is positive definite, and that

ν̄ = 2 min
[
η, rank(H21)

]
,

where η = rank(A2 E). Then K̄−1
G K̄H has at most

rank(R̄THT
21 + H21R̄) + 1 ≤ ν̄ + 1 ≤ min(2m,n + l −m) + 1

distinct eigenvalues.
Corollary 3.8. Suppose that G and H are as in (3.3) and that (3.7) and A3

hold. Suppose furthermore that

(
H22 0
0 D−1

)
+ R̄THT

21 + H21R̄(3.10)

is positive definite, and that

μ̄ = min
[
η, rank(H11)

]
,

where η = rank(A2 E). Then K̄−1
G K̄H has at most

rank(R̄TH11R̄) + 1 ≤ μ̄ + 1 ≤ min(m,n + l −m) + 1

distinct eigenvalues.
While the requirements that (3.8)–(3.10) be positive definite may at first seem

strong assumptions, as in the case C = 0 we can also apply a so-called augmented
Lagrangian approach for the general case C �= 0.

Theorem 3.9. The inertial requirement (2.6) holds for a given H if and only if
there exists a positive semi-definite matrix Δ̄ such that

(
H 0
0 D−1

)
+

(
AT

ET

)
Δ(A E)
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is positive definite for all Δ for which Δ − Δ̄ is positive semi-definite. In particular,
if (2.6) holds, H + ATΔA and ETΔE + D−1 are positive definite for all such Δ.

Proof. This follows immediately by applying [18, Thm. 2.2] to K̄H .
Because Ax + Ez = 0 we may rewrite (2.2) as the equivalent system

⎛
⎝

H + ATΔA ATΔE AT

ETΔA ETΔE + D−1 ET

A E 0

⎞
⎠

⎛
⎝

x
z
y

⎞
⎠ =

⎛
⎝

g
0
0

⎞
⎠ .

Eliminating the variable z, we find that

(
H + ATΔA ATPT

PA −W

)(
x
y

)
= −

(
g
0

)
,

where

P = I − ΔW and W = E(ETΔE + D−1)−1ET .

Hence

(
H + ATΔA AT

A −C̄

)(
x
ȳ

)
= −

(
g
0

)
,(3.11)

where

C̄ = P−1WP−T = (I − ΔW )−1W (I −WΔ)−1 and ȳ = PT y.(3.12)

Thus it follows from Theorem 3.9 that we may rewrite (2.2) so that its trailing and
leading diagonal blocks are, respectively, negative semi- and positive definite. In doing
so, any underlying structure (such as sparsity) may be compromised. For the sparse
case, if we are prepared to tolerate fill-in in these blocks, requirements (3.8)–(3.10)
then seem more reasonable.

Although (3.12) may appear complicated for general C, C̄ is diagonal whenever
C is. More generally, if E = I, C̄ = D + DΔD and we may recover y = (I + ΔD)ȳ.

4. Suitable preconditioners. It has long been common practice (at least in
optimization circles) [4, 7, 13, 26, 36, 49] to use explicit-factorization preconditioners
of the form (1.2) by specifying G and factorizing MG using a suitable symmetric,
indefinite package such as MA27 [21] or MA57 [20]. Given G, an alternative used com-
monly by the PDE community (see, for example, [1, 22, 36, 42, 44, 14, 48] and the
many references in [3]) is to use the explicit block decomposition

MG =

(
I 0

AG−1 I

)(
G 0
0 −C −AG−1AT

)(
I G−1AT

0 I

)
(4.1)

to solve (1.2) via factorizations of G and the Schur complement C +AG−1AT (or an
approximation to the latter) if these are viable. While such techniques for choosing G
have often been successful, they have usually been rather ad hoc, with little attempt
to improve upon the eigenvalue distributions beyond those suggested by Theorem 3.1.
In this section we investigate an implicit-factorization alternative.
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4.1. Implicit-factorization preconditioners. Recently Dollar and Wathen
[19] proposed a class of incomplete factorizations for saddle-point problems (C = 0),
based upon earlier work by Schilders [46]. They consider preconditioners of the form

MG = PBPT ,(4.2)

where solutions with each of the matrices P , B and PT are easily obtained. In
particular, rather than obtaining P and B from a given MG, MG is derived from
specially chosen P and B. In this section, we examine a broad class of methods of
this form.

In order for the methods we propose to be effective, we shall require that A3
holds. Since there is considerable flexibility in choosing the “basis” A1 from the rect-
angular matrix A by suitable column interchanges, A3 is often easily, and sometimes
trivially, satisfied. Even though, theoretically, there is a lot of choice, the actual
A1 that is used for practical computation can have a significant effect on the overall
effectiveness of the preconditioning strategies described in this paper. The problem
of determining the “sparsest” A1 is NP hard, [9, 10], while numerical considerations
must be given to ensure that A1 is not badly conditioned if at all possible [27]. More
generally, we do not necessarily assume that A1 is sparse or structured nor that it has
a sparse (or other) factorization, merely that there are effective ways to solve systems
involving A1 and AT

1 . For example, for many problems involving constraints aris-
ing from the discretization of partial differential equations, there are highly effective
iterative methods for such systems [5].

Suppose that

P =

⎛
⎝

P11 P12 AT
1

P21 P22 AT
2

P31 P32 P33

⎞
⎠ and B =

⎛
⎝

B11 BT
21 BT

31

B21 B22 BT
32

B31 B32 B33

⎞
⎠ .(4.3)

Our goal is to ensure that

(MG)31 = A1,(4.4a)

(MG)32 = A2(4.4b)

and (MG)33 = −C,(4.4c)

whenever MG = PBPT . Pragmatically, though, we are only interested in the case
where one of the three possibilities

P11 = 0, P12 = 0 and P32 = 0,(4.5a)

or P11 = 0, P12 = 0 and P21 = 0,(4.5b)

or P12 = 0, P32 = 0 and P33 = 0(4.5c)

(as well as nonsingular P31 and P22) hold, since only then will P be easily block-
invertible. Likewise, we restrict ourselves to the three general cases

B21 = 0, B31 = 0 and B32 = 0 with easily invertible B11, B22 and B33,(4.6a)

B32 = 0 and B33 = 0 with easily invertible B31 and B22, or(4.6b)

B11 = 0 and B21 = 0 with easily invertible B31 and B22,(4.6c)

so that B is block-invertible. B is also easily block-invertible if

B21 = 0 and B32 = 0 with easily invertible

(
B11 BT

31

B31 B33

)
and B22,(4.7)

and we will also consider this possibility.
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Table 4.1

Possible implicit factors for the preconditioner (1.2). We give the P and B factors and any
necessary restrictions on their entries. We also associate a family number with each class of implicit
factors. Full derivations are given in [17, Appendix A].

Family/
reference P B Conditions

1.

(
0 0 AT

1

0 P22 AT
2

P31 0 P33

) (
B11 0 0

0 B22 0

0 0 B33

)
B11 = −P−1

31 (C + P33)P−T
31

B33 = P−1
33

2.

(
0 0 AT

1

0 P22 AT
2

P31 0 P33

) (
B11 0 BT

31

0 B22 0

B31 0 0

)
P31 = B−T

31

P33 + PT
33 + P31B11P

T
31 = −C

3.

(
0 0 AT

1

P21 P22 AT
2

P31 0 −C

) (
B11 0 BT

31

0 B22 0

B31 0 0

)
B31 = P−T

31

B11 = P−1
31 CP−T

31

4.

(
0 0 AT

1

P21 P22 AT
2

P31 0 P33

) (
0 0 BT

31

0 B22 BT
32

B31 B32 0

)
P21 = −P22B

T
32B

−T
31

P31 = B−T
31

P33 + PT
33 = −C

5.

(
0 0 AT

1

P21 P22 AT
2

P31 0 P33

) (
0 0 BT

31

0 B22 BT
32

B31 B32 B33

) −C = P33 + PT
33 − P33B33P

T
33

B31 = (I −B33P
T
33)P−T

31

B32 = −B31P
T
21P

−T
22

6.

(
0 0 AT

1

0 P22 AT
2

P31 P32 P33

) (
B11 BT

21 BT
31

B21 B22 0

B31 0 0

) P31 = B−T
31

P32 = −P31B
T
21B

−1
22

P33 + PT
33

= −C − P31(B11 −BT
21B

−1
22 B21)PT

31

7.

(
0 0 AT

1

0 P22 AT
2

P31 P32 P33

) (
0 0 BT

31

0 B22 BT
32

B31 B32 B33

) P33 + PT
33 + P33(B33 −B32B

−1
22 BT

32)PT
33

= −C

P32 = −P33B32B
−1
22

P31 = (I − P32B
T
32 − P33B

T
33)B−T

31

We consider all of these possibilities in detail in [17, Appendix A], and summarize
our findings in Tables 4.1 and 4.2. We have identified eleven possible classes of easily
invertible factors that are capable of reproducing the A and C blocks of MG, a further
two which may be useful when C is diagonal, and one that is only applicable if C = 0.

Notice that aside from invertibility, there are never restrictions on P22 and B22.

4.2. Reproducing H. Having described families of preconditioners which are
capable of reproducing the required components A and C of MG, we now examine
what form the resulting G takes. In particular, we consider which submatrices of G
can be defined to completely reproduce the associated submatrix of H; we say that a
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Table 4.2

Possible implicit factors for the preconditioner (1.2) (cont.). We give the P and B factors and
any necessary restrictions on their entries. We also associate a family number with each class of
implicit factors. Full derivations are given in [17, Appendix A].

Family/
reference P B Conditions

8.

(
AT

1 0 AT
1

AT
2 P22 AT

2

−C 0 0

) (−C−1 0 0

0 B22 0

0 0 B33

)
C invertible

9.

(
P11 0 AT

1

P21 P22 AT
2

P31 0 0

) (
B11 BT

21 BT
31

B21 B22 0

B31 0 0

) B11 = −P−1
31 CP−T

31

B31 = P−T
31 −MB11

B21 = P−1
22 (P21 −AT

2 M)B11

P11 = AT
1 M for some invertible M

10.

(
P11 0 AT

1

P21 P22 AT
2

P31 0 0

) (
0 0 BT

31
0 B22 BT

32

B31 B32 B33

)
C = 0

P31 = B−T
31

11.

(
0 0 AT

1

P21 P22 AT
2

P31 0 −C

) (
B11 0 BT

31

0 B22 0

B31 0 B33

)
C invertible

PT
31 = B−1

11 BT
31C

B33 = (B31P
T
31 − I)C−1

12.

(
0 0 AT

1

P21 P22 AT
2

P31 0 −C

) (
B11 0 BT

31

0 B22 0

B31 0 B33

)
B11 = P−1

31 CP−T
31

B31 = P−T
31 , where

B33C = 0

13.

(
0 0 AT

1

0 P22 AT
2

P31 0 P33

) (
B11 0 BT

31

0 B22 0

B31 0 B33

) P31 = (I − P33B33)B−T
31

B11 = P−1
31

(
P33B33P

T
33

−C − P33 − PT
33

)
P−T

31

14.

(
P11 0 AT

1

P21 P22 AT
2

P31 0 0

) (
B11 0 BT

31

0 B22 0

B31 0 B33

) B11 = −P−1
31 CP−T

31

B31 = P−T
31 −MB11

P11 = AT
1 M

P21 = AT
2 M for some invertible M

component Gij , i, j ∈ {1, 2}, is complete if it is possible to choose it so that Gij = Hij .
We give the details in [17, Appendix B], and summarize our findings for each of the
14 families from section 4.1 in Table 4.3.

Some of the submatrices in the factors P and B can be arbitrarily chosen without
changing the completeness of the family. We shall call these “free blocks.” For
example, consider family 2 from Table 4.1. The matrix G produced by this family
always satisfies G11 = 0, G21 = 0, and G22 = P22B22P

T
22. Hence, P22 can be defined as

any nonsingular matrix of suitable dimension, and BT
22 can be subsequently chosen so

that G22 = H22. The simplest choice for P22 is the identity matrix. We observe that
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Table 4.3

Blocks of G for the families of preconditioners given in Tables 4.1 and 4.2. The superscript
1 indicates that the value of G21 is dependent on the choice of G11. If Gij , i, j ∈ {1, 2}, is a zero
matrix, then a superscript 2 is used. The superscript 3 means that G21 is dependent on the choice
of G11 when C = 0, but complete otherwise, while the superscript 4 indicates that G11 is only
guaranteed to be complete when C = 0.

Completeness Conditions Feasible
Family G11 G21 G22 on C to use Comments

1. � ×1 � any C �

2. ×2 ×2 � any C �

3. ×2 � � any C �

Simplest choice of free blocks is
4. ×2 ×2 � any C �

the same as that for family 2.

5. � ×1 � any C C = 0

Simplest choice of free blocks is
6. ×2 ×2 � any C �

the same as that for family 2.
If C = 0 using simplest choice of

7. � �3 � any C C = 0 free blocks, then same as that for
family 5 with C = 0.

8. � ×1 � nonsingular �

9. � � � any C C = 0

Generalization of factorization
10. � � � C = 0 �

suggested by Schilders [19, 46];
See also [37].

11. � � � nonsingular �

C = 0 gives example of family 10.
12. �4 � � any C diagonal C

C nonsingular gives family 3.

13. � ×1 � any C �

14. � ×1 � any C �
C = 0 gives example of family 10.

the choice of the remaining submatrices in P and B will not affect the completeness
of the factorization, and are only required to satisfy the conditions given in Table 4.1.
The simplest choices for these submatrices will be P31 = I, and B11 = 0, giving
P33 = − 1

2C, and B31 = I. Using these simple choices we obtain:

P =

⎛
⎝

0 0 AT
1

0 I AT
2

I 0 − 1
2C

⎞
⎠ and B =

⎛
⎝

0 0 I
0 B22 0
I 0 0

⎞
⎠ .

The simplest choice of the free blocks may result in some of the families having the
same factors as other families. This is indicated in the “comments” column of the
table. Table 4.3 also gives the conditions that C must satisfy to use the family, and
whether the family is feasible to use, i.e., are the conditions on the blocks given in
Tables 4.1 and 4.2 easily satisfied?

Table 4.4 gives some guidance towards which families from Tables 4.1 and 4.2
should be used in the various cases of G given in section 3. We also suggest simple
choices for the free blocks. In our view, although Table 4.3 indicates that it is theoret-
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Table 4.4

Guidance towards which family to use to generate the various choices of G given in section 3.

Sub-blocks of G Conditions on C Family Free block choices

G22 = H22, G11 = 0, G21 = 0 any C 2 P22 = I, P31 = I, B11 = 0

G22 = H22, G11 = H11, G21 = 0 C = 0 10 B21 = 0, P22 = I, P31 = I

G22 = H22, G11 = H11, G21 = 0 C nonsingular 11 P22 = I, P31 = I

G22 = H22, G21 = H21, G11 = 0 any C 3 P22 = I, P31 = I

ically possible to reproduce all of H using, e.g., family 9, in practice this is unviable
because structure, such as sparsity, could be severely compromised.

5. Numerical examples. In this section we examine how effective implicit-
factorization preconditioners might be when compared with explicit-factorization ones.
We consider problems generated using the complete set of quadratic programming ex-
amples from the CUTEr [32] test set used in our previous experiments for the C = 0
case [18]. All inequality constraints are converted to equations by adding slack vari-
ables, and a suitable “barrier” penalty term is added to the diagonal of the Hessian
for each bounded or slack variable to simulate systems that might arise during an
iteration of an interior-point method for such problems; in each of the test problems
the value 1.1 is used—this sort of value would correspond to an intermediate stage
of the outer (optimization) iteration. The resulting equality-constrained quadratic
programs are then of the form

minimize
x∈IRn

gTx + 1
2x

THx subject to Ax = 0.(5.1)

Given this data H and A, two illustrative choices of diagonal C are considered, namely,

cii = 1 for 1 ≤ i ≤ m,(5.2)

and

cii =

{
0 for 1 ≤ i ≤

⌈
m
2

⌉
1 for

⌈
m
2

⌉
+ 1 ≤ i ≤ m;

(5.3)

in practice such C may be thought of as regularization terms for some or all on the
constraints in (5.1). Our aim is thus to solve for the primal variables x in the system
(1.1) using a suitably preconditioned PPCG iteration.

Rather than present large tables of data (these can be found in [17, Appendix
C]), here we use performance profiles [15] to illustrate our results. To explain the
idea, let P represent the set of preconditioners that we wish to compare. Suppose
that the run of PPCG using a given preconditioner i ∈ P reports the total CPU time
tij ≥ 0 when executed on example j from the test set T . For all problems j ∈ T , we
want to compare the performance of algorithm i with the performance of the fastest
algorithm in the set P. For j ∈ T , let tMIN

j = min{tij ; i ∈ P}. Then for α ≥ 1 and
each i ∈ P we define

k(tij , t
MIN

j , α) =

{
1 if tij ≤ αtMIN

j

0 otherwise.
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The performance profile [15] of algorithm i is then given by the function

pi(α) =

∑
j∈T k(tij , t

MIN
j , α)

|T | , α ≥ 1.

Thus pi(1) gives the fraction of the examples for which algorithm i is the most effective
(according to the statistic tij), pi(2) gives the fraction for which algorithm i is within
a factor of 2 of the best, and limα→∞ pi(α) gives the fraction for which the algorithm
succeeded.

We consider two explicit factorization preconditioners, one using exact factors
(G = H), and the other using a simple projection (G = I). A Matlab interface to the
HSL [34] package MA57 [20] (version 2.2.1) is used to factorize MG and subsequently
solve (1.4); as we have already mentioned, in some cases it would have been both
possible and preferable to use instead the explicit block decomposition (4.1) when
G = I (or for easily invertible H), and interpretation of the results we present should
keep this in mind. Three implicit factorizations of the form (4.2) with factors (4.3)
are also considered. The first is from family 1 (Table 4.1), and aims for simplicity by
choosing P31 = I, P33 = I = B33 and B22 = I = P22, and this leads B11 = −(C + I);
such a choice does not necessarily reproduce any of H, but is inexpensive to use. The
remaining implicit factorizations are from family 2 (Table 4.1). The former (marked
(a) in the following figures) selects G22 = H22 while the latter (marked (b) in the
figures) chooses G22 = I; for simplicity we chose P31 = I = B31, B11 = 0, P22 = I
and P33 = − 1

2C (see section 4.2), and thus we merely require that B22 = H22 for case
(a) and B22 = I for case (b)—we use MA57 to factorize H22 in the former case.

Given A, a suitable basis matrix A1 is found by finding a sparse LU factorization
of AT using the built-in Matlab function lu. An attempt to correctly identify the
rank is controlled by tight threshold column pivoting, in which any pivot may not
be smaller than a factor τ = 2 of the largest entry in its (uneliminated) column
[27, 28]. The rank is estimated as the number of pivots, ρ(A), completed before the
remaining uneliminated submatrix is judged to be numerically zero, and the indices of
the ρ(A) pivotal rows and columns of A define A1—if ρ(A) < m, the remaining rows
of A are judged to be dependent, and are discarded. Although such a strategy may
not be as robust as, say, a singular-value decomposition or a QR factorization with
pivoting, both our and others’ experience [27] indicate it to be remarkably reliable
and successful in practice. Having found A1, the factors are discarded, and a fresh
LU decomposition of A1, with a looser threshold column pivoting factor τ = 100, is
computed using lu in order to try to encourage sparse factors.

All of our experiments were performed using a dual processor Intel Xeon 3.2GHz
Workstation with hyperthreading and 2 Gbytes of RAM. Our codes were written and
executed in Matlab 7.0 Service Pack 1.

In Figures 5.1–5.2, (see the tables in [17, Appendix C] for the raw data), we
compare our five preconditioning strategies for (approximately) solving the problem
(1.1) when C is given by (5.2) using the PPCG scheme (variant 2) described in
section 2. We consider both low and high(er) accuracy solutions. For the former, we
terminate as soon as the residual σ has been reduced more than 10−2 from its original
value, while the latter requires a 10−8 reduction; these are intended to simulate the
levels of accuracy that might be required within a nonlinear equation or optimization
solver in early (global) and later (asymptotic) phases of the solution process.

We see that if low accuracy solutions suffice, the implicit factorizations appear
to be significantly more effective at reducing the residual than their explicit counter-
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Fig. 5.1. Performance profile, p(α): CPU time (seconds) to reduce relative residual by 10−2,
when C is given by (5.2).
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Fig. 5.2. Performance profile, p(α): CPU time (seconds) to reduce relative residual by 10−8,
when C is given by (5.2).

parts. In particular, the implicit factorization from family 1 seems to be the most
effective. Of interest is that for family 2, the cost of applying the more accurate
implicit factorization that reproduces H22 generally does not pay off relative to the
cost of the cheaper implicit factorizations. For higher accuracy solutions, the leading
implicit factorization still slightly outperforms the explicit factors, although now the
remaining implicit factorizations are less effective.
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Fig. 5.3. Performance profile, p(α): CPU time (seconds) to reduce relative residual by 10−2,
when C is given by (5.3).
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Fig. 5.4. Performance profile, p(α): CPU time (seconds) to reduce relative residual by 10−8,
when C is given by (5.3).

Figures 5.3–5.4 (see [17] for tables of the raw data) repeat the experiments when
C is given by (5.3). Once again the implicit factorizations seem very effective, with a
shift now to favor those from family 2, most especially the less sophisticated of these.

6. Comments and conclusions. In this paper we have considered conjugate-
gradient like methods for block symmetric indefinite linear systems that arise from
regularized saddle-point problems. Such methods require preconditioners that pre-



IMPLICIT-FACTORIZATION PRECONDITIONERS 187

serve certain sub-blocks from the original systems but allow considerable flexibility
for the remaining “noncrucial” blocks. To this end, we have constructed fourteen
families of implicit factorizations that are capable of reproducing the required sub-
blocks and (some) of the remainder. These generalize known implicit factorizations
[18, 19] for the C = 0 case. Improved eigenvalue clustering is possible if additionally
some of the “noncrucial” blocks are reproduced. We have shown numerically that
these implicit-factorization preconditioners can be effective. However, further work is
needed to see how these preconditioners compare against special-purpose ones based
on (4.1) rather than generic ones using factors of (1.2).

A number of important issues remain. Firstly, we have made no effort to find
the best preconditioner(s) from amongst our families, and indeed in most cases have
not even tried them in practice. As always with preconditioning, there is a delicate
balance between improving clustering of eigenvalues and the cost of doing so, especially
since in many applications low accuracy estimates of the solution suffice. We expect
promising candidates to emerge in due course, but feel it is beyond the scope of this
paper to indicate more than that this is a promising approach.

Secondly, and as we pointed out in [18], the choice of the matrix A1 is crucial,
and considerations of both its stability and sparsity (or other structure), and of its
effect on which of the “noncrucial” blocks may be reproduced, are vital. We have
precisely defined the algorithm that we have used to select A1 in the computations
presented in this paper, but though this strategy seems to work reasonably across
the wide range of test set problems we have computed, we make no claim to its
relative quality. The most stringent practical requirement for computation with the
preconditioners described in this paper is that there is an effective way to solve linear
systems involving A1.

Thirdly (and possibly related to the point above), when experimenting with fam-
ily 3 (Table 4.1), we found that some very badly conditioned preconditioners were
generated. Specifically, our aim had been to reproduce G21 = H21, and for simplicity
we had chosen P31 = I = B31 and B22 = I = P22, and this leads to P21 = H21A

−1
1 .

Note that we did not try to impose additionally that G22 = H22 as this would have
lead to nontrivial B22. Also notice that we did not need to form P21, merely to operate
with it (and its transpose) on given vectors. On examining the relevant spectrum for
some small badly conditioned examples, the preconditioner appeared to have worsened
rather than improved the range of the eigenvalues for these computations. Whether
this is a consequence of requiring two solves with A1 (and its transpose) when applying
the preconditioner rather than the single solve required when not trying to reproduce
H21, and whether the same would be true for other families trying to do the same is
simply conjecture at this stage. However, it is certainly a cautionary warning.
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1. Introduction. A real n × n matrix is said to be nonnegative if each of its
entries is nonnegative.

The nonnegative inverse eigenvalue problem (NIEP) is the following: given a
list of n complex numbers λ = {λ1, . . . , λn}, find a nonnegative n × n matrix with
eigenvalues λ (if such a matrix exists).

A related problem is the symmetric nonnegative inverse eigenvalue problem
(SNIEP): given a list of n real numbers λ = {λ1, . . . , λn}, find a symmetric non-
negative n× n matrix with eigenvalues λ (if such a matrix exists)1.

Finding necessary and sufficient conditions for a list λ to be realizable as the
eigenvalues of a nonnegative matrix has been a challenging area of research for over
fifty years, and this problem is still unsolved [12]. As noted in [6, section 6], while
various necessary or sufficient conditions exist, the necessary conditions are usually
too general while the sufficient conditions are too specific. Under a few special suffi-
cient conditions, a nonnegative matrix with the desired spectrum can be constructed;
however, in general, proofs of sufficient conditions are nonconstructive. Two sufficient
conditions that are constructive and not restricted to small n are, respectively, given
in [20], for the SNIEP, and [21], for the NIEP with real λ. (See also [19] for an ex-
tension of the results of the latter paper.) A good overview of known results relating
to necessary or sufficient conditions can be found in the recent survey paper [12] and
general background material on nonnegative matrices, including inverse eigenvalue
problems and applications, can be found in the texts [2] and [18]. We also mention
the recent paper [9], which can be used to help determine whether a given list λ may
be realizable as the eigenvalues of a nonnegative matrix.
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tralian Research Council through grant DP0450539.
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1The NIEP and SNIEP are different problems even if λ is restricted to contain only real entries;

there exist lists of n real numbers λ for which the NIEP is solvable but the SNIEP is not [16].
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In this paper we are interested in generally applicable numerical methods for
solving NIEPs and SNIEPs. To the best of our knowledge, the only algorithms that
have appeared up to now in the literature consist of [5] for the SNIEP and [8] for the
NIEP. In the case of [5], the following constrained optimization problem is considered:

min
QTQ=I, R=RT

1

2
‖QTΛQ−R ◦R‖2.(1.1)

Here Λ is a constant diagonal matrix with the desired spectrum and ◦ stands for the
Hadamard product, i.e., componentwise product. Note that the symmetric matrices
with the desired spectrum are exactly the elements of {QTΛQ | Q ∈ R

n×n orthogonal}
and that the symmetric nonnegative matrices are exactly the elements of {R◦R | R ∈
R

n×n symmetric}. In [5], a gradient flow based on (1.1) is constructed. A solution
to the SNIEP is found if the gradient flow converges to a Q and an R that zero the
objective function. The approach taken in [8] for the NIEP is similar but is com-
plicated by the fact that the set of all matrices, both symmetric and nonsymmetric,
with a particular desired spectrum is not nicely parameterizable. In particular, these
matrices can no longer be parameterized by the orthogonal matrices.

In this paper we present a numerical algorithm for the NIEP and another for
the SNIEP. In both cases, the problems are posed as problems of finding a point in
the intersection of two particular sets. Unlike the approaches in [5] and [8] which
are based on gradient flows, our algorithms are iterative in nature. For the SNIEP,
the solution methodology is based on a alternating projection scheme between the
two sets in question. The solution methodology for the NIEP is also based on an
alternating projection-like scheme but is more involved, as we will shortly explain.

While alternating projections can often be a very effective means of finding a
point in the intersection of two or more convex sets, for both the SNIEP and NIEP
formulations, one set is nonconvex. Nonconvexity of one of the sets means that
alternating projections may not converge to a solution. This is in contrast to the case
where all sets are convex and convergence to a solution is guaranteed.

In addition to problem formulations, the development of the corresponding al-
gorithms, and their convergence analysis, another contribution of the paper is as
follows. As mentioned above, for each problem, one set in the problem formulation
is nonconvex. For the NIEP, this set is particularly complicated; it consists of all
matrices with the desired spectrum. At least some of the members of this set will be
nonsymmetric matrices and it is this that causes complications. In particular, though
the set is closed and hence projections are well defined theoretically, how to calculate
projections onto such sets is an unsolved difficult problem. We formulate an alternate
method for mapping onto this set. Though the resulting points are not necessarily
projected points, they are members of the set and share a number of other desirable
properties. As will be shown, this alternate “projection” is very effective in our con-
text. Furthermore, we believe that it may also be quite effective for other inverse
eigenvalue problems involving nonsymmetric matrices2. For more on other inverse
eigenvalue problems, see the survey papers [4] and [6], and the recent text [7].

Before concluding this introductory section we would like to point out how the
NIEP is related to another problem involving stochastic matrices. A n× n matrix is
said to be stochastic if it is nonnegative and the sum of the entries in each row equals
one. Another variation of the NIEP is the stochastic inverse eigenvalue problem

2Preliminary indications of this are given in [24] and [23], where this idea is applied to inverse
eigenvalue type problems arising in control theory.
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(StIEP): given a list of n complex numbers λ = {λ1, . . . , λn}, find a stochastic n× n
matrix with eigenvalues λ (if such a matrix exists). It turns out that the NIEP and
the StIEP are almost exactly the same problem, as we now show. (See also [8].)

The vector of all 1’s is always an eigenvector for a stochastic matrix, implying
each stochastic matrix must have 1 as an eigenvalue. Also, the maximum row sum
matrix norm of a stochastic matrix equals 1 and hence the spectral radius cannot be
greater than 1, and as a result, must actually equal 1. Suppose λ satisfies the above
mentioned necessary conditions to be the spectrum of a stochastic matrix and that
a nonnegative matrix A with this spectrum can be found. Then if an eigenvector x
of A corresponding to the eigenvalue 1 can be chosen to have positive entries (by the
Perron–Frobenius theorem this is certainly possible if A is irreducible), then, if we
define D = diag(x), it is straightforward to verify that

D−1AD

is a stochastic matrix with the desired spectrum. (In fact it can be shown that if
λ satisfies the above mentioned necessary conditions, then it is the spectrum of a
stochastic matrix if and only if it is the spectrum of a nonnegative matrix [22, Lemma
5.3.2].)

The rest of the paper is structured as follows. The last part of this section contains
some notation. Projections play a key part in the algorithms and section 2 contains
general properties of projections that are used throughout the paper. The SNIEP
algorithm is presented first, in section 3, and then insights from this algorithm are
used to address the more difficult NIEP in section 4. Section 5 contains convergence
results. This includes a detailed analysis of fixed points of the SNIEP algorithm for
the n = 2 case. This is the easiest case though we believe the analysis presented is still
quite interesting and also gives insight into higher-dimensional problems. Numerical
results for both algorithms are presented in section 6, and an appendix contains some
supplementary projection results.

Notation. R is the set of real numbers. C is the set of complex numbers. Sn is
the set of real symmetric n × n matrices. AT denotes the transpose of a matrix A.
A∗ denotes the complex conjugate transpose of a matrix A. tr(A) denotes the sum of
the diagonal elements of a square matrix A. For two n×n symmetric matrices A and
B, [A,B] denotes AB − BA. diag(v) for v ∈ C

n denotes the n × n diagonal matrix
whose ith diagonal term is vi. Re(z) denotes the real part of z ∈ C.

2. Projections. Projections play a key part in the algorithms. This section
contains general properties of projections that will be used throughout the paper.

Let x be an element in a Hilbert space H and let C be a closed (possibly non-
convex) subset of H. Any c0 ∈ C such that ‖x − c0‖ ≤ ‖x − c‖ for all c ∈ C will
be called a projection of x onto C. In the cases of interest here, namely where H is
a finite dimensional Hilbert space, there is always at least one such point for each x.
If C is convex as well as closed, then each x has exactly one such minimum distance
point [17]. Where convenient, we will use y = PC(x) to denote that y is a projection
of x onto C. We emphasize that y = PC(x) only says y is a projection of x onto C
and does not make any statement regarding uniqueness.

All problems of interest in this paper are feasibility problems of the following
abstract form.

Problem 2.1. Given closed sets C1, . . . , CN in a finite dimensional Hilbert space
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H, find a point in the intersection

N⋂
i=1

Ci

(assuming the intersection is nonempty).
(In fact, we will solely be interested in the case N = 2.)
If all the Ci’s in Problem 2.1 are convex, a classical method of solving Problem

2.1 is to alternatively project onto the Ci’s. This method is often referred to as the
method of alternating projections (MAP). If the Ci’s have a nonempty intersection,
the successive projections are guaranteed to asymptotically converge to an intersection
point [3].

Theorem 2.2 (MAP). Let C1, . . . , CN be closed convex sets in a finite dimen-

sional Hilbert space H. Suppose
⋂N

i=1 Ci is nonempty. Then starting from an arbitrary
initial value x0, the sequence

xi+1 = PCφ(i)
(xi), where φ(i) = (i mod N) + 1,

converges to an element in
⋂N

i=1 Ci.
We remark that the usefulness of MAP for finding a point in the intersection of

a number of sets is dependent on being able to compute projections onto each of the
Ci’s.

While MAP is not guaranteed to converge to a solution if one or more of the
Ci’s is nonconvex, for alternating projections between two sets, the following distance
reduction property always holds.

Theorem 2.3. Let C1 and C2 be closed (nonempty) sets in a finite dimensional
Hilbert space H. For any initial value y0 ∈ C2, if

x1 = PC1
(y0), y1 = PC2

(x1), x2 = PC1
(y1),

then

‖x2 − y1‖ ≤ ‖x1 − y1‖ ≤ ‖x1 − y0‖.

Proof. The second inequality holds as y1 is a projection of x1 onto C2 and hence
its distance to x1 is less than or equal to the distance of x1 to any other point in C2

such as y0. The first inequality holds by similar reasoning.
Corollary 2.4. If for i = 0, 1, . . . ,

xi+1 = PC1
(yi), yi+1 = PC2

(xi+1),

that is, the xi’s and yi’s are successive projections between two closed sets, then ‖xi−
yi‖ is a nonincreasing function of i.

Suppose one is interested in solving Problem 2.1 in the case of two sets, C1 and C2,
when one or both sets are nonconvex. If projections onto these sets are computable,
a solution method is to alternately project onto C1 and C2. Corollary 2.4 ensures
that the distance ‖xi − yi‖ is nonincreasing with i. While this is promising, there is,
however, no guarantee that this distance goes to zero and hence that a solution to the
problem will be found.

Most of the literature on alternating projection methods deals with the case of
convex subsets of a (possibly infinite dimensional) Hilbert space; a survey of these
results is contained in [1]. The text [11] is also recommended. There is much less
available for the case of one or more nonconvex sets; see in particular [10].
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3. The symmetric problem. Our algorithm for solving the SNIEP consists of
alternately projecting onto two particular sets. The details are given in this section.

Given a list of real eigenvalues λ = {λ1, . . . , λn}, renumbering if necessary, sup-
pose λ1 ≥ · · · ≥ λn. Let

Λ = diag(λ1, . . . , λn),(3.1)

and let M denote the set of all real symmetric matrices with eigenvalues λ,

M = {A ∈ Sn |A = V ΛV T for some orthogonal V }.(3.2)

Let N denote the set of symmetric nonnegative matrices,

N = {A ∈ Sn |Aij ≥ 0 for all i, j}.(3.3)

The SNIEP can now be stated as the following particular case of Problem 2.1:

Find X ∈ M∩N .(3.4)

Our solution approach is to alternatively project between M and N , and we next
show that it is indeed possible to calculate projections onto these sets. First, in order
for the term “projection” to make sense, we need to define an appropriate Hilbert
space and associated norm. From now on, Sn will be viewed as a Hilbert space with
inner product

〈A,B〉 = tr(AB) =
∑
i,j

AijBij .(3.5)

The associated norm is the Frobenius norm ‖A‖ = 〈A,A〉 1
2 .

The projection of A ∈ Sn onto M is given by Theorem 3.2 below. More precisely,
it gives a projection of A onto M. The reason for this is that the set M is nonconvex3

and hence projections onto this set are not guaranteed to be unique. We will need
the following classical result [13, section 10.2].

Lemma 3.1. Suppose x, y ∈ R
n and x1 ≥ · · · ≥ xn, y1 ≥ · · · ≥ yn. If σ is a

permutation of {1, . . . , n}, then

∑
i

xiyi ≥
∑
i

xiyσ(i).

Theorem 3.2. Given A ∈ Sn, let A = V diag(μ1, . . . , μn)V T with V a real
orthogonal matrix and μ1 ≥ · · · ≥ μn. If Λ is given by (3.1), then V ΛV T is a best
approximant in M to A in the Frobenius norm.

Proof. For all X ∈ M, tr(X2) = tr(Λ2). As a result, finding X ∈ M that
minimizes ‖X−A‖2 is the same as finding X ∈ M that maximizes tr(XA). Consider
the function

f : M → R, X �→ tr(XA).

3M is nonconvex if its defining λ contains a pair of nonequal eigenvalues. For example, if n = 2,
consider

A =

[
λ1 0
0 λ2

]
and B =

[
λ2 0
0 λ1

]
.

If λ1 �= λ2, then the convex combination (A + B)/2 does not have the same spectrum as A and B.
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M is a smooth manifold and its tangent space at a point X is {[X,Ω] | Ω = −ΩT ∈
R

n×n}; see, for example, [14, Chapter 2]. The derivative of f at a point X in the
tangent direction [X,Ω] is

Df(X)([X,Ω]) = tr([X,Ω]A) = tr((AX −XA)Ω).

If X maximizes f , then this derivative must be zero in all tangent directions, or
equivalently, AX − XA must be symmetric. This in turn is equivalent to X and A
commuting. X and A commute if and only if they are simultaneously diagonalizable;
see [15, Theorem 2.5.15]. Hence if X maximizes f , then there must exist an orthogonal
matrix U and a diagonal matrix Λσ with the same spectrum as Λ such that A =
U diag(μ1, . . . , μn)UT and X = UΛσU

T . This combined with Lemma 3.1 implies f
has maximum value tr(Λ diag(μ1, . . . , μn)) and implies the result.

Projection onto N is straightforward and is given by Theorem 3.3 below.
Theorem 3.3. Given A ∈ Sn, define A+ ∈ Sn by

(A+)ij = max {Aij , 0} for all 1 ≤ i, j ≤ n.(3.6)

A+ is the best approximant in N to A in the Frobenius norm.
Proof. The projection of x ∈ R onto the nonnegative real numbers equals

max {x, 0}. The general result follows by noting that if B ∈ Sn, and in particular if
B ∈ N , then

‖A−B‖ =

(∑
i,j

|Aij −Bij |2
) 1

2

and hence that the problem reduces to n2 decoupled scalar problems.
Our proposed algorithm for solving the SNIEP is the following.

SNIEP algorithm:

Problem data. List of desired real eigenvalues λ = {λ1, . . . , λn}, λ1 ≥ · · · ≥ λn.

Initialization. Choose a randomly generated symmetric nonnegative matrix Y ∈R
n×n.

repeat

1. Calculate an eigenvalue-eigenvector decomposition of Y :
Y = V diag(μ1, . . . , μn)V T , μ1 ≥ · · · ≥ μn.

2. X := V diag(λ1, . . . , λn)V T .

3. X := (X + XT )/2.

4. Y := X+.

until ‖X − Y ‖ < ε.

In the above algorithm, X+ is given by (3.6).
Note that at each iteration of the algorithm, X has the desired spectrum λ and Y

is nonnegative. If ε is small, say ε = 10−14, termination of the loop ensures X equals
Y (approximately) and hence that Y solves the SNIEP.

Due to small numerical inaccuracy, X from Step 2 of the algorithm may not be
perfectly symmetric. Step 3 makes it so.

Of course, while Corollary 2.4 ensures ‖X−Y ‖ is nonincreasing from one iteration
to the next, the set M is nonconvex and hence there is no guarantee that the algorithm
will terminate. A detailed analysis of convergence is postponed to section 5.
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4. The general problem. Throughout this section, C
n×n will be viewed as a

Hilbert space with inner product

〈A,B〉 = tr(AB∗) =
∑
i,j

AijBij .

The associated norm is the Frobenius norm ‖A‖ = 〈A,A〉 1
2 .

Recall Schur’s result that any matrix A ∈ C
n×n is unitarily equivalent to an upper

triangular matrix.
Theorem 4.1. Given A ∈ C

n×n with eigenvalues μ1, . . . , μn in any prescribed
order, there is a unitary matrix U ∈ C

n×n and an upper triangular matrix T ∈ C
n×n

such that

A = UTU∗(4.1)

and Tii = μi, i = 1, . . . , n.
Proof. See, for example, [15, Theorem 2.3.1].
We now redefine some terms from the prior section.
Let λ = {λ1, . . . , λn} be a given list of complex eigenvalues. Define

T = {T ∈ C
n×n |T is upper triangular with spectrum λ}.(4.2)

Theorem 4.1 implies that the set of all complex matrices with spectrum λ is given
by the following set:

M = {A ∈ C
n×n |A = UTU∗ for some unitary U and some T ∈ T }.(4.3)

Let N denote the set of (not necessarily symmetric) nonnegative matrices,

N = {A ∈ R
n×n |Aij ≥ 0 for all i, j}.(4.4)

Having redefined M and N , the NIEP can now be stated as the following partic-
ular case of Problem 2.1:

Find X ∈ M∩N .(4.5)

A difficulty now occurs. We would like to use alternating projections to solve the
NIEP. However, to the best of our knowledge, the way to calculate projections onto
M is an unsolved problem. Suppose instead we could find a mapping that was in
some sense a reasonable substitute for a projection map for M. Using this substitute
mapping and the projection map for N in an alternating projection-like scheme may
still produce a viable algorithm. Indeed, we now propose the following function PM
as a substitute for a true projection map onto M. (The notation PM is used as it is
suggestive; however, recall that we have already used y = PC(x) to denote that y is
a projection of x onto a set C. The two different uses of the notation should be clear
from their context and should not cause confusion.)

Definition 4.2. Suppose U ∈ C
n×n is unitary and T ∈ C

n×n is upper triangular.
Let {λ̂1, . . . , λ̂n} be a permutation of the list of eigenvalues λ such that, among all
possible permutations, it minimizes

n∑
i=1

|λ̂i − Tii|2.(4.6)
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Define

PM(U, T ) = UT̂U∗,(4.7)

where T̂ ∈ T is given by

T̂ij =

{
λ̂i if i = j,
Tij otherwise.

Note that PM maps into the set M.
A given matrix A ∈ C

n×n may have a nonunique Schur decomposition and A =
U1T1U

∗
1 = U2T2U

∗
2 does not imply PM(U1, T1) = PM(U2, T2). For example, if

T1 =

⎡
⎣

1 1 4
0 2 2
0 0 3

⎤
⎦, T2 =

⎡
⎣

2 −1 3
√

2

0 1
√

2
0 0 3

⎤
⎦ , and U =

1√
2

⎡
⎣

1 1 0
1 −1 0

0 0
√

2

⎤
⎦,

then U is unitary and UT1U
∗ = T2, [15]. If λ = {0, 0, 0}, PM(U, T1) = PM(I, T2).

It turns out that this nonuniqueness is not particularly important. The following
result shows that for different Schur decompositions of the same matrix, PM gives
points in M of equal distance from the original matrix.

Theorem 4.3. Suppose A = U1T1U
∗
1 = U2T2U

∗
2 , where U1, U2 ∈ C

n×n are
unitary and T1, T2 ∈ C

n×n are upper triangular. Then

‖PM(U1, T1) −A‖ = ‖PM(U2, T2) −A‖.

Proof. Suppose A = UTU∗, where U is unitary and T is upper triangular. If T̂
is the matrix given in Definition 4.2, then by the unitary invariance of the Frobenius
norm,

‖PM(U, T ) −A‖ = ‖T̂ − T‖.

As ‖T̂ − T‖2 equals the quantity in (4.6), ‖PM(U, T ) − A‖ depends only on λ and
T11, . . . , Tnn. The result now follows by noting that the Tii’s are the eigenvalues of A
and that (4.6) does not depend on the ordering of the Tii’s.

The next theorem shows that given A = UTU∗, if we restrict attention to matrices
of the form UT̃U∗, T̃ ∈ T , then PM(U, T ) is a point in M closest to A.

Theorem 4.4. Suppose A = UTU∗ ∈ C
n×n with U a unitary matrix and T

upper triangular. Then PM(U, T ) satisfies

‖PM(U, T ) −A‖ ≤ ‖UT̃U∗ −A‖ for all T̃ ∈ T .

Proof. Let T̃ be a matrix in T . The unitary invariance of the Frobenius norm
implies the result will be established if we can show

‖T̂ − T‖ ≤ ‖T̃ − T‖,

where T̂ is the matrix given in Definition 4.2. Note that

‖T̃ − T‖2 =

n∑
i=1

|T̃ii − Tii|2 +
∑
i �=j

|T̃ij − Tij |2(4.8)
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and that the T̃ii’s are some permutation of the list of eigenvalues λ. The result follows
by noting that ‖T̂ − T‖2 equals the quantity in (4.6) and that this value must be
less than or equal to the first summation on the right-hand side of the equality in
(4.8).

For completeness, we note that, given A = UTU∗, PM(U, T ) may not satisfy

‖PM(U, T ) −A‖ ≤ ‖M −A‖ for all M ∈ M.

For example if

U =
1

5

[
−3 4
4 3

]
, T =

[
1 −3
0 2

]
, Ũ =

1

5

[
−4 3
3 4

]
, T̃ =

[
0 −3
0 0

]
,

and λ = {0, 0}, then one can readily verify that

‖PM(U, T ) − UTU∗‖ � ‖Ũ T̃ Ũ∗ − UTU∗‖.

As for the symmetric case, projection onto N is straightforward.
Theorem 4.5. Given A ∈ C

n×n, define A+ ∈ R
n×n by

(A+)ij = max{Re(Aij), 0} for all 1 ≤ i, j ≤ n.(4.9)

A+ is the best approximant in N to A in the Frobenius norm.
Proof. The projection of z ∈ C onto the nonnegative real numbers is given by

max{Re(z), 0}. The remainder of the proof follows by exactly the same reasoning
used in the proof of Theorem 3.3.

Our proposed algorithm for solving the NIEP is the following.

NIEP algorithm:

Problem data. List of desired complex eigenvalues λ = {λ1, . . . , λn}.
Initialization. Choose a randomly generated nonnegative matrix Y ∈ R

n×n.

repeat

1. Calculate a Schur decomposition of Y : Y = UTU∗.

2. X := PM(U, T ).

3. Y := X+.

until ‖X − Y ‖ < ε.

In the above algorithm, PM(U, T ) is given by Definition 4.2 and X+ is given by
(4.9).

As for the SNIEP algorithm, at each iteration of the NIEP algorithm, X has the
desired spectrum λ and Y is nonnegative. If ε is small, say ε = 10−14, termination of
the loop ensures X equals Y (approximately) and hence that Y solves the NIEP.

Remark 4.6. If each of the members of λ are real and we seek a symmetric
nonnegative matrix with spectrum λ, then the NIEP algorithm reduces to the SNIEP
algorithm. More precisely, this is true if the members of λ are real, if the initial
condition Y is a symmetric nonnegative matrix, and, for Schur decompositions used
in the NIEP algorithm, if U is restricted to be real.

Indeed, suppose the current Y is symmetric and nonnegative. For any Schur
decomposition of Y , T must be a real diagonal matrix. As we restrict the U matrix
to be real, such a decomposition is nothing but a standard eigenvalue-eigenvector
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decomposition for a symmetric matrix (though the eigenvalue are not necessarily
ordered along the diagonal of T ).

As both the elements of λ and the diagonal entries of T are real, the permutation
that minimizes (4.6) can be easily characterized. Indeed, in this case (4.6) is minimized
if and only if

n∑
i=1

λ̂iTii(4.10)

is maximized. From Lemma 3.1, (4.10) is maximized if the λ̂i’s are ordered in the
same way as the Tii’s. This implies that if Y is symmetric, the step of producing a
X from Y is the same in both algorithms.

Lastly, projection of a symmetric matrix onto (4.4) gives the same matrix as
projection onto (3.3) and hence this step in both algorithms is also the same. This
establishes our claim.

We close this section by noting that unlike the SNIEP algorithm, for the NIEP
algorithm there is no guarantee that ‖X − Y ‖ is nonincreasing from one iteration to
the next.

5. Convergence. In this section we study the convergence properties of the
SNIEP and NIEP algorithms. We present a number of results for the SNIEP algo-
rithm, though limit ourselves to a local convergence result for the NIEP algorithm.
We start by characterizing the SNIEP algorithm fixed points. All references to “M,”
“N ,” and “the algorithm” refer to the SNIEP versions of these objects, unless other-
wise stated.

5.1. Fixed points. As there may be more than one projection of a point Y onto
the set M, some care needs to be taken in regard to the definition of fixed points of
the algorithm. This subsection includes such a definition, as well as a characterization
of these points.

Definition 5.1. X ∈ Sn is a fixed point of the algorithm if there exists an
eigenvalue-eigenvector decomposition of X+,

X+ = U Λ̃UT ,(5.1)

where Λ̃ = diag(λ̃1, . . . , λ̃n), λ̃1 ≥ · · · ≥ λ̃n, and U is orthogonal such that

X = UΛUT .(5.2)

X is a fixed point if and only if there is a projection of X+ onto M which equals
X.

We would like to point out an important fact regarding this definition of a fixed
point. If X ∈ M is an infeasible fixed point, that is, X ∈ M is a fixed point which is
not in the solution set M∩N , it does not necessarily mean that the algorithm cannot
make further progress toward a feasible solution from X. This is a consequence of the
possible nonuniqueness of the algorithm’s matrix decompositions, as we now explain.

If X+ has distinct eigenvalues, then the orthonormal eigenvectors of X+ are
unique up to multiplication by −1. In this case, any decomposition (5.1) of X+

will result in the same projected point (5.2). On the other hand, if X+ has repeated
eigenvalues, then there are an infinite number of different decompositions of X+. If
this is the case for an infeasible fixed point X, it may be possible to escape from X
by forcing the algorithm to use a different decomposition of X+.
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Theorem 5.2. Suppose X ∈ M is an infeasible fixed point. Furthermore, suppose
that there exists an orthogonal matrix V such that X+ = V Λ̃V T and (V ΛV T )+ = X+,
that is, that there exists an alternate decomposition of X+ which leads to a different
point in N . Then using this alternate decomposition, the algorithm is able to escape
from X.

Proof. We will show that

‖X −X+‖ = ‖V ΛV T −X+‖ > ‖V ΛV T − (V ΛV T )+‖.(5.3)

Note that if (5.3) holds, then V ΛV T ∈ M and (V ΛV T )+ ∈ N are closer together
than X and X+, and the distance reduction property, Theorem 2.3, implies the result.

The equality in (5.3) holds as both X and V ΛV T are projections of X+ onto M.
The inequality in (5.3) follows by noting that, as N is closed and convex, (V ΛV T )+
is the unique closest point in N to V ΛV T .

For the main result of this subsection, we will need the following lemma.
Lemma 5.3. Suppose x, y ∈ R

n and x1 ≥ · · · ≥ xn, y1 ≥ · · · ≥ yn. If σ is a
permutation of {1, . . . , n} such that

∑
i

xiyi =
∑
i

xiyσ(i),(5.4)

and, for some i and j,

i < j and yσ(i) < yσ(j),

then

xi = xj .(5.5)

Proof. From Lemma 3.1, for any permutation π of {1, . . . , n},
∑
i

xiyi ≥
∑
i

xiyπ(i).(5.6)

Suppose (5.5) does not hold. Then xi > xj , which implies

(xi − xj)(yσ(i) − yσ(j)) < 0,

or rearranging the terms,

xiyσ(i) + xjyσ(j) < xiyσ(j) + xjyσ(i).

This combined with (5.4) implies there is a permutation that violates (5.6). As this
is not possible, (5.5) must hold.

Theorem 5.4. Suppose X ∈ M. X is a fixed point of the algorithm if and only
if

[X,X+] = 0(5.7)

and

tr(ΛΛ̃) = tr(Λ̃2),(5.8)
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where Λ̃ = diag(λ̃1, . . . , λ̃n), λ̃1 ≥ · · · ≥ λ̃n, is the diagonal matrix of eigenvalues of
X+.

Proof. (⇒) If X is a fixed point, there exists an orthogonal matrix U such that

X+ = U Λ̃UT and X = UΛUT .(5.9)

Hence X and X+ commute and (5.7) holds.
Equality (5.8) follows from

tr(XX+) = tr(X2
+)

and (5.9).
(⇐) From (5.7), X and X+ are simultaneously diagonalizable. Hence there exists an
orthogonal matrix U and a diagonal matrix Λ̃σ whose diagonal entries are a permu-
tation of the diagonal entries of Λ̃ such that

X+ = U Λ̃σU
T and X = UΛUT .

By an argument similar to the one used in the first part of the proof,

tr(ΛΛ̃σ) = tr(Λ̃2
σ).(5.10)

Equalities (5.8) and (5.10) imply

tr(ΛΛ̃) = tr(ΛΛ̃σ).

From Lemma 5.3, if i < j and (Λ̃σ)ii < (Λ̃σ)jj , then Λii = Λjj . Hence, the
columns of U can always be reordered to get a new U so that (5.9) holds, and hence,
X is a fixed point.

Remark 5.5. It is interesting to compare the fixed points of the algorithm with
those of the SNIEP gradient flow algorithm of [5]. The gradient flow used in [5] is

dX

dt
= [X, [X,Y ]],

dY

dt
= 4Y ◦ (X − Y ).

(5.11)

If (X(t), Y (t)), t ≥ 0, is a solution of this differential equation, then X(t) is isospectral,
that is, it preserves the spectrum of X(0), and Y (t) is nonnegative for all t ≥ 0 if
Y (0) is. Suppose X(0) is chosen to have the desired spectrum and Y (0) is chosen
nonnegative. Then, if X(t) and Y (t) converge to the same point, that point is a
solution of the problem.

The fixed points of (5.11) are the points (X,Y ) for which the right-hand side
is 0:

[X, [X,Y ]] = 0,

Y ◦ (X − Y ) = 0.

Note that for any X,Y ∈ Sn, [X, [X,Y ]] = 0 if and only if [X,Y ] = 0: If [X, [X,Y ]] =
0, then 0 = tr(Y [X, [X,Y ]]) = tr([X,Y ]T [X,Y ]) and hence [X,Y ] = 0. For any
X ∈ Sn, X+ ◦ (X − X+) = 0. Hence, if X ∈ M is a fixed point of our SNIEP
algorithm, then (X,X+) is a fixed point of the algorithm of [5]. Roughly speaking,
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the set of fixed points of the SNIEP algorithm of this paper is a subset of the set of
fixed points of the algorithm of [5].

There do exist infeasible fixed points. If Λ contains negative values (the SNIEP
is trivial if it does not), then X = Λ is an infeasible fixed point. It may or may not
be possible to escape from such a fixed point using alternate decompositions of X+.
An example where escape via this technique is not possible is when Λ = diag(λ1, λ2)
with λ1 > 0 and λ2 < 0, in which case Λ+ has distinct eigenvalues.

If X is a fixed point, then so is PXPT for any permutation matrix P . In partic-
ular, PΛPT is a fixed point for any permutation matrix P .

The attractive set of the diagonal fixed points includes the matrices with non-
positive off diagonal terms: Suppose X is such a matrix. Then X+ is diagonal and can
be decomposed as X+ = P Λ̃PT , where Λ̃ is diagonal with ordered diagonal entries
and P is a permutation matrix. For this decomposition of X+, Step 2 of the algorithm
maps onto the diagonal fixed point PΛPT .

5.2. General convergence properties. The following is a general result re-
garding convergence to fixed points.

Theorem 5.6. Suppose X1, X2, . . . , is a sequence of X’s produced by the algo-
rithm. Then there is a limit point X of this sequence which is a fixed point of the
algorithm and which satisfies

‖X −X+‖ = lim
i→∞

‖Xi − (Xi)+‖.(5.12)

If the limit in (5.12) is zero, then every limit point of the sequence is a solution of the
problem.

Proof. The Xi’s are elements of the compact set M and hence contain a conver-
gent subsequence. Let Xik denote the kth element in this subsequence and denote

the limit of the Xik ’s by X̂. For each k, let Uik and Λ̃ik be the matrices from the
decomposition of (Xik)+ used to produce Xik+1, that is, (Xik)+ = Uik Λ̃ikU

T
ik

and

Xik+1 = UikΛUT
ik

. As the Uik ’s are members of a compact set, without loss of gener-
ality we can assume they converge to a point U . This implies the Xik+1’s converge,
and we denote the corresponding limit point by X.

Corollary 2.4 implies limi→∞‖Xi − (Xi)+‖ exists. This and the fact that projec-
tion onto N is a continuous operation implies

‖X̂ − X̂+‖ = lim
k→∞

‖Xik − (Xik)+‖ = lim
k→∞

‖Xik+1 − (Xik+1)+‖ = ‖X −X+‖.
(5.13)

As (Xik)+ converges to X̂+ and the orthogonal matrices Uik converges to U , it

follows that the Λ̃ik ’s also converge to, say, Λ̃. Hence X̂+ = limk→∞(Xik)+ = U Λ̃UT

and X = limk→∞ Xik+1 = UΛUT . This implies X is a projection of X̂+ onto M.

The equality (5.13) and the fact that X is a projection of X̂+ onto M imply

‖X −X+‖ ≥ ‖X − X̂+‖.

As X+ is the unique projection of X onto N , this implies X̂+ = X+. As X is a
projection of X̂+ = X+ onto M, X is a fixed point.

Suppose now that the limit in (5.12) equals zero. Consider an arbitrary subse-
quence Xi1 , Xi2 , . . . , which converges to some point X̃. Note that X̃ is a limit of
points in M. The inequality

‖(Xik)+ − X̃‖ ≤ ‖(Xik)+ −Xik‖ + ‖Xik − X̃‖
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implies it is also a limit of points in N . The last part of the theorem now follows as
both M and N are closed.

The next theorem gives a local convergence result which holds for both SNIEP
and NIEP algorithms. If M and N are given, respectively, by (3.2) and (3.3), and
◦
N denotes the interior of N , then, if the intersection of M and

◦
N is nonempty, the

SNIEP algorithm converges to a solution from points in an open neighborhood of this
intersection set. The analogous result for the NIEP algorithm is also true.

Theorem 5.7. Let “the algorithm,” “the problem,” “M” and “N” refer to
either “the SNIEP algorithm,” “the SNIEP problem,” (3.2) and (3.3), or “the NIEP

algorithm,” “the NIEP problem,” (4.3) and (4.4). Suppose M ∩
◦
N is nonempty.

Then there is an open neighborhood of M∩
◦
N from which the algorithm converges to

a solution of the problem (in a single additional iteration).

Proof. We prove the result for the NIEP algorithm. The proof for the SNIEP
algorithm is almost identical.

Suppose X ∈ M∩
◦
N and let ε > 0 be small enough so that the open ball B(X, ε)

is a subset of N . Choose δ > 0 such that if Y ∈ B(X, δ) and λ̃1, . . . , λ̃n are the
eigenvalues of Y , then (reordering the λ̃i’s if necessary)

(∑
i

|λi − λ̃i|2
) 1

2

< ε/2.(5.14)

Here the λi’s are the desired eigenvalues which define the NIEP. Decreasing δ if
necessary, we assume δ ≤ ε/2.

We now show that if Y ∈ B(X, δ), then any projection of Y onto M is in B(X, ε).
As B(X, ε) ⊂ N , such a projection of Y is a solution of the problem.

Let Y ∈ B(X, δ) and suppose it has Schur decomposition Y = UTU∗. Consider

‖X − PM(U, T )‖ ≤ ‖X − Y ‖ + ‖Y − PM(U, T )‖.

The first term on the right of the inequality is less than ε/2, as is the second term by
the definition of PM(U, T ) and (5.14). This completes the result.

As we will see in the next subsection, every feasible n = 2 SNIEP has only a finite
number of infeasible fixed points. The following result exploits such a situation.

Theorem 5.8. Suppose a given feasible SNIEP has only a finite number of
infeasible fixed points. There exists a constant c > 0 such that if X1, X2, . . . , is a
sequence of X’s produced by the algorithm and ‖Xi∗ − (Xi∗)+‖ < c for some i∗, then
any limit point of the Xi’s (there must be at least one) is a solution of the problem.

Proof. Let c > 0 be such that ‖Z−Z+‖ ≥ c for all infeasible fixed points Z. Such
a c exists as there are only a finite number of infeasible fixed points. By Corollary 2.4,
‖Xi − (Xi)+‖ is a nonincreasing function of i and hence must have a limit. Theorem
5.6 implies this limit must be zero. The rest now also follows from Theorem 5.6.

If a limit point in Theorem 5.8 is in M∩
◦
N , then Theorem 5.7 implies the sequence

of Xi’s will converge to a solution (in a finite number of iterations).

Do all feasible SNIEPs have only a finite number of infeasible fixed points? Al-
ternatively, as M is compact, an equivalent question is: Are all infeasible fixed points
of a feasible SNIEP isolated? These are interesting questions, to which we currently
do not have an answer.
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5.3. Further analysis: n = 2 SNIEP. In this subsection we continue our
analysis of convergence; in particular we investigate the n = 2 SNIEP. Though neces-
sary and sufficient conditions exist for the solvability of the n = 2 SNIEP, and there
exists an analytic solution when these conditions are met, we believe the analysis
presented here is still quite interesting and also gives insight into higher-dimensional
problems.

As noted in [5], for n = 2, feasible SNIEPs have a very nice geometric interpreta-
tion. If the 2×2 symmetric matrices are parameterized by R

3 in the standard way and
the eigenvalues defining M are distinct, then the points with the desired spectrum
form a one dimensional ellipse in R

3, and the SNIEP is equivalent to finding a point
on this ellipse that is also in the nonnegative orthant of R

3.
As the trace of a matrix equals the sum of its eigenvalues, a necessary condition

for solvability is that λ1 +λ2 ≥ 0. In fact, this condition is also sufficient; if it is met,
then a solution of the problem is

X =
1

2

(
λ1 + λ2 λ1 − λ2

λ1 − λ2 λ1 + λ2

)
.(5.15)

As normal, here we assume the eigenvalues are ordered: λ1 ≥ λ2.
The feasible cases can be enumerated as follows:
1. λ1 = λ2 ≥ 0,
2. λ1 > λ2 ≥ 0,
3. λ1 > 0 > λ2, λ1 ≥ |λ2|.

Theorem 5.10 below characterizes the infeasible fixed points of the algorithm for
the different cases listed above. We will need the following lemma.

Lemma 5.9. Suppose

X =

(
a b
b a

)

for some a and some b ≤ 0. Then X ∈ M and is a fixed point if and only if

X =
1

2

(
λ1 + λ2 λ2 − λ1

λ2 − λ1 λ1 + λ2

)
.(5.16)

Proof. (⇒) X ∈ M and b ≤ 0 implies λ1 = a − b and λ2 = a + b. Solving for a
and b gives (5.16).
(⇐) If X is given by (5.16), then its eigenvalues are λ1 and λ2, and hence it is a
member of M. As λ2 − λ1 ≤ 0, X+ is a constant multiple of the identity. If U is any
orthogonal matrix such that X = UΛUT , then X+ = U Λ̃UT with Λ̃ = X+ and hence
X is a fixed point.

Theorem 5.10. For case 1, M contains only the single element (5.15) (which
equals λ1I) and hence in this case the algorithm does not have any infeasible fixed
points. For case 2, there is a single infeasible fixed point, (5.16). For case 3, there
are three infeasible fixed points, (5.16),

X =

(
λ1 0
0 λ2

)
,(5.17)

and

X =

(
λ2 0
0 λ1

)
.(5.18)
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Proof. We assume X ∈ M is a fixed point given by

X =

(
a b
b c

)

and consider all possibilities for a, b, and c.
Case 2. If a = 0 or c = 0, then det(X) ≥ 0 implies b = 0, which implies X is

feasible. If a > 0 > c or c > 0 > a, then det(X) < 0, which is not possible. If a < 0
and c < 0, then tr(X) < 0, which is not possible. Hence it remains to consider the
subcase a > 0 and c > 0.

Suppose a > 0 and c > 0. If b ≥ 0, X is feasible. If b < 0, then X+ = diag(a, c).
If a = c, then the orthonormal eigenvectors of X+, up to multiplication by −1, are
the standard orthonormal basis vectors for R

2. This would imply X is diagonal,
contradicting b < 0. If a = c, by Lemma 5.9, the only X ∈ M which is a fixed point
is given by (5.16). As λ2 − λ1 < 0, X is infeasible.

Case 3. By considering the equalities tr(X) = λ1 + λ2 and det(X) = λ1λ2, it
follows that

X =

(
a b
b λ1 + λ2 − a

)
, b = ±

√
(λ1 − a)(a− λ2), and that a ∈ [λ2, λ1].

Suppose b ≤ 0. Then X+ = diag(a+, (λ1+λ2−a)+). X+ has repeated eigenvalues
if and only if a = (λ1+λ2)/2. If X+ does have repeated eigenvalues, then the diagonal
terms of X are equal and by Lemma 5.9 the only X ∈ M which is a fixed point is
given by (5.16). As λ2 − λ1 < 0, X is infeasible. If X+ has distinct eigenvalues, then
X must be one of the infeasible fixed points (5.17) or (5.18).

Suppose b > 0. If a ∈ [0, λ1 + λ2], X is feasible. It is not possible that a = λ1

or a = λ2 as then, b = 0. Hence it remains to consider a ∈ (λ1 + λ2, λ1) (the case
a ∈ (λ2, 0) follows from this case by replacing a with λ1 + λ2 − a). If X+ and X are
given by (5.1) and (5.2), respectively, then

X −X+ =

(
0 0
0 λ1 + λ2 − a

)
= U(Λ − Λ̃)UT .

This implies Λ − Λ̃ has distinct eigenvalues and hence that (up to multiplication of
its columns by −1)

U = I or U =

(
0 1
1 0

)
.

This implies X is diagonal but this contradicts the fact that b > 0 and hence this
subcase cannot occur.

Consider the infeasible fixed point X given by (5.16). The U satisfying (5.1) and
(5.2) is unique up to multiplication of its columns by −1. It is given by

U =
1√
2

(
1 1
−1 1

)
.

Notice that X+ is a constant multiple of the identity. If X+ = V Λ̃V T is any alternate
decomposition of X+, that is, if V is any orthogonal matrix that does not equal U
nor U with one or both of its columns multiplied by −1, then V ΛV T = X, and
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Theorem 5.10 implies (V ΛV T )+ = X+. Hence, Theorem 5.2 implies, using almost
any decomposition of X+, the algorithm is able to escape from X.

The only other infeasible fixed points are the diagonal ones given by (5.17) and
(5.18). For these fixed points, X+ has distinct eigenvalues, and alternate decom-
positions as a means of escape cannot be utilized. Despite this, the next theorem
shows that such fixed points are unstable and one can escape from them by adding
an arbitrarily small perturbation.

Theorem 5.11. Suppose X is the fixed point (5.17) or (5.18) (λ1 > 0 > λ2).
Then there exist a positive constant b̄ such that for each b satisfying 0 < b ≤ b̄ there
exist positive ā = ā(b) and c̄ = c̄(b) such that if |a| ≤ ā and |c| ≤ c̄, then replacing X
by X + P , where

P =

(
a b
b c

)
,

leads to escape from the fixed point X.
Proof. To prove the theorem we will show that if P is as above and (X + P )+ =

V Λ̃V T , then

‖X+ −X‖ > ‖(X + P )+ − V ΛV T ‖.(5.19)

Inequality (5.19) and Theorem 2.3 together imply we cannot return to X.
We assume the fixed point X is given by (5.17). (The proof of the (5.18) case is

identical except for a permutation of matrix rows and columns.)
Suppose a ≥ −λ1, b > 0, and c ≤ −λ2. Then

(X + P )+ =

(
λ1 + a b

b 0

)
.(5.20)

If Λ̃ = diag(λ̃1, λ̃2), then

λ̃1, λ̃2 =
λ1 + a±

√
(λ1 + a)2 + 4b2

2
.

By the unitary invariance of the Frobenius norm, (5.19) is equivalent to

λ2
2 > (λ1 − λ̃1)

2 + (λ2 − λ̃2)
2.

Substituting λ̃1 + λ̃2 = λ1 + a, we have

λ2
2 > (λ̃2 − a)2 + (λ2 − λ̃2)

2.(5.21)

For now, suppose a = 0. Noting that λ̃2 < 0 as b = 0, straightforward algebraic
manipulations imply (5.21) is equivalent to λ2 < λ̃2. Hence, for a = 0, (5.19) holds if

and only if λ1 −
√
λ2

1 + 4b2 > 2λ2. As λ1 > 0 > λ2, this inequality holds for all b > 0
small enough.

Each b > 0 that satisfies (5.21) when a = 0 also satisfies this inequality for all a
sufficiently small as the right-hand side of (5.21) depends continuously on a.

Suppose that for i = 1, 2, . . . , (a, b) = (ai, bi), bi > 0, satisfies (5.21) and that the
bi’s converge to zero. Examination of (5.21) and the expression for λ̃2 shows that the
ai’s must also converge to zero, and hence this theorem is the best we can do.

Theorem 5.11 can be readily extended to infeasible diagonal fixed points of prob-
lems of size n > 2.
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Table 6.1

SNIEP: A comparison of performance for different problem sizes n. i denotes the average
number of iterations and T denotes the average convergence time in CPU seconds.

n i T % solved
5 19 0.0016 100
10 18 0.0030 100
20 17 0.0075 100
100 12 0.15 100

6. Numerical experiments. This section contains some numerical results for
both the SNIEP and NIEP algorithms.

All computational results were obtained using a 3 GHz Pentium 4 machine. The
algorithms were coded using Matlab 7.0.

Throughout this section, when we say a matrix is “randomly generated” we mean
each entry of that matrix is randomly drawn from the uniform distribution on the
interval [0, 1]. When dealing with the SNIEP algorithm, all randomly generated ma-
trices are chosen symmetric.

For both algorithms, the initial starting Y is always randomly generated and the
convergence tolerance ε is set to 10−14.

A final note before presenting the results: Suppose M∩
◦
N is nonempty and X is

a member of this set. Then for any real orthogonal matrix Q that is sufficiently close

to the identity, QXQT is also a solution. In particular, if M∩
◦
N is nonempty, then

there will be multiple solutions. This comment applies to both SNIEPs and NIEPs.

6.1. SNIEP. This subsection starts with some results for randomly generated
SNIEPs. To ensure each problem is feasible, each desired spectrum is taken from a
randomly generated matrix.

Results for various problem sizes n are given in Table 6.1. For each value of n,
1000 problems were considered. The table contains the average number of iterations
required to find a solution, the average time required to find a solution, and the success
rate. As can be seen, the algorithm performed extremely well and was able to solve
every problem. In all cases, both the average number of iterations and the average
solution time was very small.

Remark 6.1. It is interesting to note that T increases with n, as would be
expected, while i decreases. A reason for this could be the following. As already
mentioned, for any choice of desired eigenvalues, M is a smooth manifold. In addition,
if the eigenvalues defining M are distinct, as they will be if they were taken from a
randomly generated matrix, then the dimension of M is n(n− 1)/2; see [14, Chapter
2]. The dimension of Sn is n(n + 1)/2. Hence,

dimM
dimSn

=
n− 1

n + 1
,

which is an increasing function of n. For larger n, M is “thicker” relative to the
ambient space and hence, intuitively, the corresponding SNIEP is easier to solve.

Suppose X1, X2, . . . , is a sequence of X’s produced by the SNIEP algorithm and
that these points converge to a solution X̄. Figure 6.1 shows a typical plot of ‖Xi−X̄‖
versus i. Convergence is clearly linear. This is to be expected: Suppose X̄ is a point
on the boundary of N and that the (Xi)+’s lie in a particular face of N . As M is
a manifold, near X̄ it looks locally like an affine subspace of Sn. As the face of N
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Table 6.2

SNIEP: A problem with repeated eigenvalues, λ = {3 − t, 1 + t,−1,−1,−1,−1}. i denotes the
average number of iterations and T denotes the average convergence time in CPU seconds. i and T
do not include the attempts that had not converged after 5000 iterations.

t i T % solved
0.25 480 0.061 100
0.5 470 0.061 97
0.75 340 0.050 65
0.95 310 0.046 59
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Fig. 6.1. Linear convergence of the SNIEP algorithm.

also looks locally like an affine subspace, we would expect local linear convergence
as alternating projections between two intersecting affine subspaces converge linearly
[11].

Randomly generated problems have properties that are not shared by all SNIEPs.
For example, as already mentioned, randomly generated problems have distinct eigen-
values. We next consider a problem with repeated eigenvalues, namely λ = {3− t, 1+
t,−1,−1,−1,−1} for 0 < t < 1. The t = 1/2 version of the problem is also consid-
ered in [5], where a numerical solution is sought via the gradient flow approach of
that paper. An analytic solution to this problem is given in [20].

Notice that for any value of t the desired eigenvalues sum to zero and hence
there exist arbitrarily small perturbations of the spectrum which lead to an infeasible
SNIEP. In particular this problem cannot have any solutions in the interior of N .
We have tried the SNIEP algorithm on a number of other problems with repeated
eigenvalues with excellent results. This is the hardest problem we have encountered
so far.

The results of applying the algorithm to the problem for various values of t are
given in Table 6.2. They are based on running the algorithm 100 times for each value
of t.

First, the results indicate that the SNIEP algorithm is not always successful in
finding a solution. However, they also show that the algorithm can still be quite
successful if a number of initial conditions are tried. It is interesting to note that the
algorithm becomes more sensitive to the choice of the initial condition the larger t is.
Notice that as t → 1, the eigenvalues 3− t and 1+ t both converge to the same value,
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Table 6.3

NIEP: A comparison of performance for different problem sizes n. i denotes the average number
of iterations and T denotes the average convergence time in CPU seconds. i and T do not include
the problems that had not converged after 5000 iterations.

n i T % solved
5 26 0.011 99.7
10 44 0.045 99.8
20 48 0.12 99.8
100 200 12 96.6

and the dimension of the manifold M (which depends solely on the multiplicities of
the eigenvalues) goes from 9 when 0 < t < 1 to 8 when t = 1 [14, Chapter 2].

Aside: Regarding initial conditions, as noted before, both the SNIEP and NIEP
algorithms use a nonnegative initial starting point. This is important and, in fact,
the performance of neither algorithm is as good if non-nonnegative initial conditions
are used.

Here is a solution that was found to the t = 1/2 problem:

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
√

3
2 0 1

0 0 1 1
2 1 0

0 1 0 1
2 1 0√

3
2

1
2

1
2 0 1

2

√
3
2

0 1 1 1
2 0 0

1 0 0
√

3
2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This solution is different to both the solution in [20] and the solution in [5]. A number
of other solutions were also found.

Here is a X+ corresponding to an infeasible X (again for the t = 1/2 problem):

X+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 0 0 0

√
3
2

0 0 7
8

7
8

7
8 0

0 7
8 0 7

8
7
8 0

0 7
8

7
8 0 7

8 0

0 7
8

7
8

7
8 0 0√

3
2 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The eigenvalues of this matrix are λ̃ = {2 5
8 , 1

1
2 ,−

7
8 ,−

7
8 ,−

7
8 ,−1}.

6.2. NIEP. This subsection starts with some results for randomly generated
NIEPs. Again, to ensure each problem is feasible, each desired spectrum is taken
from a randomly generated matrix. Results are given in Table 6.3.

As can be seen, the results are again very good, with almost all problems solved.
The results indicate that NIEPs are harder to solve than SNIEPs. Also, the

number of iterations, time, and time per iteration are greater. Part of the reason for
an increase in time per iteration will be the extra computation required to calculate
the least squares matching component of each PM(U, T ) calculation; see (4.6). (For
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SNIEPs, the corresponding step is easy: the eigenvalues are real and just need to be
sorted in decreasing order.)

For the NIEPs, both i and T increased with n.
The final problem we consider is taken from [8]. It is to find a stochastic ma-

trix with (presumedly randomly generated) spectrum λ = {1.0000,−0.2608, 0.5046,
0.6438,−0.4483}. Furthermore the problem requires the matrix to have zeros in cer-
tain positions. In the context of Markov chains, we require the states to form a ring
and that each state be linked to at most two immediate neighbors. The zero pattern
is given by the zeros of the following matrix:

Z =

⎛
⎜⎜⎜⎜⎝

1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1

⎞
⎟⎟⎟⎟⎠
.(6.1)

Our algorithm as it stands is not able to solve this problem though it is able to
do so if a simple modification is made. Using Z from (6.1), define

Ñ = {A ∈ R
n×n | Aij ≥ 0 and Aij = 0 if Zij = 0}.

Ñ is still a convex set. In the NIEP algorithm, replacing projection onto N by pro-
jection onto Ñ gives solutions (nonnegative matrices) with zeros in the desired places.
Using the transformation discussed in the introduction of the paper, solutions found
by the algorithm can be converted into stochastic matrices with the same spectrum.
Note that this transformation preserves zeros.

Using this methodology readily produced many solutions. An example is

X =

⎛
⎜⎜⎜⎜⎝

0.6931 0.2887 0 0 0.0182
0.1849 0.2422 0.5729 0 0

0 0.5476 0.3622 0.0902 0
0 0 0.5437 0.1233 0.3330

0.3712 0 0 0.6103 0.0185

⎞
⎟⎟⎟⎟⎠
.

Another solution is

X =

⎛
⎜⎜⎜⎜⎝

0.8634 0.0431 0 0 0.0936
0.6224 0 0.3776 0 0

0 0.4935 0.1564 0.3501 0
0 0 0.1107 0.0115 0.8778

0.3452 0 0 0.2467 0.4080

⎞
⎟⎟⎟⎟⎠
.

Notice that this latter solution has an extra zero. While this X still solves the
problem, by further modifying N it is possible to ensure zeros appear only in the
places specified by (6.1) and nowhere else.

For example, using

Ñ = {A ∈ R
n×n | Aij = 0 if Zij = 0 and Aij ≥ δ otherwise},

with δ > 0 a small constant, does the trick. Note that the stochastic matrix transfor-
mation leaves positive entries positive.
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7. Conclusion. In this paper we have presented two related numerical methods,
one for the NIEP, which can also be used to solve the inverse eigenvalue problem for
stochastic matrices, and another for the SNIEP. The ideas used in the paper should
also be applicable to many other inverse eigenvalue problems, including other problems
involving nonsymmetric matrices.

8. Appendix. Local uniqueness and smoothness of projections. This ap-
pendix contains some supplementary results regarding projection onto the symmetric
version of M; see (3.2). While these results are not used in the main body of the
paper, we believe they are interesting and worth mentioning. We would also expect
them to be useful for other inverse eigenvalue problems.

Theorem 8.1. There is an open neighborhood of M from which projections onto
M are unique.

Proof. To ease the presentation we will assume Λ has only two distinct eigenvalues.
(The general case follows by similar reasoning.) Let m be such that λm > λm+1. If Z ∈
M, then there exists a neighborhood of Z such that each matrix in this neighborhood
has distinct mth and m+ 1th (ordered) eigenvalues. Suppose Y is an element in this
neighborhood with eigenvalues λ̃1 ≥ · · · ≥ λ̃n. It follows from the proof of Theorem
3.2 that if X is a projection of Y onto M, then there exist orthonormal vectors
u1, . . . , un such that Y =

∑n
i=1 λ̃iuiu

T
i and X = λ1

∑m
i=1 uiu

T
i +λm+1

∑n
i=m+1 uiu

T
i .

Note that here we have used the fact that λ̃m and λ̃m+1 are distinct. The proof will
be complete if we can show X does not depend on the particular decomposition of Y .

Suppose eigenvalue λ̃j has multiplicity k with λ̃j = · · · = λ̃j+k−1. If ûj , . . . , ûj+k−1

is another set of orthonormal vectors that span the eigenspace corresponding to
λ̃j , then there exists a k × k orthogonal matrix Θ such that [ûj , . . . , ûj+k−1] =
[uj , . . . , uj+k−1]Θ. Consequently,

j+k−1∑
i=j

ûiû
T
i =

j+k−1∑
i=j

uiu
T
i .

The separation of eigenvalues implies the indices j, . . . , j + k − 1 are all either less
than or equal to m, or, greater than or equal to m + 1. It follows that X does not
depend on the particular decomposition of Y .

Theorem 8.2. There is an open neighborhood of M from which the (unique)
projections onto M are smooth.

Proof (Outline). M is a submanifold of Sn and hence each point in M is in the
image of a local parametrization of M. The result can be shown to hold locally by
using such a parametrization, using a condition necessary for a point to be a projection
(if X is a projection of Y , then X−Y is normal to the tangent space of M at X), and
employing the implicit function theorem. In trying to satisfy the conditions of the
implicit function theorem, the requirement that points being projected are sufficiently
close to M appears.

As a consequence of the above mentioned necessary condition not being sufficient,
for the proof to work it appears to be that it must be known a priori that in a
neighborhood with unique projections, the projection operation is continuous. This
is indeed the case as can be shown via a contradiction argument.

The proof of the above theorem does not use any properties of M aside from the
fact that it is a (closed) submanifold and that, near the set, projections are unique.
(The projection result that uniqueness implies continuity holds for projections onto
any closed set.) Hence, Theorem 8.2 also holds for any set with these two properties.
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STRUCTURES PRESERVED BY MATRIX INVERSION∗
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Abstract. In this paper we investigate some matrix structures on Cn×n that have a good
behavior under matrix inversion. The first type of structure is closely related to low displacement
rank matrices. Next, we show that for a matrix having a low rank submatrix, the inverse matrix also
must have a low rank submatrix, which we can explicitly determine. This allows us to generalize a
theorem due to Fiedler and Markham. The generalization consists in the fact that our rank structures
may have a certain correction term, which we call the shift matrix Λk ∈ Cm×m, for suitable m, and
with Fiedler and Markham’s theorem corresponding to the limiting cases Λk → 0 and Λk → ∞I.
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arable (plus diagonal) matrices, matrix inversion
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1. Introduction. The aim of this paper is to handle structures of a matrix
A ∈ C

n×n that carry over to its inverse.
Section 2 deals with the inversion of displacement structures. The idea is to gen-

eralize the classical examples of displacement structures (for example, Toeplitz-like,
Cauchy-like, Vandermonde-like, circulant matrices; see [13]), by decoupling the dis-
placement equation. This means that the displacement equation is allowed to involve
two variables A and B rather than only one variable A. We will then illustrate these
decoupled displacement structures by some examples; one of these examples involves
Hermitian plus low rank matrices, for which we provide an alternative characteriza-
tion. The results of this section can be easily derived from the well-known results in
classical low displacement rank matrix theory.

Section 3 handles the inversion of rank structures. A rank structure on C
n×n will

be defined as a collection of structure blocks {Bk}k: these are low rank submatrices
which lie in the bottom left corner of a given matrix A ∈ C

n×n, together with a
certain correction term for the block diagonal positions of A, called the shift matrix.
Suppose then that B is a structure block according to the above definition. It turns
out that there can be defined in a natural way an inverse structure block B−1, by just
replacing the shift matrix Λ by Λ−1 (assuming Λ is nonsingular).

Section 4 handles some generalizations of section 3. A first generalization is the
inversion of structure blocks whose shift matrix Λ is singular. To solve this problem,
we make a reduction to the case where the shift matrix is block diagonal of the form
Λ = Λns ⊕ 0, with Λns nonsingular. Then it could be expected that the inverse of the
shift matrix is block diagonal of the form Λ−1 = Λ−1

ns ⊕∞I, where ∞I is the diagonal
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matrix with diagonal entries “equal to ∞”; we will show that there can be given an
exact meaning to this statement.

A second generalization is to absorb permutation matrices into the structure.
This allows us to move the structure blocks to an arbitrary matrix position, not
necessarily situated in the bottom left matrix corner anymore. Moreover, in the case
of shift matrix Λ → 0 or Λ → ∞I, we obtain in this way an alternative derivation of
a theorem due to Fiedler and Markham [6], which we state now.

Definition 1. The right nullity or shortly nullity Null A of a rectangular matrix
A ∈ C

m×n is defined as the dimension of the right null space of A. The left nullity
of A is defined in a similar way, but we do not reserve a special notation for it. The
rank defect of A is defined as the minimum of the left and right nullity.

Theorem 2 (see [6]). Let A ∈ C
n×n be nonsingular. Then for any two index

sets I and J , we have that

(1) Null A−1(I, J) = Null A(N \ J,N \ I),

where N := {1, 2, . . . , n}. Moreover, (1) remains valid if we replace everywhere Null
by the left nullity or by the rank defect.

It should be emphasized that Fiedler and Markham’s theorem will be just a special
case of the theory. Moreover, there are several connections between sections 2, 3, and
4, in the sense that the main results for rank structures can be derived as a special
case of the decoupled displacement structures of section 2, as will become clear soon.

2. Displacement structures. In this section we handle displacement structure.
As a general reference, we can refer to [13, 12, 14] for an overview of the many
applications of displacement theory in numerical linear algebra. Some references of
historical interest are [10, 11]. For our purposes, however, we will only be interested
in matrix inversion.

Let us start with some classical examples of displacement structure. Let A be
a Toeplitz matrix, i.e., A = [ai−j ]

n
i,j=1. Putting Z := [e2 . . . en0] with ek the kth

column of the identity matrix, it is easy to check that

(2) A− ZAZT = Rk 2

with Rk 2 denoting a matrix of rank at most 2. Therefore, Toeplitz matrices can be
embedded in the class of Toeplitz-like matrices, i.e., the class of matrices A satisfying
(2).

Let A be a Cauchy matrix, i.e., A = [ 1
xi−yj

]ni,j=1. It is easy to check that

(3) DxA−ADy = Rk 1

with Rk 1 denoting a matrix of rank at most 1. (Here we are using the notation
Dx = diag(xi)i for any vector x). Therefore, Cauchy matrices can be embedded in
the class of Cauchy-like matrices, i.e., the class of matrices A satisfying (3).

Now we come to some formal definitions. The main difference with (2) and (3) is
that the variable A is decoupled into two variables A and B.

Definition 3. Let G,H ∈ C
m×n and let r ∈ N. Then for A ∈ C

m×m and
B ∈ C

n×n,
1. We say A and B to satisfy the Stein type displacement equation induced by

(G,H, r) if

(4) A−GBHT = Rk r,

where Rk r denotes a matrix of rank at most r.
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2. We say A and B to satisfy the Sylvester type displacement equation induced
by (G,H, r) if

(5) AG−HB = Rk r,

where Rk r denotes a matrix of rank at most r.
Note that the dimension requirements in Definition 3 are equivalent to saying

that A and B are square and the block matrix

(6)

[
B−1 HT

G A

]

has compatible matrix dimensions. (Here we assumed that B−1 exists). Moreover,
this block representation is useful in the sense that the left-hand side of (4) can be
realized as a Schur complement in (6). This is the basis of the following inversion
result.

Theorem 4 (Stein type inversion). With the notation of Definition 3, if A and
B are nonsingular matrices satisfying

(7) A−GBHT = Rk r,

then the inverses satisfy

(8) B−1 −HTA−1G = R̃k r̃,

where R̃k r̃ denotes a matrix of rank at most r̃ := r + n−m.
Proof (based on [13, Lemma 1.5.1]). Let us denote A ∼ B if these matrices can

be obtained out of each other by elementary Gaussian row and/or column operations.
Consider the embedded matrix (6). By the nonsingularity of B−1, we can use it as
pivot block for a Gaussian elimination process, and the Schur complement formula
yields

(9)

[
B−1 HT

G A

]
∼

[
B−1 0

0 A−GBHT

]
.

Similarly, by the nonsingularity of A, we can use it also as pivot block and obtain

(10)

[
B−1 HT

G A

]
∼

[
B−1 −HTA−1G 0

0 A

]
.

The proof can then be finished by comparing (9) and (10) and by using the fact that
∼ is a rank-preserving relation.

Remark 5 (displacement nullity). Note that the above theorem states that the
displacement rank should be corrected by the quantity n−m under matrix inversion.
But since this quantity equals precisely the difference in size between the matrices (7)
and (8), it follows that these matrices must have the same nullity (Definition 1). In
other words, the quantity that is strictly preserved under matrix inversion is not the
displacement rank but is rather the displacement nullity.

We come to the second, easier inversion result.
Theorem 6 (Sylvester type inversion). With the notation of Definition 3, if A

and B are nonsingular matrices satisfying

(11) AG−HB = Rk r,
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then the inverses satisfy

(12) GB−1 −A−1H = R̃k r,

where R̃k r := A−1(Rk r)B−1 denotes a new matrix of rank at most r.
Proof. This follows immediately by multiplying (11) on the left with A−1 and on

the right with B−1.
Remark 7. The above proof remains valid if we add a quadratic and constant

term to the structure, i.e., if we replace (11) by

AFB + AG−HB + J = Rk r

and (12) by

F + GB−1 −A−1H + A−1JB−1 = R̃k r

for certain F,G,H, J ∈ C
m×n. Thus we see that the quadratic term AFB has been

transformed into the constant term F under matrix inversion, and vice versa.
Let us illustrate why it is useful to decouple the variable A into two variables

A and B. As an illustrative example, we will focus on the following displacement
equation.

Corollary 8. Let A and B be nonsingular matrices satisfying

(13) A−B = Rk r;

then the inverses satisfy

(14) A−1 −B−1 = R̃k r.

This corollary is a special case of both the Stein and Sylvester type inversion

results. Hence the matrix R̃k r occurring in (14) is given explicitly by −A−1(Rk r)B−1

or −B−1(Rk r)A−1, by the proof of Theorem 6. Yet another explicit formula for R̃k r
is the so-called Sherman–Morrison formula [8, section 2.1], stating that

R̃k r = −B−1U(V TB−1U + I)−1V TB−1,

where we assumed a decomposition Rk r = UV T with U, V ∈ C
n×r. Note that this

formula does not involve A−1 anymore.
Now we come to some illustrations of Corollary 8. First we can take B to be

unitary. Note that the inverse matrix B−1 is again unitary; hence Corollary 8 reveals
the following fact

Corollary 9. The property A = Uni + Rk r, i.e., A is unitary plus rank at
most r is preserved by matrix inversion.

We could state a similar property for the property A = Herm + Rk r, i.e., A is
Hermitian plus rank at most r. But here we encounter the problem that for a nonsin-
gular matrix A = Herm + Rk r, the Hermitian component Herm does not necessarily
have to be nonsingular too. This means that the nonsingularity conditions in Corol-
lary 8 will not always be satisfied. Nevertheless, it turns out that the preservation
of Hermitian plus low rank structure under inversion will still be valid, even if this
nonsingularity assumption is not satisfied.

To show this, we will give an alternative characterization of the property A =
Herm + Rk r.
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We recall the following definition.
Definition 10. Two Hermitian matrices A,B ∈ C

n×n are called congruent if
there exists a nonsingular matrix T ∈ C

n×n such that A = TBTH . Given a Hermitian
matrix Herm, Inertia(Herm) is defined as the 3-tuple (π, ν, ζ) with π the number of
positive eigenvalues, ν the number of negative eigenvalues, and ζ the number of zero
eigenvalues of Herm. (This definition makes sense since the eigenvalues of Herm are
known to be real).

Inertia and congruence are classical tools in linear algebra. For example, Sylvester’s
law of inertia states that Inertia(A) = Inertia(B) if and only if A and B are congru-
ent. Moreover, inertia is subadditive in the sense that for all Hermitian matrices A
and B, we have π(A + B) ≤ π(A) + π(B) and ν(A + B) ≤ ν(A) + ν(B): see, for
example, [9, Lemma 2] for an easy proof of this property. (Note that by adding these
two equations, we get the well-known property of subadditivity of rank.)

Now we prove the next theorem.
Theorem 11. The following are equivalent:
(i) A = Herm + Rk r, i.e., A is Hermitian plus rank at most r;
(ii) i(A−AH) = Rk 2r, where i :=

√
−1 and where Rk 2r is a matrix of rank at

most 2r such that Inertia(Rk 2r) = (π, ν, ζ) with max{π, ν} ≤ r.
Proof.
(a) First we prove the implication (i) ⇒ (ii). Thus let us assume that A =

Herm+Rk r = Herm+
∑r

k=1 ukv
H
k for suitable column vectors uk,vk ∈ C

n.
The matrix Herm can be eliminated by considering

(15) i(A−AH) =

r∑
k=1

i(ukv
H
k − vku

H
k ).

We will first prove the theorem for rank upper bound r = 1. Thus we will
prove that for any u,v ∈ C

n,

(16) Inertia(i(uvH − vuH)) = (π, ν, ζ) with max{π, ν} ≤ 1.

To prove this, let us write

(17) i(uvH − vuH) =
[

u v
] [ 0 i

−i 0

] [
u v

]H
.

If the columns u, v in (17) are linearly dependent, then i(uvH − vuH) has
rank at most one, and hence (16) must obviously be true. If the columns
u, v are independent, then from (17), Sylvester’s law of inertia implies that
Inertia(i(uvH − vuH)) = Inertia(

[
0 i
−i 0

]
) (completed with n − 2 zero eigen-

values). But the latter 2-by-2 matrix has determinant −1, and hence it has
exactly one positive and one negative eigenvalue. This proves (16), i.e., the
theorem has been proven now for rank upper bound r = 1.
In the general case r ≥ 1, it follows from (15) that the matrix i(A − AH) is
the sum of all the i(ukv

H
k − vku

H
k ), k = 1, . . . , r. The theorem follows then

by (16) and the subadditivity of inertia.
(b) Now we prove the implication (ii) ⇒ (i). Thus let us assume that Inertia(i(A−

AH)) = (π, ν, ζ), where max{π, ν} ≤ r. By symmetry, we may suppose that
π ≥ ν. We define the block diagonal matrix

(18) D =

[
0 i
−i 0

]
⊕ . . .⊕

[
0 i
−i 0

]
⊕ 1 ⊕ . . .⊕ 1,
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where the first factor occurs precisely ν times and the second factor π − ν
times. By construction, D has exactly the same inertia as i(A−AH) (except
for a loss of zero eigenvalues). By Sylvester’s law of inertia, there exists a
maximal column rank matrix T such that

(19) i(A−AH) = TDTH .

Now we define vectors uk,vk by setting T =: [u1,v1; . . . ;uν ,vν ;uν+1; . . . ;uπ]
and vk := i

2uk for k = ν + 1, . . . , π. It is easy to check that

(20)
π∑

k=1

i(ukv
H
k − vku

H
k ) = TDTH .

Together with (19), (20) shows that the matrix A −
∑π

k=1 ukv
H
k must be

Hermitian. Since moreover π = max{π, ν} ≤ r, this yields us a decomposition
A = Herm + Rk r, hence finishing the proof.

From this theorem, we can derive some further properties of Hermitian plus rank
at most r matrices, including an alternative (and complete) proof of their preservation
under inversion.

Corollary 12. Let r ∈ N be a given number, then
1. the class {A ∈ C

n×n| A = Herm + Rk r} is topologically closed;
2. the class {A ∈ C

n×n| A = Herm + Rk r} is closed under matrix inversion;
3. in case A is real, the inertia condition in Theorem 11 can be dropped, i.e., from

i(A − AH) = Rk 2r, it automatically follows that Inertia(Rk 2r) = (π, ν, ζ)
with max{π, ν} ≤ r.

Proof.
1. Obviously, for a family of matrices Aε ∈ C

n×n, ε ∈ C \ {0} with limε→0 Aε =
A ∈ C

n×n, the property Inertia(i(Aε − AH
ε )) = (π, ν, ζ) with max{π, ν} ≤ r

cannot be lost for the limiting matrix A = limε→0 Aε. We can then conclude
by Theorem 11.

2. We use again Theorem 11. Thus let A be a matrix satisfying i(A − AH) =
Rk 2r and Inertia(Rk 2r) = (π, ν, ζ) with max{π, ν} ≤ r. From Corollary 8
(or by direct verification), we obtain that

(21) i(A−1 −A−H) = −R̃k 2r,

where R̃k 2r := A−1(Rk 2r)A−H . Since Rk 2r and R̃k 2r are congruent,
by Sylvester’s law of inertia they have the same inertia. In particular, the

property max{π, ν} ≤ r must carry over to R̃k 2r and hence to −R̃k 2r in
(21).

3. It can be easily checked that for a real matrix A, the eigenvalues of the matrix
i(A−AH) always come in (real) pairs λ,−λ. Hence from i(A−AH) = Rk 2r
it automatically follows that π = ν = max{π, ν} ≤ r, leading to the desired
simplification of Theorem 11.

3. Inversion of rank structures. In this section we handle the inversion of
rank structures. These rank structures are a generalization of those in [2]. We start
with the following definition.

Definition 13. We define a rank structure on C
n×n as a collection of so-called

structure blocks R = {Bk}k. Each structure block Bk is characterized as a 4-tuple

Bk = (ik, jk, rk,Λk),
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i

i j

j k

k

k k

Rk 6
Λ k

Rk 3i k

j k

Figure 1. The structure block in the left figure has jk − ik + 1 ≤ 0 and is pure. The structure
block in the right figure has the following meaning: after subtracting the shift matrix Λk ∈ C4×4

from the dashed square submatrix in the middle, the indicated bottom left submatrix must be of rank
at most 6.

where ik is the row index, jk the column index, rk the rank upper bound, and Λk ∈
C

(jk−ik+1)×(jk−ik+1) is called the shift matrix of Bk. We say a matrix A ∈ C
n×n to

satisfy the rank structure if for each k, making a k-dependent partitioning

(22) A =:

⎡
⎣

A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

⎤
⎦
k

,

where A2,2 is square and containing rows and columns ik, . . . , jk, then

(23)

[
A2,1 A2,2 − Λk

A3,1 A3,2

]

k

= Rk rk,

i.e., a matrix of rank at most rk.
As a special case, Bk is called a pure structure block if it has shift matrix Λk = 0.

Pure structure blocks will be denoted as Bpure,k. Also if jk − ik + 1 ≤ 0, then Bk

is considered to be a pure structure block, since it does not intersect the diagonal;
see Figure 1. (Note that (23) is invalid for jk − ik + 1 < 0, since it would contain
negative matrix dimensions. We should replace it here by

[
A3,1

]
k

= Rk rk, where
A3,1 contains rows ik, . . . , n and columns 1, . . . , jk.)

In case Λk = λkI for certain λk ∈ C, Definition 13 leads to the structure blocks
that were studied in [2]. We proved there that these structure blocks are preserved
by the shifted QR-algorithm. For the present paper, we do not need to make this
restriction on the shift matrices Λk.

Let us illustrate Definition 13. We can use it to describe Hessenberg matrices:
Bpure,k = (k + 2, k, 0, 0), k = 1, . . . , n− 2; upper triangular matrices; lower semisepa-
rable matrices: Bpure,k = (k, k, 1, 0), k = 1, . . . , n; lower semiseparable plus diagonal
matrices: Bk = (k, k, 1, λk), k = 1, . . . , n. Note that for this last example, the shift
matrices Λk =: λk ∈ C are scalar. Also for upper triangular matrices, we could absorb
the diagonal elements λk into the structure, if we would want to. Of course, there are
also more general or “chaotic” rank structures than the ones that we just mentioned.

Concerning matrix inversion, let us first indicate why we should expect a positive
result. Some well-known examples are the following: upper triangular structure is
preserved under matrix inversion; lower semiseparable matrices and Hessenberg ma-
trices are each others inverses; the induced pure structure of lower semiseparable plus
diagonal matrices, i.e., Bpure,k = (k + 1, k, 1, 0), k = 1, . . . , n − 1, is preserved under
matrix inversion.
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Rk 6
Λ Λ

A  =−1A  =

Rk 6
−1

Figure 2. Under matrix inversion, the shift matrix Λ of the Rk 6 structure block will transform
into the new shift matrix Λ−1. The rank number itself is preserved.

Having a second look at these examples, we can note that for upper triangular
matrices, the diagonal elements λk are precisely transformed into 1/λk under matrix
inversion. The same holds for the shift elements λk of a lower semiseparable plus
diagonal matrix, as we will show. (See also the notes in Remark 15.4.) Since it is
sufficient to consider the behavior of a single structure block Bk, from now on we will
put Bk =: B and drop the index k.

Theorem 14. Let A ∈ C
n×n be a nonsingular matrix satisfying the structure

block B = (i, j, r,Λ), with Λ nonsingular. (We assume here implicitly that j−i+1 ≥ 0,
i.e., that B is intersecting or lying just below the main diagonal of A.) Then the inverse
matrix will satisfy the structure block B−1 := (i, j, r,Λ−1); see Figure 2.

Proof. Making a partition of A as in (22), it follows that A−B = Rk r where

B =

⎡
⎣

A1,1 A1,2 A1,3

0 Λ A2,3

0 0 A3,3

⎤
⎦ .

Then by (14), or by direct verification, it follows that A−1 − B−1 = R̃k r. By the
form of B, this implies that A−1 will satisfy the inverse structure block B−1, and the
theorem is proved.

Note that we assumed here implicitly that the matrix B is nonsingular, i.e., that
the square blocks A1,1 and A3,3 are nonsingular. The case where this nonsingularity
is not satisfied can be handled by a continuity argument. (We add an infinitesi-
mally small correction to the A1,1 and A3,3 blocks, which will not influence the given
structure block).

Remark 15.

1. Note that the above theorem has been stated in terms of rank upper bounds
r. We proved in fact that the structure block B−1 can have at most the same
rank as the original structure block B, i.e., rB−1 ≤ rB. By applying the same
argument to B−1, we obtain also the inequality rB−1 ≥ rB, and it follows that
the ranks must be exactly the same. A similar remark could have been made
also for the theorems in section 2.

2. Since the above proof was based on the equality A−B = Rk r, one could use
the Sherman–Morrison formula (mentioned above) to compute the inverse
matrix. The problem is that we worked here with a single structure block,
and that the formula may not always be applicable in case of several structure
blocks.

3. As stated in the formulation of the theorem, the above proof works also for
the case where Λ is lying just below the main diagonal of A, i.e., for the case
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where j− i+1 = 0. One should then consider Λ and Λ−1 as empty matrices.
Structure blocks with j − i + 1 = 0 have already received a lot of attention
in the literature, from the point of view of efficient inversion algorithms; see,
for example, [3, 4].

4. The inheritance of lower semiseparable plus diagonal structure under matrix
inversion was also proved in [5, Theorem 4.1] and in a more general block
context in [7, Theorem 3.1]. Here we should note that the structures of these
authors are slightly different from ours, in the sense that they are not based
on structure blocks. For example, the paper [7] considers mp by mp matrices
of the form D + S, where D and S are block matrices consisting of p by
p blocks, D is nonsingular and block diagonal, and S has its block lower
triangular part equal to that of a rank r matrix. We mention that this paper
gives explicit inversion formulas.

4. Inversion of rank structures: Some extensions. In this section we will
extend Theorem 14 in several directions.

4.1. Singular shift matrices. In the statement of Theorem 14, it was assumed
that the shift matrix Λ is nonsingular. We will now remove this condition.

The first step is to construct unitary matrices U and V to bring the shift matrix
in block diagonal form

(24) UHΛV = Λns ⊕ 0

with Λns nonsingular. This matrix decomposition can be considered as an “incom-
plete singular value decomposition.” The word incomplete means that we are only
concerned with transforming the dependent rows and columns of Λ into zeros, which
is a relatively easy operation.

Now by (24), we have that (I ⊕ V H ⊕ I)A−1(I ⊕ U ⊕ I) satisfies the structure
block

B−1, where B = (i, j, r,Λns ⊕ 0).

So the structure of A−1 is known as soon as we know the structure block B−1. Hence
from now on, we will suppose that Λ = Λns ⊕ 0 with Λns nonsingular.

By continuity reasons, we could then expect that Λ−1 = Λ−1
ns ⊕∞I, where ∞I is

the diagonal matrix with diagonal entries equal to ∞.
Definition 16. We define a structure block B = (i, j, r,Λ) on C

n×n, where
Λ = Λfin ⊕∞I with Λfin ∈ C

m×m for certain m, as follows. We identify B with the
“structure block” obtained by dropping all rows and columns involving ∞ and with the
rank upper bound r decreased by the number of these dropped rows; see Figure 3.

Formally, we will use C ∪ {∞} to denote the one-point-compactification of C.
Thus by definition, we have xε → ∞ if and only if the moduli |xε| → ∞.

Of course we have to motivate Definition 16. Thus let us show that it is indeed
the correct, i.e., continuous definition for shift matrices ∞I.

Theorem 17. Given fixed integers i, j, r, m1, and m2 such that j − i + 1 =
m1 + m2, consider a family of matrices Aε, ε ∈ C \ {0} satisfying the conditions

F1. each Aε satisfies a structure block Bε = (i, j, r,Λε), where Λε = Λε,1 ⊕ Λε,2

with Λε,k ∈ C
mk×mk , k = 1, 2;

F2a. limε→0 Λε,1 =: Λfin ∈ C
m1×m1 , and limε→0 Λε,2 = ∞I;

F2b. limε→0 Aε =: A ∈ C
n×n.
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Rk 2

Rk 6 Rk 6

Rk 4

0.89
2.42

Figure 3. Given the Rk 6 structure block B in the left picture, we have here Λ = ∞I4,
and thus by definition B should be identified with the smaller Rk 2 structure block in the bottom
left corner. Next, consider the Rk 6 structure block B in the right picture. We have here Λ =
diag(0.89, 2.42,∞,∞), and thus by definition B should be identified with the smaller Rk 4 structure
block, consisting of two pieces. Note that the shift submatrix diag(0.89, 2.42) is inherited.

A   =

Rk r

T

S

SR

AA   =ε + 

Figure 4. Let A satisfy a structure block B with shift matrix Λ = ∞I. We can approximate
Λ by finite shift matrices by adding an infinitesimally small correction term to A(T,R). Note that,
moreover, the row space of this correction term is contained in the row space of A(S,R) and the
column space is contained in the column space of A(T, S) (see (27)).

Then

1. (Continuity) A satisfies the limiting structure block B = (i, j, r,Λ), with Λ =
Λfin ⊕∞I.

2. (Approximation by finite shift matrices) Conversely, every matrix A satisfying
B = (i, j, r,Λ) can be realized as the limit of a family Aε satisfying the above
conditions F1 and F2.

Proof. For simplicity, we restrict the proof to the “pure” case where

Assumption: Λ = ∞I, i.e., m1 = 0 and m2 = j − i + 1.

Moreover, we define index sets R = {1, . . . , i− 1}, S = {i, . . . , j}, T = {j + 1, . . . , n}:
this is the situation in the left picture of Figure 4.

1. First, suppose that the family Aε satisfies conditions F1 and F2. Define a
family Ãε from Aε by setting

Ãε(S, S) := Aε(S, S) − Λε.

Thus by F2, for ε → 0 the diagonal entries of Ãε(S, S) converge to ∞ while
the off-diagonal entries converge to finite values. Hence it is easy to see that
Ãε(S, S)−1 exists for all ε sufficiently small and satisfies

(25) lim
ε→0

Ãε(S, S)−1 = 0.
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Moreover, the nonsingularity of Ãε(S, S) allows us to use it as pivot block for
a Gaussian elimination process. Then the Schur complement formula yields
(we suppress the tilde whenever allowed)

(26) Rank Ãε(S ∪ T,R ∪ S)

= |S| + Rank
(
Aε(T,R) −Aε(T, S)Ãε(S, S)−1Aε(S,R)

)
.

But by F1, the left-hand side of (26) cannot exceed r, i.e.,

r − |S| ≥ lim sup
ε→0

Rank
(
Aε(T,R) −Aε(T, S)Ãε(S, S)−1Aε(S,R)

)

≥ Rank lim
ε→0

(
Aε(T,R) −Aε(T, S)Ãε(S, S)−1Aε(S,R)

)

= Rank A(T,R),

where the last transition follows from (25). This shows that the limiting
matrix A satisfies the structure block B = (i, j, r,∞I).

2. Conversely, suppose that A is a matrix satisfying B = (i, j, r,∞I). Define
a matrix Ã from A by setting Ã(S, S) = A(S, S) − 1

ε I (considering ε as a
symbol). Define a family Aε, ε ∈ C \ {0} from A by

(27) Aε(T,R) := A(T,R) + A(T, S)Ã(S, S)−1A(S,R),

as in the right picture of Figure 4. Finally, define a family Ãε from Aε by
setting Ãε(S, S) := Aε(S, S) − 1

ε I. Then for ε → 0 the diagonal entries of

Ãε(S, S) converge to ∞ while the off-diagonal entries are just constant values.
Hence the derivation of (25) and (26) remains valid. But now by the above
definition of Aε, the Schur complement in the right-hand side of (26) simplifies
to Aε(T,R) −A(T, S)Ã(S, S)−1A(S,R) = A(T,R). Hence (26) collapses to

Rank(Ãε(S ∪ T,R ∪ S)) = |S| + Rank A(T,R)

≤ |S| + (r − |S|)
= r,

where the second transition follows from our assumptions on A. Thus we
established that the family Aε satisfies F1 and F2a, with Λε := 1

ε I. Finally,
the fact that A = limε→0 Aε follows from the above definition of Aε and
(25).

Remark 18. The above proof was made under the assumption Λ = ∞I. For
the general case, we make an additional partition S = S1 ∪ S2 with S1 the indices
corresponding to Λfin and S2 the indices corresponding to ∞I. Then to prove Theorem
17.2, say, we proceed as follows: (i) we observe that the problem reduces to the
matrix Apure := A − 0 ⊕ Λfin ⊕ 0; (ii) we realize Apure = limε→0 Apure,ε by just
applying the result which was already proved for Theorem 17.2, but now with index
sets R := R ∪ S1, S := S2, and T := T ∪ S1.

Theorem 17 allows a restatement in terms of topological closure. Let us illustrate
this for a particular example. Let M be the set of “partially lower semiseparable”
matrices satisfying R = {Bk}k∈K , where K is a certain index set, and with each
structure block Bk = (k, k, 1, λk), where the shift element λk is allowed to take any
value in C. We claim that the topological closure M̄ can be obtained in exactly the
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Rk 0

Figure 5. Each structure block Bk = (k, k, 1,∞), k = 1, . . . , n, can be seen as a Hessenberg
structure block. In particular, each Hessenberg matrix can be approximated by a sequence of lower
semiseparable plus diagonal matrices.

same way, but now allowing λk ∈ C∪{∞}. This means that also Hessenberg structure
blocks should be allowed in the structure; see Figure 5.

Indeed, let us show that to each A ∈ M̄ there corresponds a set of shift elements
λk ∈ C ∪ {∞}. Thus let Aε ∈ M be a converging sequence of matrices, with corre-
sponding shift elements λε,k. By the fact that C ∪ {∞} is compact, for each k there
must exist a convergent subsequence λk,ε̃ → λk ∈ C ∪ {∞}. The result follows then
by Theorem 17.1 (Continuity).

Conversely, let us show that if A satisfies a set of shift elements λk ∈ C∪{∞}, we
have A ∈ M̄. But this follows just by Theorem 17.2 (Approximation by finite shift
matrices). The only subtility is that the infinitesimal correction term, constructed
in Theorem 17.2 for one structure block Bk with λk = ∞, should not destroy the
other structure blocks Bk̃, k̃ �= k. The fact that this is satisfied follows since the row
and column spaces of these correction terms are well behaved; see the explanation in
Figure 4.

We will not go further into this.
Now we come back to matrix inversion. We can use the result of Theorem 17 to

remove the nonsingularity condition for Λ from the statement of Theorem 14.
Corollary 19. Let A ∈ C

n×n be a nonsingular matrix satisfying the structure
block B = (i, j, r,Λ), where Λ = Λns ⊕ 0 ⊕ ∞I with Λns nonsingular. Then the
inverse matrix A−1 will satisfy the structure block B−1 := (i, j, r,Λ−1) with Λ−1 :=
Λ−1

ns ⊕∞I ⊕ 0 (hence using the rules 1
0 = ∞ and 1

∞ = 0).
Proof. The case where Λ = Λns has been proved in Theorem 14. The general

case follows by continuity. Indeed, by Theorem 17.2, we can construct a family Aε,
ε ∈ C\{0} with limε→0 Aε = A, and such that the block ∞I is approximated by finite
shift matrices 1

ε I. Next we add the correction term εI to the zero block. Thus each
Aε satisfies the structure block B = (i, j, r,Λε) with

Λε = Λns ⊕ εI ⊕ 1

ε
I.

Hence

Λ−1
ε = Λ−1

ns ⊕ 1

ε
I ⊕ εI.

The theorem follows then by applying Theorem 17.1 (Continuity).
An interesting special case of Corollary 19 is when Λ = 0 or Λ = ∞I. Then the

theorem can be interpreted in terms of pure structure blocks; see Figure 6.
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Rk 2

Rk 6

A  =−1A  =
Rk 6

Figure 6. Given the matrix A in the left picture, satisfying the pure structure block Bpure =

(i, j, 6, 0). Then the inverse matrix A−1 satisfies the pure structure block B−1
pure = (i, j, 6,∞I) in the

right picture.

=

Rk 1 Rk 1

A  = A  =

0

Rk 0

−1

Figure 7. Given the matrix A in the left picture, which is diagonal plus rank one with last
diagonal element equal to zero. Then the inverse matrix is arrowhead, and conversely.

In particular, we see that lower semiseparable and Hessenberg matrices are each
other’s inverses. This follows since these matrices are both lower semiseparable plus
diagonal, with structure blocks Bk having shift elements λk = 0 for lower semisepa-
rable and λk = ∞ for Hessenberg matrices.

For another example, suppose that A is a diagonal plus rank one matrix with
diagonal correction Λ. Then there are two possibilities. If Λ is nonsingular, the
inverse matrix A−1 is again diagonal plus rank one, with diagonal correction Λ−1;
this follows immediately from Theorem 14. Suppose now that Λ is singular, say,
λn = 0. Then the corresponding diagonal element of Λ−1 is 1

λn
= ∞, and hence A−1

will be an arrowhead matrix ; see Figure 7.
Next let us assume that a certain square submatrix Λ of a matrix A is known.

For example, let us suppose that

A =

[
A1,1 A1,2

A2,1 Λ

]
,

with Λ ∈ C
k×k, for certain k. Then we claim that

(28) A−1 −
[

0 0
0 Λ−1

]
= Rk n− k.

Indeed, this can be seen by the argument in Figure 8.
We should mention here that also other proofs for (28) are possible. One possi-

bility is to use an argument based on Schur complements. Another possibility is to
translate the data to the decoupled displacement equations of section 2 by writing
PAPT −Λ = Rk 0, where P is the projection matrix onto the last k columns. Hence
Theorem 4 implies A−1 − PTΛP = Rk n− k, which is precisely (28).
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−1

Rk 8Rk 8

−1

A  =  

Λ
Rk 0

Λ

0
0

0
0

0

0
0

0

Λ

A  =   =  

Figure 8. Given the matrix A ∈ C10×10 in the leftmost picture, with given (2, 2) square
submatrix Λ. By suitably adding shift elements ∞, we can express these data in terms of a structure
block B. Hence the inverse matrix will satisfy the inverse structure block B−1 of the rightmost
picture, and this is precisely what (28) states.

Uni  =

Rk 2

Rk 6

Rk 2

Rk 6

Rk 2

= Uni  =

Figure 9. For a unitary matrix Uni, the structure blocks always come in pairs. The picture
illustrates this for a given pure Rk 2 structure block, but the result holds also for nonpure structure
blocks.

A  = = A  =
1

Rk 2

Rk 5

Λ

Λ

0
0

0

Rk 5
–1

Λ

Figure 10. Given the matrix in the left picture, with Λ a 2 by 2 matrix, we can say that
the matrix satisfies a structure block by suitable adding some shift elements ∞, as indicated in the
middle picture. The right picture shows then the form of the inverse matrix.

As a final example, let us assume that A = Uni + Rk r is a unitary plus low rank
matrix. Then it is straightforward to check that A−1 − AH = Rk 2r is a matrix of
rank at most 2r. Hence by Corollary 19, the structure blocks of A always come in
pairs, as illustrated in Figure 9.

4.2. Incorporating permutations. In this final subsection we derive a gener-
alization of Theorem 14 and Corollary 19 by absorbing permutation matrices into the
structure.

To do this in a clean way, we will first make some additional observations about the
results in the previous subsection. Recall that Theorem 14 and Corollary 19 predict
that both the rank and the shape of a structure block are preserved under matrix
inversion. But it is important to remember that this holds only when appropriate
use is made of shift elements ∞. Consider for example the matrix in the left and
middle pictures of Figure 10. This matrix satisfies a structure block B whose shift
matrix has an auxiliary submatrix ∞I3. Comparing the middle and the right picture
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R S T

R

S

T

A  = A  =
Λ–1

ΛS

T

S T

R

R

–1

Figure 11. By using suitable permutation matrices, the structures occurring in (29) can be

brought to the bottom left matrix corner, resulting in a permuted matrix Â. The figure shows the
position of the index sets R, S, T ; R̃, S̃, and T̃ after permutation. The fact that the theorem is
correct for the illustrated case follows from Figure 10.

of Figure 10, we see indeed that the rank and the shape of B are preserved under
matrix inversion. On the other hand, comparing the left and the right pictures of
Figure 10, it makes more sense to say that the structure block has grown with three
rows and columns and that its rank has increased from Rk 2 to Rk 5.

In general, we may be interested in an ∞-free formulation of the inversion the-
orem. Therefore we recall that each independent shift element ∞ has the effect of
decreasing the rank by one and skipping one row and column out of the structure
block; the key point is that these operations may influence the rank and shape but
not the nullity of the structure block. In other words, from the ∞-free point of view,
the quantity that is preserved under matrix inversion is not the rank of the structure
block but rather its nullity.

We can extend this observation by incorporating permutations.
Theorem 20 (nullity theorem). Let n ∈ N and define an index set N =

{1, . . . , n}. Suppose that we have partitions N = R ∪ S ∪ T = R̃ ∪ S̃ ∪ T̃ with S
and S̃ having the same size. Then

(29) Null (A−1
Λ−1(S̃ ∪ T̃ , R ∪ S)) = Null (AΛ(S ∪ T, R̃ ∪ S̃)),

where A−1
Λ−1 is defined from A−1 by putting A−1

Λ−1(S̃, S) = A−1(S̃, S) − Λ−1, and

similarly AΛ is defined from A by putting AΛ(S, S̃) = A(S, S̃) − Λ.
Proof. We will prove the theorem for the case |R| ≥ |R̃|, i.e., for the case where

R has at least the same number of elements as R̃. (The other case can be proved in
a similar way). First we apply permutations to bring the structure to the bottom left
matrix corner. More specifically, consider the permutation

P :

⎧⎨
⎩

{1, . . . , |R|} → R,
{|R| + 1, . . . , n− |T |} → S,
{n− |T | + 1, . . . , n} → T.

Similarly, we define a permutation P̃ . Then by construction, the right-hand side of
(29) is equivalent with the matrix Â := P−1AP̃ satisfying a (usual) structure block
B = (i, j, r,Λ) with i := |R| + 1, j := |R| + |S| and with r such the structure block
has the required nullity; see the left picture of Figure 11. By the observations in the
paragraphs preceding this proof, the inverse matrix Â−1 = P̃−1A−1P will then satisfy
the structure block illustrated in the right picture of Figure 11, with exactly the same
nullity as B. But by definition of the permutation matrices, this is equivalent to the
left-hand side of (29) having the required nullity, hence proving the theorem.
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5. Conclusion. In this paper we investigated some structures on C
n×n that have

good behavior under matrix inversion. We handled two classes of them, namely, de-
coupled displacement structures and rank structures. For the case of rank structures,
we provided some generalizations to deal with singular shift matrices and generally
positioned structure blocks, leading amongst others to a different interpretation of
a theorem due to Fiedler and Markham [6], which corresponds to the limiting cases
Λ = 0 and Λ = ∞I. In [1], we show that these structures also have good behavior
under Schur complementation.
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Abstract. In this paper we investigate some matrix structures on Cm×n that are preserved
by Schur complementation. The first type of structure is closely related to low displacement rank
matrices. Next, we show that for a matrix having a low rank submatrix, the Schur complement also
must have a low rank submatrix, which we can explicitly determine. This property holds even if the
low rank submatrix contains a certain correction term that we call the shift matrix.
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1. Introduction. In this paper we will handle several matrix structures that
are preserved by Schur complementation, as a continuation of [1] where we handled
structures preserved by matrix inversion. Nevertheless, all results will be developed
independently of [1].

Section 2 deals with the preservation of displacement structures. As in [1], the idea
is to generalize the classical examples of displacement structures (such as Toeplitz-
like, Cauchy-like, Vandermonde-like, circulant matrices; see [11]) by “decoupling”
the displacement equation. This means that the displacement equation is allowed to
involve two variables A and B rather than only one variable A. We will then illustrate
this definition by some examples.

Section 3 handles the preservation of what we call rank structures. As in [2, 1],
such a structure is defined as a collection of structure blocks: these are low rank sub-
matrices of a given matrix A ∈ C

m×n, together with a certain correction term Λ called
the shift matrix. We will prove that these rank structures are preserved under Schur
complementation, and we provide some examples to illustrate this. These examples
include the preservation of higher-order semiseparable plus diagonal matrices under
Schur complementation, which was the basis of a fast solver in [4].

Section 4 considers Möbius transformations of a matrix A. Each Möbius trans-
formation can be realized as the Schur complement of a very special block matrix,
and hence this connection can be used to translate the preservation results of Schur
complements into properties of Möbius transformations.
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For further reference, let us recall here some basic definitions and properties of
Schur complements [5].

Definition 1. Given A ∈ C
m×n and k ≤ min{m,n}, we define the k-partitioning

of A as

A =

[
A1,1 A1,2

A2,1 A2,2

]

k

,(1.1)

with A1,1 ∈ C
k×k. We define the Schur complement induced by this k-partitioning as

SA,k := A2,2 −A2,1A
−1
1,1A1,2,

where we suppose that A1,1 is invertible. We denote with Ac,1 the first block column
and with Ar,1 the first block row of (1.1).

Schur complements are related to Gaussian elimination steps on A with pivot
block A1,1, in the sense that

LGauss

[
A1,1 A1,2

A2,1 A2,2

]
RGauss =

[
A1,1 0

0 SA,k

]
,(1.2)

where

LGauss :=

[
I 0

−A2,1A
−1
1,1 I

]
, RGauss :=

[
I −A−1

1,1A1,2

0 I

]
,

which are unit block lower and upper triangular matrices, respectively. Hence the
following lemma should not come as a surprise.

Lemma 2. Given L ∈ C
l×m, A ∈ C

m×n, and R ∈ C
n×p, suppose we can partition

L =

[
L1,1 0
L1,2 L2,2

]
, A =

[
A1,1 A1,2

A2,1 A2,2

]
, and R =

[
R1,1 R1,2

0 R2,2

]
,

with L1,1, A1,1, and R1,1 in C
k×k nonsingular. Then

SLAR,k = L2,2SA,kR2,2.

Proof. First, let us prove the property for the case R = I. Then we can expand
the matrix LA as [

L1,1A1,1 L1,1A1,2

L1,2A1,1 + L2,2A2,1 L1,2A1,2 + L2,2A2,2

]
,

from which it follows that

SLA,k = L1,2A1,2 + L2,2A2,2 − (L1,2A1,1 + L2,2A2,1)A
−1
1,1L

−1
1,1(L1,1A1,2)

= L2,2[A2,2 −A2,1A
−1
1,1A1,2] = L2,2SA,k,

as we had to prove. In a similar way, one can prove the property for the case L = I.
The general result follows then by composing these two results.

Note that in particular, it follows from the above lemma that the left multiplica-
tion of A with a matrix [X 0

X I ] or the right multiplication with the transpose of such a
matrix always preserves the Schur complement of A.

We also may recall the so-called transitivity of Schur complements, i.e., the fact
that SSA,k,l = SA,k+l whenever all involved Schur complements are defined. The
underlying reason is that for a Gaussian elimination step applied on A, the same
result is obtained if the Gaussian elimination step is split into two separate steps with
smaller pivot blocks. Alternatively, one can prove this property by direct computation.
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2. Displacement structures. In this section we handle the preservation of
displacement structures under Schur complementation. As a general reference, we
can refer to [11, 10] for an overview of the many applications of displacement theory
in numerical linear algebra. Some references of historical interest are [7, 9].

2.1. Sylvester-type displacement. First we handle Sylvester-type displace-
ment equations. As a classical example, let A be a Hankel matrix, i.e., A = [ai+j ]

n
i,j=1.

Putting Z := [e2 . . . en0] with ek the kth column of the identity matrix, it is easy to
check that

AZT − ZA = Rk 2,(2.1)

where Rk 2 denotes a matrix of rank at most 2.
Generalizing, we can come to a more general definition. The main difference with

(2.1) is that the variable A is “decoupled” into two variables A and B.
Definition 3. Let A, B, F , and G be rectangular matrices and let r ∈ N. We

say A and B to satisfy the Sylvester-type displacement equation induced by (F,G, r)
if

AF −GB = Rk r,(2.2)

where Rk r denotes a matrix of rank at most r.
Here we suppose (2.2) to be well defined or, equivalently, we suppose the block

matrix
[

A G
FT BT

]
(2.3)

to have compatible matrix dimensions. Moreover, this block representation (2.3) is
useful in several other aspects, as will become clear soon.

Let us show that for FT and G block lower triangular, Sylvester-type displacement
structure is preserved under Schur complementation. This generalizes the correspond-
ing property for the case A = B (see [11]).

Theorem 4 (Sylvester-type inheritance). Let k, l ∈ N, and suppose that

[
A G

FT BT

]
=

⎡
⎢⎢⎢⎣

A1,1 A1,2 G1,1 0

A2,1 A2,2 G2,1 G̃

FT
1,1 0 BT

1,1 BT
2,1

FT
1,2 F̃T BT

1,2 BT
2,2

⎤
⎥⎥⎥⎦ ,(2.4)

with A1,1 ∈ C
k×k and B1,1 ∈ C

l×l. If

AF −GB = Rk r,(2.5)

where Rk r denotes a matrix of rank at most r, then

SA,kF̃ − G̃SB,l = R̃k r,(2.6)

where R̃k r denotes a new matrix of rank at most r.
Proof. We will prove the theorem for A and B square and nonsingular. (For the

general case, see the paragraph following this proof.) Multiplying (2.5) on the left
with A−1 and on the right with B−1, it follows that

FB−1 −A−1G = Rk r,(2.7)
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with Rk r a new matrix of rank at most r. Now we use the fact that for any matrix
A, the (2, 2) block element of A−1 is precisely the inverse of the Schur complement
SA,k. (The proof follows by inverting both sides of (1.2).) Using this, and using the
partitioning in (2.4), it follows by evaluating the (2, 2) block element of (2.7) that

F̃S−1
B,l − S−1

A,kG̃ = Rk r,

with Rk r a new matrix of rank at most r. Hence by multiplying on the left with
SA,k and on the right with SB,l, we obtain the desired equation (2.6).

Although the above proof of inheritance of structure is rather “clean,” it only
works for square and nonsingular matrices. (One could use a reduction to square
matrices and a “continuity argument” to remove these restrictions, but we will not
do this here, due to the complexity of the argument.) Furthermore, the proof of

Theorem 4 gives rather complicated formulae for the new R̃k r matrix in the right-
hand side of (2.6).

To address these questions, one can proceed in a more direct way by directly
computing the Schur complements.

Let us work this out. Thus we start with the equation

AF −GB = Rk r =: UV,(2.8)

with U having r columns and V having r rows. Let us recall the general property

A−Ac,1A
−1
1,1Ar,1 = 0 ⊕ SA,k,(2.9)

where “⊕” denotes the operator putting its arguments as diagonal blocks in a block
diagonal matrix (as usual), and where we used the notation of Definition 1. Keeping
in mind this property and the partitioning in (2.4), we have

0 ⊕ R̃k r := 0 ⊕ (SA,kF̃ − G̃SB,l)

= (0 ⊕ SA,k)F −G(0 ⊕ SB,l)

= (A−Ac,1A
−1
1,1Ar,1)F −G(B −Bc,1B

−1
1,1Br,1)

= UV −Ac,1A
−1
1,1Ar,1F + GBc,1B

−1
1,1Br,1,(2.10)

where the last transition follows from (2.8). Still keeping in mind (2.8) and the
partitioning in (2.4), we can further work this out as

= UV −Ac,1A
−1
1,1(Ur,1V + G1,1Br,1) + (Ac,1F1,1 − UVc,1)B

−1
1,1Br,1

= UV −Ac,1A
−1
1,1Ur,1V − UVc,1B

−1
1,1Br,1 + Ac,1A

−1
1,1Ur,1Vc,1B

−1
1,1Br,1

= (U −Ac,1A
−1
1,1Ur,1)(V − Vc,1B

−1
1,1Br,1).(2.11)

We see from this that R̃k r is indeed a matrix of rank at most r, which we can explicitly
determine. Moreover, the only condition for the above derivation to be valid is the
nonsingularity of A1,1 and B1,1, i.e., the existence of the Schur complements SA,k and
SB,l.

2.2. Stein-type displacement. We come to a second type of displacement
structure.

Definition 5. Let A, B, G, and H be rectangular matrices and let r ∈ N. We
say A and B satisfy the Stein-type displacement equation induced by (G,H, r) if

A−GBH = Rk r,(2.12)

where Rk r denotes a matrix of rank at most r.
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Here we suppose (2.12) to be well defined or, equivalently, we suppose the block
matrix

[
A G
H BT

]
(2.13)

to have compatible matrix dimensions. Moreover, this block representation (2.13) is
useful in several other aspects, as will become clear soon.

As in the Sylvester case, for HT and G block lower triangular, Stein-type displace-
ment structure will be preserved under Schur complementation. This generalizes again
the corresponding property for the case A = B (see [11]).

Theorem 6 (Stein-type inheritance). Let k, l ∈ N, and suppose that

[
A G

H BT

]
=

⎡
⎢⎢⎢⎣

A1,1 A1,2 G1,1 0

A2,1 A2,2 G2,1 G̃

H1,1 H1,2 BT
1,1 BT

2,1

0 H̃ BT
1,2 BT

2,2

⎤
⎥⎥⎥⎦ ,(2.14)

with A1,1 ∈ C
k×k and B1,1 ∈ C

l×l. If

A−GBH = Rk r,(2.15)

then

SA,k − G̃SB,lH̃ = R̃k r̃,(2.16)

where r̃ := r − k + l.
Proof. We will prove the theorem for A ∈ C

m×m and B ∈ C
n×n square and

nonsingular. (For the general case, see the paragraph following this proof.) From [1,
Theorem 2], it follows that

B−1 −HA−1G = Rk(r + n−m).(2.17)

Now we recall the fact that for any matrix A, the (2, 2) block element of A−1 is
precisely the inverse of the Schur complement SA,k. Using this and the partitioning
in (2.14), it follows by evaluating the (2, 2) block element of (2.17) that

S−1
B,l − H̃S−1

A,kG̃ = Rk(r + n−m),

with Rk(r+n−m) still a matrix of rank at most r+n−m. Hence by applying again
[1, Theorem 2], we obtain the desired equation (2.16), i.e.,

SA,k − G̃SB,lH̃ = R̃k (r + n−m + (m− k) − (n− l)) =: R̃k r̃,

with r̃ := r − k + l.
Again, the above proof was valid only for A and B square and nonsingular.

Instead of showing theoretically that these restrictions are not essential (by using
a reduction to square matrices, together with a “continuity argument” to remove
the nonsingularity condition), let us indicate how to prove the theorem by a direct
approach.

We start with the equation

A−GBH = Rk r =: UV,(2.18)
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with U having r columns and V having r rows. In a way similar to the derivation of
(2.10), we obtain

0 ⊕ R̃k r = UV −Ac,1A
−1
1,1Ar,1 + GBc,1B

−1
1,1Br,1H.(2.19)

Then keeping in mind (2.18) and the partitioning in (2.14), we can further work
out the right-hand side of (2.19) as

= UV − (UVc,1 + GBc,1H1,1)A
−1
1,1(Ur,1V + G1,1Br,1H)

+ GBc,1B
−1
1,1Br,1H

= U(I − Vc,1A
−1
1,1Ur,1)V − UVc,1A

−1
1,1G1,1Br,1H

−GBc,1H1,1A
−1
1,1Ur,1V −GBc,1(H1,1A

−1
1,1G1,1 −B−1

1,1)Br,1H.(2.20)

To proceed further, we will assume that the following assumption holds.
Assumption. k = l.
Then we claim that there exist matrices X1 ∈ C

k×r, X3 ∈ C
r×k, X2, X4 ∈ C

r×r

that satisfy the embedding relation

[
B−1

1,1 0
0 I

]
=

[
H1,1 X1

Vc,1 X2

] [
A−1

1,1 0
0 I

] [
G1,1 Ur,1

X3 X4

]
,(2.21)

where all involved matrices are square of size k + r. Assuming this for the moment,
then we have the componentwise equations

⎧⎪⎪⎨
⎪⎪⎩

B−1
1,1 = H1,1A

−1
1,1G1,1 + X1X3,

0 = H1,1A
−1
1,1Ur,1 + X1X4,

0 = Vc,1A
−1
1,1G1,1 + X2X3,

I = Vc,1A
−1
1,1Ur,1 + X2X4.

Hence (2.20) can be rewritten as

= UX2X4V + UX2X3Br,1H + GBc,1X1X4V + GBc,1X1X3Br,1H

= (UX2 + GBc,1X1)(X4V + X3Br,1H).(2.22)

We see from this that R̃k r is indeed a matrix of rank at most r, which we can
explicitly determine in terms of X1, X2, X3, and X4.

To prove the solvability of the embedding relation (2.21) is beyond the scope of
the paper. We may notice that it suffices to find Xi, i = 1, . . . , 4, which solve the
equivalent embedding relation

[
A1,1 0

0 I

]
=

[
G1,1 Ur,1

X3 X4

] [
B1,1 0

0 I

] [
H1,1 X1

Vc,1 X2

]
,(2.23)

where the (1, 1) block element of this equation is nothing but the equality A1,1 =
G1,1B1,1H1,1 + Ur,1Vc,1, which is satisfied by (2.18). To prove that the other block
elements of this equation also can be satisfied, we refer to [10], where completely
similar problems are handled.

Finally, we recall our above assumption that k = l. For k �= l, we should addi-
tionally look at two special cases. The first is when k �= 0 and l = 0: then B1,1 is the



STRUCTURES PRESERVED BY SCHUR COMPLEMENTATION 235

empty matrix, and hence the partitioning in (2.14) implies G =
[

0
G̃

]
and H = [ 0 H̃ ].

Thus the displacement equation A−GBH = Rk r can be rewritten as

A− (0 ⊕ G̃BH̃) = Rk r.(2.24)

Applying on (2.24) the block unit lower and upper triangular transformations LGauss

and RGauss appearing in (1.2), we obtain

A1,1 ⊕ (SA,k − G̃BH̃) = Rk r,

with Rk r a new matrix of rank at most r. Hence it follows that indeed SA,k−G̃BH̃ =

R̃k r̃ with r̃ := r − k.
The second special case is when l �= 0 and k = 0, and then it can be seen by a

similar argument that indeed A− G̃SB,lH̃ = R̃k r̃ with r̃ := r + l.
The general case k �= l follows then by combining the results for k = l together

with the above two special cases, by using the “transitivity” of Schur complements.
We will not go further into this.

2.3. Stein–Sylvester hybrid displacement. The reader will have noticed a
lot of similarity between the Sylvester- and Stein-type displacement. In fact, there
exist also Stein–Sylvester hybrid displacement structures, in the sense described by
Kailath and Sayed [10, section 7.4].

To introduce these structures, let us start from the Sylvester-type displacement
equation AF −GB = Rk r. Suppose we can factor

A := EÃ, B := B̃H,(2.25)

for certain block lower triangular matrices E,HT with E1,1 and H1,1 square and
nonsingular. Then Lemma 2 implies that

SA,k := E2,2SÃ,k, SB,l := SB̃,lH2,2,

and, moreover, it is easy to see that by substituting (2.25) into (2.11), the latter
transforms into the expression

R̃k r = (U − EÃc,1Ã
−1
1,1E

−1
1,1Ur,1)(V

T − V T
c,1H

−1
1,1 B̃

−1
1,1B̃r,1H).(2.26)

Similarly, suppose that in the Stein-type displacement equation A−GBH = Rk r
we can factor A := EÃF for certain block lower triangular matrices E,FT with E1,1

and F1,1 square and nonsingular. Then Lemma 2 implies that

SA,k = E2,2SÃ,kF2,2,

and, moreover, it is easy to see that (2.22) remains invariant; the only change is that
the embedding relation (2.21) must be updated by substituting A−1

1,1 := F−1
1,1 Ã

−1
1,1E

−1
1,1 .

Note that in both cases, we were led to an equation of the form

EAF + GBH = Rk r.

In particular, the block matrix
⎡
⎣

E G 0
AT 0 F
0 BT H

⎤
⎦(2.27)
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must have compatible matrix dimensions. We can then summarize the above facts in
the following theorem.

Theorem 7 (Stein–Sylvester hybrid inheritance). Let k, l ∈ N, and consider
the k-partitioning of A and the l-partitioning of B (Definition 1). Partition the block
matrix (2.27) accordingly with A and B, and suppose that E, FT , G, and HT are block
lower triangular w.r.t. this partitioning, and such that each of the sets {E1,1, G1,1}
and {F1,1, H1,1} contains at least one square and nonsingular matrix, i.e.,

⎡
⎢⎣

E G 0

AT 0 F

0 BT H

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E1,1 0 G1,1 0 0 0

E2,1 Ẽ G2,1 G̃ 0 0

AT
1,1 AT

2,1 0 0 F1,1 F1,2

AT
1,2 AT

2,2 0 0 0 F̃

0 0 BT
1,1 BT

2,1 H1,1 H1,2

0 0 BT
1,2 BT

2,2 0 H̃

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

If

EAF + GBH = Rk r,(2.28)

then

ẼSA,kF̃ + G̃SB,lH̃ = R̃k r̃,(2.29)

with r̃ := r if either both {E1,1, H1,1} or both {F1,1, G1,1} are square and nonsingular,
and with r̃ := r − k + l if either both {E1,1, F1,1} or both {G1,1, H1,1} are square and
nonsingular.

Proof. This follows from the paragraph preceding the statement of the theorem.

We even showed there how to update the explicit formulae for the new R̃k r̃ matrix,
if so desired.

As an application of Stein–Sylvester hybrid displacement structure, we will use
it to establish a converse to the reasoning in the proof of Theorem 6; i.e., we will
show how the preservation of structure under matrix inversion [1, Theorem 2] is a
consequence of the preservation of structure under Schur complementation. Thus let
A ∈ C

m×m and B ∈ C
n×n be nonsingular matrices satisfying A − GBH = Rk r for

arbitrary G and H. Hence

[
A−GBH G−G
H −H 0

]
= Rk r

or, by a small calculation,

[
I 0
0 H

] [
A −I
I 0

] [
I 0
0 G

]
−
[

G 0
0 I

] [
B −I
I 0

] [
H 0
0 I

]
= Rk r.

But now the Schur complements in this last equation are precisely the inverse
matrices A−1 and B−1. Hence by Theorem 7, it follows that

HA−1G−B−1 = R̃k r̃,

with r̃ := r + n−m, as we had to prove.
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Remark 8.

1. We have now shown how the inversion result [1, Theorem 2] leads to Theo-
rem 6, and conversely. This may seem a circular reasoning; but recall that
we also indicated how to give a direct proof of Theorem 6, hence avoiding the
use of [1, Theorem 2].

2. Note that in case A = B, the procedure of the preceding paragraph suggests
an efficient way to compute A−1 by the generalized Schur algorithm [11]. A
treatment of such computational aspects for A �= B will be the subject of the
next subsection.

2.4. Computational aspects. The preservation results of this section are in
the first place theoretically oriented, in the sense that there seems to be no analogue
if A �= B for the so-called generalized Schur algorithm [11].

To state the problem more precisely, let us first make some assumptions. Suppose
that FT , G (for Sylvester-type displacement) and HT , G (for Stein-type displacement)
are not just block lower triangular but completely lower triangular matrices. Then
the preservation of structure holds for any choice of indices k = l. Moreover, by
the transitivity of Schur complements we are allowed to recursively pull off rows and
columns of A and B, one at a time, so that we can assume that k = 1 = l.

Now let us recall the explicit formulae (2.11) and (2.22) that we obtained for

the new low rank matrix R̃k r. These formulae involved information about the first
row and column of the matrices A and B. (For the Stein type, this dependence also
appeared in an indirect way, via the embedding relation (2.21).) The ideal situation
would be the following: we use the given displacement equation in order to determine

these first rows and columns, next update the generators of the R̃k r matrix, and
then repeat this procedure in a recursive way on the Schur complements SA,k and
SB,l (which we do not actually compute but only store in a “coded” form by means

of the subsequent R̃k r matrices). Repeating this procedure, at the end we would
obtain information about the LDU decompositions [5] of both the matrices A and B.

Unfortunately, the above scheme cannot possibly work since the given displace-
ment equation does not contain enough information to determine the first block rows
and columns of both the matrices A and B.

The situation may be different if an additional connection is given between A and
B. For example, it could be that (i) a factorization B = LDU is given, and we want
to compute the LDU decomposition of A; (ii) we have a relation in the style B = A
(leading to the generalized Schur algorithm as described in [11]), or B = AT . Thus
only in such cases can we hope for the above scheme to work.

3. Rank structures. In this section we handle the preservation of rank struc-
tures. The following result could already have been mentioned in the previous section.
It is a special case of the preservation of both Sylvester- and Stein-type displacement
structures.

Corollary 9. Let k ∈ N, and let A and B be matrices for which the Schur
complements SA,k and SB,k exist. If

A−B = Rk r,

then

SA,k − SB,k = R̃k r.
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Note that there appears only one index k in the statement of the above corollary,
rather than two indices k and l as in the previous section. This is because we have
here FT and G equal to the identity matrix, which by Theorem 4 has to be block
lower triangular w.r.t. the indices k and l; hence k = l is the only relevant choice.

It turns out that the analogy between matrix inversion and Schur complementa-
tion goes still deeper, as proved by the following specification of Corollary 9.

Theorem 10 (Sherman–Morrison-like formula). Using the same notation as in
Corollary 9, and supposing that Rk r =: UV with U having r columns and V having
r rows, then we have the Sherman–Morrison-like formula

R̃k r = (U2 −A2,1A
−1
1,1U1)(V2 − V1A

−1
1,1A1,2),(3.1)

where we suppose a partition

[
Ir V
U A

]
=

⎡
⎣

Ir V1 V2

U1 A1,1 A1,2

U2 A2,1 A2,2

⎤
⎦ ,(3.2)

with Ir the identity matrix of size r, and with A1,1 ∈ C
k×k.

Proof. It is possible to prove this by plugging in the Sherman–Morrison formula
[5, section 2.1] into the formulae for Sylvester displacement equations obtained in
(2.11). But let us give here a direct proof. Consider again the matrix (3.2). We will
compute in two different ways the Schur complement induced by the leading (r+k) by
(r + k) submatrix. The first way is to apply first Ir as pivot, resulting in the partial
Schur complement A − UV . Taking now the Schur complement w.r.t. the leading
k by k submatrix gives

SA−UV,k.(3.3)

The second way is to use first A1,1 as pivot to eliminate the (3, 2) and (2, 3) elements,
resulting in

⎡
⎣

Ir V1 V2 − V1A
−1
1,1A1,2

U1 A1,1 0
U2 −A2,1A

−1
1,1U1 0 SA,k

⎤
⎦ .

If we then apply Ir as pivot to eliminate the (3, 1) and (1, 3) elements, we obtain the
final Schur complement

SA,k − (U2 −A2,1A
−1
1,1U1)(V2 − V1A

−1
1,1A1,2).(3.4)

Equating (3.3) and (3.4) gives the desired formula (3.1).
Now we return to the simpler statement of Corollary 9. Suppose then that we take

B to be an arbitrary Hermitian matrix. By the general property SBH ,k = (SB,k)
H ,

the Schur complement SB,k also must be Hermitian. Hence Corollary 9 reveals the
following fact.

Corollary 11. The property A = Herm + Rk r, i.e., A is Hermitian plus rank
at most r, is inherited under Schur complementation.

The rest of this section is devoted to the preservation of what we call rank struc-
tures. First we recall some definitions from [1]. We will use here the subscript weak
to distinguish these definitions from the actual definition of rank structures, which is
given later.
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Definition 12 (see [1]). We define a weak structure block Bweak on C
n×n as a

4-tuple

Bweak = (i, j, r,Λ),

where i is the row index, j is the column index, r is the rank upper bound, and
Λ ∈ C

(j−i+1)×(j−i+1) is called the shift matrix of Bweak (it is assumed here that
j− i+1 ≥ 0). We say a matrix A ∈ C

n×n satisfies the weak structure block if, making
a partitioning

A =:

⎡
⎣

A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

⎤
⎦ ,(3.5)

where A2,2 is square and containing rows and columns i, . . . , j, we have

[
A2,1 A2,2 − Λ
A3,1 A3,2

]
= Rk r,(3.6)

i.e., a matrix of rank at most r; see Figure 3.1.

i j

Rk 6
Λ

Rk 6

j

i

jj

i

i

Fig. 3.1. The structure block Bweak in the left-hand picture has the following meaning: after
subtracting the shift matrix Λ ∈ C4×4 from the dashed square submatrix in the middle, the indicated
bottom left submatrix must be of rank at most 6. The structure block Bweak,pure in the right-hand
picture is a special case of this, with Λ = 0.

As an extension, we can allow shift matrices Λ = Λfin⊕∞I, with Λfin having only
finite entries. In this case we identify Bweak with the “weak structure block” obtained
by dropping all rows and columns involving ∞, and with the rank upper bound r
decreased by the number of these dropped rows; see Figure 3.2. A weak structure block
with shift matrix of the form Λ = 0 ⊕∞I is called pure, denoted Bweak,pure.

Theorem 13 (see [1, Corollary 16]). Let A ∈ C
n×n be a nonsingular matrix

satisfying the structure block Bweak = (i, j, r,Λ), where Λ = Λns ⊕ 0 ⊕∞I, with Λns

nonsingular. Then the inverse matrix A−1 will satisfy the structure block B−1
weak :=

(i, j, r,Λ−1), with Λ−1 := Λ−1
ns ⊕∞I ⊕ 0 (hence using the rules 1

0 = ∞ and 1
∞ = 0).

Let us recall also that by absorbing permutation matrices into the structure,
structure blocks can be moved to any matrix position, not necessarily situated in the
bottom left matrix corner anymore [1].

Now we come to the actual definition of structure blocks in the context of Schur
complements. Such structure blocks will be denoted as just B, hence dropping the
subscript weak.
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Rk 2

Rk 6 Rk 6

Rk 4

0.89
2.42

i

i

i

ij

j j

j

Fig. 3.2. The structure block Bweak,pure in the left picture has shift matrix Λ = ∞I4. Hence by
definition, it should be identified with the Rk 2 structure block in the bottom left corner. The structure
block Bweak in the right picture has Λ = diag(0.89, 2.42,∞,∞). Hence it should be identified with
the smaller Rk 4 structure block, consisting of two pieces. Note that the shift submatrix Λfin :=
diag(0.89, 2.42) is inherited.

Definition 14. Assume a matrix A ∈ C
m×n, k ∈ N and consider the k-

partitioning of A (Definition 1). We define a structure block w.r.t. this k-partitioning
as a collection

B = (I, J, IΛ, JΛ, r,Λ),

where I and J are the index sets, r is the rank upper bound, and Λ ∈ C
|IΛ|×|JΛ| is

called the shift matrix of the structure block. The index sets IΛ ⊆ I and JΛ ⊆ J denote
the region where the shift matrix is acting. This region must be such that, partitioning
I = I1∪I2, J = J1∪J2 according to the given k-partitioning and similarly partitioning

Λ =

[
Λ1,1 Λ1,2

Λ2,1 Λ2,2

]
,

then the following size restriction is satisfied:

Condition: Λ1,1 is square of size |J1| − |I1| + 1.

We say the matrix A satisfies the structure block B if

Ã(I, J) = Rk r,

where Ã has been defined from A by Ã(IΛ, JΛ) = A(IΛ, JΛ) − Λ; see Figure 3.3.

Figure 3.3 illustrates that a given structure block B can be considered as a col-
lection of four individual parts w.r.t. the given k-partitioning. Therefore we will
sometimes refer to B as a huge structure block: this will be clear from the context.
Moreover, note that the size restriction in Definition 14 expresses precisely that the
top left part of the structure block is a weak structure block according to Definition 12,
at least up to permutation.

Now we come to the preservation of structure blocks under Schur complementa-
tion.

Theorem 15. Suppose, given a matrix A ∈ C
m×n, a k-partitioning of A and a

structure block B w.r.t. this k-partitioning. Using the notation of Definition 14, let us
suppose that Λ1,1 is square and nonsingular. Then the Schur complement SA,k satisfies
the structure block SB := (I2, J2, IΛ,2, JΛ,2, r, SΛ) with SΛ := Λ2,2 − Λ2,1Λ

−1
1,1Λ1,2; see

Figure 3.4.
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Rk r

Λ
1,1 1,2Λ

J 2J 1

I1

A  =  

A

A A

A1,1 1,2

2,22,1

Λ2,1 Λ2,2

2I

Fig. 3.3. Consider a matrix A together with a k-partitioning of A, which is visualized by the
horizontal and vertical lines in the figure. The figure shows an example of a structure block B
satisfied by this matrix. The meaning is that after subtracting the shift matrix Λ (consisting of four
parts) from the dashed matrix positions, the indicated submatrix A(I, J) (also consisting of four
parts) must be of rank at most r.

Rk r

Rk r

1,1 1,2ΛΛ

A  =

A,k
S   =Λ2,1 Λ2,2 SΛ

Fig. 3.4. Consider the matrix in the left-hand side, satisfying the huge structure block B,
consisting of four parts. Then the Schur complement SA,k = A2,2 − A2,1A

−1
1,1A1,2 inherits this

structure block, with new shift matrix given by SΛ := Λ2,2 − Λ2,1Λ−1
1,1Λ1,2.

Proof. By definition of structure block, there exists a matrix B having the form

B = P

⎡
⎢⎢⎢⎢⎢⎢⎣

X X X X X X
0 Λ1,1 X 0 Λ1,2 X
0 0 X 0 0 X
X X X X X X
0 Λ2,1 X 0 Λ2,2 X
0 0 X 0 0 X

⎤
⎥⎥⎥⎥⎥⎥⎦
P̃

for certain permutation matrices P = P1⊕P2 and P̃ = P̃1⊕P̃2, such that A−B = Rk r.

By Corollary 9, it follows that SA,k − SB,k = R̃k r. But by the form of B, it is easy
to see that its Schur complement satisfies

SB,k = P2

⎡
⎣

X X X
0 SΛ X
0 0 X

⎤
⎦ P̃2,

where SΛ = Λ2,2 − Λ2,1Λ
−1
1,1Λ1,2. It follows that SA,k satisfies the structure block

SB = (I2, J2, IΛ,2, JΛ,2, r, SΛ), as we had to prove.
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As an illustrative example, suppose that

Ai,j =

⎡
⎣

× × ×
1 1 + λi,j ×
1 1 ×

⎤
⎦

for i, j = 1, 2. Then we claim that A2,2 − A2,1A
−1
1,1A1,2 (if A−1

1,1 exists) will satisfy
the structure block Bweak : (i, j, r, λ) = (2, 2, 1, Sλ), with new shift element defined by
Sλ := λ2,2 − λ2,1λ

−1
1,1λ1,2 (if λ−1

1,1 exists). Indeed, the proof follows immediately from
Theorem 15 by working with the embedded matrix

A =

[
A1,1 A1,2

A2,1 A2,2

]

and observing that the given data can be translated in terms of a huge structure
block B on A.

Note that in this last example, it was necessary that the low rank blocks [ 1 1
1 1 ]

of the several matrices Ai,j were “compatible” with each other. If this were not the
case, it could be that the rank upper bound of the huge structure block B (and hence
of the Schur complement SA,k) must be increased.

A way to avoid the latter problem is to choose several of the low rank blocks
equal to zero. Suppose, for example, that A1,1 := T is a given matrix, satisfying a
given structure block Bweak. Suppose that we choose A1,2, A2,2, and A2,1 with sparse
bottom left parts as illustrated in Figure 3.5. Then it is clear that the structure block
Bweak can always be extended to a huge structure block B in the matrix A, with new
shift matrix

Λ =

[
Λ1,1 −I
I 0

]
.

Rk r

A  =

A,k
S   =

T

1,1Λ

I

0

0

0

−I

0

Rk r

Λ 1,1
−1

Fig. 3.5. Consider the matrix A1,1 := T in the top left position, satisfying a structure block
Bweak. Then the data in the figure imply a huge structure block B in the matrix A. Hence the Schur
complement SA,k will inherit the structure block SB, with new shift matrix SΛ ≡ Λ−1

1,1.

We can derive two things from this example. First, consider the special case where
A1,2 = −I, A2,2 = 0, and A2,1 = I. Then Figure 3.5 shows that SA ≡ T−1 satisfies
the structure block SB ≡ B−1

weak, which is precisely the structure block inversion result
of [1, Theorem 11]. Second, we can interpret Figure 3.5 in the following way: it
can be used to generate matrices A1,2, A2,2, and A2,1 such that A2,2 − A2,1T

−1A1,2

inherits the structure of T−1. We can interpret this as a set of structure-preserving
transformations for T−1.
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To conclude this section, we want to relax the nonsingularity condition in The-
orem 15. At the same time we want to introduce shift elements equal to ∞, in the
sense of Definition 12. Here we will restrict ourselves to the case where the following
assumption holds.

Assumption. Λ1,1 = Λns ⊕ ∞I ⊕ 0l, where Λns is square and nonsingular, and
with 0l being the zero matrix of size l by l. The other parts Λ1,2, Λ2,1, and Λ2,2 are
not allowed to contain elements equal to ∞.

Now let us write

Λ =

[
Λ1,1 Λ1,2

Λ2,1 Λ2,2

]
=

⎡
⎢⎣

ΛTL
1,1 0 ΛT

1,2

0 0l ΛB
1,2

ΛL
2,1 ΛR

2,1 Λ2,2

⎤
⎥⎦ ,(3.7)

where ΛTL
1,1 := Λns ⊕∞I, and where the superscripts T , B, L, and R denote the top,

bottom, left, and right parts of the corresponding matrices. It is easy to see that the
Schur complement of (3.7) can be written as a “dyadic decomposition,”

SΛ = Sfin + S∞,(3.8)

where Sfin and S∞ are the Schur complements of the respective matrices
[

ΛTL
1,1 ΛT

1,2

ΛL
2,1 Λ2,2

]
,

[
0l ΛB

1,2

ΛR
2,1 0

]
.(3.9)

Here Sfin contains only finite elements, and hence this will just be a finite correction
term to the structure of SA,k. The problem is instead to determine the meaning
of S∞.

To achieve this, we will suppose that operations have been applied on the second
block row and column of A, such that

[
0l ΛB

1,2

ΛR
2,1 0

]
=

⎡
⎣

0l 0 Λind col

0 0 0
Λind row 0 0

⎤
⎦ ,(3.10)

where Λind col contains independent columns and Λind row contains independent rows.
(Here the row and column operations which we applied on A to achieve (3.10) have a
well-determined effect on the Schur complement SA,k by virtue of Lemma 2.)

Then we have the following result.
Theorem 16. Suppose, given a matrix A ∈ C

m×n, a k-partitioning of A and a
structure block B w.r.t. this k-partitioning. Suppose that Λ1,1 = Λns ⊕∞I ⊕ 0l, that
Sfin and S∞ are defined as in (3.8), and that (3.10) holds. Then if we update

SA,k(IΛ,2, JΛ,2) := SA,k(IΛ,2, JΛ,2) − Sfin

and drop from this updated matrix the rows of IΛ,2 and columns of JΛ,2 which are
nonzero in (3.10), the resulting part of SA,k will have rank at most r − l; see Fig-
ure 3.6.

Proof. If necessary, we can virtually add extra rows and columns to A until
the blocks Λind row and Λind col in (3.10) become square and nonsingular (of size
l by l). Then since S∞ was defined as the Schur complement of (3.10), and by
approximating 0l as 0l = limε→0 εI, we obtain

S∞ =

[
0 0
0 Λind row(∞Il)Λind col

]
.
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Rk r

A  =

A,k
S   =

03

Rk(r−3)

Fig. 3.6. Consider the matrix in the left-hand side, satisfying the huge structure block B with
Λ1,1 = 03. For the other parts of the shift matrix, the places where the nonzero elements act are
indicated with a cross. (We assume here for simplicity of illustration that the finite correction term
Sfin in (3.8) is equal to zero.) Then the Schur complement SA,k satisfies an Rk(r − 3) structure
block consisting of four parts, as indicated.

But by our knowledge of the meaning of shift elements ∞, this means that we should
drop from SA,k all l rows and columns where ∞ is standing, and decrease the rank
upper bound r by this same number l. The theorem now follows.

As an illustrative example, suppose that

Ai,j =

⎡
⎣

× × ×
1 1 ×
1 1 ×

⎤
⎦

for i, j = 1, 2. Then we claim that A2,2 −A2,1A
−1
1,1A1,2 (if A−1

1,1 exists) will satisfy the
structure block Bweak : (i, j, r) = (2, 2, 0), i.e., that

A2,2 −A2,1A
−1
1,1A1,2 =

⎡
⎣

× × ×
0 0 ×
0 0 ×

⎤
⎦ .

Indeed, this follows from Theorem 16 by working with the embedded matrix A (as
usual), and by observing that the given data can be translated in terms of a huge
structure block B with shift matrix

[
λ1,1 λ1,2

λ2,1 λ2,2

]
≡

[
01 0
0 0

]
.

Thus indeed the rank upper bound r decreases by the value l = 1.
Note that in this last example, it was again necessary that the low rank blocks

[ 1 1
1 1 ] of the several matrices Ai,j were compatible with each other.

A way to avoid the latter problem is to choose several of the low rank blocks
equal to zero. Suppose, for example, that A1,1 := T is a given matrix satisfying a
given structure block Bweak,pure with Λ = 03. Suppose that we choose A1,2, A2,2, and
A2,1 with zero bottom left parts as illustrated in Figure 3.7. Then it is clear that the
structure block Bweak,pure can always be extended to a huge structure block Bpure in
the matrix A, with new shift matrix

[
03 0
0 0

]
.
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Rk r

A  =

A,k
S   =

T

0 0

0

Rk(r−3)

3
0

Fig. 3.7. Specification of Figure 3.5 in the case of zero shift matrices.

We can derive two things from this example. First, consider the special case
where A1,2 = −I, A2,2 = 0, and A2,1 = I. Then Figure 3.7 shows that SA ≡ T−1

satisfies the structure block SB ≡ B−1
weak,pure, which is precisely the structure block

inversion result of [1, Corollary 16] (concerning shift matrices Λns ⊕ 0⊕∞I). Second,
we can interpret Figure 3.7 in the following way: it can be used to generate matrices
A1,2, A2,2, and A2,1 such that A2,2 − A2,1T

−1A1,2 inherits the structure of T−1. We
can interpret this as a set of structure-preserving transformations for T−1. Other
examples of structure-preserving transformations will be given in the next section, in
the context of Möbius transformations.

We conclude this section with a final remark.
Remark 17.

1. The structure block B can sometimes be brought in easier form by virtue of
Lemma 2. For example, it follows from this lemma that the left multiplication
of A with a matrix [X 0

X I ] or the right multiplication with the transpose of such
a matrix always preserves the Schur complement. Such transformations can
be used, for example, to transform the dependent rows and columns of Λ1,1

into zeros. In some cases, it may even be possible to restore in this way the
size restrictions on Λ1,1 occurring in Definition 14, even if these were not
satisfied initially.

2. In many examples where structure blocks occur (for example, lower semisepa-
rable or lower semiseparable plus diagonal related matrices; see [1]), we have
I1 = ∅, J1 = {1, . . . , k}, and Λ2,1 = 0, as in the leftmost picture of Figure 3.8.
Then the size restrictions on Λ1,1 occurring in Definition 14 are not satisfied.
But they can be restored by just “enlarging” the structure block, as illustrated
in Figure 3.8.

Concerning Remark 17(2), note that the preservation under Schur complementa-
tion of semiseparable plus diagonal structure (not including diagonal elements) was
also shown in [4], where it was used as the basis for a fast solver. The word “semisepa-
rable” refers in this case to a matrix whose strictly lower and strictly upper triangular
part both come from a (possibly different) rank-r matrix, r ∈ N.

4. Möbius and Cayley transformations. In this section we will focus on
Möbius transformations, as an illustration of the results on Schur complements in
the previous section. Möbius transformations appear also under the name of rational
linear transformations. As a general reference, we can refer to [8] for the treatment
of Möbius transformations with scalar coefficients, and to [12, 13] for the general case
of matrix-valued coefficients. Most of the results which we state without proof can be
found there.
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1,1

A  =

2,2 0

1,2

2,2 2,2

Rk r

Λ

Λ Λ

Λ
Rk r

Λ
Rk r

 =

S   =
A,k

Fig. 3.8. Consider the structure block in the leftmost picture. Then we can “enlarge” this
structure block by redefining I1 := {1, . . . , k}, Λ1,1 := A1,1, and Λ1,2 := A1,2|I1×J2 , as illustrated
in the middle picture. In this way the resulting structure block will still be of rank at most r, and
the size restrictions on Λ1,1 occurring in Definition 14 are restored. But then it follows that SA,k

satisfies the new structure block SB = (I2, J2, IΛ2 , JΛ2 , r,Λ2,2).

We start with a definition.
Definition 18. Given fixed coefficient matrices P,Q,R, S ∈ C

n×n, we define
the Möbius transformation on C

n×n to be the map

M : A �→ (PA + Q)(RA + S)−1.

Similarly, we define the dual Möbius transformation to be the map

A �→ (AP + R)−1(AQ + S).

Finally, we define

[
P Q
R S

]

to be the matrix associated with M, and we say that M is invertible if its associated
matrix is nonsingular.

Unless explicitly mentioned, we will always work with usual Möbius transforma-
tions, rather than with their dual versions.

Note that the Möbius transformation is defined only on the domain D := {A ∈
C

n×n| det(RA + S) �= 0}. Since the domain D is defined by the nonvanishing of an
algebraic equation, it is either empty (a case we exclude) or a dense subset of C

n×n.
The use of the matrix associated with M follows by rewriting M(A) = NM(A)D

−1
M(A)

with
[

NM(A)

DM(A)

]
:=

[
P Q
R S

] [
A
I

]
.(4.1)

This matrix representation is useful in several aspects. For example, it can be
checked that for given Möbius transformations M1 and M2, the composed map A �→
M2(M1(A)) is again a Möbius transformation, with associated matrix

[
P2 Q2

R2 S2

] [
P1 Q1

R1 S1

]
.

Since the identity map A �→ A is a special case of a Möbius transformation,
with associated matrix [ I 0

0 I ], it follows that the inverse Möbius transformation M−1
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will have as its associated matrix precisely
[
P Q
R S

]−1
. Moreover, denoting with D the

domain of M, it can be shown that M−1 has as its domain M(D) and as its range D.
We may note here that M−1 can also be obtained by directly solving for A in terms

of M(A) in Definition 18. This yields M−1 : B �→ −(BR − P )−1(BS − Q), which
is not a Möbius transformation anymore but rather a dual Möbius transformation
in the sense of Definition 18. In particular, it follows that every invertible Möbius
transformation can be expressed as a dual Möbius transformation too.

Now note that M(A) can be realized as the Schur complement of

[
RA + S −I
PA + Q 0

]
.(4.2)

In particular, we can prove the following result.
Theorem 19. Let M be a Möbius transformation with domain D. Suppose

A ∈ D, A + Rk r ∈ D, where Rk r is a matrix of rank at most r. Then

M(A + Rk r) = M(A) + R̃k r,

with R̃k r a new matrix of rank at most r.
Proof. Let us write Rk r = UV H with U, V ∈ C

n×r. Note that M(A + UV H)
can be realized as the Schur complement of the following matrix:

[
RA + S −I
PA + Q 0

]
+

[
RU
PU

] [
V H 0

]
.

Since the latter matrix is an Rk r correction of (4.2), the result follows by Corol-
lary 9.

We come to a second topic.
Definition 20. Given fixed coefficient matrices E,F,G ∈ C

n×n, with E and G
Hermitian, we define the quadratic transformation on C

n×n to be the map

Q : A �→ AHEA + AHFH + FA + G.

We define

[
E FH

F G

]
(4.3)

to be the matrix associated with the quadratic transformation.
The use of the matrix associated with the quadratic transformation follows by

rewriting

Q(A) =
[
AH I

] [ E FH

F G

] [
A
I

]
.(4.4)

Moreover, note that by our assumption that E and G are Hermitian, both the
middle matrix and the right-hand side of (4.4) must be Hermitian. In particular, it
makes sense to speak about the inertia of Q(A).

To establish some inertia results, we will first prove the following lemma. Here
we agree to label the eigenvalues of a matrix A in nonincreasing order as λA,k, k =
1, . . . , n.
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Lemma 21. Let Herm be Hermitian and let T be arbitrary. Define H :=
T (Herm)TH and H̃ = (T + Rk r)Herm(T + Rk r)H , where Rk r is a matrix of
rank at most r. Then we have the interlacing property

λH,k+r ≤ λH̃,k ≤ λH,k−r.

Proof. We will prove the interlacing property under the slightly weaker condition
that H and H̃ are both Hermitian and

H̃ = H + UV H + Ṽ UH ,(4.5)

with U, V, Ṽ in C
n×r. We recall that for any Hermitian matrix Herm, the eigenvalues

can be determined by the Courant–Fisher characterization

λHerm,k = max
dimV=k

min
x∈V

xHHerm x

xHx
,(4.6)

with V running over all k-dimensional linear subspaces of C
n. Taking such a fixed sub-

space V and taking Herm = H̃, we obtain by (4.5) that minx∈V
xHH̃x
xHx

≤ minx∈V∩U
xHHx
xHx

,
where U denotes the (n− r)-dimensional linear subspace of C

n containing all vectors
for which UHx = 0. Then since dim(V ∩ U) ≥ k − r, we derive by (4.6) that

min
x∈V

xHH̃x

xHx
≤ λH,k−r.

By taking the maximum over all V, it follows that λH̃,k ≤ λH,k−r, as we had to prove.
The other inequality follows by symmetry.

Remark 22. An alternative proof of Lemma 21 is the following. It can be checked
that the inertia (π, ν, ζ) of the Hermitian term UV H + Ṽ UH in (4.5) must necessarily
be “equally distributed” in the sense that max{π, ν} ≤ r. Lemma 21 then follows as
a consequence of the interlacing properties of eigenvalues of a Hermitian, low rank
correction to a Hermitian matrix as stated in [6]. Here we may remark that the
proof in [6] is essentially based on a similar argument involving the Courant–Fisher
characterization of eigenvalues.

Corollary 23.

1. Inertia(Q(A+Rk r))−Inertia(Q(A)) = (Δπ,Δν,Δζ) with max{|Δπ|, |Δν|} ≤
r.

2. If the matrix associated with the quadratic transformation (4.3) has inertia
(π, ν, ζ) with π = n+ δ, δ ≥ 1, then Q(A) has at least δ positive eigenvalues,
independent of the choice of A.

Proof.

1. Note that in (4.4), going over to Q(A + Rk r) corresponds to a rank-r cor-
rection of the factor [AI ]. Hence the result follows from the previous lemma.

2. We will again use (4.4). First, by adding n extra columns, the matrix [AI ]
can always be completed to a nonsingular 2n × 2n matrix. Replacing [AI ]
by this completed version, and replacing [AH I ] by the Hermitian transpose
of it, Sylvester’s law of inertia implies that the right-hand side of (4.4) must
still have inertia (π, ν, ζ) with π = n + δ. The result then follows by again
removing the n added columns (which is a rank-n perturbation) and applying
the previous lemma.
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Since both Möbius and quadratic transformations allow what we called a ma-
trix representation, we can expect that these transformations have a good behavior
w.r.t. each other. Let us first introduce the following definition.

Definition 24. Given a quadratic transformation Q on C
n×n and given a posi-

tive integer r, we say that A ∈ C
n×n satisfies the quadratic relation induced by (Q, r)

if

Q(A) = Rk r

for a certain matrix Rk r of rank at most r.
Since Q(A) is always Hermitian, we can in fact add any inertia condition on Rk r

if so desired.
Now let M be a Möbius transformation with domain D, let A ∈ D, and let

B := NBD
−1
B = M(A). Then

Q(B) = Rk r

⇔
[
BH I

] [ E FH

F G

] [
B
I

]
= Rk r

⇔
[
NH

B DH
B

] [ E FH

F G

] [
NB

DB

]
= R̃k r

by (4.1)⇔
[
AH I

] [ P Q
R S

]H [
E FH

F G

] [
P Q
R S

] [
A
I

]
= R̃k r

⇔
[
AH I

] [ Ẽ F̃H

F̃ G̃

] [
A
I

]
= R̃k r

⇔ Q̃(A) = R̃k r,

where we define R̃k r := DH
B (Rk r)DB (being a matrix with same rank and inertia as

Rk r), and where we define the quadratic transformation Q̃ by its associated matrix

[
Ẽ F̃H

F̃ G̃

]
:=

[
P Q
R S

]H [
E FH

F G

] [
P Q
R S

]
.(4.7)

Let us give some illustrations to the above series of equivalences. First consider
the class of Hermitian matrices defined by Q(A) := −iA + iAH = Rk 0. Note that
the matrix associated with Q is given by

[
0 iI

−iI 0

]
. Then consider the class of J-

unitary matrices, defined by Q(A) := AHJA − J = Rk 0, where J = Ir ⊕ −Is is a
fixed signature matrix. The matrix associated with Q is given by

[
J 0
0 −J

]
. Now we

may observe that these two matrices obtained for Hermitian and J-unitary quadratic
relations have the same inertia, namely (n, n, 0). Hence by Sylvester’s law of inertia,
there exists a nonsingular congruence transformation which maps these matrices into
each other. Indeed, one can check that

[
0 iI

−iI 0

]
=

1√
2

[
I I

−iJ iJ

] [
J 0
0 −J

] [
I iJ
I −iJ

]
1√
2
.

Comparing this with (4.7), we conclude that

M : A �→ (A + iJ)(A− iJ)−1(4.8)
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is a Möbius transformation mapping the class of Hermitian matrices into the class of
J-unitary matrices (at least for every Hermitian matrix belonging to the domain D
of M). Moreover, one can check that

M−1 : A �→ i(A + I)(JA− J)−1.

Remark 25. Composing (4.8) with an arbitrary Möbius transformation mapping
the class of J-unitary matrices into itself, one can obtain many other Möbius trans-
formations M̃ mapping Hermitian into J-unitary matrices. In particular, due to the
cancellation of numerators and denominators, the domain D will depend heavily on
the resulting Möbius transformation M̃. It can be proven that any Hermitian matrix
belongs to such a domain.

For the rest of this section, we will restrict ourselves to Möbius transformations
with scalar coefficients, i.e., with P , Q, R, and S being scalar multiples of the identity
matrix. We will denote these multiples as pI, qI, rI, and sI.

As in the general case, note that M(A) can be realized as the Schur complement
of the embedded matrix

[
rA + sI −I
pA + qI 0

]
.(4.9)

Now assume that A satisfies a weak structure block Bweak = (i, j, r,Λ). We want
to show that this weak structure block can be extended to a huge structure block in
(4.9), with same rank upper bound r. For this, let Apure := (A−(0⊕Λ⊕0))|Bweak

. Note

that Rank
[
rApure

pApure

]
= Rank Apure. This means that Bweak can indeed be extended to

a huge structure block, denoted Bhuge, and with corresponding shift matrix

Λhuge :=

[
rΛ + sI −I
pΛ + qI 0

]
.

(Here we did not show all the zero blocks of Λhuge; see Figure 4.1 for a more accurate
picture.)

Λ

0

0
S

Rk r

0

Rk r

−I

rA+sI

pA+qI

 Λp  +qI

Λr  +sI

(pA+qI)(rA+sI)−1

Fig. 4.1. Consider a matrix A satisfying an Rk r weak structure block with shift matrix Λ. Let
p, q, r, s ∈ C be arbitrary numbers. Then the Möbius transformation (pA + qI)(rA + sI)−1 can be
obtained in the form of a Schur complement of an embedded matrix A, as illustrated. Hence it will
inherit the Rk r weak structure block, with new shift matrix (pΛ + qI)(rΛ + sI)−1.

Now by Theorem 15, the Schur complement of (4.9) must inherit Bhuge, with new
shift matrix being the Schur complement of Λhuge. Reformulating this in terms of the
original data, we obtain the following theorem.
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Theorem 26. Given a matrix A ∈ C
n×n which satisfies a weak structure block

Bweak, the scalar Möbius transformation M(A) will inherit the weak structure block
Bweak, with new shift matrix being M(Λ), i.e., precisely the scalar Möbius transfor-
mation of the original shift matrix Λ.

We may mention that Theorem 26 was already shown in [14] for the case of lower
semiseparable plus diagonal matrices. See also [3].

For this same example, note that for a couple of matrices A,B satisfying the same
weak structure block Bweak = (i, j, r,Λ), the “decoupled scalar Möbius transforma-
tion” (pA+qI)(rB+sI)−1 will essentially inherit the weak structure block Bweak, but
now with rank upper bound only bounded by 2r. The reason for this is the identity

Rank
[
rApure

pBpure

]
≤ Rank Apure + Rank Bpure, which is much weaker than in the case

Apure = Bpure.
An interesting case of a scalar Möbius transformation is by taking J = I in

(4.8). Then (4.8) reduces to the well-known Cayley transformation C : A �→ (A +
iI)(A−iI)−1, mapping Hermitian into unitary matrices. Unlike the general situation,
the domain D of the Cayley transformation contains the entire class of Hermitian
matrices.

The Cayley transformation can be used to derive several properties of unitary
matrices. We already remarked in [1] that the weak structure blocks of such a matrix
always come in pairs, i.e., that the presence of one such weak structure block always
implies the presence of a second weak structure block, which we can easily determine.
The underlying reason was the fact that Uni−1 = UniH for any unitary matrix Uni,
together with the inversion theorem for weak structure blocks. Another way to see this
is by using the Cayley transformation. This transformation can be used to establish
the property that the structure blocks of a unitary matrix always come in pairs, from
the corresponding property that the structure blocks of a Hermitian matrix always
come in pairs (for obvious reasons). We will not go further into this.

The Cayley transformation can also be used as a tool to prove a result similar to
the following theorem from [1].

Theorem 27. Let r ∈ N. The following are equivalent:
(i) A = Herm + Rk r, i.e., A is Hermitian plus rank at most r;
(ii) Q(A) := i(A − AH) = Rk 2r, where Rk 2r is a matrix of rank at most 2r

such that Inertia(Rk 2r) = (π, ν, ζ) with max{π, ν} ≤ r.
We obtain the following, similar formulation.
Theorem 28. Let r ∈ N. The following are equivalent:
(i) A = Uni + Rk r, i.e., A is unitary plus rank at most r;
(ii) Q(A) := AHA− I = Rk 2r, where Rk 2r is a matrix of rank at most 2r such

that Inertia(Rk 2r) = (π, ν, ζ) with max{π, ν} ≤ r.
Proof. The implication (i) ⇒ (ii) is a special case of Corollary 23(1). For

the implication (ii) ⇒ (i), suppose that A is such that AHA − I = Rk 2r with
Inertia(Rk 2r) = (π, ν, ζ) with max{π, ν} ≤ r. Denoting by D ⊆ C

n×n the do-
main of the Cayley transformation C, we will suppose that A ∈ C(D), the domain of
the inverse Cayley transformation C−1. (This can always be realized by multiplying
with a suitable number eiθ, θ ∈ R.) Then we claim that B := C−1(A) will satisfy

iB− iBH = R̃k 2r, with R̃k 2r having the same inertia as Rk 2r. Indeed, this follows
from the series of equivalences preceding (4.7). Hence by Theorem 27, we can factorize
B = Herm + Rk r. The result follows then by applying C on both sides of this equa-
tion. (Here it is essential that for the application of Theorem 19, C(Herm) is always
defined, independent of the precise form of this Hermitian component Herm!)



252 STEVEN DELVAUX AND MARC VAN BAREL

Corollary 29. Let r ∈ N. Then the class of unitary plus rank at most r
matrices is topologically closed.

By combining Theorems 27 and 28 with an affine transformation A �→ pA + qI,
these theorems can in fact be generalized to normal matrices with eigenvalues lying
on a fixed generalized circle in C, i.e., either a straight line or a circle in the complex
plane. We must then work with a quadratic transformation on C

n×n of the form
Q(A) := eAHA + f̄AH + fA + gI = 0 for suitable numbers e, g ∈ R and f ∈ C.

We may note here that these theorems cannot be generalized to arbitrary, non-
scalar quadratic relations. For example, it can be shown that the class of J-unitary
plus rank at most 1 matrices is not topologically closed.

5. Conclusion. In this paper, we investigated some structures that have a good
behavior under Schur complementation. We handled two classes: displacement and
rank structures. For displacement structures we derived in a direct way the preserva-
tion of structure, leading to formulae which extend the classical displacement tools.
For the case of rank structures we showed how the preservation results could be
used as a general framework to specify structure-preserving operations. In particular,
we considered the Möbius transformation of a matrix and derived several structure
preservation results.
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Abstract. We present a new diagonal balancing technique for regular matrix pencils λB − A,
which aims at reducing the sensitivity of the corresponding generalized eigenvalues. It is inspired by
the balancing technique of a square matrix A and has a comparable complexity. The diagonally scaled
pencil has row and column norms that are balanced in a precise sense. We also show that balancing
a pencil boils down to making it closer to some standardized normal pencil. We give numerical
examples illustrating that the sensitivity of generalized eigenvalues of a pencil may significantly
improve after balancing.
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1. Introduction. A matrix A with a norm that is several orders of magnitude
larger than the modulus of its eigenvalues typically has eigenvalues that are sensitive
to perturbations in the entries of A. It is shown in [4] that the Frobenius norm of a
matrix can then often be reduced via a diagonal scaling of the type D−1AD. Such a
scaling can be performed in exact arithmetic if the diagonal elements are constrained
to be integer powers of the base of the finite precision arithmetic (typically 2 or 10).
As a consequence the eigenvalues do not change, but their sensitivity can significantly
be reduced. Such a diagonal scaling is therefore typically used before running any
eigenvalue algorithm.

In this paper we introduce a similar scaling method for square pencils λB − A
with a determinant det(λB − A) that is not identically zero for all values of λ. For
such pencils—which are called regular—one can define generalized eigenvalues via the
zeros of the polynomial det(λB−A). Our scaling method can be viewed as a natural
extension of the balancing algorithm of [4] to regular matrix pencils and is aimed
at reducing the sensitivity of the generalized eigenvalues of the pencil. This new
method differs from that of Ward [7], whose aim it is to make the pencil entries have
magnitudes as close to unity as possible, whereas our aim is to make the pencil as
close as possible to some standardized normal pencil.

We first recall the classical balancing method for matrices and some of its proper-
ties. We then introduce the new balancing method for pencils and derive its analogous
properties. We briefly discuss the complexity of the algorithm and finally give some
numerical results illustrating the performance of the new scaling method.

2. Normal matrices and balancing. Normal matrices are known to have or-
thogonal eigenvectors and hence well conditioned eigenvalues [4]. Therefore if one has
to compute eigenvalues of an arbitrary n × n matrix A, it is recommended to make
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it closer to a normal matrix by an error free transformation. Diagonal scaling trans-
formations with positive diagonal elements that are integer powers of the base can be
performed exactly since they only amount to integer changes in the exponents of the
matrix entries. In order to preserve the eigenvalues one performs diagonal similarities
D−1AD.

The basic question is thus how to characterize a diagonal scaling D−1AD that
makes a matrix closer to a normal matrix. For this we consider two equivalent char-
acterizations of normal matrices. A matrix A is normal iff

(1) A has orthogonal eigenvectors or, equivalently, its Schur form AS

AS := U∗AU, U∗U = In(2.1)

is a diagonal matrix ΛA;

(2) the so-called defect from normality

γ(A) :=
n∑

i=1

σ2
i −

n∑
i=1

|λi|2(2.2)

is zero, where σi and λi are the singular values and the eigenvalues of A, respectively.

The defect from normality γ(A) is always nonnegative [2], which easily follows
from (2.1) and the fact γ(A) = γ(AS), since unitary similarities do not change the
eigenvalues nor the singular values of a matrix. Let the orbit of A be the set of
matrices similar to A. Then γ(A) is the minimum squared distance between A and
any normal matrix in the orbit of A.

Theorem 2.1. The optimization problem

inf
T

‖T−1AT‖F(2.3)

has a normal matrix Na in the closure of the orbit of A as solution. If A is diag-
onalizable, then there exists a bounded T such that Na = T−1AT ; otherwise T is
unbounded.

Proof. Use the (complex) Schur decomposition AS = U∗AU and choose a unitary
matrix Q such that the matrix R := U∗TQ is triangular. Since unitary transforma-
tions do not change the Frobenius norm, the above minimization is then equivalent
to

inf
R

‖R−1ASR‖F ,

which has the diagonal part ΛA of AS as solution. The transformation matrix R will
be bounded for a diagonalizable matrix A, and it will be unbounded otherwise. (Also
see [5] for more details).

It then follows that
∑n

i=1 σ
2
i is the Frobenius norm squared of AS and therefore

also the sum of the entries squared of AS , while
∑n

i=1 |λi|2 is just the sum of the
diagonal entries squared of AS . A diagonal scaling D−1AD, on the other hand, does
not change the λi but does modify the σi. So one can reduce the gap γ by scaling A
in order to diminish its Frobenius norm. This is exactly what the balancing algorithm
[4] does: it solves

inf
D

‖D−1AD‖F .(2.4)
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Let ei denote the ith unit vector; then it is shown in [4] that the optimal scaling is
achieved when D−1AD satisfies

(2.5) ‖(D−1AD)ei‖2
2 = ‖eTi (D−1AD)‖2

2 ∀ i = 1 . . . n

and an algorithm is provided for computing an approximate solution D with elements
that are powers of the base of the finite precision arithmetic. Each step of that algo-
rithm decreases the Frobenius norm of the scaled matrix and hence also the distance
to the normal matrices with the same spectrum as A.

The aim of this paper is to generalize these balancing ideas to regular matrix
pencils (λB − A). In other words we will try to answer the following questions: (1)
what is the property of regular pencils that is equivalent to normality in the standard
eigenvalue problem, and (2) how to scale an arbitrary pencil so that it gets as close
as possible to achieving this property?

3. Normal pencils. We first recall a definition of normal pencils, given in [1].
Definition 3.1. An n×n complex regular pencil λB−A is said to be normal if

it has orthogonal right and left eigenvectors, i.e., if it has a decomposition of the form

U∗
l (λB −A)Ur = λΛB − ΛA,

where Ul, Ur are unitary and ΛA,ΛB are diagonal.
In order to relate this to a defect we recall the definition of generalized singular

values of two square matrices A and B.
Definition 3.2. The right (resp., left) singular values σri (resp., σli) of λB−A

are defined to be the generalized eigenvalues of λBTB−ATA (resp., λBBT −AAT ).
Since the invertibility of B is not essential in these definitions, we first make the

simplifying assumption that B is invertible. It then follows easily that

σri = σi(AB−1), σli = σi(B
−1A).

When B is invertible, it is shown in [1] that the pencil λB − A is normal iff both
AB−1 and B−1A are normal. A good candidate for the defect from normality of a
regular pencil λB −A appears then to be

Γ(A,B) :=

n∑
i=1

σ2
ri +

n∑
i=1

σ2
li − 2

n∑
i=1

|λi|2,

where λi are the generalized eigenvalues of the pencil. Clearly Γ(A,B) = γ(AB−1) +
γ(B−1A), which is always positive and is zero iff both AB−1 and B−1A are normal
and hence iff the pencil λB −A is normal.

If B is not invertible, we need another “defect from normality” function since
Γ(A,B) is then the difference between two infinite quantities. We can then consider
a transformed pencil

λB̂ − Â := λ(cB − sA) − (sB + cA), c2 + s2 = 1.(3.1)

It is well known (see, e.g., [1]) that for a regular pencil λB −A there always exists a

choice (c, s) for which B̂ is invertible. Since the above transformation does not affect
the left and right eigenvectors of a pencil, it follows that

λB̂ − Â is normal ⇐⇒ λB −A is normal.



256 DAMIEN LEMONNIER AND PAUL VAN DOOREN

Rather than minimizing Γ(A,B) one can thus minimize Γ(Â, B̂) which will reach a

minimum when both λB̂ − Â and λB − A are normal pencils. Notice however that
the value of this defect then changes although normality is preserved. Without loss
of generality, we assume from now on that B is invertible.

But orthogonality of the left and right eigenvectors is not sufficient to guarantee
a low sensitivity of the generalized eigenvalues of a regular pencil because eigenvalues
can now be arbitrarily large or small, irrespective of the norm of A and B. Let xi

and yi be, respectively, the right and left eigenvectors of a given eigenvalue λi,

Axi = λiBxi, y∗i A = λiy
∗
i B,

and define the corresponding Rayleigh components:

αi := y∗i Axi/(‖yi‖2‖xi‖2), βi := y∗i Bxi/(‖yi‖2‖xi‖2), λi = αi/βi.

In [6] it is shown that a perturbation in A and B of relative size ε,

(3.2) ‖δA‖2 ≤ ε‖A‖2, ‖δB‖2 ≤ ε‖B‖2,

yields a perturbed eigenvalue λ̃i such that the chordal distance

(3.3) χ(λi, λ̃i) :=
|αiβ̃i − α̃iβi|√

|αi|2 + |βi|2
√
|α̃i|2 + |β̃i|2

between the original and the perturbed eigenvalue is bounded by

χ(λi, λ̃i) ≤ ε
(‖A‖2

2 + ‖B‖2
2)

1/2

(|αi|2 + |βi|2)1/2
+ O(ε2)

and that there exist perturbations δA and δB, for which this bound is met. The
quantity

(3.4) κ(λi) :=
(‖A‖2

2 + ‖B‖2
2)

1/2

(|αi|2 + |βi|2)1/2

is thus a valid relative condition number for λi in the sense that it measures how
a perturbation of relative size ε in A and B affects λi in the (intrinsically relative)
chordal metric. The reason why such a “relative” metric is to be preferred for pencils
is linked to the fact that eigenvalues are now given by ratios of computed quantities.
(See [6] for more details.)

When using the QZ-algorithm to compute the generalized eigenvalues of the
pencil λB −A one obtains the so-called Schur form of this pencil:

AS := Q∗AZ, BS := Q∗BZ, Q∗Q = In, Z
∗Z = In,(3.5)

where AS and BS are both upper triangular. This algorithm typically induces errors
δA and δB in A and B that are of the order of (3.2), where ε is the machine accuracy
of the computer. Since the orthogonal transformations Q and Z do not affect the
quantities used in the definition (3.4) of κ(λi), we can as well analyze the effect
of perturbations in the coordinate system of the Schur form. The right and left
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eigenvectors xi, yi can then be normalized as follows:

xi :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ1
...

ξi−1

1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, yi :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
1

ηi+1

...
ηn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If we denote the diagonal entries of the triangular matrices AS , BS by aii, bii, respec-
tively, we then obtain the equalities

αi = aii/ni, βi = bii/ni, ni := (‖yi‖2‖xi‖2) ≥ 1.

Since

‖A‖2 = ‖AS‖2 ≥ max
i

|aii|, ‖B‖2 = ‖BS‖2 ≥ max
i

|bii|

we finally obtain the inequality

(3.6) κ(λi) ≥
(maxi |aii|2 + maxi |bii|2)1/2

(|aii|2 + |bii|2)1/2

with equality holding only for a normal pencil since then xi and yi have norm 1 and
AS and BS are diagonal. But normal pencils can still have a quantity κ(λi) that can
be very large if the pairs (aii, bii) vary a lot in norm. This is not the case for the
following subclass of normal pencils.

Definition 3.3. A regular pencil λB−A is standard normal if there exist unitary
transformations Ul, Ur and diagonal matrices ΛA, ΛB, such that for some real γ �= 0

U∗
l (λB −A)Ur = λΛB − ΛA, |ΛA|2 + |ΛB |2 = γ2I.

For this class of pencils we obviously have

(3.7) 1 ≤ κ(λi) =
(maxi |aii|2 + maxi |bii|2)1/2

(|aii|2 + |bii|2)1/2
≤

√
2

with the lower bound κ(λi) = 1 met for each i in the particular case where ΛA = αI
and ΛB = βI. Obviously the class of standard normal pencils is nearly optimal in
terms of eigenvalue sensitivity since κ(λi) ≤

√
2 for each eigenvalue λi.

The following theorem explains which pencils can be transformed to standard
normal form using left and right transformations.

Theorem 3.4. Every regular pencil with a full set of right and left eigenvectors
can be transformed into a standard normal form

T−1
l (λB −A)Tr = λΛB − ΛA, |ΛA|2 + |ΛB |2 = γ2I with γ ∈ R0.

Proof. If λB − A has a full set of right and left eigenvectors xi, yi, then putting
xi as the columns of Tr and y∗i as the rows of T−1

l will diagonalize T−1
l (λB − A)Tr.

A simple additional diagonal scaling—which can be absorbed in either Tr or Tl—will
ensure that moreover |ΛA|2 + |ΛB |2 = γ2I for some arbitrary real positive γ.

Remark 3.1. For nondiagonalizable (regular) pencils, the theorem remains valid
in the limit, but then Tl, Tr are unbounded. In this case we have that λΛB − ΛA

belongs to the closure of the orbit of λB − A under left and right transformations
Tl, Tr [5].
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4. Balancing pencils. We now look for scaling transformations that make a
given pencil get closer to a normal one. We could use a scaling of the type

(4.1) D−1
l (λB −A)Dr,

where Dr, Dl are real positive diagonal scaling matrices. This does not modify the
generalized eigenvalues of the pencil, but the defect from normality Γ(A,B) becomes
now

Γ(D−1
l ADr, D

−1
l BDr) =

n∑
i=1

σ2
i (D

−1
l AB−1Dl) +

n∑
i=1

σ2
i (D

−1
r B−1ADr) − 2

n∑
i=1

|λi|2.

It follows from section 2 that the optimal Dr, Dl are solutions of

inf
Dr

‖D−1
r B−1ADr‖F , inf

Dl

‖D−1
l AB−1Dl‖F .

But such an approach would require us to invert the matrix B (at least implicitly)
and it is unclear how to proceed when B is singular.

We now define a new optimization problem inspired by Theorem 3.4 that avoids
the inversion of B. It uses the so-called Frobenius inner product for regular pencils
defined in a 2n2-dimensional space of two n× n complex matrices:

〈λB1 −A1 , λB2 −A2〉F := tr(A1A
∗
2 + B1B

∗
2).

It follows then that ‖λB−A‖2
F := 〈λB−A, λB−A〉F = ‖A‖2

F + ‖B‖2
F , where ‖.‖F

denotes the usual Frobenius matrix norm.
Theorem 4.1. The optimization problem

inf
det(T−1

l Tr)=1
‖T−1

l (λB −A)Tr‖F(4.2)

has a standard normal pencil as solution. If λB − A is diagonalizable, then Tr, Tl

have a bounded solution; otherwise they are unbounded.
Proof. Using the Schur decomposition λBS − AS = Q∗(λB − A)Z we define

triangular matrices Rr := Z∗TrQr and Rl := Q∗TlQl, where Qr are Ql are chosen
to be unitary and detQ∗

lQr = 1. Since unitary transformations do not change the
Frobenius norm, the above minimization is then equivalent to

inf
det(R−1

l Rr)=1
‖R−1

l (λBS −AS)Rr‖F ,

where now all matrices are upper triangular. Moreover, if we factor Rr = DrUr and
Rl = DlUl, where Ur and Ul are unit upper triangular and Dr and Dl are diagonal,
then the problem splits in two subproblems. Clearly Ur and Ul affect only the elements
above the diagonal of ‖R−1

l (λBS −AS)Rr‖F and these can all be put equal to zero if
the pencil is diagonalizable (e.g., when there are no repeated eigenvalues). In such a
case the problem reduces further to

inf
det(D−1

l Dr)=1
‖D−1

l (λΛB − ΛA)Dr‖F ,

which is easily solved using a Lagrange multiplier approach. The solution

D−2
l D2

r(Λ
∗
BΛB + Λ∗

AΛA) = γ2I, γ2n = det(Λ∗
BΛB + Λ∗

AΛA)
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is equivalent to the condition that D−1
l (λΛB −ΛA)Dr is a standard normal pencil. If

the pencil is not diagonalizable, it is still possible to find unbounded diagonal scalings
Dr, Dl that will make the elements that are above the diagonal in the Schur form
tend to zero.

The above theorem suggests to use the same minimization problem but now
restricted to real positive diagonal scaling matrices

inf
det(D−1

l Dr)=1
‖D−1

l (λB −A)Dr‖F(4.3)

as a technique to balance regular pencils. We will show that this has a unique mini-
mum that is attained when

‖(D−1
l ADr)ej‖2

2 + ‖(D−1
l BDr)ej‖2

2 = ‖eTi (D−1
l ADr)‖2

2 + ‖eTi (D−1
l BDr)‖2

2 = γ2

for all i and j. This leads to the following generalization of (2.5).
Definition 4.2. An n× n regular complex pencil λB −A is said to be balanced

if

(4.4) ‖Aej‖2
2 + ‖Bej‖2

2 = ‖eTi A‖2
2 + ‖eTi B‖2

2 = γ2 ∀ i, j.

The following theorem proves that every balanced pencil can be seen as the solu-
tion of an optimization problem very similar to (4.3).

Theorem 4.3. A regular pencil D−1
l (λB − A)Dr with real positive diagonal

scalings Dl, Dr, is balanced iff it is a solution of

inf
det(D−1

l Dr)=c
‖D−1

l (λB −A)Dr‖F .

Proof. Denote the ith diagonal entry of Dr and Dl by dri and dli, respectively,
and let aij , bij be the entries of the matrices A, B. We want to minimize

inf
dli, drj

n∑
i,j=1

(|aij |2 + |bij |2)
(
drj
dli

)2

, where

(∏
dlk∏
drk

)2

= c2.

With the change variables d2
ri = exp(uri) and d2

li = exp(−uli) and when putting
mij := |aij |2 + |bij |2, this becomes

inf
uli, urj

n∑
i,j=1

mij exp(uli + urj), where
∑
k

(ulk + urk) = 2 ln c.

This is a convex minimization problem with a linear constraint. Its solution can be
found via the use of a Lagrange multiplier Γ:

inf
uli, urj

n∑
i,j=1

mij exp(uli + urj) + Γ

(
2 ln c−

∑
k

(ulk + urk)

)
.

This unconstrained minimization has therefore a minimum iff the first order conditions
are satisfied. These are

∑
k(ulk + urk) = 2 ln c and

n∑
i=1

mij exp(uli + urj) =

n∑
j=1

mij exp(uli + urj) = Γ ∀ i, j.
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Putting Γ = γ2 and rephrasing it in the original variables, this amounts to

‖eTi (D−1
l ADr)‖2

2 + ‖eTi (D−1
l BDr)‖2

2 = ‖(D−1
l ADr)ej‖2

2 + ‖(D−1
l BDr)ej‖2

2 = γ2

for all i, j. The optimal pencil D−1
l (λB − A)Dr is therefore balanced. The converse

statement is easily checked in a similar manner.
Remark 4.1. Notice that if the pencil λB − A can be permuted to a block

triangular pencil, then so can the matrix M with elements mij . One then easily
checks that the scalings of the above theorem can be unbounded for this so-called
reducible case. This case is typically excluded in the scaling problem, since then the
generalized eigenvalue problem can de deflated to smaller dimensional ones [7]. When
such permutations do not exist, the scaling problem has a bounded solution.

Remark 4.2. The above theorem does not prove that the diagonal scaling pro-
cedure will always improve the sensitivity of the eigenvalue problem but the bound
(3.4) for κ(λi) suggests that this will be the case. We will illustrate by numerical
experiments that the scaling typically improves the sensitivity of the eigenvalues.

Remark 4.3. The above theorem also allows us to choose the parameter γ in
(4.4) since modifying the constant c in the condition det(D−1

l Dr) = c automatically
scales all the column and row norms. This is used in the numerical method described
below.

5. Numerical method. In order to balance a pencil, we will use a very simple
method rather than using convex optimization techniques. This method consists
in alternatively updating Dr and Dl such that the compound matrices

[
A
B

]
Dr and

D−1
l [A B] have column norms and row norms equal to 1, respectively. By doing so

we converge linearly to a balanced pencil with γ = 1 in (4.4). The proposed method
is essentially a “coordinate descent” method where one alternates between computing
the optimum in the “coordinates” of Dr and Dl. The convergence is slow but when
we restrict ourselves to powers of the base (2 or 10) for the diagonal elements of Dr

and Dl, stagnation typically occurs after two or three updates of both Dr and Dl.
Each joint update of Dl and Dr in fact requires only 4n2 floating point operations if
one uses the matrix M with elements mij := |aij |2 + |bij |2 : 2n2 to compute the row
and column norms and 2n2 to perform the two scalings. (A MATLAB code is given
in the appendix for the base 2.) The scaling procedure has therefore a marginal cost
in comparison to the eigenvalue computation. As in the standard eigenvalue problem
one has to test also if there exist permutations that reduce the pencil to a block
triangular form so that lower dimensional eigenvalue problems can be isolated. Such
a procedure is needed to guarantee that the diagonal scaling will remain bounded but
the complexity is also quadratic in n (see [7]).

6. Numerical examples. In the following tables we compare the precision
of the computed eigenvalues without scaling, after applying our proposed scaling
procedure and after applying Ward’s method [7], which is currently implemented
in LAPACK. We consider in Table 6.1 randomly generated diagonalizable pencils
T−1
l (λΛB − ΛA)Tr (where λΛB − ΛA is in standard normal form), in Table 6.2 ran-

domly generated nondiagonalizable pencils T−1
l (λJB−JA)Tr (where J−1

B JA is in Jor-
dan normal form), and in Table 6.3 pencils with elements of strongly varying order of
magnitude. We used normally distributed random numbers for the free elements of
ΛA,ΛB , JA, and JB . We imposed the normalization in λΛB − ΛA by choosing ΛB to
satisfy Λ2

B+Λ2
A = γ2I and the Jordan structure in λJB−JA by choosing some repeated

consecutive elements on the diagonals of JA and JB and assigning corresponding off-
diagonal 1’s in JA. The condition number of the random matrices Tl and Tr was
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Table 6.1

Comparison for randomly generated diagonalizable pencils.

n = 10 corig cbal cward cward/cbal

κ(Tr) = 3.27e + 07, κ(Tl) = 2.58e + 11 3.01e-03 7.00e-13 2.61e-09 3.72+03

κ(Tr) = 8.24e + 12, κ(Tl) = 4.21e + 10 3.69e-01 3.20e-12 1.00e-09 3.12e+02

κ(Tr) = 6.81e + 08, κ(Tl) = 1.75e + 07 7.81e-09 8.84e-14 1.01e-11 1.15e+02

κ(Tr) = 1.06e + 07, κ(Tl) = 7.82e + 08 1.56e-07 4.90e-13 4.16e-13 8.50e-01

κ(Tr) = 1.46e + 05, κ(Tl) = 4.08e + 05 2.67e-10 3.52e-15 3.92e-15 1.12e+00

κ(Tr) = 1.92e + 03, κ(Tl) = 7.72e + 02 6.78e-13 3.04e-15 2.07e-14 6.08e+00

κ(Tr) = 3.95e + 01, κ(Tl) = 1.75e + 01 2.23e-15 2.20e-15 6.52e-15 2.97e+00

κ(Tr) = 1.00e + 00, κ(Tl) = 1.00e + 00 4.79e-16 4.79e-16 4.94e-14 1.03e+02

Table 6.2

Randomly generated nondiagonalizable pencils.

n = 10 corig cbal cward cward/cbal

κ(Tr) = 1.15e + 09, κ(Tl) = 3.27e + 09 4.88e-01 4.88e-01 4.88e-01 1.00e+00

κ(Tr) = 4.68e + 02, κ(Tl) = 4.79e + 03 1.30e-01 1.30e-01 1.30e-01 1.00e+00

Table 6.3

Pencils with elements of strongly varying order of magnitude.

corig cbal cward cward/cbal

4.38e-10 4.30e-15 1.02e-05 2.37e+09

1.25e-13 1.90e-15 1.92e-03 1.01e+12

9.16e-12 6.13e-16 1.17e-10 1.92e+05

controlled by taking the kth power of normally distributed random numbers ri,j as
their elements. A larger power k then typically yields a larger condition number for
the transformation. For these experiments we used the QZ-algorithm [3] applied to
different pencils of size n = 10. We computed the chordal distances ci := χ(λi, λ̃i)
for all eigenvalues λi and compared in each table the quantities c := ‖[c1, . . . , cn]‖2

for the original pencil (corig), for the balanced pencil constructed by our algorithm
(cbal), and for the balanced pencil using Ward’s method (cward). In Tables 6.1 and
6.2 we also give the condition numbers κ(Tr) and κ(Tl).

In Table 6.1 we focus on diagonalizable pencils. When κ(Tr) = κ(Tl) = 1 we
observe that balancing does not improve the precision of the calculated eigenvalues,
but otherwise it does, in general, significantly improve the accuracy of the calculated
eigenvalues. Recall also that we restrict the diagonal elements of the balancing trans-
formations Dr, Dl to be powers of two. From the table it appears that the proposed
balancing algorithm has a positive effect on the precision of the computed eigenvalues.
The comparison factor cward/cbal shows that in general the new method outperforms
Ward’s algorithm.

In Table 6.2 we look at nondiagonalizable pencils. We imposed the first example
to have two Jordan blocks of size 2 and the second example to have one Jordan
block of size 3. The eigenvalue sensitivity is in principle infinite and the calculated
eigenvalues have little in common with the true eigenvalues. The table shows that
both balancing algorithms do not alter the precision of the computed eigenvalues. In
Table 6.3 we look at pencils with entries of strongly varying size: the largest ones
are of the order of 1, the smallest ones are much smaller. Ward’s method tries to
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make the size of these elements equal and in doing so, it applies a scaling that often
deteriorates the sensitivity instead of improving it. The new method, on the other
hand, usually significantly improves the sensitivity.

7. Conclusion. In this paper we presented a new balancing method for matrix
pencils. From the point of view of the sensitivity of the eigenvalues we showed that
the standard normal pencils are near optimal and that they can be viewed as a natural
extension of normal matrices. A diagonal balancing method was then proposed that
makes a given pencil as close as possible to a standard normal one. Moreover we
showed that the complexity of the new method is comparable to that of the classical
balancing of matrices. We also gave numerical evidence that the accuracy of computed
generalized eigenvalues may significantly improve after balancing a pencil and that
the method often outperforms the method of Ward implemented in LAPACK.

Appendix.

function [Dl, Dr, iter] = baleig(A,B,max_iter)

% Performs two-sided scaling Dl\A*Dr, Dl\B*Dr in order to improve

% the sensitivity of generalized eigenvalues. The diagonal matrices

% Dl and Dr are constrained to powers of 2 and are computed iteratively

% until the number of iterations max_iter is met or until the norms are

% between 1/2 and 2. Convergence is often reached after 2 or 3 steps.

% The diagonals of the scaling matrices are returned in Dl and Dr

% and so is iter, the number of iterations steps used by the method.

n=size(A,1); Dl=ones(1,n); Dr=ones(1,n); M=abs(A).^2+abs(B).^2;

for iter=1:max_iter,

emax=0;emin=0;

for i=1:n;

% scale the rows of M to have approximate row sum 1

d=sum(M(i,:));e=-round(log2(abs(d))/2);

M(i,:)=pow2(M(i,:),2*e);

% apply the square root scaling also to Dl

Dl(i)=pow2(Dl(i),-e);

if e > emax, emax=e; end; if e < emin, emin=e; end

end

for i=1:n;

% scale the columns of M to have approximate column sum 1

d=sum(M(:,i));e=-round(log2(abs(d))/2);

M(:,i)=pow2(M(:,i),2*e);

% apply the square root scaling also to Dr

Dr(i)=pow2(Dr(i),e);

if e > emax, emax=e; end; if e < emin, emin=e; end

end

% Stop if norms are all between 1/2 and 2

if (emax<=emin+2), break; end

end
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MODIFIED GRAM–SCHMIDT (MGS), LEAST SQUARES,
AND BACKWARD STABILITY OF MGS-GMRES∗
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Abstract. The generalized minimum residual method (GMRES) [Y. Saad and M. Schultz, SIAM
J. Sci. Statist. Comput., 7 (1986), pp. 856–869] for solving linear systems Ax = b is implemented
as a sequence of least squares problems involving Krylov subspaces of increasing dimensions. The
most usual implementation is modified Gram–Schmidt GMRES (MGS-GMRES). Here we show that
MGS-GMRES is backward stable. The result depends on a more general result on the backward
stability of a variant of the MGS algorithm applied to solving a linear least squares problem, and uses
other new results on MGS and its loss of orthogonality, together with an important but neglected
condition number, and a relation between residual norms and certain singular values.

Key words. rounding error analysis, backward stability, linear equations, condition numbers,
large sparse matrices, iterative solution, Krylov subspace methods, Arnoldi method, generalized
minimum residual method, modified Gram–Schmidt, QR factorization, loss of orthogonality, least
squares, singular values

AMS subject classifications. 65F10, 65F20, 65F25, 65F35, 65F50, 65G50, 15A12, 15A42

DOI. 10.1137/050630416

1. Introduction. Consider a system of linear algebraic equations Ax = b, where
A is a given n × n (unsymmetric) nonsingular matrix and b a nonzero n-dimensional
vector. Given an initial approximation x0, one approach to finding x is to first compute
the initial residual r0 = b − Ax0. Using this, derive a sequence of Krylov subspaces
Kk(A, r0) ≡ span{r0, Ar0, . . . , A

k−1r0}, k = 1, 2, . . . , in some way, and look for ap-
proximate solutions xk ∈ x0 + Kk(A, r0) . Various principles are used for constructing
xk, which determine various Krylov subspace methods for solving Ax = b. Similarly,
Krylov subspaces for A can be used to obtain eigenvalue approximations or to solve
other problems involving A.

Krylov subspace methods are useful for solving problems involving very large
sparse matrices, since these methods use these matrices only for multiplying vectors,
and the resulting Krylov subspaces frequently exhibit good approximation proper-
ties. The Arnoldi method [2] is a Krylov subspace method designed for solving the
eigenproblem of unsymmetric matrices. The generalized minimum residual method
(GMRES) [20] uses the Arnoldi iteration and adapts it for solving the linear system
Ax = b. GMRES can be computationally more expensive per step than some other
methods; see, for example, Bi-CGSTAB [24] and QMR [9] for unsymmetric A, and
LSQR [16] for unsymmetric or rectangular A. However, GMRES is widely used for
solving linear systems arising from discretization of partial differential equations, and
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as we will show, it is backward stable and it does effectively minimize the 2-norm of
the residual at each step.

The most usual way of applying the Arnoldi method for large, sparse unsymmetric
A is to use modified Gram–Schmidt orthogonalization (MGS). Unfortunately in finite
precision computations this leads to loss of orthogonality among the MGS Arnoldi
vectors. If these vectors are used in GMRES we have MGS-GMRES. Fortunately,
experience suggests that MGS-GMRES succeeds despite this loss of orthogonality; see
[12]. For this reason we examine the MGS version of Arnoldi’s algorithm and use this
to show that the MGS-GMRES method does eventually produce a backward stable
approximate solution when applied to any member of the following class of linear
systems with floating point arithmetic unit roundoff ε (σ means singular value):

Ax = b �= 0, A ∈ Rn×n, b ∈ Rn, σmin(A) � n2ε‖A‖F ;(1.1)

see also the appendix. The restriction here is deliberately imprecise; see below. More-
over we show that MGS-GMRES gives backward stable solutions for its least squares
problems at all iteration steps, thus answering important open questions. The proofs
depend on new results on the loss of orthogonality and backward stability of the MGS
algorithm, as well as the application of the MGS algorithm to least squares problems,
and a lot of this paper is devoted to first obtaining these results.

While the kth step of MGS produces the kth orthonormal vector vk, it is usual
to say vk is produced by step k−1 in the Arnoldi and MGS-GMRES algorithms. We
will attempt to give a consistent development while avoiding this confusion. Thus
step k−1 of MGS-GMRES is essentially the kth step of MGS applied to [b, AVk−1] to
produce vk in [b, AVk−1] = VkRk, where Vk ≡ [v1, . . . , vk] and Rk is upper triangular.
In practice, if we reach a solution at step m−1 of MGS-GMRES, then numerically b
must lie in the range of AVm−1, so that Bm ≡ [b, AVm−1] is numerically rank deficient.
But this means we have to show that our rounding error analysis of MGS holds for
rank deficient Bm—and this requires an extension of some results in [5].

In section 2 we describe our notation and present some of the tools we need which
may be of more general use. For example we show the importance of the condition
number κ̃F (A) in (2.1), prove the existence of a nearby vector in Lemma 2.3, and
provide a variant of the singular value–residual norm relations of [17] in Theorem 2.4.
In sections 3.1–3.2 we review MGS applied to n×m B of rank m, and its numerical
equivalence to the Householder QR reduction of B augmented by an m ×m matrix
of zeros. In section 3.3 we show how the MGS rounding error results extend to the
case of m > n, while in section 4 we show how these results apply to the Arnoldi
algorithm. In section 5 we analyze the loss of orthogonality in MGS and the Arnoldi
algorithm and how it is related to the near rank deficiency of the columns of B or its
Arnoldi equivalent, refining a nice result of Giraud and Langou [10] and Langou [14].
Section 6 introduces the key step used to prove convergence of these iterations. In
section 7.1 we prove the backward stability of the MGS algorithm applied to solving
linear least squares problems of the form required by the MGS-GMRES algorithm, and
in section 7.2 we show how loss of orthogonality is directly related to new normwise
relative backward errors of a sequence of different least squares problems, supporting
a conjecture on the convergence of MGS-GMRES and its loss of orthogonality; see
[18]. In section 8.1 we show that at every step MGS-GMRES computes a backward
stable solution for that step’s linear least squares problem, and in section 8.2 we show
that one of these solutions is also a backward stable solution for (1.1) in at most n+1
MGS steps.



266 C. C. PAIGE, M. ROZLOŽNÍK, AND Z. STRAKOŠ

The restriction on A in (1.1) is essentially a warning to be prepared for difficulties
in using the basic MGS-GMRES method on singular systems; see, for example, [6, 23].
The imprecise nature of the condition (using � instead of > with some constant) was
chosen to make the presentation easier. A constant could be provided (perhaps closer
to 100 than 10), but since the long bounding sequence used was so loose, it would
be meaningless. The appendix suggests that the form n2ε‖A‖F might be optimal,
but since for large n rounding errors tend to combine in a semirandom fashion, it is
reasonable to replace n2 by n, and a more practical requirement than (1.1) might be

For large n, nε‖A‖F /σmin(A) ≤ 0.1.(1.2)

2. Notation and mathematical basics. We describe the notation we will use,
together with some generally useful results. We use “≡” to mean “is defined as” in
the first occurrence of an expression, but in any later occurrences of this expression
it means “is equivalent to (by earlier definition).” A bar above a symbol will denote
a computed quantity, so if Vk is an ideal mathematical quantity, V̄k will denote its
actual computed value. The floating point arithmetic unit roundoff will be denoted
by ε (half the machine epsilon; see [13, pp. 37–38]), In denotes the n×n unit matrix,
ej will be the jth column of a unit matrix I, so Bej is the jth column of B, and
Bi:j ≡ [Bei, . . . , Bej ]. We will denote the absolute value of a matrix B by |B|, its
Moore–Penrose generalized inverse by B†, ‖ · ‖F will denote the Frobenius norm, σ(·)
will denote a singular value, and κ2(B) ≡ σmax(B)/σmin(B); see (2.1) for κ̃F (·).
Matrices and vectors whose first symbol is Δ, such as ΔVk, will denote rounding error
terms. For the rounding error analyses we will use Higham’s notation [13, pp. 63–68]:
c̃ will denote a small integer ≥ 1 whose exact value is unimportant (c̃ might have
a different value at each appearance) and γn ≡ nε/(1 − nε), γ̃n ≡ c̃nε/(1 − c̃nε).
Without mentioning it again, we will always assume the conditions are such that the
denominators in objects like this (usually bounds) are positive; see, for example, [13,
(19.6)]. We see γ̃n/(1 − γ̃n) = c̃nε/(1 − 2c̃nε), and might write γ̃n/(1 − γ̃n) = γ̃′

n for
mathematical correctness, but will refer to the right-hand side as γ̃n thereafter. Em,
Êm, Ẽm will denote matrices of rounding errors (see just before Theorem 3.3), and
‖Emej‖2 ≤ γ‖Bej‖2 implies this holds for j = 1, . . . ,m unless otherwise stated.

Remark 2.1 (see also the appendix). An important idea used throughout this
paper is that column bounds of the above form lead to several results which are
independent of column scaling, and we take advantage of this by using the following
condition number. Throughout the paper, D will represent any positive definite
diagonal matrix.

The choice of norms is key to making error analyses readable, and fortunately
there is a compact column-scaling-independent result with many uses. Define

κ̃F (A) ≡ min
diagonal D>0

‖AD‖F /σmin(AD).(2.1)

This condition number leads to some useful new results.
Lemma 2.1. If E and B have m columns, then for any positive definite diagonal

matrix D: ‖Eej‖2 ≤ γ‖Bej‖2, j = 1, . . . ,m, ⇒ ‖ED‖F ≤ γ‖BD‖F ;

‖Eej‖2 ≤ γ‖Bej‖2 for j = 1, . . . ,m and rank(B) = m ⇒ ‖EB†‖F ≤ γκ̃F (B).

With the QR factorization B = Q1R, this leads to ‖ER−1‖F ≤ γκ̃F (B) = γκ̃F (R).
Proof. ‖Eej‖2 ≤ γ‖Bej‖2 implies ‖EDej‖2 ≤ γ‖BDej‖2 so ‖ED‖F ≤ γ‖BD‖F .

For B of rank m, (BD)† = D−1B†, ‖(BD)†‖2 = σ−1
min(BD), and so

‖EB†‖F = ‖ED(BD)†‖F ≤ ‖ED‖F ‖(BD)†‖2 ≤ γ‖BD‖F /σmin(BD).
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Since this is true for all such D, we can take the minimum, proving our results.
Lemma 2.2. If m × m R̄ is nonsingular and PT

1 P1 = I in P1R̄ = B + E, and
γκ̃F (B) < 1, then

‖Eej‖2 ≤ γ‖Bej‖2, j = 1, . . . ,m,⇒ ‖ER̄−1‖F ≤ γκ̃F (B)/(1 − γκ̃F (B)).

Proof. For any D in (2.1), ‖Eej‖2 ≤ γ‖Bej‖2 ⇒ ‖ED‖F ≤ γ‖BD‖F , and then
σmin(R̄D) ≥ σmin(BD) − γ‖BD‖F , so ‖ER̄−1‖F = ‖ED(R̄D)−1‖F is bounded by

‖ED‖F ‖(R̄D)−1‖2 ≤ γ‖BD‖F
σmin(BD) − γ‖BD‖F

=
γ‖BD‖F /σmin(BD)

1 − γ‖BD‖F /σmin(BD)
.

Taking the minimum over D proves the result.
Suppose V̄m ≡ [v̄1, . . . , v̄m] is an n×m matrix whose columns have been compu-

tationally normalized to have 2-norms of 1, and so have norms in [1−γ̃n, 1+γ̃n]. Now
define Ṽm ≡ [ṽ1, . . . , ṽm] where ṽj is just the correctly normalized version of v̄j , so

V̄m = Ṽm(I + Δm), Δm ≡ diag(νj), where |νj | ≤ γ̃n, j = 1, . . . ,m;(2.2)

V̄ T
m V̄m = Ṽ T

m Ṽm + Ṽ T
m Ṽm.Δm + Δm.Ṽ T

m Ṽm + Δm.Ṽ T
m Ṽm.Δm,

‖V̄ T
m V̄m − Ṽ T

m Ṽm‖F /‖Ṽ T
m Ṽm‖F ≤ γ̃n(2 + γ̃n) ≡ γ̃′

n.

From now on we will not document the analogues of the last step γ̃n(2+ γ̃n) ≡ γ̃′
n but

finish with ≤ γ̃n. In general it will be as effective to consider Ṽm as V̄m, and we will
develop our results in terms of Ṽm rather than V̄m. The following will be useful here:

‖[Ṽm, In]‖2
2 = ‖In+ṼmṼ H

m ‖2 = 1+‖ṼmṼ H
m ‖2 = 1+‖Ṽm‖2

2 ≤ 1+‖Ṽm‖2
F = 1+m.(2.3)

Lemma 2.3 deals with the problem: Suppose we have d ∈ Rn and we know for

some unknown perturbation f ∈ R(m+n) that
∥∥∥
[
0
d

]
+f

∥∥∥
2

= ρ. Is there a perturbation

g of the same dimension as d, and having a similar norm to that of f , such that
‖d + g‖2 = ρ also? Here we show such a g exists in the form g = Nf , ‖N‖2 ≤

√
2.

Lemma 2.3. For a given d ∈ Rn and unknown f ∈ R(m+n), if
[

f1

d + f2

]
≡

[
0
d

]
+ f = pρ ≡

[
p1

p2

]
ρ, where ‖p‖2 = 1,

then there exists 0 ≤ σ ≤ 1, v ∈ Rn with ‖v‖2 = 1, and n×(m+n) N of the form

N ≡ [v(1 + σ)−1pT1 , In],(2.4)

so that d + Nf = vρ.(2.5)

This gives

∥∥∥∥
[
0
d

]
+ f

∥∥∥∥
2

= ‖d + Nf‖2 = ρ, 1 ≤ ‖N‖2 ≤
√

2.(2.6)

Proof. Define σ ≡ ‖p2‖2. If σ = 0 take any v ∈ Rn with ‖v‖2 = 1. Otherwise
define v ≡ p2/σ so ‖v‖2 = 1. In either case p2 = vσ and pT1 p1 = 1 − σ2. Now define
N as in (2.4), so

d + Nf = d + v(1 + σ)−1‖p1‖2
2ρ + f2 = p2ρ + v(1 − σ)ρ = vρ,

NNT = I + v(1 + σ)−2(1 − σ2)vT ,

1 ≤ ‖N‖2
2 = ‖NNT ‖2 = 1 + (1 − σ)/(1 + σ) ≤ 2,

proving (2.5) and (2.6).
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This is a refinement of a special case of [5, Lem. 3.1]; see also [13, Ex. 19.12].
The fact that the perturbation g in d has the form of N times the perturbation f is
important, as we shall see in section 7.1.

Finally we give a general result on the relation between least squares residual
norms and singular values. The bounds below were given in [17, Thm. 4.1] but
subject to the condition [17, (1.4)] that we cannot be sure will hold here. To prove
that our results here hold subject to the different condition (1.1), we need to prove a
related result. In order not to be too repetitive, we will prove a slightly more general
result than we considered before, or need here, and make the theorem and proof brief.

Theorem 2.4. Let B ∈ Rn×k have rank s and singular values σ1 ≥ · · · ≥ σs > 0.
For 0 �= c ∈ Rn and a scalar φ ≥ 0, define ŷ ≡ B†c, r̂ ≡ c−Bŷ, σ(φ) ≡ σs+1([cφ,B]),
and δ(φ) ≡ σ(φ)/σs. If r̂φ �= 0, then σ(φ) > 0. If φ0 ≡ σs/‖c‖, then for all φ ∈ [0, φ0)
we have 0 ≤ δ(φ) < 1. Finally, for all φ > 0 such that δ(φ) < 1, we have

σ2(φ)[φ−2 + ‖ŷ‖2
2] ≤ ‖r̂‖2

2 ≤ σ2(φ)

[
φ−2 +

‖ŷ‖2
2

1 − δ2(φ)

]
.

Proof. r̂ is the least squares residual for By ≈ c, so r̂φ �= 0 means [cφ,B] has
rank s+1 and σ(φ) > 0. If 0 ≤ φ < φ0, then ‖cφ‖ < ‖cφ0‖ = σs, so via Cauchy’s
interlacing theorem, 0 ≤ σ(φ) ≡ σs+1([cφ,B]) < σs, giving 0 ≤ δ(φ) < 1. Using the
singular value decomposition B = W diag(Σ, 0)ZT , WT = W−1, ZT = Z−1, write

WT [c,BZ] =

[
a1 Σ 0
a2 0 0

]
, Σ ≡

⎡
⎣
σ1

·
σs

⎤
⎦ , a1 ≡

⎡
⎣
α1

·
αs

⎤
⎦ , ŷ = Z

[
Σ−1a1

0

]
.

Then it can be shown (see, for example, [26, (39.4)], [17, (2.6)], [15, pp. 1508–10], et
al.) that for all φ such that φ > 0 and δ(φ) < 1, σ(φ) is the smallest root of

‖r̂‖2 = σ(φ)2

[
φ−2 +

s∑
i=1

α2
i /σ

2
i

1 − σ(φ)2/σ2
i

]
.

But ‖ŷ‖2
2 =

s∑
i=1

α2
i

σ2
i

≤
s∑

i=1

α2
i /σ

2
i

1−σ(φ)2/σ2
i

≤
s∑

i=1

α2
i /σ

2
i

1−σ(φ)2/σ2
s

=
‖ŷ‖2

2

1−δ2(φ)

while δ(φ) ≡ σ(φ)/σs < 1, and the result follows.

We introduced φ0 to show δ(φ) < 1 for some φ > 0. For results related to
Theorem 2.4 we refer to [15, pp. 1508–1510], which introduced this useful value φ0.

3. The modified Gram–Schmidt (MGS) algorithm. In order to under-
stand the numerical behavior of the MGS-GMRES algorithm, we first need a very
deep understanding of the MGS algorithm. Here this is obtained by a further study
of the numerical equivalence between MGS and the Householder QR factorization of
an augmented matrix; see [5] and also, for example, [13, section 19.8].

We do not give exact bounds but work with terms of the form γ̃n instead; see
[13, pp. 63–68] and our section 2. The exact bounds will not even be approached for
the large n we are interested in, so there is little reason to include such fine detail. In
sections 3.1–3.3 we will review the MGS-Householder equivalence and extend some of
the analysis that was given in [5] and [13, section 19.8].
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3.1. The basic MGS algorithm. Given a matrix B ∈ Rn×m with rank m ≤ n,
MGS in theory produces Vm and nonsingular Rm in the QR factorization

B = VmRm, V T
mVm = Im, Rm upper triangular,(3.1)

where Vm ≡ [v1, . . . , vm], and m × m Rm ≡ (ρij). The version of the MGS al-
gorithm which immediately updates all columns computes a sequence of matrices

B = B(1), B(2), . . . , B(m+1) = Vm ∈ Rn×m, where B(i) = [v1, . . . , vi−1, b
(i)
i , . . . , b

(i)
m ].

Here the first (i−1) columns are final columns in Vm, and b
(i)
i , . . . , b

(i)
m have been made

orthogonal to v1, . . . , vi−1. In the ith step we take

ρii := ‖b(i)i ‖2 �= 0 since rank(B) = m, vi := b
(i)
i /ρii,(3.2)

and orthogonalize b
(i)
i+1, . . . , b

(i)
m against vi using the orthogonal projector I − viv

T
i ,

ρij := vTi b
(i)
j , b

(i+1)
j := b

(i)
j − viρij , j = i + 1, . . . ,m.(3.3)

We see B(i) = B(i+1)R(i), where R(i) has the same ith row as Rm but is the unit
matrix otherwise. Note that in the mth step no computation is performed in (3.3),
so that after m steps we have obtained the factorization

B = B(1) = B(2)R(1) = B(3)R(2)R(1) = B(m+1)R(m) · · ·R(1) = VmRm,(3.4)

where in exact arithmetic the columns of Vm are orthonormal by construction.
This formed Rm a row at a time. If the jth column of B is only available after

vj−1 is formed, as in MGS-GMRES, then we usually form Rm a column at a time.

This does not alter the numerical values if we produce ρ1,j , b
(2)
j ; ρ2,j , b

(3)
j ; etc.

It was shown in [3] that for the computed R̄m and V̄m in MGS

B + E = V̄mR̄m, ‖E‖2 ≤ c1(m,n)ε‖B‖2, ‖I − V̄ T
m V̄m‖2 ≤ c2(m,n)εκ2(B),(3.5)

where ci(m,n) denoted a scalar depending on m, n and the details of the arithmetic.
We get a deeper understanding by examining the MGS-Householder QR relationship.

3.2. MGS as a householder method. The MGS algorithm for the QR factor-
ization of B can be interpreted as an orthogonal transformation applied to the matrix
B augmented with a square matrix of zero elements on top. This is true in theory
for any method of QR factorization, but for Householder’s method it is true in the
presence of rounding errors as well. This observation was made by Charles Sheffield
and relayed to the authors of [5] by Gene Golub.

First we look at the theoretical result. Let B ∈ Rn×m have rank m, and let
Om ∈ Rm×m be a zero matrix. Consider the QR factorization

B̃ ≡
[
Om

B

]
= Pm

[
R
0

]
≡

[
P11 P12

P21 P22

] [
R
0

]
, PT

m = P−1
m .(3.6)

Since B has rank m, P11 is zero, P21 is an n×m matrix of orthonormal columns, and,
see (3.1), B = VmRm = P21R. If upper triangular Rm and R are both chosen to have
positive diagonal elements in BTB = RT

mRm = RTR, then Rm = R by uniqueness,
so P21 = Vm can be found from any QR factorization of the augmented matrix B̃.
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The last n columns of Pm are then arbitrary up to an n×n orthogonal multiplier, but
in theory the Householder reduction produces, see [5, (2.7)–(2.8)], the (surprisingly
symmetric) orthogonal matrix

Pm =

[
Om V T

m

Vm I−VmV T
m

]
,(3.7)

showing that in this case Pm is fully defined by Vm.

A crucial result for this paper is that the Householder QR factorization giving (3.6)
is also numerically equivalent to MGS applied to B. A close look at this Householder
reduction, see, for example, [5, (2.6)–(2.7)], shows that for the computed version

P̄T
m ≡ P̄ (m) · · · P̄ (1), P̄ (j) = I − p̄j p̄

T
j , p̄j =

[
−ej
v̄j

]
, j = 1, . . . ,m,(3.8)

where the v̄j are numerically identical to the computed v̄j in (3.2), so for example after

the first two Householder transformations, our computed equivalent of P̄ (2)P̄ (1)B̃ is

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρ̄11 ρ̄12 ρ̄13 · · · ρ̄1m

0 ρ̄22 ρ̄23 · · · ρ̄2m

0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0

0 0 b̄
(3)
3 · · · b̄

(3)
m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,(3.9)

where the ρ̄jk and b̄
(j)
k are also numerically identical to the corresponding computed

values in (3.2) and (3.3). That is, in practical computations, the v̄j , ρ̄jk, and b̄
(j)
k are

identical in both algorithms; see [5, p. 179]. Note that the jth row of R̄m is completely

formed in the jth step and not touched again, while b̄
(j)
j is eliminated.

3.3. MGS applied to n×m B with m > n. The paper [5] was written
assuming that m ≤ n and n×m B in (3.1) had rank m, but it was mentioned in
[5, p. 181] that the rank condition was not necessary for proving the equivalence
mentioned in the last paragraph of section 3.2 above. For computations involving
n × m B with m > n, Householder QR on B will stop in at most n−1 steps, but
both MGS on B, and Householder QR on B̃ in (3.6), can nearly always be carried
on for the full m steps. The MGS-Householder QR equivalence also holds for m>n,
since the MGS and augmented Householder methods, being identical theoretically
and numerically, either both stop with some ρ̄kk = 0, k<m, see (3.2), or both carry
on to step m. It is this m> n case we need here, and we extend the results of [5]
to handle this. Because of this numerical equivalence, the backward error analysis
for the Householder QR factorization of the augmented matrix in (3.6) can also be
applied to the MGS algorithm on B. Two basic lemmas contribute to Theorem 3.3
below.

Lemma 3.1. In dealing with Householder transformations such as (3.8), Wilkin-
son [26, section 4.2] pointed out that it is perfectly general to analyze operations with
P = I−ppT for p having no zero elements. (This means we can drop the zero elements
of p and the corresponding elements of the unit matrix and vector that P is applied
to. In (3.8) each p has at most n+1 nonzero elements that we need to consider.)
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Lemma 3.2 (see [13, Lem. 19.3]). In practice, if j Householder transformations
are applied to a vector b ∈ Rn, the computed result c̄ satisfies

c̄ = Pj · · ·P2P1(b + Δb), ‖Δb‖2 ≤ jγ̃n‖b‖2.

In Theorem 3.3, Em will refer to rounding errors in the basic MGS algorithm,
while later Êm will refer to errors in the basic MGS algorithm applied to solving the
equivalent of the MGS-GMRES least squares problem, and Ẽm will refer to errors in
the MGS-GMRES algorithm. All these matrices will be of the following form:

Em ∈ R(m+n)×m, Em ≡
[
E′

m

E′′
m

]
}m
}n .(3.10)

Theorem 3.3. Let R̄m and V̄m = [v̄1, . . . , v̄m] be the computed results of MGS
applied to B ∈ Rn×m as in (3.1)–(3.4), but now allow m > n. For j = 1, . . . ,m, step

j computes v̄j and the jth row of R̄m and b̄
(j+1)
j+1 , . . . , b̄

(j+1)
m (see (3.9)). Define

p̄j =

[
−ej
v̄j

]
, P̄ (j) = I − p̄j p̄

T
j , P̄m = P̄ (1)P̄ (2) · · · P̄ (m),(3.11)

ṽj = v̄j/‖v̄j‖2, p̃j =

[
−ej
ṽj

]
, P̃ (j) = I − p̃j p̃

T
j , P̃m = P̃ (1)P̃ (2) · · · P̃ (m).

Then P̃ (j) is the orthonormal equivalent of the computed version P̄ (j) of the House-
holder matrix applied in the jth step of the Householder QR factorization of B̃ in
(3.6), so that P̃T

mP̃m = I, and for the computed version R̄m of R = Rm in (3.6), and
any positive definite diagonal matrix D, see Lemma 2.1 (here j = 1, . . . ,m),

P̃m

[
R̄m

0

]
=

[
E′

m

B + E′′
m

]
; P̃m orthogonal; R̄m, E′

m ∈ Rm×m;(3.12)

Em ≡
[
E′

m

E′′
m

]
; ‖Emej‖2 ≤ jγ̃n‖Bej‖2, ‖EmD‖F ≤ mγ̃n‖BD‖F ;

‖R̄mej‖2 ≤ ‖Bej‖2 + ‖Emej‖2 ≤ (1 + jγ̃n)‖Bej‖2;(3.13)

E′
me1 = 0, ‖E′

mej‖2 ≤ j
1
2 γ̃n‖Bej‖2, j = 2, . . . ,m;(3.14)

‖E′
mD‖F ≤ m

1
2 γ̃n‖(BD)2:m‖F ;

P̃m =

[
S̃m (I − S̃m)Ṽ T

m

Ṽm(I − S̃m) I − Ṽm(I − S̃m)Ṽ T
m

]
, P̃mP̃T

m = I,(3.15)

where m×m E′
m and S̃m are strictly upper triangular. The jth row of E′

m is wholly
produced in step j, just as the jth row of R̄m is. The jth column of S̃m is not defined
until step j and is not altered thereafter. (If MGS stops with ρ̄kk = 0, see (3.2), rows
k, . . . ,m of R̄m and E′

m are zero, and columns k, . . . ,m of V̄m and S̃m are nonexistent,
so we replace m above by k.)

Proof. The MGS-augmented Householder QR equivalence for the case of m ≤ n
was proven in [5], and that this extends to m > n is proven in the first paragraph of
section 3.3. As a result we can apply Lemmas 3.1 and 3.2 to give (3.12)–(3.13). The
ideal P in (3.6) has the structure in (3.7), but it was shown in [5, Thm. 4.1, and (4.5)]
(which did not require n≥m in our notation) that P̃m in (3.11) and (3.12) has the
extremely important structure of (3.15) for some strictly upper triangular m×m S̃m.
Since E′

m = S̃mR̄m, this is strictly upper triangular too.
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The rest follow with Lemmas 3.1 and 3.2. We have used γ̃n = γ̃′
n+1 rather

than γ̃m+n because in each step, p̄j in (3.11) has only n+1 elements; see (3.9) and
Lemma 3.1. Row j in R̄m is not touched again after it is formed in step j, see (3.9),
and so the same is true for row j in E′

m in (3.12); see Lemma 3.1. Since E′
m = S̃mR̄m,

the jth column of S̃m is not defined until ρ̄jj is computed in step j, and since these
three matrices are all upper triangular, it is not altered in later steps. Finally we
obtain new bounds in (3.14). The element ρ̄ij is formed by the one transformation

P̄ (i) in (3.11) applied to b̄
(i)
j in (3.9), and so from Lemma 3.2 we can say (remember

(E′
m)ii = 0)

|(E′
m)ij | ≤ γ̃n‖b̄(i)j ‖2 ≤ γ̃′

n‖Bej‖2, j = i+1, . . . ,m,

which is quite loose but leads to the bounds in (3.14).

Note that (3.14) involves j
1
2 , rather than the j in previous publications.

Remark 3.1. It is counterintuitive that E′
m is strictly upper triangular, so we will

explain it. We need only consider the first augmented Householder-MGS transforma-
tion of the first vector to form ρ̄11 in (3.9). We can rewrite the relevant part of the
first transformation ideally as, see (3.11) and Lemma 3.1,

P

[
0
b

]
=

[
ρ
0

]
, P =

[
0 vT

v I − vvT

]
, b = vρ, ‖v‖2 = 1.

From b we compute ρ̄ and v̄ and then define ṽ ≡ v̄/‖v̄‖2 so ‖ṽ‖2 = 1. In order for
E′

me1 = 0 in (3.12), there must exist a backward error term Δb such that
[
0 ṽT

ṽ I − ṽṽT

] [
0

b + Δb

]
=

[
ρ̄
0

]
,

which looks like n+ 1 conditions on the n-vector Δb. But multiplying throughout by
P shows there is a solution Δb = ṽρ̄− b. The element above Δb is forced to be zero,
so that there are actually n+1 conditions on n+1 unknowns. An error analysis (see
Lemma 3.2) then bounds ‖Δb‖2 ≤ γ̃n‖b‖2.

4. The Arnoldi algorithm as MGS. The Arnoldi algorithm [2] is the basis
of MGS-GMRES. We assume that the initial estimate of x in (1.1) is x0 = 0, so that
the initial residual r0 = b, and use the Arnoldi algorithm with ρ ≡ ‖b‖2, v1 ≡ b/ρ, to
sequentially generate the columns of Vk+1 ≡ [v1, . . . , vk+1] via the ideal process:

AVk = VkHk,k + vk+1hk+1,ke
T
k = Vk+1Hk+1,k, V T

k+1Vk+1 = Ik+1.(4.1)

Here k × k Hk,k = (hij) is upper Hessenberg, and we stop at the first hk+1,k = 0.
Because of the orthogonality, this ideal algorithm must stop for some k ≤ n. Then
AVk = VkHk,k, where Hk,k has rank at least k−1. If hk+1,k = 0 and Hk,k has rank
k−1, there exists a nonzero z such that AVkz = VkHk,kz = 0, so that A must be
singular. Thus when A is nonsingular so is Hk,k, and so in MGS-GMRES, solving
Hk,ky = e1ρ and setting x = Vky solves (1.1). But if A is singular, this might not
provide a solution even to consistent Ax = b:

A =

[
0 1
0 0

]
, x =

[
0
1

]
, v1 = b = Ax =

[
1
0

]
, AV1 = V1H1,1, H1,1 = 0.

Thus it is no surprise that we will require a restriction of the form (1.1) to ensure
that the numerical MGS-GMRES algorithm always obtains a meaningful solution.
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To relate the Arnoldi and MGS-GMRES algorithms to the MGS algorithm, we
now replace k+1 by m and say that in the mth MGS step these produce vm, and
MGS-GMRES also produces the approximation xm−1 = Vm−1ym−1 to the solution
x of (1.1). Then apart from forming the Avj , the algorithm we use to give (4.1) is
identical to (3.2)–(3.3) with the same vectors vj , and

b1 ≡ b, ρ11 ≡ ρ; and for j=1, . . . ,m−1, bj+1 ≡ Avj , ρi,j+1 ≡ hi,j i=1, . . . , j+1,

except that Avj cannot be formed and orthogonalized against v1, . . . , vj until vj is
available. This does not alter the numerical values. Thus with upper triangular Rm,

Bm ≡ A [x, Vm−1] = [b, AVm−1] = Vm [e1ρ,Hm,m−1] ≡ VmRm, V T
mVm = I.(4.2)

So in theory the Arnoldi algorithm obtains the QR factorization of Bm ≡ [b, AVm−1]
by applying MGS to Bm. Computationally we can see that we have applied MGS
to B̄m ≡ [b, fl(AV̄m−1)], where V̄m−1 ≡ [v̄1, . . . , v̄m−1] is the matrix of supposedly
orthonormal vectors computed by MGS, and see, for example, [13, section 3.5],

fl(Av̄j) = (A+ΔAj)v̄j , |ΔAj | ≤ γn|A|, so fl(AV̄m−1) = AṼm−1+ΔVm−1,

|ΔVm−1| ≤ γn|A|.|V̄m−1|, ‖ΔVm−1‖F ≤ m
1
2 γn‖|A|‖2 ≤ m

1
2 γn‖A‖F ,(4.3)

gives the computed version of AV̄m−1. We could replace n by the maximum number
of nonzeros per row, while users of preconditioners, or less simple multiplications,
could insert their own bounds on ΔVm−1 here.

Remark 4.1. The bounds in (4.3) are not column-scaling independent. Also any
scaling applies to the columns of AV̄m−1, not to A, and so would not be of such an
advantage for MGS-GMRES as for ordinary MGS. Therefore it would seem important
to ensure the columns of A are reasonably scaled for MGS-GMRES—e.g., to approach
the minimum over positive diagonal D of ‖AD‖F /σmin(AD); see the appendix.

The rounding error behavior of the Arnoldi algorithm is as follows.
Theorem 4.1. For the computational version of the Arnoldi algorithm (4.1)

(with m ≡ k + 1) with floating point arithmetic unit roundoff ε producing V̄m and
R̄m ≡ [e1ρ̄, H̄m,m−1], see (4.2), there exists an n+m square orthogonal matrix P̃m of

the form (3.15) where Ṽm is V̄m with its columns correctly normalized, such that if

B̄m ≡ [b, fl(AV̄m−1)] = [b, AṼm−1] + [0,ΔVm−1],(4.4)

where we can use the bounds on ΔVm−1 in (4.3), then all the results of Theorem 3.3
apply when B there is replaced by B̄m here.

Thus whatever we say for MGS will hold for the Arnoldi algorithm if we simply
replace B by B̄m ≡ [b, fl(AV̄m−1)] = [b, AṼm−1]+[0,ΔVm−1]. The key idea of viewing
the Arnoldi algorithm as MGS applied to [b, AVn] appeared in [25]. It was used in [8]
and [1], and in particular in [18], in which we outlined another possible approach to
backward stability analysis of MGS-GMRES. Here we have chosen a different way of
proving the backward stability result, and this follows the spirit of [5] and [10].

5. Loss of orthogonality of V̄m from MGS and the Arnoldi algorithm.
The analysis here is applicable to both the MGS and Arnoldi algorithms. B will
denote the given matrix in MGS, or B̄m ≡ [b, fl(AV̄m−1)] in the Arnoldi algorithm.
Unlike [10, 14], we do not base the theory on [5, Lem. 3.1], since a direct approach
is cleaner and gives nicer results. It is important to be aware that our bounds will
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be of a different nature to those in [10, 14]. Even though the rounding error analysis
of MGS in [10, 14] is based on the ideas in [5], the bounds obtained in [10] and [14,
pp. 32–38] are unexpectedly strong compared with our results based on [5]. This
is because [10, (18)–(19)] and [14, (1.68)–(1.69)] leading to [10, Thm. 3.1] and [14,
Thm. 1.4.1] follow from [26, p. 160, (45.3)]. But in Wilkinson [26], (45.3) follows
from his (45.2), (45.1), and (44.6), where this last is clearly for fl2 arithmetic (double
precision accumulation of inner products). Since double precision is used in [10, 14],
their analysis is essentially assuming what could be called fl4—quadruple precision
accumulation of inner products. This is not stated in [10, 14], and the result is
that their bounds appear to be much better (tighter) and the conditions much easier
(less strict) than those that would have been obtained using standard floating point
arithmetic. We will now obtain refined bounds based on our standard floating point
arithmetic analysis and attempt to correct this misunderstanding.

Remark 5.1. The γ̃n in each expression in (3.12)–(3.14) is essentially the same
γ̃n, that from Lemma 3.2, so we will call it γ̂n. We could legitimately absorb various
small constants into a series of new γ̃n, but that would be less transparent, so we will
develop a sequence of loose bounds based on this fixed γ̂n.

To simplify our bounds, we use “{≤}” to mean “≤” under the assumption that
mγ̂nκ̃F (B) ≤ 1/8. Note that this has the following consequences:

mγ̂nκ̃F (B) ≤ 1/8 ⇒ {(1 −mγ̂nκ̃F (B))−1 ≤ 8/7 &(5.1)

μ ≡ m
1
2 γ̂nκ̃F (B)8/7 ≤ 1/7 & (1 + μ)/(1 − μ) ≤ 4/3}.

The basic bound is for S̃m = E′
mR̄−1

m ; see (3.12), (3.15). This is part of an orthogonal
matrix so ‖S̃m‖2 ≤ 1. From (3.12) and (3.14) for any m×m diagonal matrix D>0,

‖S̃m‖F = ‖E′
mD(R̄mD)−1‖F ≤ ‖E′

mD‖F ‖(R̄mD)−1‖2 = ‖E′
mD‖F /σmin(R̄mD)

≤ ‖E′
mD‖F

σmin(BD) − ‖EmD‖2
≤ m

1
2 γ̂n‖(BD)2:m‖F

σmin(BD) −mγ̂n‖BD‖F
,(5.2)

‖S̃m‖F ≤ m
1
2 γ̂nκ̃F (B)/(1−mγ̂nκ̃F (B)) {≤} 8

7
m

1
2 γ̂nκ̃F (B) {≤} 1

7
,(5.3)

with obvious restrictions. The bounds (5.3) took a minimum over D.
V̄m ≡ [v̄1, . . . , v̄m] is the n×m matrix of vectors computed by m steps of MGS,

Ṽm ≡ [ṽ1, . . . , ṽm] is the correctly normalized version of V̄m, so Ṽm satisfies (2.2)–(2.3).
Since I−S̃m is nonsingular upper triangular, the first m rows of P̃m in (3.15) give

(I − S̃m)Ṽ T
m Ṽm(I − S̃m)T = I − S̃mS̃T

m

= (I − S̃m)(I − S̃m)T + (I − S̃m)S̃T
m + S̃m(I − S̃m)T ,

Ṽ T
m Ṽm = I + S̃T

m(I − S̃m)−T + (I − S̃m)−1S̃m,(5.4)

(I−S̃m)−1S̃m = S̃m(I−S̃m)−1(5.5)

= strictly upper triangular part(Ṽ T
m Ṽm).

Since Ṽ T
m−1ṽm is the above diagonal part of the last column of symmetric Ṽ T

m Ṽm−I,
(5.5) and (5.3) give the key bound (at first using 2mγ̂nκ̃F (B)<1; see (5.1)),

√
2‖Ṽ T

m−1ṽm‖2 ≤ ‖I−Ṽ T
m Ṽm‖F =

√
2‖(I−S̃m)−1S̃m‖F(5.6)

≤
√

2‖S̃m‖F /(1−‖S̃m‖2) ≤ (2m)
1
2 γ̂nκ̃F (B)/[1−(m+m

1
2 )γ̂nκ̃F (B)],

{≤} 4

3
(2m)

1
2 γ̂nκ̃F (B) (cf. [3, 5, (5.3)]),
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and similarly for V̄m; see (2.2). This is superior to the bound in [5], but the scaling
idea is not new. Higham [13, p. 373] (and in the 1996 first edition) argued that κ2(B)
in [5, 3], see (3.5), might be replaced by the minimum over positive diagonal matrices
D of κ2(BD), which is almost what we have proven using κ̃F (B) in (2.1).

One measure of the extent of loss of orthogonality of Ṽm is κ2(Ṽm).
Lemma 5.1. If Ṽ T

m Ṽm = I + F̃m+F̃T
m with strictly upper triangular F̃m and S̃m

in F̃m ≡ S̃m(I−S̃m)−1, see (5.4), then for all singular values σi(Ṽm)

1 − ‖S̃m‖2

1 + ‖S̃m‖2

≤ σ2
i (Ṽm) ≤ 1 + ‖S̃m‖2

1 − ‖S̃m‖2

, κ2(Ṽm) ≤ 1 + ‖S̃m‖2

1 − ‖S̃m‖2

.

Proof. Obviously ‖F̃m‖2 ≤ ‖S̃m‖2/(1 − ‖S̃m‖2). For any y ∈ Rk such that
‖y‖2 = 1, ‖Ṽmy‖2

2 = 1+2yT F̃my ≤ 1+2‖F̃m‖2 ≤ (1+‖S̃m‖2)/(1−‖S̃m‖2), which gives
the upper bound on every σ2

i (Ṽm). From (5.4) (I−S̃m)Ṽ T
m Ṽm(I−S̃m)T = I−S̃mS̃T

m,
so for any y ∈ Rk such that ‖y‖2 = 1, define z ≡ (I − S̃m)T y so ‖z‖2 ≤ 1 + ‖S̃m‖2

and then

zT Ṽ T
m Ṽmz

zT z
=

1 − yT S̃mS̃T
my

zT z
≥ 1 − ‖S̃m‖2

2

(1 + ‖S̃m‖2)2
=

1 − ‖S̃m‖2

1 + ‖S̃m‖2

,

giving the lower bound on every σ2
i (Ṽm). The bound on κ2(Ṽm) follows.

Combining Lemma 5.1 with (5.1) and (5.3) gives the major result

for j=1, . . . ,m, jγ̂nκ̃F (Bj) ≤ 1/8 ⇒ ‖S̃j‖F ≤ 1/7(5.7)

⇒ κ2(Ṽj), σ−2
min(Ṽj), σ2

max(Ṽj) ≤ 4/3.

At this level the distinction between κ2(V̄m) and κ2(Ṽm) is miniscule, see (2.2), and
by setting j = m we can compare this with the elegant result which was the main
theorem of Giraud and Langou [10]; see [14, Thm. 1.4.1].

Theorem 5.2 (see [10, Thm. 3.1; 14, Thm. 1.4.1]). Let B ∈ Rn×m be a matrix
with full rank m ≤ n and condition number κ2(B) such that

2.12(m + 1)ε < 0.01 and 18.53m
3
2 εκ2(B) ≤ 0.1.(5.8)

Then MGS in floating point arithmetic (present comment in 2005: actually fl2, or
fl4 if we use double precision) computes V̄m ∈ Rn×m as

κ2(V̄m) ≤ 1.3.

Note that the conditions (5.8) do not involve the dimension n of each column of
V̄m, and this is the result of their analysis using fl2. We can assume m satisfying the
second condition in (5.8) will also satisfy the first.

To compare Theorem 5.2 with j = m in (5.7), note that mγ̃n essentially means
c̃mnε for some constant c̃ > 1, probably less than the 18.53 in Theorem 5.2. We
assumed standard (IEEE) floating point arithmetic, but if we had assumed fl2 arith-
metic, that would have eliminated the n from our condition in (5.7). We used (2.1),

which involves ‖BD‖F ≤ m
1
2 ‖BD‖2. If we inserted this upper bound, that would

mean our condition would be like that in Theorem 5.2, except we have the opti-
mal result over column scaling; see (2.1). So if the same arithmetic is used, (5.7) is
more revealing than Theorem 5.2. It is worth noting that with the introduction of
XBLAS [7], the fl2 and fl4 options may become available in the near future.
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6. A critical step in the Arnoldi and MGS-GMRES iterations. It will
simplify the analysis if we use (5.7) to define a distinct value m̂ of m. This value will
depend on the problem and the constants we have chosen, but it will be sufficient for
us to prove convergence and backward stability of MGS-GMRES in m̂−1 ≤ n steps.
For the ordinary MGS algorithm remember B̄m = Bm, and think of m as increasing.

Let m̂ be the first integer such that κ2(Ṽm̂) > 4/3(6.1)

then we know from (5.7) that for B̄m̂ in the Arnoldi algorithm, see (4.4) and (2.1),

m̂γ̂nκ̃F (B̄m̂) > 1/8, so σmin(B̄m̂D) < 8m̂γ̂n‖B̄m̂D‖F ∀ diagonal D > 0.(6.2)

But since σmin(Ṽj) ≤ σ1(ṽ1) = ‖ṽ1‖2 = 1 ≤ σmax(Ṽj), (6.1) also tells us that

κ2(Ṽj), σ−1
min(Ṽj), σmax(Ṽj) ≤ 4/3, j = 1, . . . , m̂−1.(6.3)

The above reveals the philosophy of the present approach to proving backward
stability of MGS-GMRES. Other approaches have been tried. Here all is based on
κ̃F (B̄m) rather than the backward error or residual norm. In [12, Thm. 3.2, p. 713] a
different approach was taken—the assumption was directly related to the norm of the
residual. The present approach leads to very compact and elegant formulations, and
it is hard to say now whether the earlier approaches (see [18]) would have succeeded.

7. Least squares solutions via MGS. The linear least squares problem

ŷ ≡ arg min
y

‖b− Cy‖2, r̂ ≡ b− Cŷ, C ∈ Rn×(m−1),(7.1)

may be solved via MGS in different ways. Here we discuss two of these ways, but first
we remind the reader how this problem appears in MGS-GMRES with C = AVm−1.

After carrying out step m− 1 of the Arnoldi algorithm as in section 4 to produce
[b, AVm−1] = VmRm, see (4.2), the MGS-GMRES algorithm in theory minimizes the
2-norm of the residual ‖rm−1‖2 = ‖b − Axm−1‖2 over xm−1 ∈ x0 + Km−1(A, r0) ,
where for simplicity we are assuming x0 = 0 here. It does this by using Vm−1 from
(4.1) to provide an approximation xm−1 ≡ Vm−1ym−1 to the solution x of (1.1). Then
the corresponding residual is

rm−1 ≡ b−Axm−1 = [b, AVm−1]

[
1

−ym−1

]
= VmRm

[
1

−ym−1

]
,(7.2)

where Rm ≡ [e1ρ,Hm,m−1]. The ideal least squares problem is

ym−1 = arg min
y

‖[b, AVm−1]

[
1
−y

]
‖2,(7.3)

but (in theory) the MGS-GMRES least squares solution is found by solving

ym−1 ≡ arg min
y

‖Rm

[
1
−y

]
‖2.(7.4)

7.1. The MGS least squares solution used in MGS-GMRES. If B =
[C, b] in (3.1)–(3.4), and C has rank m−1, then it was shown in [5, (6.3)], see also
[13, section 20.3], that MGS can be used to compute ŷ in (7.1) in a backward stable
way. Here we need to show that we can solve (7.1) in a stable way with MGS applied
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to B = [b, C] (note the reversal of C and b) in order to prove the backward stability
of MGS-GMRES. Just remember B = [b, C] ≡ B̄m in (4.4) for MGS-GMRES. The
analysis could be based directly on [5, Lem. 3.1], but the following is more precise.

Let MGS on B in (3.1) lead to the computed R̄m (we can assume R̄m is nonsin-
gular; see later) satisfying (3.12), where B = [b, C]. Then (3.12) and (7.1) give

P̃m

[
R̄m

0

]
=

[
0

[b, C]

]
+ Em; ‖Emej‖2 ≤ jγ̃n‖[b, C]ej‖2, j = 1, . . . ,m,(7.5)

ŷ ≡ arg min
y

‖B
[

1
−y

]
‖2, r̂ = B

[
1
−ŷ

]
.(7.6)

To solve the latter computationally, having applied MGS to B to give R̄m, we

carry out a backward stable solution of min
y

‖R̄m

[
1
−y

]
‖2(7.7)

by orthogonal reduction followed by the solution of a triangular system. With (3.13)
we will see this leads to

Q̂T (R̄m + ΔRm) =

[
t̄ Ū + ΔU
τ̄ 0

]
, (Ū + ΔU)ȳ = t̄,(7.8)

‖ΔRmej‖2 ≤ γ̃′
m‖R̄ej‖2 ≤ γ̃m‖Bej‖2 = γ̃m‖[b, C]ej‖2, j = 1, . . . ,m,

where Q̂ is an orthogonal matrix while τ̄ , t̄, nonsingular upper triangular Ū , and ȳ
are computed quantities. Here ΔU is the backward rounding error in the solution of
the upper triangular system to give ȳ, see, for example, [13, Thm. 8.3], and ΔRm was
obtained by combining ΔU with the backward rounding error in the QR factorization
that produced τ̄ , t̄ and Ū ; see, for example, [13, Thm. 19.10] (where here there are
m−1 stages, each of one rotation). Clearly ȳ satisfies

ȳ = arg min
y

∥∥∥∥(R̄m + ΔRm)

[
1
−y

]∥∥∥∥
2

.(7.9)

In order to relate this least squares solution back to the MGS factorization of B,
we add the error term ΔRm to (7.5) to give (replacing jγ̃n+γ̃m by jγ̃n)

P̃m

[
(R̄m + ΔRm)

0

]
=

[
0

[b, C]

]
+ Êm, Êm ≡ Em + P̃m

[
ΔRm

0

]
,(7.10)

‖Êmej‖2 ≤ jγ̃n‖[b, C]ej‖2, j = 1, . . . ,m.

Now we can write for any y ∈ Rm−1

r=r(y)≡b−Cy, p=p(y)≡ P̃m

[
(R̄m+ΔRm)

0

] [
1
−y

]
=

[
0
r

]
+Êm

[
1
−y

]
,(7.11)

and we see from (2.6) in Lemma 2.3 that for any y ∈ Rm−1 there exists N(y) so that

‖p(y)‖2 =

∥∥∥∥∥(R̄m + ΔRm)

[
1
−y

] ∥∥∥∥∥
2

=

∥∥∥∥∥b− Cy + N(y)Êm

[
1
−y

]∥∥∥∥∥
2

, ‖N(y)‖2 ≤
√

2.

Defining [Δb(y),ΔC(y)] ≡ N(y)Êm shows that for all y ∈ Rm−1

∥∥∥∥(R̄m + ΔRm)

[
1
−y

]∥∥∥∥
2

= ‖b + Δb(y) − [C + ΔC(y)]y‖2.(7.12)
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Thus ȳ in (7.9) also satisfies

ȳ = arg min
y

‖b+Δb(y)−[C+ΔC(y)]y‖2,(7.13)

‖[Δb(y),ΔC(y)]ej‖2 ≤ jγ̃n‖[b, C]ej‖2, j = 1, . . . ,m,

where the bounds are independent of y, so that ȳ is a backward stable solution for
(7.1). That is, MGS applied to B = [b, C] followed by (7.7) is backward stable as long
as the computed R̄m from MGS is nonsingular (we can stop early to ensure this). The
almost identical analysis and result applies wherever b is in B, but we just gave the
B = [b, C] case for clarity.

Since we have a backward stable solution ȳ, we expect various related quantities
to have reliable values, and we now quickly show two cases of this. If ‖E‖F ≤ γ‖B‖F ,
then ‖Ey‖2

2 =
∑

i ‖eTi Ey‖2
2 ≤

∑
i ‖eTi E‖2

2‖y‖2
2 = ‖E‖2

F ‖y‖2
2 ≤ γ2‖B‖2

F ‖y‖2
2. So from

the bounds in (7.10) we have for any y ∈ Rm−1 the useful basic bound

∥∥∥∥Êm

[
1
−y

]∥∥∥∥
2

≤ γ̃mnψm(y), ψm(y) ≡ ‖b‖2+‖C‖F ‖y‖2.(7.14)

Multiplying (7.8) and (7.10) on the right by
[

1
−ȳ

]
shows that the residual r̄ satisfies

r̄ ≡ b− Cȳ, P̃m

[
Q̂emτ̄

0

]
=

[
0
r̄

]
+ Êm

[
1
−ȳ

]
, | ‖r̄‖2 − |τ̄ | | ≤ γ̃mnψm(ȳ),(7.15)

so that |τ | approximates ‖r̄‖2 with a good relative error bound. Multiplying the last
equality in this on the left by [Ṽm, In], and using (3.15), (3.12), (7.10), (7.8), (3.14),
and (2.3) with the argument leading to (7.14), we see that

ṼmQ̂emτ̄ = r̄ + [Ṽm, In]Êm

[
1
−ȳ

]
= r̄ + [Ṽm(E′

m + ΔRm) + E′′
m]

[
1
−ȳ

]
,(7.16)

‖r̄ − ṼmQ̂emτ̄‖2 ≤ γ̃mnψm(ȳ) for m < m̂ in (6.1).

Thus V̄mQ̂emτ̄ also approximates r̄ ≡ b − Cȳ with a good relative error bound; see
(2.2) and its following sentence.

7.2. Least squares solutions and loss of orthogonality in MGS. An ap-
parently strong relationship was noticed between convergence of finite precision MGS-
GMRES and loss of orthogonality among the Arnoldi vectors; see [12, 19]. It was
thought that if this relationship was fully understood, we might use it to prove that
finite precision MGS-GMRES would necessarily converge; see, for example, [18]. A
similar relationship certainly does exist—it is the relationship between the loss of or-
thogonality in ordinary MGS applied to B, and the residual norms for what we will
call the last vector least squares (LVLS) problems involving B, and we will derive this
here. It adds to our understanding, but it is not necessary for our other proofs and
could initially be skipped.

Because this is a theoretical tool, we will only consider rounding errors in the
MGS part of the computation. We will do the analysis for MGS applied to any
matrix B = [b1, . . . , bm]. After step j we have n×j V̄j and j×j R̄j , so that

R̄j≡
[
Ūj t̄j

τ̄j

]
, Ūj ȳj = t̄j , ȳj = arg min

y

∥∥∥∥R̄j

[
−y
1

]∥∥∥∥
2

, |τ̄j |=
∥∥∥∥R̄j

[
−ȳj
1

]∥∥∥∥
2

.(7.17)
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In theory ȳj minimizes ‖bj−Bj−1y‖2, but we would like to know that loss of orthogo-
nality caused by rounding errors in MGS does not prevent this. One indicator of loss
of orthogonality is Ṽ T

j−1ṽj . From (7.17) we see that

R̄−1
j =

[
Ū−1
j −Ū−1

j t̄j τ̄
−1
j

τ̄−1
j

]
=

[
Ū−1
j

0

[
−ȳj
1

]
τ̄−1
j

]
, R̄−1

j ej τ̄j =

[
−ȳj
1

]
,(7.18)

so that with (5.5) we have with r̄j ≡ bj −Bj−1ȳj (see (7.14) and (7.15) but now using

E′
j and its bound in (3.14) rather than Êj and its bound in (7.10))

(I−S̃j)

[
Ṽ T
j−1ṽj
0

]
= S̃jej =E′

jR̄
−1
j ej =E′

j

[
−ȳj
1

]
τ̄−1
j , |‖r̄j‖2−|τ̄j || ≤ j

1
2 γ̃nψm(ȳj).(7.19)

Now define a normwise relative backward error (in the terminology of [13, Thm. 7.1])

βF (b, A, y) ≡ βA,b
F (b, A, y), where βG,f

F (b, A, y) ≡ ‖b−Ay‖2

‖f‖2 + ‖G‖F ‖y‖2
.(7.20)

Remark 7.1. The theory in [13, Thm. 7.1] assumes a vector norm with its sub-
ordinate matrix norm, but with the Frobenius norm in the denominator Rigal and
Gaches’ theory still works, so this is a possibly new, useful (and usually smaller) con-
struct that is easier to compute than the usual one. A proof similar to that in [13,
Thm. 7.1] shows that

βG,f
F (b, A, y) = min

δA,δb
{η : (A + δA)y = b + δb, ‖δA‖F ≤ η‖G‖F , ‖δb‖2 ≤ η‖f‖2}.

Using (7.20) with the bounds in (3.14), (5.6), (7.19), and the definition in (7.14)
(see also (5.3)) shows that

|τ̄j |.‖Ṽ T
j−1ṽj‖2 =

∥∥∥∥(I−S̃j)
−1E′

j

[
−ȳj
1

]∥∥∥∥
2

≤ j
1
2 γ̃nψm(ȳj)/(1 − ‖S̃j‖2),

βF (bj , Bj−1, ȳj)‖Ṽ T
j−1ṽj‖2≤

j
1
2 γ̃n

1 − ‖S̃j‖2

.(7.21)

Remark 7.2. The product of the loss of orthogonality ‖Ṽ T
j−1ṽj‖2 at step j and the

normwise relative backward error βF (bj , Bj−1, ȳj) of the LVLS problem is bounded

by O(ε) until ‖S̃j‖2 ≈ 1, that is, until orthogonality of the ṽ1, . . . , ṽj is totally lost;
see (5.5) and Lemma 5.1.

This is another nice result, as it again reveals how MGS applied to Bm loses
orthogonality at each step—see the related section 5. These bounds on the individual
‖Ṽ T

j−1ṽj‖2 complement the bounds in (5.6), since they are essentially in terms of the
individual normwise relative backward errors βF (bj , Bj−1, ȳj), rather than κ̃F (Bj).
However it is important to note that the LVLS problem considered in this section (see
the line after (7.17)) is not the least squares problem solved for MGS-GMRES, which
has the form of (7.6) instead. The two can give very different results in the general
case, but in the problems we have solved via MGS-GMRES, these normwise relative
backward errors seem to be of similar magnitudes for both problems, and this led
to the conjecture in the first place. The similarity in behavior of the two problems
is apparently related to the fact that Bm in MGS-GMRES is a Krylov basis. In
this case it appears that the normwise relative backward errors of both least squares
problems will converge (numerically) as the columns of Bj approach numerical linear
dependence; see [17, 18]. Thus we have neither proven nor disproven the conjecture,
but we have added weight to it.
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8. Numerical behavior of the MGS-GMRES algorithm. We now only
consider MGS-GMRES and use k instead of m−1 to avoid many indices of the form
m−1. In section 4 we saw that k steps of the Arnoldi algorithm is in theory just k+1
steps of the MGS algorithm applied to Bk+1 ≡ [b, AVk] to give [b, AVk] = Vk+1Rk+1 =
Vk+1[e1ρ,Hk+1,k]. And in practice the only difference in the rounding error analysis

is that we apply ordinary MGS to B̄k+1 ≡ [b, fl(AV̄k)] = [b, AṼk]+ [0,ΔVk]; see (4.3).
In section 8.1 we combine this fact with the results of section 7.1 to prove backward
stability of the MGS-GMRES least squares solution ȳk at every step.

In theory MGS-GMRES must solve Ax = b for nonsingular n × n A in n steps
since we cannot have more than n orthonormal vectors in Rn. But in practice the
vectors in MGS-GMRES lose orthogonality, so we need another way to prove that we
reach a solution to (1.1). In section 8.2 we will show that the MGS-GMRES algorithm
for any problem satisfying (1.1) must, for some k, produce V̄k+1 so that numerically b
lies in the range of AV̄k, and that MGS-GMRES must give a backward stable solution
to (1.1). This k is m̂− 1, which is ≤ n; see (6.1).

8.1. Backward stability of the MGS-GMRES least squares solutions.
The equivalent of the MGS result (7.13) for MGS-GMRES is obtained by replacing
[b, C] by B̄k+1 ≡ [b, AṼk + ΔVk] throughout (7.13); see Theorem 4.1. Thus the
computed ȳk at step k in MGS-GMRES satisfies (with (4.3) and section 6)

ȳk = arg min
y

‖r̃k(y)‖2, r̃k(y) ≡ b+Δbk(y)−[AṼk+ΔVk+ΔCk(y)]y(8.1)

‖[Δbk(y),ΔCk(y)]ej‖2 ≤ γ̃kn‖B̄k+1ej‖2, j = 1, . . . , k+1; ‖ΔVk‖F ≤ k
1
2 γn‖A‖F ,

‖Δbk(y)‖2≤ γ̃kn‖b‖2, ‖ΔVk+ΔCk(y)‖F ≤ γ̃kn[‖A‖F +‖AṼk‖F ]≤ γ̃′
kn‖A‖F if k<m̂.

This has proven the MGS-GMRES least squares solution ȳk is backward stable for

min
y

‖b−AṼky‖2 ∀ k < m̂,

which is all we need for this least squares problem. But even if k≥ m̂, it is straight-
forward to show that it still gives a backward stable least squares solution.

8.2. Backward stability of MGS-GMRES for Ax = b in (1.1). Even
though MGS-GMRES always computes a backward stable solution ȳk for the least
squares problem (7.3), see section 8.1, we still have to prove that V̄kȳk will be a
backward stable solution for the original system (1.1) for some k (we take this k to be
m̂−1 in (6.1)), and this is exceptionally difficult. Usually we want to show we have
a backward stable solution when we know we have a small residual. The analysis
here is different in that we will first prove that B̄m̂ is numerically rank deficient, see
(8.4), but to prove backward stability, we will then have to prove that our residual
will be small, amongst other things, and this is far from obvious. Fortunately two
little known researchers have studied this arcane area, and we will take ideas from
[17]; see Theorem 2.4. To simplify the development and expressions we will absorb
all small constants into the γ̃kn terms below.

In (8.1) set k ≡ m̂−1 ≤ n from (6.1) and write

r̃k(ȳk) = bk −Akȳk, bk ≡ b+Δbk(ȳk), Ak ≡ AṼk+ΔṼk(ȳk),(8.2)

‖Δbk(ȳk)‖2 ≤ γ̃kn‖b‖2, ΔṼk(y) ≡ ΔVk+ΔCk(y), ‖ΔṼk(y)‖F ≤ γ̃kn‖A‖F .

We need to take advantage of the scaling invariance of MGS in order to obtain our
results. Here we need only scale b, so write D ≡ diag(φ, Ik) for any scalar φ>0. Since
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B̄k+1 ≡ [b, fl(AV̄k)] = [b, AṼk + ΔVk], from (8.2) with the bounds in (8.1) we have

[bkφ,Ak] = B̄k+1D + ΔBkD, ΔBk ≡ [Δbk(ȳk),ΔCk(ȳk)],(8.3)

‖ΔBkD‖F ≤ γ̃kn‖B̄k+1D‖F ≤ γ̃′
kn‖[bkφ,Ak]‖F ,

‖B̄k+1D‖F ≤ (1−γ̃kn)−1‖[bkφ,Ak]‖F , ‖bk‖2 ≤ (1 + γ̃kn)‖b‖2.

In addition, k+1 is the first integer such that κ2(Ṽk+1) > 4/3, so section 6 gives

σmin(B̄k+1D) < 8(k+1)γ̂n‖B̄k+1D‖F ≤ γ̃kn‖[bkφ,Ak]‖F ∀ φ > 0;(8.4)

κ2(Ṽk), σ−1
min(Ṽk), σmax(Ṽk) ≤ 4/3;

and similarly ‖Ak‖F ≤ ‖AṼk‖F + γ̃kn‖A‖F ≤ (4/3 + γ̃kn)‖A‖F .

We can combine (8.2), (8.3), and (8.4) to give under the condition in (1.1)

σmin(Ak) ≥ σmin(AṼk) − ‖ΔṼk(ȳk)‖2 ≥ 3σmin(A)/4 − γ̃kn‖A‖F > 0,(8.5)

σmin([bkφ,Ak]) ≤ σmin(B̄k+1D)+‖ΔBkD‖2 ≤ γ̃kn‖[bkφ,Ak]‖F .

The above allows us to define and analyze an important scalar, see Theorem 2.4,

δk(φ) ≡ σmin([bkφ,Ak])

σmin(Ak)
≤ 1,(8.6)

where from (8.5) Ak has full column rank. Now ȳk and r̃k(ȳk) solve the linear least
squares problem Aky ≈ bk in (8.2); see (8.1). If [bk, Ak] does not have full column
rank, then r̃k(ȳk) = 0, so x̃k ≡ Ṽkȳk is a backward stable solution for (1.1), which
we wanted to show. Next suppose [bk, Ak] has full column rank. We will not seek to
minimize with respect to φ the upper bound on ‖r̂‖2

2 in Theorem 2.4, which would be

unnecessarily complicated, but instead prove that there exists a value φ̂ of φ satisfying
(8.7) below, and use this value:

φ̂ > 0, σ2
min(Ak) − σ2

min([bkφ̂, Ak]) = σ2
min(Ak)‖ȳkφ̂‖2

2.(8.7)

Writing LHS ≡ σ2
min(Ak)− σ2

min([bkφ,Ak]), RHS ≡ σ2
min(Ak)‖ȳkφ‖2

2 we want to find
φ so that LHS=RHS. But φ=0 ⇒ LHS > RHS, while φ=‖ȳk‖−1

2 ⇒ LHS < RHS, so

from continuity ∃ φ̂ ∈ (0, ‖ȳk‖−1
2 ) satisfying (8.7). With (8.6) this shows that

δk(φ̂) < 1, φ̂−2 = ‖ȳk‖2
2/[1−δk(φ̂)2], 0 < φ̂ < ‖ȳk‖−1

2 .(8.8)

It then follows from Theorem 2.4 that with (8.5), (8.8), and (8.4),

‖r̃k(ȳk)‖2
2 ≤ σ2

min([bkφ̂, Ak])(φ̂
−2+‖ȳk‖2

2/[1−δk(φ̂)2])(8.9)

≤ γ̃2
kn(‖bkφ̂‖2

2 + ‖Ak‖2
F )2φ̂−2.

But from (8.1) and (8.2) since r̃k(ȳk) = bk −Akȳk, A
T
k r̃k(ȳk) = 0, and from (8.8),

‖bkφ̂‖2
2 = ‖r̃k(ȳk)φ̂‖2

2 + ‖Akȳkφ̂‖2
2,

≤ 2γ̃2
kn(‖bkφ̂‖2

2 + ‖Ak‖2
F ) + ‖Ak‖2

2(1−δk(φ̂)2)

≤ 2γ̃2
kn‖bkφ̂‖2

2 + (1 + 2γ̃2
kn)‖Ak‖2

F ,

‖bkφ̂‖2
2 ≤ 1 + 2γ̃2

kn

1 − 2γ̃2
kn

‖Ak‖2
F .(8.10)
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This with (8.4) and (8.5) shows that

δk(φ̂) ≡ σmin([bkφ̂, Ak])

σmin(Ak)
≤ γ̃′

kn‖[bkφ̂, Ak]‖F
σmin(A)−γ̃kn‖A‖F

(8.11)

≤ γ̃′′
kn‖Ak‖F

σmin(A)−γ̃kn‖A‖F
≤ γ̃′′′

kn‖A‖F
σmin(A)−γ̃kn‖A‖F

≤ 1

2
under (1.1),

since this last bound can be rewritten as σmin(A) ≥ (2γ̃′′′
kn+γ̃kn)‖A‖F , which we see

will hold if A satisfies (1.1). This bound on δk(φ̂) shows that φ̂−2 ≤ 4‖ȳk‖2
2/3 in (8.8),

and using this in (8.9) gives the desired bound

‖r̃k(ȳk)‖2 ≤ γ̃kn(‖b‖2
2 + ‖A‖2

F ‖ȳk‖2
2)

1
2 ≤ γ̃kn(‖b‖2 + ‖A‖F ‖ȳk‖2).(8.12)

But we compute x̄j = fl(V̄j ȳj), not Ṽj ȳj , so to complete this analysis, we have to
show that x̄k is a backward stable solution for (1.1). Now, see (4.3), x̄k = fl(V̄kȳk) =
(V̄k + ΔV ′

k)ȳk with |ΔV ′
k| ≤ γk|V̄k|. With ΔṼk(y) in (8.2) define

ΔAk ≡ [ΔṼk(ȳk) −A(ΔV ′
k + V̄k − Ṽk)]ȳk‖x̄k‖−2

2 x̄T
k ,

so that (A + ΔAk)x̄k = (AṼk + ΔṼk(ȳk))ȳk, and, see (8.1), (8.2), and (2.2),

‖b+Δbk(ȳk)−(A + ΔAk)x̄k‖2 = min
y

‖b+Δbk(y)−[AṼk+ΔṼk(y)]y‖2,(8.13)

‖Δbk(ȳk)‖2 ≤ γ̃kn‖b‖2,

‖ΔAk‖F ≤ [‖ΔṼk(ȳk)‖F +‖A(ΔV ′
k+ṼkΔk)‖F ]‖ȳk‖2/‖x̄k‖2,(8.14)

where we know from (8.12) that (8.13) is bounded by γ̃kn(‖b‖2 + ‖A‖F ‖ȳk‖2). But

‖ΔV ′
k‖F ≤ k

1
2 γk, so from (2.2) ‖A(ΔV ′

k + ṼkΔk)‖F ≤ k
1
2 γ̃n‖A‖2, and from (8.2)

‖ΔṼk(ȳk)‖F ≤ γ̃kn‖A‖F , so with (2.2) and (8.4)

‖x̄k‖2 = ‖(V̄k + ΔV ′
k)ȳk‖2 ≥ ‖V̄kȳk‖2 − ‖ΔV ′

k‖F ‖ȳk‖2 ≥ ‖ȳk‖2(3/4 − k
1
2 γn).

Combining these with (8.1) shows that ‖ΔAk‖F ≤ γ̃kn‖A‖F in (8.14). Summarizing,

r̃k(ȳk) = b+Δbk(ȳk)−(A + ΔAk)x̄k, ‖r̃k(ȳk)‖2 ≤ γ̃kn(‖b‖2 + ‖A‖F ‖x̄k‖2),(8.15)

‖Δbk(ȳk)‖2 ≤ γ̃kn‖b‖2, ‖ΔAk‖F ≤ γ̃kn‖A‖F .

Using the usual approach of combining (8.15) with the definitions

Δb′k ≡ − ‖b‖2

‖b‖2 + ‖A‖F ‖x̄k‖2
r̃k(ȳk), ΔA′

k ≡ ‖A‖F ‖x̄k‖2

‖b‖2 + ‖A‖F ‖x̄k‖2

r̃k(ȳk)x̄
T
k

‖x̄k‖2
2

,

shows (A + ΔAk + ΔA′
k)x̄k = b + Δbk(ȳk) + Δb′k,

‖ΔAk + ΔA′
k‖F ≤ γ̃kn‖A‖F , ‖Δbk(ȳk) + Δb′k‖2 ≤ γ̃kn‖b‖2,

proving that the MGS-GMRES solution x̄k is backward stable for (1.1).

9. Comments and conclusions. The form of the restriction in (1.1) suggests
that we might be able to ease this restriction somewhat by using κ̃F (A) as defined
in (2.1), instead of ‖A‖F /σmin(A) in (1.1). However, κ̃F (Bj) was useful when we
applied MGS to Bj , see, for example, (5.7), while in MGS-GMRES we apply MGS to
[b, AVj−1], so it looks like we cannot get an a priori restriction involving κ̃F (A) this
way; see also Remark 4.1. The appendix discusses a possibly superior way of meeting
the restriction in (1.1) for difficult problems.

Now to conclude this. Among many other things, we showed that MGS-GMRES
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• gives a backward stable least squares solution at every step (section 8.1);
• obtains a backward stable solution to the problem (1.1) (section 8.2);
• and up until this point κ2(Ṽm) ≤ 4/3 (section 6).

Thus we can say that the MGS-GMRES method is backward stable for computing
the solution x to Ax = b for sufficiently nonsingular A, answering an important open
question. Despite loss of orthogonality, it provides an acceptable solution within n+1
MGS steps (n steps of MGS-GMRES). The loss of orthogonality is usually inversely
proportional to the level of convergence. Complete loss of orthogonality implies a
solution exists, and MGS-GMRES necessarily finds this under reasonable restrictions
(1.1) (or more practically but less rigorously (1.2)) on the problem. From this we
see that the numerical behavior is far better than was often thought. This means
we do not have to do anything special to ameliorate the effect of rounding errors—
we certainly do not need reorthogonalization—and need only concentrate on finding
solutions more quickly, mainly by seeking better preconditioning techniques.

The final proof was seen to require an instance of a more general result on the
backward stability of a variant of the MGS algorithm applied to a matrix B in order
to solve a linear least squares problem; see section 7.1. In section 5 we showed
more precisely than before how orthogonality could be lost in the MGS algorithm, in
particular by using the condition number κ̃F (B) defined in (2.1).

Appendix. Condition numbers. If κF (A) ≡ ‖A‖F /σmin(A), then (2.1) is

κ̃F (A) ≡ min
diagonal D>0

κF (AD).

For m×n A, if positive diagonal D̃ is such that in AD̃ all columns have equal 2-norm,
then van der Sluis [21, Thm. 3.5, (b)] showed that κF (AD̃) is no more than a factor√
n away from its minimum (here κ̃F (A)), and this is the first mention of the condition

number κF (A) (and, at least by implication, of κ̃F (A)) that we have seen so far. He
also stated in [22, section 3.9] that if ‖δAej‖ < ‖Aej‖/κF (A) for j = 1, . . . , n ≤ m,
then A+δA has full rank n. This is easy to see since it ensures that ‖δA‖F < σmin(A).
He also points out that this is in some sense tight, in that if ‖δAej‖ = ‖Aej‖/κF (A)
for j = 1, . . . , n ≤ m is allowed, then for any prescribed value of κF (A) ≥

√
n there

exist A and δA such that A + δA is rank deficient. Since the backward error bounds
in this paper were obtained column by column, see Lemma 3.2 and, for example,
the column bounds in (8.1), this suggests that the form of the restriction in (1.1) is
optimal, even down to the factor n2ε. See also the first paragraph of section 4.

Moreover, instead of solving (1.1) we can solve (AD)y = b for some positive

diagonal D and then form x = Dy. By taking D = D̃ above we see from van der
Sluis’s theory that we can approach the value of κ̃F (A) with κF (AD̃) and perhaps
alter a problem with an ill-conditioned A so that it meets the restriction (1.1). This

is another justification for using such a D̃ as a basic simple preconditioner when
MGS-GMRES is applied to ill-conditioned problems.

Acknowledgments. The main approach here was to base the analysis on the
surprising relationship between MGS and the Householder reduction of an augmented
matrix that was discovered by Charles Sheffield and proven and developed by Björck
and Paige in [5], and combine this with the elegant result discovered by Giraud and
Langou in [10] (responding to a request by Mario Arioli). Once we had made that
choice the task was still extremely difficult, and we had to draw on many other works
as well—among these the excellent book by Higham [13] facilitated our work greatly.
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this is unusual, the second and third authors (alphabetically) would like to thank the
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[19] M. Rozložńık, Numerical Stability of the GMRES Method, Ph.D. thesis, Institute of Computer
Science, Academy of Sciences, Prague, Czech Republic, 1997.

[20] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

[21] A. van der Sluis, Condition numbers and equilibration matrices, Numer. Math., 14 (1969),
pp. 14–23.

[22] A. van der Sluis, Stability of the solutions of linear least squares problems, Numer. Math., 23
(1975), pp. 241–254.

[23] L. Smoch, Some results about GMRES in the singular case, Numer. Algorithms, 22 (1999),
pp. 193–212.

[24] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 631–644.

[25] H. F. Walker, Implementation of the GMRES method, J. Comput. Phys., 53 (1989), pp. 311–
320.

[26] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.



SIAM J. MATRIX ANAL. APPL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 285–300

DIRECT EIGENVALUE REORDERING IN A PRODUCT OF
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Abstract. A direct method for eigenvalue reordering in a product of a K-periodic matrix
sequence in periodic or extended periodic real Schur form is presented and analyzed. Each reordering
of two adjacent sequences of diagonal blocks is performed tentatively to guarantee backward stability
and involves solving a K-periodic Sylvester equation (PSE) and constructing a K-periodic sequence
of orthogonal transformation matrices. An error analysis of the direct reordering method is presented,
and results from computational experiments confirm the stability and accuracy of the method for
well-conditioned as well as ill-conditioned problems. These include matrix sequences with fixed and
time-varying dimensions, and sequences of small and large periodicity.
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1. Introduction. Given a K-periodic real matrix sequence, A0, A1, . . . , AK−1

with Ai+K = Ai, the periodic real Schur form (PRSF) is defined as follows [5, 13]:
given the real matrix sequence Ak ∈ Rn×n, for k = 0, 1, . . . ,K − 1, there exists an
orthogonal matrix sequence Zk ∈ Rn×n such that the real sequence

ZT
k+1AkZk = Tk, k = 0, 1, . . . ,K − 1,(1.1)

with ZK = Z0, consists of K − 1 upper triangular matrices and one upper quasi-
triangular matrix. The products of conforming 1 × 1 and 2 × 2 diagonal blocks of
the matrix sequence Tk contain the real and complex conjugate pairs of eigenvalues
of the matrix product AK−1 · · ·A1A0. Similar to the standard case (K = 1; e.g., see
[10, 25]), the periodic real Schur form is computed by means of a reduction to peri-
odic Hessenberg form followed by applying a periodic QR-algorithm to the resulting
sequence [5, 13]. The PRSF is an important tool in several applications, including
solving periodic Sylvester-type and Riccati matrix equations [13, 22, 27, 30]. The
quasi-triangular matrix in the PRSF can occur anywhere in the sequence but is usu-
ally chosen to be T0 or TK−1.

The extended periodic real Schur form (EPRSF) generalizes PRSF to the case
when the dimensions of the matrices are time-variant [28]: given the real matrix se-
quence Ak ∈ Rnk+1×nk , k = 0, 1, . . . ,K−1, with nK = n0, there exists an orthogonal
matrix sequence Zk ∈ Rnk×nk , k = 0, 1, . . . ,K − 1, such that the real sequence

ZT
k+1AkZk = Tk ≡

[
T

(k)
11 T

(k)
12

0 T
(k)
22

]
∈ Rnk+1×nk ,(1.2)

∗Received by the editors February 21, 2005; accepted for publication (in revised form) by P. Van
Dooren January 12, 2006; published electronically April 7, 2006. This research was conducted
using the resources of the High Performance Computing Center North (HPC2N). Financial support
was provided by the Swedish Research Council under grant VR 621-2001-3284 and by the Swedish
Foundation for Strategic Research under the frame program grant A3 02:128.

http://www.siam.org/journals/simax/28-1/62490.html
†Department of Computing Science and HPC2N, Ume̊a University, SE-901 87 Ume̊a, Sweden

(granat@cs.umu.se, bokg@cs.umu.se).

285



286 ROBERT GRANAT AND BO KÅGSTRÖM

for k = 0, 1, . . . ,K − 1, with ZK = Z0, is block upper triangular and T
(k)
11 ∈

Rmink(nk)×mink(nk), T
(k)
22 ∈ R(nk+1−mink(nk))×(nk−mink(nk)). Moreover, the subsequence

T
(k)
11 , k = 0, 1, . . . ,K − 1, is in PRSF (1.1) with eigenvalues called the core charac-

teristic values of the sequence Ak, and the matrices in the subsequence T
(k)
22 , k =

0, 1, . . . ,K − 1, are upper trapezoidal. For EPRSF, the quasi-triangular matrix
can occur at any position in the sequence Tk. However, to simplify the reduction
to extended periodic Hessenberg form it is normally placed at position j, where
nj+1 = mink(nk), i.e., in the matrix Tj which has the smallest row dimension in

the sequence [28]. For Tj , j ∈ [0,K − 1], to have a trapezoidal block T
(j)
22 , it must

hold that nj , nj+1 > mink(nk). The EPRSF is motivated by the increasing interest
in discrete-time periodic systems of the form

xk+1 = Akxk + Bkuk,
yk = Ckxk + Dkuk,

(1.3)

where the matrices Ak ∈ Rnk+1×nk , Bk ∈ Rnk+1×m, Ck ∈ Rr×nk , and Dk ∈ Rr×m are
periodic with periodicity K ≥ 1. The state transition matrix of the system (1.3) is
defined as the nj × ni matrix ΦA(j, i) = Aj−1Aj−2 . . . Ai, where ΦA(i, i) = Ini . The
state transition matrix over one whole period ΦA(j + K, j) ∈ Rnj×nj is called the
monodromy matrix of (1.3) at time j, and its eigenvalues are called the characteristic
multipliers at time j. All t nonzero together with (mink(nk) − t) zero characteristic
multipliers belong to the set of core characteristic values. One important issue is
how to reorder the eigenvalues of the monodromy matrix without evaluating the
corresponding product. Evaluating the product is costly and may lead to a significant
loss of accuracy [5], especially when computing eigenvalues of small magnitude.

Direct eigenvalue reordering in the real Schur form was investigated in [2, 8, 7] and
in the generalized Schur form of a regular matrix pencil A− λB in [16, 18]. Iterative
QR-based reordering methods have also been proposed [23, 26], but they may fail to
converge (e.g., see [16, 18]). Reordering of eigenvalues in PRSF and related problems
have also been considered; see, e.g., [5], where the approach is based on applying
Givens rotations on explicitly formed products of small (2× 2, 3× 3, or 4× 4) matrix
sequences, and [6] for a discussion on swapping 1×1 blocks by propagating orthogonal
transformations through 2× 2 sequences. In this paper, we present a direct swapping
algorithm for performing eigenvalue reordering in a product of a K-periodic matrix
sequence in (E)PRSF for K ≥ 2 without evaluating any part of the matrix product.
Our direct algorithm relies on orthogonal transformations only and extends earlier
work on direct eigenvalue reordering of matrices to products of matrices [11, 19].

The rest of this paper is organized as follows. In section 2, we settle some im-
portant notation and definitions. In section 3, we discuss reordering of two diagonal
blocks (leaving the eigenvalues invariant) by cyclic orthogonal transformations, and
in section 4, we present our direct periodic reordering algorithm. Next, we discuss the
numerical solution of the associated periodic Sylvester equation (PSE) in section 5.
An error analysis of the direct periodic swapping algorithm is presented in section 6.
Some numerical examples are presented and discussed in section 7, and finally, we
outline some future work in section 8.

2. Notation and definitions. We introduce some notation to simplify the pre-
sentation that follows. Let In denote the identity matrix of order n. Let M+ denote
the pseudoinverse (see, e.g., [10]) of a matrix M . Let σ(M) and λ(M) denote the
sets of the singular values and the eigenvalues of the matrix M , respectively. Let
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A⊗ B denote the Kronecker product of two matrices, defined as the matrix with its
(i, j)-block element as aijB. Let vec(A) denote a vector representation of an m × n
matrix A with the columns of A stacked on top of each other in the order 1, 2, . . . , n.
Let ‖A‖F denote the Frobenius matrix norm defined as ‖A‖F =

√
trace(ATA). We

define the periodic addition operator ⊕ such that a ⊕ b = (a + b) mod K, where K

denotes the periodicity. We use the product operator
∏j

k=i bk to denote a product

bibi−1 · · · bj+1bj of scalars, with the convention that
∏j

k=i bk = 1 for i < j.
Each K-periodic matrix sequence Ak is associated with a matrix tuple Ā =

(AK−1, AK−2, . . . , A1, A0) [4]. The vector tuple ū = (uK−1, uK−2, . . . , u1, u0), with
uk �= 0, is called a right eigenvector of the tuple Ā corresponding to the eigenvalue λ
if there exist scalars αk, possibly complex, such that the relations

Akuk = αkuk⊕1, k = 0, 1, . . . ,K − 1,

λ :=

0∏
k=K−1

αk
(2.1)

hold with uK = u0. A left eigenvector v̄ of the tuple Ā corresponding to λ is defined
similarly:

vHk⊕1Ak = βkv
H
k , k = 0, 1, . . . ,K − 1,

λ :=

0∏
k=K−1

βk,
(2.2)

where vk �= 0, and βk are (possibly complex) scalars for k = 0, 1, . . . ,K − 1.
Without loss of generality, we assume that p < mink (nk) is specified such that no

2× 2 block corresponding to a complex conjugate pair of eigenvalues is positioned at
rows (and columns) p and p+1 of ΦT (K, 0). Given such a p and with Zk and Tk from
(1.2), the leading p columns of each Zk span an invariant subspace for ΦT (K + k, k)
for k = 0, 1, . . . ,K − 1. As a whole, the space spanned by the first p columns of each
matrix in the matrix tuple Z̄ is called a periodic invariant subspace of the tuple Ā
corresponding to the p eigenvalues located in the upper-leftmost part of ΦT (K, 0). In
general, ΦT (K, 0)ij denotes the (i, j) block of the matrix product ΦT (K, 0).

3. Reordering diagonal blocks in a product of matrices in EPRSF by
orthogonal transformations. Consider the K-periodic (or K-cyclic) matrix se-
quences Ak ∈ Rnk⊕1×nk , Tk ∈ Rnk⊕1×nk , and Zk ∈ Rnk×nk , k = 0, 1, . . . ,K − 1, such
that Ak is general, Tk is in EPRSF, and Zk is the corresponding orthogonal transfor-
mation, as in (1.2). The eigenvalues of the product ΦT (K, 0) = TK−1TK−2 . . . T1T0 ∈
Rn0×n0 are contained in the diagonal blocks of size 1 × 1 (real) and 2 × 2 (complex
conjugate pairs) of ΦT (K, 0).

Assume that each Tk, k = 0, 1, . . . ,K − 1, is partitioned as

Tk =

⎡
⎢⎢⎢⎣

T
(k)
11 � � �

0 T
(k)
22 � �

0 0 T
(k)
33 �

0 0 0 T
(k)
44

⎤
⎥⎥⎥⎦ ,(3.1)

where T
(k)
11 ∈ Rp1×p1 , T

(k)
22 ∈ Rp2×p2 , T

(k)
33 ∈ Rp3×p3 , T

(k)
44 ∈ R(nk⊕1−p)×(nk−p), k =

0, 1, . . . ,K−1, and p = p1+p2+p3. Assume there exists a K-cyclic orthogonal matrix
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sequence Qk, k = 0, 1, . . . ,K − 1, such that the cyclic transformation

QT
k⊕1

[
T

(k)
22 �

0 T
(k)
33

]
Qk =

[
T̂

(k)
22 �

0 T̂
(k)
33

]
(3.2)

results in λ(ΦT̂ (K, 0)22) = λ(ΦT (K, 0)33), λ(ΦT̂ (K, 0)33) = λ(ΦT (K, 0)22). Then the

reordered EPRSF of the sequence Ak is the sequence T̂k, where

T̂k =

⎡
⎣

Ip1 0 0

0 QT
k⊕1 0

0 0 Ip4

⎤
⎦

︸ ︷︷ ︸
Q̂T

k⊕1

⎡
⎢⎢⎢⎣

T
(k)
11 � � �

0 T
(k)
22 � �

0 0 T
(k)
33 �

0 0 0 T
(k)
44

⎤
⎥⎥⎥⎦

⎡
⎣

Ip1 0 0

0 Qk 0
0 0 Ip4

⎤
⎦

︸ ︷︷ ︸
Q̂k

(3.3)

= Q̂T
k⊕1TkQ̂k = Q̂T

k⊕1Z
T
k⊕1AkZkQ̂k = ẐT

k⊕1AkẐk,

with the associated K-cyclic orthogonal sequence Ẑk = ZkQ̂k, k = 0, 1, . . . ,K − 1.
The first p1 + p3 columns of Ẑ0 span an orthonormal basis for the invariant subspace
of ΦA(K, 0) associated with the first p1 + p3 eigenvalues in the upper left part of the
product ΦT̂ (K, 0). In addition, the first p1+p3 columns of each transformation matrix

Ẑk in the tuple (ẐK−1, ẐK−2, . . . , Ẑ1, Ẑ0) span an orthonormal basis for the periodic
invariant subspace of the tuple Ā associated with the same p1 + p3 eigenvalues in
ΦT̂ (K, 0).

4. A direct algorithm for periodic diagonal block reordering. In this
section, we focus on the K-cyclic swapping in (3.3). Without loss of generality, we
assume that Tk in (3.1) is square, i.e., the sequence Tk is in PRSF, and partitioned as

Tk =

[
T

(k)
11 T

(k)
12

0 T
(k)
22

]
, k = 0, 1, . . . ,K − 1,(4.1)

and that we want to swap the blocks T
(k)
11 ∈ Rp1×p1 and T

(k)
22 ∈ Rp2×p2 . Throughout

the paper we assume that ΦT (K, 0)11 and ΦT (K, 0)22 are of size 2 × 2 or 1 × 1 and
have no eigenvalues in common; otherwise, the diagonal blocks need not be swapped.
Define the K-cyclic matrix sequence Xk as

Xk ≡
[

Ip1 Xk

0 Ip2

]
,(4.2)

where Xk ∈ Rp1×p2 , k = 0, 1, . . . ,K − 1. The key observation is that the cyclic
transformation

X−1
k⊕1

[
T

(k)
11 T

(k)
12

0 T
(k)
22

]
Xk =

[
T

(k)
11 T

(k)
12 + T

(k)
11 Xk −Xk⊕1T

(k)
22

0 T
(k)
22

]
(4.3)

block-diagonalizes Tk, k = 0, 1, . . . ,K − 1, if and only if the sequence Xk satisfies the
periodic Sylvester equation (PSE)

T
(k)
11 Xk −Xk⊕1T

(k)
22 = −T

(k)
12 , k = 0, 1, . . . ,K − 1.(4.4)
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Replacing Ip2
in X0 (4.2) by a p2 × p2 zero block results in a spectral projector (e.g.,

see [25]) associated with the matrix product ΦT (K, 0) that projects onto the spectrum
of ΦT (K, 0)11. We refer to the matrix X0 as the generator matrix for the periodic
reordering of the product ΦT (K, 0).

The similarity transformation

S−1
0 TK−1SK−1S

−1
K−1TK−2SK−2 . . . S

−1
2 T1S1S

−1
1 T0S0

=

[
T

(K−1)
22 0

0 T
(K−1)
11

]
. . .

[
T

(1)
22 0

0 T
(1)
11

][
T

(0)
22 0

0 T
(0)
11

]

performs the wanted swapping of the diagonal blocks by the nonorthogonal sequence

Sk = Xk

[
0 Ip1

Ip2 0

]
=

[
Xk Ip1

Ip2 0

]
, k = 0, 1, . . . ,K − 1.

Since the first p2 columns of each Sk are linearly independent there exist orthogonal
matrices Qk of order p1 + p2 such that

Dk ≡
[

Xk

Ip2

]
= Qk

[
Rk

0

]
,(4.5)

where Rk of size p2 × p2 is upper triangular and nonsingular, k = 0, 1, . . . ,K − 1. By
partitioning Qk conformally with Sk, we observe that

QT
k Sk =

[
Rk Q

(k)
11

T

0 Q
(k)
12

T

]
, S−1

k Qk =

[
R−1

k −R−1
k Q

(k)
11

T
Q

(k)
12

−T

0 Q
(k)
12

−T

]
.

An orthonormal similarity transformation of ΦT (K, 0) can now be written as

QT
0 (TK−1TK−2 . . . T1T0)Q0 = QT

0 TK−1QK−1Q
T
K−1TK−2QK−2 . . . Q

T
2 T1Q1Q

T
1 T0Q0

= QT
0 S0

[
T

(K−1)
22 0

0 T
(K−1)
11

]
S−1
K−1QK−1Q

T
K−1SK−1

[
T

(K−2)
22 0

0 T
(K−2)
11

]
S−1
K−2QK−2

. . . QT
2 S2

[
T

(1)
22 0

0 T
(1)
11

]
S−1

1 Q1Q
T
1 S1

[
T

(0)
22 0

0 T
(0)
11

]
S−1

0 Q0 = T̂K−1T̂K−2 . . . T̂1T̂0,

where

T̂k =

[
T̂

(k)
11 T̂

(k)
12

0 T̂
(k)
22

]

and
⎧⎪⎪⎨
⎪⎪⎩

T̂
(k)
11 = Rk⊕1T

(k)
22 R−1

k ,

T̂
(k)
22 = Q

(k⊕1)
12

T
T

(k)
11 Q

(k)
12

−T
,

T̂
(k)
12 = −Rk⊕1T

(k)
22 R−1

k Q
(k)
11

T
Q

(k)
12

−T
+ Q

(k⊕1)
11

T
T

(k)
11 Q

(k)
12

−T

(4.6)
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for k = 0, 1, . . . ,K − 1. Thus, the orthogonal sequence Qk from (4.5) performs the

required reordering of the diagonal blocks. Observe that the sequences T̂
(k)
11 and T̂

(k)
22

in (4.6) may not be in PRSF and might have to be further transformed after periodic
reordering by additional orthogonal transformations to get the sequence T̂k in PRSF.

We summarize our direct algorithm for periodic eigenvalue reordering as follows:

Step 1. Solve for the sequence Xk, k = 0, 1, . . . ,K − 1, in the PSE

T
(k)
11 Xk −Xk⊕1T

(k)
22 = −T

(k)
12 , k = 0, 1, . . . ,K − 1.

Step 2. Compute K orthogonal matrices Qk such that

[
Xk

Ip2

]
= Qk

[
Rk

0

]
, k = 0, 1, . . . ,K − 1.

Step 3. Perform reordering by the cyclic transformations

T̂k = QT
k⊕1TkQk, k = 0, 1, . . . ,K − 1.(4.7)

Step 4. Restore the subsequences T̂
(k)
11 and T̂

(k)
22 to PRSF using K-cyclic orthog-

onal transformations.

Step 4 is conducted by computing PRSFs of the two K-periodic subsequences T̂
(k)
11

and T̂
(k)
22 . Care must be taken to assure that each of the two quasi-triangular matrices

in the PRSFs appear in the same position of the T̂k sequence, say T̂i. However, for
a K-periodic 2 × 2 sequence it is sufficient to compute a periodic Hessenberg form
[5] specifying the position of the 2 × 2 Hessenberg matrix, given that the complex
conjugate pair has not collapsed into two real eigenvalues because of round-off errors.

In the presence of rounding errors, the most critical step in the reordering process
is to solve the PSE. In analogy to eigenvalue swapping in the real (generalized) Schur
form, a small sep-function (defined in equation (5.3)) may ruin backward stability and
thus forces us to perform the swapping tentatively to guarantee backward stability
[2, 16, 18]. See also Kressner [19] for a brief discussion on direct swapping methods
for PRSF.

The direct algorithm extends directly to EPRSF by considering reordering of the
core characteristic values (see section 2) of the sequence Tk.

5. The periodic Sylvester equation. In analogy with solving the standard
Sylvester equation (e.g., see [3]), we construct a matrix representation ZPSE of the
periodic Sylvester operator defined by the PSE (4.4) in terms of Kronecker products,
where

(5.1)

ZPSE =

⎡
⎢⎢⎢⎢⎣

−T
(K−1)
22

T
⊗ Ip1 Ip2 ⊗ T

(K−1)
11

Ip2 ⊗ T
(0)
11 −T

(0)
22

T
⊗ Ip1

. . .
. . .

Ip2 ⊗ T
(K−2)
11 −T

(K−2)
22

T
⊗ Ip1

⎤
⎥⎥⎥⎥⎦
.

Only the nonzero blocks of ZPSE are displayed explicitly in (5.1). Then we solve
the resulting linear system of equations ZPSEx = c, with x and c as stacked vector
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representations of the matrix sequences Xk, for k = 0, 1, . . . ,K − 1, and −T
(k)
12 ,

k = K − 1, 0, 1, . . . ,K − 2, respectively:

x =

⎡
⎢⎢⎣

vec(X0)
vec(X1)
· · ·
vec(XK−1)

⎤
⎥⎥⎦ , c =

⎡
⎢⎢⎢⎣

vec(−T
(K−1)
12 )

vec(−T
(0)
12 )

· · ·
vec(−T

(K−2)
12 )

⎤
⎥⎥⎥⎦ .(5.2)

To exploit the structure of the matrix ZPSE, Gaussian elimination with partial pivoting
(GEPP) is used at the cost of O(K(p2

1p2 + p1p
2
2)) flops, possibly combined with fixed

precision iterative refinement for improved accuracy on badly scaled problems. By
storing only the block main diagonal, the block subdiagonal, and the rightmost block
column vector, the storage requirement for ZPSE can be kept at 3Kp2

1p
2
2.

Linear systems with this kind of sparsity structure, bordered almost block diagonal
(BABD) linear systems, were studied extensively in [9, 32]. It appears that there
exists no general-purpose numerically stable method designed specifically for BABD
systems, and it is not clear under what conditions (if any) GEPP is stable for solving
PSEs of the form (5.1). As an alternative, it is possible to consider QR-factorizations
[9] for solving (5.1). However, by introducing explicit stability tests (see section 7) the
resulting periodic reordering algorithm is conditionally backward stable by rejecting
swaps that appear unstable by some given criterion.

One could employ Gaussian elimination with complete pivoting (GECP) to solve
this linear system (see, e.g., LAPACK’s DTGSYL [18]), but that would make it difficult,
if not impossible, to exploit the sparsity structure of the problem. The complete
pivoting process causes fill-in elements, requires explicit storage of the whole matrix
ZPSE, and increases the number of flops to O((Kp1p2)

3).
Also in analogy with the standard Sylvester equation (e.g., see [14, 17]), the

conditioning of the PSE is related to the sep-function

sep[PSE] = inf
‖x‖2=1

‖ZPSEx‖2 = ‖Z−1
PSE‖

−1
2 = σmin(ZPSE)(5.3)

= inf
(
∑K−1

k=0
‖Xk‖2

F
)1/2=1

(
K−1∑
k=0

‖T (k)
11 Xk −Xk⊕1T

(k)
22 ‖2

F

)1/2

.

The quantity sep[PSE] can be estimated at the cost of solving a few PSEs by exploiting
the estimation technique for the 1-norm of the inverse of a matrix [12, 14, 17, 18].

6. Error analysis. In this section, we present an error analysis of the direct
reordering method presented in section 4, where we extend the analysis from [2, 16]
to the periodic case. For K = 1 we also get sharper error bounds compared to [2].

6.1. Perturbation of individual matrices under periodic reordering.
If Householder reflections are used to compute the orthogonal sequence Q̃k, k =
0, 1, . . . ,K − 1, each matrix Q̃k is orthogonal up to machine precision [31], and the
stability of the direct reordering method is mainly affected by the conditioning and
accuracy of the solution to the associated PSE.

Without loss of generality, we assume that p1 = p2 = 2. Let X̃k be the computed
solution sequence to the PSE (4.4), where X̃k = Xk+ΔXk, Xk is the exact and unique
solution sequence and ΔXk is the corresponding error matrix for k = 0, 1, . . . ,K − 1.
We let

Yk ≡ T
(k)
11 X̃k − X̃k⊕1T

(k)
22 + T

(k)
12 = T

(k)
11 ΔXk − ΔXk⊕1T

(k)
22(6.1)
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denote the residual sequence associated with the computed PSE solution sequence.
Under mild conditions (such as ‖D+

k ‖2‖ΔXk‖F < 1, where Dk is defined in (4.5))

the K QR-factorizations of (X̃k, I)T can be written as

[
Xk + ΔXk

I

]
= Dk +

[
ΔXk

0

]
= Q̃k

[
R̃k

0

]
= (Qk + ΔQk)

[
Rk + ΔRk

0

]
,

where ΔQk and ΔRk are perturbations of the orthogonal matrices Qk and the tri-
angular matrices Rk, and Q̃k = Qk + ΔQk is orthogonal [24]. Here ‖ΔQk‖F and
‖ΔRk‖F are essentially bounded by ‖D+

k ‖2‖ΔXk‖F , k = 0, 1, . . . ,K − 1 [24, 2]. We
do not assume anything about the structure of these perturbation matrices.

Given the computed sequences X̃k and Q̃k, the following theorem shows how the
errors in these quantities propagate to the results of the direct method for reordering
two adjacent sequences of diagonal blocks in the periodic Schur form.

Theorem 6.1. Let X̃k = Xk + ΔXk with ΔXk �= 0 nonsingular, Q̃k, and the
residual sequence Yk (6.1) be given for k = 0, 1, . . . ,K − 1. By applying the computed
sequence of transformations Q̃k from a periodic reordering of the (1, 1) and (2, 2)
blocks of Tk (4.1) in a cyclic transformation, we get

T̃k ≡ Q̃T
k⊕1

[
T

(k)
11 T

(k)
12

0 T
(k)
22

]
Q̃k = T̂k + Ek,(6.2)

where

T̂k =

[
T̂

(k)
11 T̂

(k)
12

0 T̂
(k)
22

]
, Ek =

[
E

(k)
11 E

(k)
12

E
(k)
21 E

(k)
22

]
(6.3)

for k = 0, 1, . . . ,K−1. Then the error matrices Ek satisfy the following norm bounds
up to first order perturbations:

‖E(k)
11 ‖2 ≤ σmax(Xk⊕1)

(1 + σ2
max(Xk⊕1))1/2

· 1

(1 + σ2
min(Xk))1/2

‖Yk‖F(6.4)

+ 2‖T̂ (k)
11 ‖2(‖D+

k ‖2‖ΔXk‖F + ‖D+
k⊕1‖2‖ΔXk⊕1‖F ),

‖E(k)
21 ‖2 ≤ 1

(1 + σ2
min(Xk⊕1))1/2

· 1

(1 + σ2
min(Xk))1/2

‖Yk‖F ,(6.5)

‖E(k)
22 ‖2 ≤ 1

(1 + σ2
min(Xk⊕1))1/2

· σmax(Xk)

(1 + σ2
max(Xk))1/2

‖Yk‖F .(6.6)

Proof. Transform the sequence Tk with Q̃k in a cyclic transformation:

Q̃T
k⊕1TkQ̃k = QT

k⊕1TkQk︸ ︷︷ ︸
T̂k

+ΔQT
k⊕1TkQk + QT

k⊕1TkΔQk + ΔQT
k⊕1TkΔQk.

Let Zk = QT
k ΔQk. From (Qk + ΔQk)

T (Qk + ΔQk) = I we have that QT
k ΔQk =

−ΔQT
kQk up to first order, and by dropping the second order term, we get

Q̃T
k⊕1TkQ̃k = T̂k + T̂kZk − Zk⊕1T̂k

for k = 0, 1, . . . ,K − 1.
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Let Ek denote the error matrix corresponding to the kth cyclic transformation
(4.7), i.e., T̃k = T̂k + Ek. Partition Zk, k = 0, 1, . . . ,K − 1 conformally with T̂k and
observe that

Q̃T
k⊕1TkQ̃k = T̂k + Ek =

[
T̂

(k)
11 T̂

(k)
12

0 T̂
(k)
22

]
+

[
E

(k)
11 E

(k)
12

E
(k)
21 E

(k)
22

]
,

where

Ek =

[
E

(k)
11 E

(k)
12

E
(k)
21 E

(k)
22

]
= T̂kZk − Zk⊕1T̂k,

i.e.,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E
(k)
11 = T̂

(k)
11 Z

(k)
11 + T̂

(k)
12 Z

(k)
21 − Z

(k⊕1)
11 T̂

(k)
11 ,

E
(k)
12 = T̂

(k)
11 Z

(k)
12 + T̂

(k)
12 Z

(k)
22 − Z

(k⊕1)
11 T̂

(k)
12 − Z

(k⊕1)
12 T̂

(k)
22 ,

E
(k)
21 = T̂

(k)
22 Z

(k)
21 − Z

(k⊕1)
21 T̂

(k)
11 ,

E
(k)
22 = T̂

(k)
22 Z

(k)
22 − Z

(k⊕1)
22 T̂

(k)
22 − Z

(k⊕1)
21 T̂

(k)
12 .

(6.7)

As we will show below, E
(k)
22 and E

(k)
11 perturb the eigenvalues of the matrix product

ΦA(K, 0) directly but do not affect stability. E
(k)
21 is critical since it affects both the

stability of the reordering and the eigenvalues. E
(k)
12 is of minor interest since it does

not perturb the eigenvalues explicitly nor does it affect the stability. The task is now

to derive norm bounds for the error matrix blocks E
(k)
11 , E

(k)
21 , and E

(k)
22 .

By assuming that ΔXk, k = 0, 1, . . . ,K − 1, are nonsingular and applying
the analysis of the QR-factorization from [2] to each of our K independent QR-
factorizations, we get

Z
(k)
11 = Q

(k)
11

T
ΔXkR

−1
k − ΔRkR

−1
k ,(6.8)

Z
(k)
21 = Q

(k)
12

T
ΔXkR

−1
k ,(6.9)

Z
(k)
22 = −Q

(k)
12

T
ΔXkR

−1
k Q

(k)
11

T
Q

(k)
12

−T
.(6.10)

Using (6.8), (6.9), (6.10), (4.6), and (6.1), the error matrix blocks E
(k)
11 , E

(k)
21 , and

E
(k)
22 in (6.7) boil down to

⎧⎪⎪⎨
⎪⎪⎩

E
(k)
11 = Q

(k⊕1)
11

T
YkR

−1
k − T̂

(k)
11 ΔRkR

−1
k + ΔRk⊕1R

−1
k⊕1T̂

(k)
11 ,

E
(k)
21 = Q

(k⊕1)
12

T
YkR

−1
k ,

E
(k)
22 = −Q

(k⊕1)
12

T
YkR

−1
k Q

(k)
11

T
Q

(k)
12

−T

(6.11)

as first order results. We see that E
(k)
22 , E

(k)
21 , and E

(k)
11 are essentially related to the

K residual matrices Yk of the associated PSE and the blocks Rk, Q
(k)
11 , and Q

(k)
12 from

the K QR-factorizations. From (4.5) we have that

Q
(k)
21 = R−1

k , RT
k Rk = I + XT

k Xk,

which gives

σ2(Rk) = λ(RT
k Rk) = λ(I + XT

k Xk) = 1 + λ(XT
k Xk) = 1 + σ2(Xk).
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By the above argument we get

‖Q(k)
21 ‖2 = ‖R−1

k ‖2 =
1

σmin(Rk)
=

1

(1 + σ2
min(Xk))1/2

.

Further, from [24] we have

‖ΔRkR
−1
k ‖F ≤ 2‖D+

k ‖2‖ΔXk‖F ,

and by the CS decomposition of Q (see, e.g., [10, 25]) we get the following norm
relations:

‖Q(k)
21 ‖2 = ‖Q(k)

12 ‖2, ‖Q(k)
11 ‖2 = ‖Q(k)

22 ‖2.

Now by combining these facts with (6.11) and applying the product and triangle
inequalities for norms, we obtain the bounds of the theorem.

Remark 1. For K = 1 and by inequality (1+σ2
min(Xk))

−1/2 ≥ (1+σ2
max(Xk))

−1/2,
the norm bounds of Theorem 6.1 can be further bounded from above to achieve

‖E11‖2 ≤ σmax(X)

(1 + σ2
min(X))

‖Y ‖F + 4‖T̂11‖2‖D+‖2‖ΔX‖F ,(6.12)

‖E21‖2 ≤ 1

(1 + σ2
min(X))

‖Y ‖F ,(6.13)

‖E22‖2 ≤ σmax(X)

(1 + σ2
min(X))

‖Y ‖F ,(6.14)

which are the norm bounds from the main theorem of [2] on the perturbation of the
eigenvalues under standard eigenvalue reordering in the real Schur form.

Remark 2. Numerical experiments show that iterative refinement may improve on
the computed solution Xk, especially for badly scaled problems, but may not improve
on the residual sequence Yk or on the computed eigenvalues. See also [2] for a similar
observation.

6.2. Perturbation of matrix products under periodic reordering. In this
section, we investigate how the errors in the individual matrices after a periodic
reordering of two adjacent sequences of diagonal blocks in Tk propagate into the
matrix product ΦT (K, 0) = TK−1TK−2 . . . T1T0.

We present a general result in the following theorem.
Theorem 6.2. Let Tk be a matrix sequence in PRSF with periodicity K and

partitioned as

Tk =

[
T

(k)
11 T

(k)
12

0 T
(k)
22

]
.

Let the sequence Q̃k, k = 0, 1, . . . ,K − 1, be the computed orthogonal cyclic transfor-
mation matrices defining the periodic eigenvalue reordering of the product ΦT (K, 0)
as in (6.2). In addition, let the sequences T̃k, T̂k, and Ek be defined as in (6.2)–(6.3)
of Theorem 6.1. Then we have

ΦT̃ (K, 0) =

0∏
k=K−1

Q̃T
k⊕1TkQ̃k = ΦT̂ (K, 0) + E,(6.15)
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where ΦT̂ (K, 0) = QT
0 ΦT (K, 0)Q0 is the exact product of the reordered matrices and

E is the corresponding error matrix. Assuming that E is partitioned conformally with
Tk, we have the bounds

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖E11‖2 ≤
∑K−1

k=0 ((
∏k+1

j=K−1 ‖T̂
(j)
11 ‖2)‖E(k)

11 ‖2

+ (
∑k+1

j=K−1 ‖ϕ
(k,j)
1 ‖2)‖E(k)

21 ‖2)(
∏0

j=k−1 ‖T̂
(j)
11 ‖2),

‖E21‖2 ≤
∑K−1

k=0 (
∏k+1

j=K−1 ‖T̂
(j)
22 ‖2)‖E(k)

21 ‖2(
∏0

j=k−1 ‖T̂
(j)
11 ‖),

‖E22‖2 ≤
∑K−1

k=0 (
∏k+1

j=K−1 ‖T̂
(j)
22 ‖2)(‖E(k)

21 ‖2

∑0
j=k−1 ‖ϕ

(k,j)
2 ‖2

+ ‖E(k)
22 ‖2(

∏0
j=k−1 ‖T̂

(j)
22 ‖2)),

(6.16)

where

‖ϕ(k,j)
1 ‖2 ≤ ‖T̂ (j)

12 ‖2

j+1∏
l=K−1

‖T̂ (l)
11 ‖2

k+1∏
l=j−1

‖T̂ (l)
22 )‖2,(6.17)

‖ϕ(k,j)
2 ‖2 ≤ ‖T̂ (j)

12 ‖2

j+1∏
l=k−1

‖T̂ (l)
11 ‖2

0∏
l=j−1

‖T̂ (l)
22 ‖2(6.18)

up to first order perturbations.
Proof. Up to first order perturbations, we have

ΦT̃ (K, 0) =

0∏
k=K−1

Q̃T
k⊕1TkQ̃k

= ΦT̂ (K, 0) +

K−1∑
k=0

ΦT̂ (K, k + 1)EkΦT̂ (k, 0) = ΦT̂ (K, 0) + E.

(6.19)

The bounds follow by applying the triangle inequality and the submultiplicativity of
norms to the error matrix E in block partitioned form. For details see [11].

For illustration, we display the explicit results of Theorem 6.2 for two simple cases
in the following corollary.

Corollary 6.3. Under the assumptions of Theorem 6.2 and the periodicity
K = 2, norm bounds for blocks of the error matrix E (6.15) can up to first order
perturbations be expressed as

‖E11‖2 ≤ ‖T̂ (1)
11 ‖2‖E(0)

11 ‖2 + ‖T̂ (1)
12 ‖2‖E(0)

21 ‖2 + ‖T̂ (0)
11 ‖2‖E(1)

11 ‖2,

‖E21‖2 ≤ ‖T̂ (1)
22 ‖2‖E(0)

21 ‖2 + ‖T̂ (0)
11 ‖2‖E(1)

21 ‖2,

‖E22‖2 ≤ ‖T̂ (1)
22 ‖2‖E(0)

22 ‖2 + ‖T̂ (0)
12 ‖2‖E(1)

21 ‖2 + ‖T̂ (0)
22 ‖2‖E(1)

22 ‖2.

For periodicity K = 3, we have the bounds

‖E11‖2 ≤ ‖T̂ (2)
11 ‖2‖T̂ (1)

11 ‖2‖E(0)
11 ‖2 + (‖T̂ (2)

11 ‖2‖T̂ (1)
12 ‖2 + ‖T̂ (2)

12 ‖2‖T̂ (1)
22 ‖2)‖E(0)

21 ‖2

+ ‖T̂ (2)
11 ‖2‖T̂ (0)

11 ‖2‖E(1)
11 ‖2 + ‖T̂ (2)

12 ‖2‖T̂ (0)
11 ‖2‖E(1)

21 ‖2 + ‖T̂ (1)
11 ‖2‖T̂ (0)

11 ‖2‖E(2)
11 ‖2,

‖E21‖2 ≤ ‖T̂ (2)
22 ‖2‖T̂ (1)

22 ‖2‖E(0)
21 ‖2 + ‖T̂ (2)

22 ‖2‖T̂ (0)
11 ‖2‖E(1)

21 ‖2 + ‖T̂ (1)
11 ‖2‖T̂ (0)

11 ‖2‖E(2)
21 ‖2,

‖E22‖2 ≤ ‖T̂ (2)
22 ‖2‖T̂ (1)

22 ‖2‖E(0)
22 ‖2 + ‖T̂ (2)

22 ‖2‖T̂ (0)
12 ‖2‖E(1)

21 ‖2 + ‖T̂ (2)
22 ‖2‖T̂ (0)

22 ‖2‖E(1)
22 ‖2

+ (‖T̂ (1)
11 ‖2‖T̂ (0)

12 ‖2 + ‖T̂ (1)
12 ‖2‖T̂ (0)

22 ‖2)‖E(2)
21 ‖2 + ‖T̂ (1)

22 ‖2‖T̂ (0)
22 ‖2‖E(2)

22 ‖2
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up to first order perturbations.
We remark that the analysis in Theorem 6.2 and Corollary 6.3 assumes that

the involved matrix products and sums are computed exactly. For a rounding error
analysis regarding matrix products and sums, see, e.g., [15].

Theorems 6.1 and 6.2 can be combined to produce computable bounds for the
perturbations of the diagonal blocks of ΦT̃ (K, 0) under periodic eigenvalue reordering.
We can also apply known perturbation results for the standard eigenvalue problem [25]
and the periodic eigenvalue problem [20, 4] to the submatrix products ΦT̃ (K, 0)11 and
ΦT̃ (K, 0)22. This is a matter of further investigation.

7. Computational experiments. We demonstrate the stability and reliability
of the direct reordering method by considering some numerical examples. The test
examples range from well-conditioned to ill-conditioned problems, including matrix
sequences with fixed and time-varying dimensions, and sequences of small and large
periodicity. In the following, we present results for a representative selection of prob-
lems, where, except for one example, two complex conjugate eigenvalue pairs of a
periodic real sequence Ak are reordered (p1 = p2 = 2). The associated PSEs of our
direct periodic reordering method are solved by applying GEPP to ZPSEx = c and
utilizing the structure of ZPSE in (5.1). All experiments are carried out in double
precision (εmach ≈ 2.2 × 10−16) on an UltraSparc II (450 Mhz) workstation.

Examples 1 and 3 below are constructed as follows. First, we specify K, nk, k =
0, 1, . . . ,K − 1, and mink(nk) eigenvalues or K ·mink(nk) diagonal and mink(nk)− 1
subdiagonal elements. Then a random sequence Tk as in (1.2) is generated with 1× 1
and 2×2 diagonal blocks corresponding to specified eigenvalues or diagonal, subdiag-
onal, and superdiagonal entries. Finally, orthogonal matrices Zk, k = 0, 1, . . . ,K− 1,
are constructed from QR-factorizing K uniformly distributed random nk × nk ma-
trices, which are applied in a K-cyclic orthogonal transformation of Tk to get Ak.
Examples 4 and 5 illustrate reordering of two periodic sequences already in PRSF.
Finally, Example 2 is from a real application.

In Table 7.1, we display the periodicity K, problem dimensions nk for k =
0, 1, . . . ,K − 1, the computed value of sep[PSE], and a reciprocal condition number s
for the eigenvalues of ΦT (K, 0)11,

s = 1/
√

1 + ‖X0‖2
F ,

where X0 is the generator matrix for the periodic reordering of ΦT (K, 0) (see sec-
tion 4). The last two quantities signal the conditioning of the problems considered.

Results from periodic reordering using our direct method are presented in Table
7.2. We display the maximum relative change of the eigenvalues under the periodic
reordering

eλ = max
k

|λk − λ̃k|
|λk|

, λk ∈ λ(ΦT (K, 0)).

In addition, we display five residual quantities for the computed results. These include
two stability tests used in our method, namely a weak stability test

Rweak = max
k

‖Q̃(k)
11 −XkQ̃

(k)
21 ‖F ,

and a strong stability test

Rstrong = max
k

(‖Tk − Q̃k⊕1T̃kQ̃
T
k ‖F , ‖T̃k − Q̃T

k⊕1TkQ̃k‖F ),
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Table 7.1

Problem characteristics for the examples considered. 4a and 4b refer to Example 4 with period
2 and 100, respectively.

Example K nk sep[PSE] s
1 3 4+k 6.9E-01 7.2E-01
2 120 4 4.7E-03 5.5E-01
3 10 2 9.9E+00 1.0E+00
4a 2 4 4.5E-15 1.1E-14
4b 100 4 1.3E-16 1.3E-16
5 2 4 6.2E+03 6.6E-01

Table 7.2

Computational results for periodic reordering. 4a and 4b refer to Example 4 with period K = 2
and 100, respectively. 5a and 5b refer to Example 5 without scaling and with scaling.

Example eλ Rweak Rstrong Reprsf Rreord Rorth

1 4.6E-16 2.2E-16 1.6E-15 4.7E-15 5.6E-15 1.3E+01
2 1.6E-15 2.9E-16 1.8E-15 9.0E-15 9.8E-15 2.0E+01
3 1.4E-15 1.9E-16 8.4E-15 7.3E-15 1.0E-14 4.1E+00
4a 3.6E-16 2.5E-16 1.4E-15 0 1.2E-15 2.1E+00
4b 3.7E-16 2.3E-16 3.2E-18 0 1.9E-15 3.6E+00
5a 2.2E-01 1.2E-16 6.6E-12 0 5.8E-12 3.3E+00
5b 2.0E-09 2.3E-16 4.3E-12 0 5.6E-12 3.3E+00

which is the maximum residual norm associated with the cyclic transformations Q̃k

used in the reordering. Tolerances for these tests can optionally be specified. De-
pending on the outcome of our stability test (weak or strong), we either reject the
swap or perform a swapping with guaranteed backward stability. Rejecting a swap
means that we avoid the risk that errors induced during the reordering computa-
tions may change the eigenvalues drastically. It is the sensitivity of the associated
eigenspaces that matters most (see [18]). Since the extra cost for the strong stability
test is marginal, it is recommended. The last three columns in Table 7.2 display the
maximum residual norms of the (extended) periodic Schur decomposition (1.2) before
and after reordering, computed as

Reprsf = max
k

(‖Ak − Zk⊕1TkZ
T
k ‖F , ‖Tk − ZT

k⊕1AkZk‖F ),

and

Rreord = max
k

(‖Ak − Z̃k⊕1T̃kZ̃
T
k ‖F , ‖T̃k − Z̃T

k⊕1AkZ̃k‖F ),

and a relative orthogonality check over the whole period K after periodic reordering:

Rorth =
maxk(‖Ink

− Z̃T
k Z̃k‖F , ‖Ink

− Z̃kZ̃
T
k ‖F )

εmach
.

For these three residual norms, the K-cyclic transformations Zk and Z̃k correspond
to Zk and Ẑk in (3.3), respectively.

The computed eigenvalues before and after the periodic reordering are presented
to full machine accuracy under each example.

Example 1. We consider a time-varying sequence with K = 3 and nk = 4+k, k =
0, 1, 2, and eigenvalues 1.0±2.0i,−7.0±0.5i. The computed eigenvalues of the matrix
product ΦT (K, 0) = T2T1T0 are

λ1 = 1.000000000000000 ± 2.000000000000000i,
λ2 = −7.000000000000001 ± 5.000000000000001i.
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The spectrum is well separated. After the periodic reordering of the blocks we ob-
tained λ̃1 = λ2 and λ̃2 = λ1 to full accuracy.

Example 2 (satellite control [29]). We consider reordering in a 4 × 4 periodic
matrix sequence that describes a control system of a satellite on orbit around the
earth. The periodicity is K = 120. The computed eigenvalues of the sequence are

λ1 = 0.9941836588706161 ± 0.1076979685723037i,
λ2 = 0.7625695885261465 ± 0.6469061930874623i.

The reordered eigenvalues are

λ̃1 = 0.7625695885261450 ± 0.6469061930874582i,

λ̃2 = 0.9941836588706161 ± 0.1076979685723021i.

This application example shows that periodic reordering works fine for well-conditioned
problems with large periods as well.

Example 3. We consider reordering a sequence with K = 10, and p1 = p2 = 1,
and the computed sequence in PRSF is

Tk =

[
101 t

(k)
12

0 10−1

]
, k = 0, 1, . . . ,K − 1,

where |t(k)
12 | ≤ 1. The computed eigenvalues of the product ΦT (K, 0) are

λ1 = 9.999999999999987 × 109,
λ2 = 1.000000000000013 × 10−10.

After the periodic reordering we obtain

λ̃1 = 1.000000000000015 × 10−10,

λ̃2 = 9.999999999999989 × 109.

Reordering of 1 × 1 blocks in PRSF can be carried out by propagating a Givens
rotation through the matrix product [5], but this process is not forward stable. For
this example, the rotation approach does not deliver one single correct digit in the
reordered eigenvalues, whereas the direct reordering method delivers an acceptable
error in the eigenvalues.

Example 4. We consider a sequence already in PRSF with K = 2 and nk = 4, k =
0, 1, and eigenvalues 0.2± (1.2+10−14)i, 0.2± 1.2i. The computed eigenvalues of the
matrix ΦT (K, 0) = T1T0 are

λ1 = 0.200000000000000 ± 1.200000000000001i,
λ2 = 0.200000000000000 ± 1.200000000000000i.

The spectrum is not well separated. After the periodic reordering we obtained

λ̃1 = 0.200000000000000 ± 1.200000000000000i,

λ̃2 = 0.200000000000000 ± 1.200000000000001i,

so the periodic reordering was perfect, even though the problem has very close eigen-
values. Indeed, we obtain reordered eigenvalues to full machine accuracy for periods
up to 100.
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Example 5. First, we consider a problem already in PRSF with large separation

and K = 2, nk = 4, k = 0, 1, and the eigenvalues ε
1/2
mach ± ε

1/2
machi, ε

−1/2
mach ± ε

−1/2
machi.

Moreover, the involved matrices have almost the same Frobenius norm (≈ 1.8 ×
104), but the matrices in the subsequences T

(k)
11 and T

(k)
22 have very different norms:

‖T (0)
11 ‖F ≈ 1.4×104, ‖T (1)

11 ‖F ≈ 1.4×104, ‖T (0)
22 ‖F ≈ 7.0×10−12, ‖T (1)

22 ‖F ≈ 8.6×103.
The computed eigenvalues of the product ΦT (K, 0) are

λ1 = 6.710886400000000 × 107 ± 6.710886400000003 × 107i,
λ2 = 1.490116119384766 × 10−8 ± 1.490116119384766 × 10−8i.

After the periodic reordering without diagonal scaling we obtain

λ̃1 = 1.168840447839719 × 10−8 ± 9.309493732240201 × 10−9i,

λ̃2 = 6.710886400000001 × 107 ± 6.710886400000000 × 107i.

The problem is well-conditioned in the sense of sep[PSE], the norm of the generator
matrix (see s in Table 7.1), and the reordering passes the stability tests, but since
the eigenvalues differ almost 16 orders of magnitude the relative error in the smallest
eigenvalues become very large due to the finite precision arithmetic.

Next, we consider the same problem as above, but now we perform diagonal

scaling T1T0 = T1D1D
−1
1 T0 before periodic reordering such that the blocks T

(0)
22 and

T
(1)
22 have about the same norm. Now the periodic reordering gives

λ̃1 = 1.490116120748016 × 10−8 ± 1.490116125160257 × 10−8i,

λ̃2 = 6.710886400000000 × 107 ± 6.710886400000001 × 107i,

which is quite an improvement (8 orders of magnitude) compared to the results with-
out scaling. Not surprisingly, periodic reordering is sensitive to large differences in

the norms within the subsequences T
(k)
11 and T

(k)
22 .

8. Future work. Next, we will focus on computing periodic eigenspaces with
specified eigenvalues and associated error bounds based on condition estimation (see,
e.g., [18]), as well as producing library-standard (LAPACK [1], SLICOT [21]) software
for the eigenvalue reordering algorithm presented in this paper.

Acknowledgments. The authors are grateful to Daniel Kressner for construc-
tive comments on the subject and earlier versions of this manuscript and to Andras
Varga for valuable comments on the subject and for providing us with software for
computing the extended periodic Schur decomposition and data for Example 2.
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DISTANCES FROM A HERMITIAN PAIR TO DIAGONALIZABLE
AND NONDIAGONALIZABLE HERMITIAN PAIRS∗

CHI-KWONG LI† AND ROY MATHIAS‡

Abstract. Let W (T ) and r(T ) denote the numerical range and numerical radius of an n ×
n complex matrix T . Let H2

n denote the space of pairs of n × n Hermitian matrices. Define a
norm on H2

n by ‖(X,Y )‖ = r(X + iY ). Take (A,B) ∈ H2
n. It is shown that if 0 ∈ W (A + iB),

then inf{|μ| : μ /∈ W (A + iB)} is an upper bound on the distance to the nearest pair that is
simultaneously diagonalizable by congruence. If 0 /∈ W (A + iB), then min{|μ| : μ ∈ W (A + iB)},
which is the Crawford number of the pair (A,B), is equal to the distance to the nearest pair that is
not simultaneously diagonalizable by congruence. The results are similar when the numerical radius
is replaced by the spectral norm.

Key words. definite Hermitian pair, nondiagonalizable, numerical range, numerical radius,
Crawford number
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1. Introduction. Let Mn (respectively, Hn) be the set of n × n complex (re-
spectively, Hermitian) matrices. Two Hermitian matrices A,B ∈ Hn are said to be a
definite pair if |x∗(A + iB)x| �= 0 for every nonzero vector x ∈ C

n.
Definite Hermitian pairs have useful algorithmic and theoretical properties. For

example, it is known (see [3, Theorem 1.7.17]) that if (A,B) is a definite Hermitian
pair, then it is diagonalizable by congruence, i.e., there is an invertible matrix S ∈ Mn

so that both S∗AS and S∗BS are diagonal matrices; equivalently, S∗(A + iB)S is
a diagonal matrix. This property is very useful in the analysis of the Hermitian
generalized eigenvalue problem, Ax = λBx. If (A,B) is a definite pair, then the
corresponding generalized eigenvalues are real and can be found by solving a related
Hermitian eigenvalue problem [1, section 8.7.3].

Recall that the numerical range of T ∈ Mn is

W (T ) = {x∗Tx : x ∈ C
n, x∗x = 1}

and that the numerical radius of T is

r(T ) = max{|x∗Tx| : x ∈ C
n, x∗x = 1},

which is the maximum distance of a point in the numerical range to the origin.
It is known that W (T ) is always a compact convex set in C, and that the numerical

radius is a norm on Mn satisfying

r(T ) ≤ ‖T‖ ≤ 2r(T ) for all T ∈ Mn,(1.1)
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in comparison with the spectral norm ‖T‖; for example, see [3, 4]. Also, it is known
that (A,B) is a definite Hermitian pair if and only if W (A+ iB) does not contain the
origin, which is equivalent to the existence of a, b ∈ R such that aA + bB is positive
definite; see [3, p. 72]. We define the Crawford number of (A,B) by

c(A,B) = min{|x∗(A + iB)x| : x ∈ C
n, x∗x = 1},

which is the shortest distance between a point in W (A + iB) and the origin. The
Crawford number often appears in the study of perturbation bounds in the study of
problems involving definite Hermitian pairs; see [5, Chapter VI].

It is easily shown (Proposition 2.1) that c(A,B) is the distance to the nearest
nondefinite pair. The purpose of this paper, Theorem 2.3, is to show that c(A,B)
is also the distance from (A,B) to the set of nondiagonalizable pairs even though
diagonalizability by congruence is not equivalent to definiteness. If c(A,B) = 0, i.e.,
0 ∈ W (A + iB), then A + iB may or may not be diagonalizable by congruence, but
in Proposition 2.2 we give an upper bound for the distance between (A,B) to the set
of diagonalizable pairs.

2. Results and proofs.
Proposition 2.1. Let (A,B) be a definite Hermitian pair. Suppose x ∈ C

n is
a unit vector such that |x(A + iB)x| = c(A,B), and (E0, F0) = −(x∗AxI, x∗BxI).
Then (A + E0, B + F0) is not a definite pair and

c(A,B) = r(E0+iF0) = min{r(E+iF ) : (A+E,B+F ) is not a definite pair}.(2.1)

Furthermore, (2.1) is valid when r(·) is replaced by ‖ · ‖.
Proof. Let rD denote the right-hand side of (2.1). Let rD,‖ · ‖ denote the right-

hand side of (2.1) when r(·) is replaced by ‖ · ‖.
Suppose x ∈ C

n is a unit vector such that |x∗(A+iB)x| = c(A,B) and (E0, F0) =
−(x∗AxI, x∗BxI). Then 0 ∈ W ((A + E0) + i(B + F0)) and hence (A + E0, B + F0)
is not definite. Since E0 + iF0 is a multiple of the identity, it follows that

‖E0 + iF0‖ = |(x∗Ax) + i(x∗Bx)| = c(A,B).

Thus rD,‖ · ‖ ≤ c(A,B).
By (1.1), we have rD ≤ rD,‖ · ‖. Let (E,F ) be a Hermitian pair such that (A +

E,B + F ) is not definite. Consider a unit vector y ∈ C
n such that y∗(A + E)y =

y∗(B + F )y = 0 or, equivalently, y∗Ay = −y∗Ey and y∗By = −y∗Fy. Therefore

c(A,B) ≤ |y∗(A + iB)y| = |y∗(E + iF )y| ≤ r(E + iF ).(2.2)

Thus c(A,B) ≤ rD. Combining this with the conclusion of the previous paragraph
we have c(A,B) = rD = rD,‖ · ‖.

Proposition 2.2. Let (A,B) be a Hermitian pair such that 0 ∈ W (A + iB).
Then

d(A,B) = inf{|μ| : μ /∈ W (A + iB)}
≥ inf{r(E + iF ) : (A + E) + i(B + F ) is diagonalizable by congruence}.(2.3)

Furthermore, (2.3) is valid when r(·) is replaced by ‖ · ‖.
Proof. Let T = A+ iB. Since W (T ) is compact, there is a boundary point μ with

minimum modulus. We may replace (T, μ) by (eitT, eitμ) for a suitable t ∈ [0, 2π) so
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that there is a left support line of W (T ) passing through μ. Then for any ε > 0, we
can let E + iF = (ε − μ)I so that 0 /∈ W (T + (E + iF )) and hence T + (E + iF ) is
diagonalizable by congruence. Since ‖E+iF‖ = r(E+iF ) ≤ |μ|+ε and ε is arbitrary,
we get the desired inequality.

Let (A,B) be a Hermitian pair such that 0 ∈ W (A + iB). Since W (A + iB) is
closed, inf{|μ| : μ /∈ W (A + iB)} is not attained by any element not in W (A + iB).
Also,

inf{r(E + iF ) : (A + E) + i(B + F ) is diagonalizable by congruence}

is not always attainable. For example, if

A =

(
0 10
10 0

)
and B =

(
11 0
0 −1

)
,

then W (A + iB) is an elliptical disk with minor axis joining the numbers 11i and
−i, and major axis joining the numbers 10 + 5i and −10 + 5i. Clearly, d(A,B) = 1,
and −i is the boundary point of W (A + iB) nearest to the origin. Suppose E + iF
satisfies r(E + iF ) ≤ 1. We claim that T = (A+E) + i(B + F ) is not diagonalizable
by congruence. Suppose it is not true and that S ∈ M2 is invertible such that
S∗TS is in diagonal form. Note that 0 ∈ W (T ). It follows that W (S∗TS) is a
line segment containing 0. Thus, there exists a complex unit ξ such that ξS∗TS is
Hermitian. So, ξT is Hermitian and ξW (T ) is a real line segment containing 0. Let
x, y, z ∈ C

n be unit vectors such that x∗(A + iB)x = 11i, y∗(A + iB)y = 10 + 5i,
and z∗(A + iB)z = −10 + 5i. Let x∗Tx = μ1, y

∗Ty = μ2, and z∗Tz = μ3. Then
|11i− μ1| ≤ 1, |10 + 5i− μ2| ≤ 1, and | − 10 + 5i− μ3| ≤ 1. Thus, W (T ) cannot be a
line segment. Hence, T is not diagonalizable.

Next, we turn to our main result.
Theorem 2.3. Let (A,B) be a definite pair. Then

c(A,B) = min{r(E+ iF ) : (A+E)+ i(B+F ) is not diagonalizable by congruence}
(2.4)
and

c(A,B) = inf{‖E+iF‖ : (A+E)+i(B+F ) is not diagonalizable by congruence}.
(2.5)

We need two lemmas to prove Theorem 2.3. The first one is a standard result
characterizing diagonalizability of a pair by congruence when one of the matrices is
invertible. The second presents a perhaps surprising difference between the numerical
radius and the spectral norm. This difference is the reason that the result in Theorem
2.3 contains a “min” for the numerical radius but only an “inf” for the spectral norm.

Lemma 2.4 (see [2, Table 4.5.15, part 1 (b)]). Let A,B ∈ Hn, with A invertible.
Then A + iB is diagonalizable by congruence if and only if A−1B is similar to a real
diagonal matrix.

Lemma 2.5 (see [3, Theorem 1.3.6 (b)]). Take t ∈ (0, 1/2] and set

X =

(
0 it
it 1

)
.

Then r(X) = 1 < ‖X‖.
Proof of Theorem 2.3. Suppose that

min{|z| : z ∈ W (A + iB)}
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occurs at z = reiθ; then replacing A+iB by e−iθ(A+iB) if necessary, we may assume
that z = iγ. After a unitary similarity, we may assume with loss of generality that
B = B1 ⊕ [γ] with B1 ∈ Mn−1. This implies that ann = 0, so write A = (A11

A∗
12

A12

0 )

with A11 ∈ Mn−1. Let

E = diag(d1, . . . , dn−2) ⊕
(

0 t
t 0

)
and F = 0n−2 ⊕ diag(0,−γ).

Using a Schur complement argument, for example, we can show that for any t �= 0 we
can choose d1, . . . , dn−2 with γ > dj > 0 such that Ã = A+E is invertible. We claim

that Ã + iB̃ is not diagonalizable by congruence.

First, note that B̃ = B + F = B1 ⊕ 0 has rank n− 1 and hence so has Ã−1B̃.

Write

Ã−1 =

(
X Y
Y ∗ Z

)
, where X ∈ Mn−1, Z ∈ M1.

Note that 0 = ann = ãnn = det(X)/det(Ã−1). Thus, X is singular. Hence XB1 has
at least one zero eigenvalue. Therefore, the rank n− 1 matrix

Ã−1B̃ =

(
XB1 0
Y ∗B̃1 0

)

has at most n − 2 nonzero eigenvalues. Thus, Ã−1B̃ is not diagonalizable, and our
claim is proved.

Now, by Lemma 2.5, taking t ∈ (0, γ/2) ensures r(E+ iF ) = γ, establishing (2.4).

Taking t = ε > 0 ensures ‖E + iF‖ ≤ γ + ε and establishes (2.5).

A slightly more careful argument shows that if, in the proof above, A12 �= 0, then
we can take t = 0 in constructing (E + iF ) such that (A + iB) + (E + iF ) is not
diagonalizable by congruence. The resulting (E + iF ) will have ‖E + iF‖ = γ. Thus
generically, the infimum in (2.5) is attained.

Here is an instance where the infimum in (2.5) is not attained. Take the 2 × 2
matrices A = 0 and B = I. Clearly c(A,B) = 1. Let E and F be Hermitian and such
that

(A + iB) + (E + iF ) is not diagonalizable by congruence.(2.6)

Since both A and B are invariant under unitary similarity, we may assume without
loss of generality that F is diagonal. Note that max{‖E‖, ‖F‖} ≤ ‖E + iF‖, so if
‖E + iF‖ ≤ 1 and if the pair (A + E,B + F ) is not definite, then F must be of the
form

(
−1 0
0 t

)
or

(
t 0
0 −1

)
.

In either case B + F is diagonal, so the condition (2.6) requires that A + E = E has
nonzero off-diagonal. However, for such E and F it is the case that ‖E + iF‖ > 1.
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Abstract. In this paper we study the geometrical properties of the set of reachable states of a
single input discrete-time linear time invariant (LTI) system with positive controls. This set is a cone
and it can be expressed as the direct sum of a linear subspace and a proper cone. In order to give
a complete geometrical characterization of the reachable set, we provide a formula to evaluate the
dimension of the largest reachable subspace and necessary and sufficient conditions for polyhedrality
of the proper cone in terms of eigenvalues location.
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1. Introduction. In this paper we study the geometrical properties of the set
of reachable states xk of a single input discrete–time LTI system of the form:

xk+1 = F xk + g uk k = 0, 1, . . .(1.1)

with F ∈ R
n×n, g ∈ R

n when the input function uk is nonnegative for all times k.
This situation is frequently encountered, for example, in medical, ecological, chemical
and economical applications where the controls have a unidirectional influence [2].
Moreover, this may also occur in electro-mechanical applications (see the examples
discussed in [15]).

It is worth noting that nonnegativity of the input implies that the reachable set
is a convex cone. In fact, the set of states reachable in k steps can be written as

Rk (F, g) =
{
x : x =

∑k−1
i=0 F k−i−1g u(i), u(i) ≥ 0

}

= cone
(
g, Fg, . . . F k−1g

)
.

In what follows, we will consider the geometrical properties of the reachable set
R (F, g) of a reachable pair (F, g) defined as

R (F, g) = cl

{ ∞∑
k=1

Rk (F, g)

}
= cl

{
cone

(
g, Fg, F 2g . . .

)}
,(1.2)

where the sum of two cones, as proved in [12, Theorem 3.8], coincides with the set of
all finite nonnegative combinations of vectors belonging to the two cones.
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The reachability set R (F, g) ⊆ R
n is a convex cone contained in the subspace

spanned by the vectors g, Fg, . . . , Fn−1g. Without loss of generality, we will assume in
the sequel only reachable pairs (F, g), that is, R

n is the smallest subspace containing
R (F, g). Therefore, since the reachability set R (F, g) is a convex cone, it can be
written as

R (F, g) = S (F, g) ⊕K (F, g) ,

where S (F, g) is the lineality subspace of R (F, g) (the largest subspace contained in
R (F, g)) and

K (F, g) = R (F, g)
⋂

S (F, g)
⊥

is a proper cone contained in the subspace S (F, g)
⊥

complementary to S (F, g) in R
n

(see [12, p. 65]).
The problem of characterizing the geometrical properties of the reachable set

R (F, g) of linear system has been studied by Evans and Murthy, and Son in [9, 16]
for discrete-time systems and by Brammer, Saperstone and Yorke, and Ohta et al.
in [6, 15, 11] for continuous-time systems. Evans and Murthy, and Brammer derived
conditions for complete controllability, i.e., R (F, g) = S (F, g) = R

n for discrete and
continuous-time, respectively. Ohta et al. provided a simple formula to evaluate the
dimension of the largest reachable subspace, i.e., the dimension of S (F, g) for single-
input continuous-time systems. Saperstone and Yorke, and Son consider complete
controllability in the case of bounded inputs for continuous- and discrete-time systems,
respectively. Results in the related area of controllability of positive systems can be
found in [17, 7, 14] and in the references cited therein.

In this paper we deal with single-input discrete-time systems and provide a com-
plete geometrical characterization of the reachable set R (F, g), i.e., of both S (F, g)
and K (F, g). More precisely, we give the dimension of the largest reachable subspace
S (F, g) (analogous to those found by Ohta et al. in [11] for the continuous-time case)
and provide necessary and sufficient conditions for polyhedrality of K (F, g) in terms
of eigenvalues location. Some preliminary results have appeared in [8]. Polyhedrality
of K (F, g) is relevant in the positive realization problem and its applications (optical
filters and charge routing networks design, hidden Markov modeling, . . . ) as shown
in [4]. Moreover, polyhedrality of K (F, g) is related to reachability with nonnegative
inputs of every state from the origin in a finite number of steps, as discussed at the
end of this paper.

2. Definitions. A set K ⊂ R
m is said to be a cone provided that αK ⊆ K for

all α ≥ 0. If a cone K ⊆ R
m contains an open ball of R

m, then it is said to be solid
and if K ∩ {−K} = {0}, it is said to be pointed. A cone which is closed, convex,
solid and pointed is said to be a proper cone. A cone K is said to be polyhedral if
it is expressible as the intersection of a finite family of closed half-spaces. The no-
tation cone(v1, . . . , vM ) indicates the convex cone consisting of all nonnegative linear
combinations of vectors v1, . . . , vM , with M possibly infinite.

Given a square matrix F , pF (λ) is its characteristic polynomial, σF denotes
the set of its eigenvalues and deg λi, with λi ∈ σF , is the size of the largest block
containing λi in the Jordan canonical form of F . If the matrix F has at least one
nonnegative real eigenvalue, then ωF equals the maximal nonnegative real eigenvalue
of F ; otherwise ωF = 0. Using the above definitions, the set σF can be partitioned in
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the following disjoint subsets:

σ
(1)
F = {λi ∈ σF : |λi| > ωF }

σ
(2)
F = {λi ∈ σF : |λi| = ωF and deg λi > degωF }

σ
(3)
F = {λi ∈ σF : |λi| = ωF and deg λi ≤ degωF }

σ
(4)
F = {λi ∈ σF : |λi| < ωF }

so that σF := σ
(0)
F = σ

(1)
F ∪ σ

(2)
F ∪ σ

(3)
F ∪ σ

(4)
F . Moreover, given a set of eigenvalues

σ
(k)
F , we define

ρ(σ
(k)
F ) = max

λi∈σ
(k)

F

{|λi|}

and every eigenvalue λi ∈ σ
(k)
F such that |λi| = ρ(σ

(k)
F ) will be called a dominant

eigenvalue of σ
(k)
F .

If F is nonderogatory,1 then without loss of generality (w.l.o.g.) we can assume
the matrix to be in following pseudo-Jordan form

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J
(
σ

(1)
F

)
0 0 0 0

0 J ′
(
σ

(2)
F

)
∗ 0 0

0 0 J ′′
(
σ

(2)
F

)
0 0

0 0 0 J
(
σ

(3)
F

)
0

0 0 0 0 J
(
σ

(4)
F

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

(
A′ ∗
0 A

)
, g =

(
b′

b

)
,

(2.1)

where

J
(
σ

(k)
F

)
= diag

λi∈σ
(k)

F

(Jdeg λi (λi)) k = 1, 3, 4

J ′
(
σ

(2)
F

)
= diag

λi∈σ
(2)

F

(Jdeg λi−degωF
(λi))

J ′′
(
σ

(2)
F

)
= diag

λi∈σ
(2)

F

(JdegωF
(λi))

and Jk (λ) is a k × k upper triangular matrix of the form

Jk (λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ 1 0
λ 1

. . .
. . .

. . . 1

0 λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

1A matrix is nonderogatory if its characteristic polynomial equals its minimal polynomial.
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The dimension of the matrix A′ is

μ =
∑

λi∈σ
(1)

F

deg λi +
∑

λi∈σ
(2)

F

(deg λi − degωF )

and that of A is

χ = n− μ =
∑

λi∈σ
(2)

F

degωF +
∑

λi∈σ
(3)

F
∪σ

(4)

F

deg λi,

where summation over the empty set is considered to be zero.

3. Main results. As stated in the introduction, we begin this section by pre-
senting a result which provides the dimension of the largest reachable subspace S(F, g)
(analogous to those found by Ohta et al. in [11] for the continuous-time case) and how
the cone K(F, g) can be generated.

Theorem 3.1. Let the pair (F, g) be reachable. Then the dimension of the largest
reachable subspace S (F, g) is

μ =
∑

λi∈σ
(1)

F

deg λi +
∑

λi∈σ
(2)

F

(deg λi − degωF ).

Moreover,

K (F, g) = cl
{
cone

(
b, Ab,A2b, . . .

)}

Proof. The proof is the discrete-time counterpart of that contained in [11] for
continuous-time systems and can be found in [3].

It is worth stating the following corollaries which directly follow from the above
theorem and characterize the two special cases of R (F, g) = S (F, g) = R

n and
R (F, g) = K (F, g).

Corollary 3.2 (see [9]). Let the pair (F, g) be reachable. Then, R (F, g) = R
n,

that is, μ = n, if and only if the matrix F has no real nonnegative eigenvalues. In
this case F = A′ and g = b′.

Corollary 3.3. Let the pair (F, g) be reachable. Then, R (F, g) is a proper
cone, that is, μ = 0, if and only if

σ
(1)
F

⋃
σ

(2)
F = ∅,

or equivalently if and only if ρ(σF ) ∈ σF and deg ρ(σF ) ≥ deg λi for each λi such that
|λi| = ρ(σF ). In this case F = A and g = b.

Secondly, we present hereafter a Lemma which provides conditions for polyhe-
drality of K (F, g). Define

Ki (A, b) := cone
(
b, Ab,A2b, . . . , Ai−1b

)
= Ri (F, g)

⋂
S (F, g)

⊥

and

K̂ (A, b) :=

∞∑
i=1

Ki (A, b) = cone
(
b, Ab,A2b, . . .

)

so that we have

K (F, g) = cl K̂ (A, b) =: K (A, b) .(3.1)
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Moreover, by definition,

K1 (A, b) ⊆ K2 (A, b) ⊆ K3 (A, b) ⊆ . . .

and if KN (A, b) = KN+1 (A, b), then K (F, g) = KN (A, b) = Ki (A, b) ∀i ≥ N .
First note that if K(F, g) �= {0} and ωF = 0 then the matrix A is nilpotent and

Aχ = 0. Hence

K (F, g) = K̂ (A, b) = Kχ (A, b) = cone
(
b, Ab, . . . , Aχ−1b

)

is polyhedral. Consequently, w.l.o.g. in the following we will assume ωF > 0.
Lemma 3.4. Let the pair (F, g) be reachable and ωF > 0. Then, K (F, g) is a

polyhedral proper cone in S (F, g)
⊥

if and only if there exists a finite positive integer
r such that the following limits

lim
k→∞

Ark+hb

‖Ark+hb‖ = v(h)
∞ �= 0 h = 0, . . . , r − 1

exist with v
(i)
∞ �= v

(j)
∞ for i �= j, and there exists a finite value N such that

KN+1(A
r, Ahb) + cone

(
v(h)
∞

)
= KN (Ar, Ahb) + cone

(
v(h)
∞

)
(3.2)

for every h = 0, . . . , r − 1.
Proof. (Necessity) From polyhedrality and A-invariance of K(F, g), as proved in

[1], it follows that the dominant eigenvalues of σA are among the k-roots of ρ(σA)k =
ωk
F for some positive integer k. Moreover, ρ(σA) = ωF ∈ σA and degωF ≥ deg λi

for each λi such that |λi| = ωF by definition of A, so that from Lemma 4 in [18], it
follows that the limits

lim
k→∞

Ark+hb

‖Ark+hb‖ = v(h)
∞ h = 0, . . . , r − 1(3.3)

exist with v
(i)
∞ �= v

(j)
∞ for i �= j, they are nonzero and r is the minimal value for which

the dominant eigenvalues with maximal degree are among the rth roots of ωr
F . Note

that

cone
(
Av(h)

∞

)
= cone

(
Av(h+1) mod r

∞

)
.

Moreover, the vectors v
(i)
∞ ’s are nonnegatively linearly independent. In fact, oth-

erwise we would have

v(i)
∞ =

r−1∑
k=0
k 
=i

αkv
(k)
∞ αk ≥ 0

for, at least, one value of i. Consequently, multiplying both sides by Ah with h =
0, . . . , r − 1, we would obtain

v(i+h) mod r
∞ =

r−1∑
k=0

k 
=(i+h) mod r

αkv
(k)
∞ h = 0, . . . , r − 1.
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From the above equations, it directly follows that

v(0)
∞ = v(1)

∞ = . . . = v(r−1)
∞ ,

thus contradicting the fact that v
(i)
∞ �= v

(j)
∞ for i �= j.

Consider now the cone K̂(Ar, Ahb)+cone(v
(h)
∞ ). By definition, its extremal vectors

are among the vectors Aib and the vector v
(h)
∞ with i appropriate; let vm,h = Aib =

Arim+hb be an extremal vector of the cone. We will prove that vm,h is also an extremal
vector of K(A, b). Suppose that vm,h is not an extremal vector of K(A, b), that is,

vm,h =

r−1∑
i=0
i 
=h

ni∑
j=1

αj,ivj,i +

nh∑
j=1
j 
=m

αj,hvj,h +

r−1∑
k=0

αkv
(k)
∞ αj,i, αj,h, αk ≥ 0,(3.4)

where vj,i are the extremal vectors of K(A, b) which are also extremal vectors of

K̂(Ar, Aib) + cone(v
(i)
∞ ). By applying Ark/‖Ar(k+im)+h‖ with k → ∞ to both sides of

the above equation, one would obtain

lim
k→∞

Ar(k+im)+hb

‖Ar(k+im)+hb‖ = v
(h)
∞

=

r−1∑
i=0
i 
=h

⎛
⎝

ni∑
j=1

α′
j,i

⎞
⎠ v(i)

∞ +

nh∑
j=1
j 
=m

α′
j,hv

(h)
∞ +

r−1∑
k=0

α′
kv

(k)
∞

with α′
j,i, α

′
j,h, α

′
k ≥ 0 proportional to αj,i, αj,h and αk, respectively, up to a positive

constant.
Since v

(h)
∞ �∈ cone(v

(0)
∞ , . . . , v

(h−1)
∞ , v

(h+1)
∞ , . . . , v

(r−1)
∞ ) then one would have∑ni

j=1 α
′
j,i = 0 for every i �= h and consequently α′

j,i = αj,i = 0 for every i �= h
and j = 1, . . . , ni. Moreover, αk = 0 for k �= h. Then from (3.4), one obtains

vm,h =

nh∑
j=1
j 
=m

αj,hvj,h + αhv
(h)
∞ αj,h, αk ≥ 0,

that is, vm,h would be a nonnegative linear combination of all the other extremal

vectors of K̂(Ar, Ahb)+cone(v
(h)
∞ ) which contradicts the fact that vm,h is an extremal

vector.
Since K(F, g) is a polyhedral cone by hypothesis, then it has a finite number

of extremal vectors. Since each extremal vector Aib of the cones K̂(Ar, Ahb) +

cone(v
(h)
∞ ) is also an extremal vector of K(A, b), then the number of extremal vec-

tors of K̂(Ar, Ahb) + cone(v
(h)
∞ ) is also finite. Consequently, there exists a finite value

Nh for which

KNh+1(A
r, Ahb) + cone

(
v(h)
∞

)
= KNh

(Ar, Ahb) + cone
(
v(h)
∞

)

holds for h = 0, . . . , r − 1 so that (3.2) follows by taking N = maxh Nh.
(Sufficiency) If there exists a positive integer r such that the following limits

lim
k→∞

Ark+hb

‖Ark+hb‖ = v(h)
∞ �= 0 h = 0, . . . , r − 1
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exist with v
(i)
∞ �= v

(j)
∞ for i �= j, and there exists a value N such that (3.2) holds for

every h = 0, . . . , r − 1, then from the definition of K(F, g) it follows that

K(F, g) = cl

{ ∞∑
i=1

Ki(A, b)

}

=

∞∑
i=1

r−1∑
h=0

Ki(A
r, Ahb) +

r−1∑
h=0

cone

(
lim
i→∞

Ari+hb

‖Ari+hb‖

)

=
∞∑
i=1

r−1∑
h=0

(
Ki(A

r, Ahb) + cone
(
v(h)
∞

))
.

Moreover, from (3.2) it is immediate to check that

∞∑
i=1

(
Ki(A

r, Ahb) + cone
(
v(h)
∞

))
= KN (Ar, Ahb) + cone

(
v(h)
∞

)

so that

K(F, g) =

r−1∑
h=0

(
KN (Ar, Ahb) + cone

(
v(h)
∞

))
.

Hence, the cone K(F, g) has a finite number of extremal vectors, so that it is polyhe-
dral.

Example 1. In order to illustrate the previous theorem, consider the matrices

F = diag (−2, 1,−1,−0.8) , g =

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠ .

In this case we have

A = diag (1,−1,−0.8) , b =

⎛
⎝

1
1
1

⎞
⎠

and, for r = 2 the following limits exist

lim
k→∞

A2kb

‖A2kb‖ = v(0)
∞ =

⎛
⎝

1
1
0

⎞
⎠ lim

k→∞

A2k+1b

‖A2k+1b‖ = v(1)
∞ =

⎛
⎝

1
−1
0

⎞
⎠

and for N = 1 equality (3.2) holds for h = 0, 1 as Figure 3.1 clearly shows. Moreover,
the figure also makes clear that, as shown in the proof of Lemma 3.4, any extremal

vector of the form Aib of K̂
(
A2, b

)
+ v

(0)
∞ and of K̂

(
A2, Ab

)
+ v

(1)
∞ is also an extremal

vector of K(A, b).
Remark 1. The conditions of the previous Lemma may not hold if either the

limits v
(h)
∞ do not exist or condition (3.2) doesn’t hold. As an example of the first

possibility, consider a pair (F, g) such that

A =

⎛
⎝

cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

⎞
⎠ , b =

⎛
⎝

1
1
1

⎞
⎠ .
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A
4

b  A
2

b    b 

Ab    A
3

b     
v
(1)

 

∞

v
(0)

 

∞

. . .

. . . 

A
4

b  A
2

b    b 

Ab    A
3

b     
v
(1)

 

∞

v
(0)

 

∞

. . . 

. . . 

Fig. 3.1. The cones K̂
(
A2, b

)
+ v

(0)
∞ and K̂

(
A2, Ab

)
+ v

(1)
∞ (left) and the cone K(A, b) (right).

If ϕ/π is an irrational number, then the cone K(F, g) is not polyhedral and the v
(h)
∞ ’s

do not exist.
To show this, suppose there exists an invariant polyhedral proper cone and con-

sider any of its extremal vectors v. Since the third component of v remains unchanged
under A and the first two components are rotated by an angle ϕ in the (x1, x2) plane,
then it is easily seen that, as k goes to infinity, the cone

cone
(
v,Av,A2v, . . . , Akv

)

is an ice cream cone, thus contradicting the polyhedrality hypothesis. Analogously,

by taking v = b, we see that the limits v
(h)
∞ do not exist.

As an example of the second possibility, consider a pair (F, g) such that

A = diag (λ1, λ2, λ3) , b =

⎛
⎝

1
1
1

⎞
⎠

with λ1 > λ2 > λ3 > 0. In this case r = 1 and

v(0)
∞ =

⎛
⎝

1
0
0

⎞
⎠ .

If there exists a finite value N such that (3.2) holds, then ANb is a nonnegative linear

combination of the vectors b, Ab, . . . , AN−1b and v
(0)
∞ . Consequently, there exist

nonnegative numbers α0, α1, . . . , αN−1 such that

λN
i − αN−1λ

N−1
i − . . .− α1λi − α0 = 0

holds for i = 1, 2. This is a contradiction since the above polynomial has only one
positive real root from the Descartes rule of signs.

Remark 2. The sum of two cones, as defined in the introduction, coincides with
the set of all finite nonnegative combinations of vectors belonging to the two cones.

Consequently, in condition (3.2), it makes no sense to “subtract” the term cone(v
(h)
∞ )

from each side of the equation. In fact, (3.2) may hold even if

KN+1(A
r, Ahb) = KN (Ar, Ahb)
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does not. To see this it suffices to consider a pair (F, g) such that

A = diag (1, 0.8,−0.8) , b =

⎛
⎝

1
1
1

⎞
⎠ .

In this case r = 1 and

v(0)
∞ =

⎛
⎝

1
0
0

⎞
⎠ .

Consequently, straightforward calculations show that

A2b = 0.64 b + 0.36 v(0)
∞ ,

that is, (3.2) holds with N = 2, while A2b cannot be written as a nonnegative linear
combination of b and Ab, i.e., K2(A, b) �= K3(A, b). Moreover, in this case, Ki(A, b) �=
Ki+1(A, b) for any i > 0.

In what follows we provide the main result of the paper, that is, a spectral char-
acterization of polyhedrality of the cone K(F, g).

Theorem 3.5. Let the pair (F, g) be reachable and ωF > 0. Then K (F, g) is a

polyhedral proper cone in S (F, g)
⊥

if and only if one of the following sets of conditions
holds:

a1. degωF ≤ 2;

a2. the eigenvalues in σ
(2)
F

⋃
σ

(3)
F are among the rth roots of ωr

F for some positive
integer r;

a3. taking the minimal value of r, no nonzero eigenvalue in σ
(4)
F has an argument

which is an integer multiple of 2π/r.
or

b1. degωF = 1;

b2. the dominant eigenvalues of σ
(4)
F are simple;

b3. the eigenvalues in σ
(2)
F

⋃
σ

(3)
F are among the rth roots of ωr

F for some positive

integer r and the dominant eigenvalues of σ
(4)
F are among the sth roots of

ρ(σ
(4)
F )s for some positive integer s;

b4. taking the minimal value of r and s, then no nonzero nondominant eigenvalue

of σ
(4)
F has an argument which is an integer multiple of 2π/r̃, where r̃ is the

least common multiple between r and s.
Proof. The proof is divided into three cases:
Case 1. degωF = 1 and a2, a3 hold;
Case 2. degωF = 2 and a2, a3 hold;
Case 3. degωF = 1 and b2, b3, b4 hold.
(Sufficiency) In order to prove polyhedrality of K(F, g), we will show that for

each of the three cases considered, conditions of Lemma 3.4 hold. In particular, note
that from a2 or b3 and from Lemma 4 in [18], it follows that the limits in Lemma

3.4 exist with v
(i)
∞ �= v

(j)
∞ for i �= j and they are nonzero. Hence, this remains true for

all the three cases above considered. As a consequence, we will show that condition
(3.2) holds for the three cases (see (3.7), (3.10) and (3.13)).
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(Case 1) From condition a2, the dominant eigenvalues of σAr are equal to ωr
F

with degωr
F = 1. Hence, without loss of generality, we can assume

Ar =

(
A11 0
0 A22

)
Ahb =

(
b1
b2

)

with

A11 =

⎛
⎝ J ′′

(
σ

(2)
F

)
0

0 J ′′
(
σ

(3)
F

)
⎞
⎠

r

= ωr
F · I

of appropriate dimension and A22 = J(σ
(4)
F )r. Moreover, ρ(σA22

) = ρ(σ
(4)
F )r < ωr

F

and, from condition a3, A22 has no real positive eigenvalues. Hence, by Lemma 3.11,
there exists a monic polynomial q(λ) such that

g(λ) = (λ− ωr
F ) · pA22

(λ) · q(λ) = λm − αm−1λ
m−1 − . . .− α1λ− α0

with m finite and αk ≥ 0 for k = 0, 1, . . . ,m− 1 and αk > 0 for some k.
Since g(ωr

F ) = 0, then

g(A11) = Am
11 − αm−1A

m−1
11 − . . .− α1A11 − α0I = 0.(3.5)

Moreover, since pA22(A22) = 0, then

g(A22) = Am
22 − αm−1A

m−1
22 − . . .− α1A22 − α0I = 0.(3.6)

From (3.5) and (3.6) it follows that

g(Ar) = (Ar)
m − αm−1 (Ar)

m−1 − . . .− α1A
r − α0I = 0

so that

(Ar)mAhb = αm−1(A
r)m−1Ahb + . . . + α1A

rAhb + α0A
hb,(3.7)

that is, KN+1(A
r, Ahb) = KN (Ar, Ahb) holds with N = m. Finally, in view of Lemma

3.4, K(F, g) is a polyhedral cone.
(Case 2) From condition a2 and a3 and in view of the definition of r, the matrix

Ar can be written, without loss of generality up to a similarity transformation, as

Ar =

⎛
⎝

A11 0 0
0 A22 0
0 0 A33

⎞
⎠ Ahb =

⎛
⎝

b1
b2
b3

⎞
⎠

with

A11 =

⎛
⎜⎜⎜⎜⎜⎝

ωr
F 1
0 ωr

F
0

. . .

0
ωr
F 1
0 ωr

F

⎞
⎟⎟⎟⎟⎟⎠

b1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

b1,11

b1,21
...

bd1,1
1

bd1,2
1

⎞
⎟⎟⎟⎟⎟⎟⎠
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with A11 and A22 = ωr
F · I of appropriate dimensions and A33 = J(σ

(4)
F )r. Moreover,

ρ(σA33
) = ρ(σ

(4)
F )r < ωr

F and, from condition a3, A33 has no real positive eigenvalues.
Hence, by Lemma 3.11, there exists a monic polynomial q(λ) such that

g(λ) = (λ− ωr
F ) · pA33(λ) · q(λ) = λm − αm−1λ

m−1 − . . .− α1λ− α0

with m finite and αk ≥ 0 for k = 0, 1, . . . ,m− 1 and αk > 0 for some k.
Since g(ωr

F ) = 0, then

g(A22) = Am
22 − αm−1A

m−1
22 − . . .− α1A22 − α0I = 0.(3.8)

Moreover, since pA33
(A33) = 0, then

g(A33) = Am
33 − αm−1A

m−1
33 − . . .− α1A33 − α0I = 0.(3.9)

From (3.8) and (3.9) it follows that

(
A22 0
0 A33

)m

= αm−1

(
A22 0
0 A33

)m−1

+ . . .

+ α1

(
A22 0
0 A33

)
+ α0I.

Moreover, note that

lim
k→∞

ArkAhb

‖ArkAhb‖ =

⎛
⎝

v1/ ‖v1‖
0
0

⎞
⎠ = v(h)

∞ with v1 =

⎛
⎜⎜⎜⎜⎜⎝

b1,21

0
...

bd1,2
1

0

⎞
⎟⎟⎟⎟⎟⎠

.

Hence, the following holds

(Ar)mAhb = αmv(h)
∞ + αm−1(A

r)m−1Ahb + . . . + α1A
rAhb + α0A

hb(3.10)

for any h = 0, . . . , r − 1 with

αm = m
‖v1‖
ωr
F

(
ωmr
F − αm−1

m− 1

m
ω

(m−1)r
F − . . .− α1

1

m
ωr
F

)

as one can easily check by substitution. Since

αm
ωr
F

m ‖v1‖
= ωmr

F − αm−1
m− 1

m
ω

(m−1)r
F − . . .− α1

1

m
ωr
F

> ωmr
F − αm−1ω

(m−1)r
F − . . .− α1ω

r
F − α0 = g (ωr

F ) = 0,

then αm > 0. Hence,

KN+1(A
r, Ahb) + cone

(
v(h)
∞

)
= KN (Ar, Ahb) + cone

(
v(h)
∞

)

with N = m holds for any h = 0, . . . , r− 1. Finally, in view of Lemma 3.4, K(A, b) is
a polyhedral cone.
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(Case 3) From conditions b2–b4 and in view of the definition of r̃, the dominant

eigenvalues of σ
Ar̃

are equal to ωr̃
F with degωr̃

F = 1, and the subdominant eigenvalues

are equal to ρ(σ
(4)
F )r̃ with deg ρ(σ

(4)
F )r̃ = 1. Hence, without loss of generality, we can

write

Ar̃ =

⎛
⎝

A11 0 0
0 A22 0
0 0 A33

⎞
⎠ Ahb =

⎛
⎝

b1
b2
b3

⎞
⎠

with

A11 =

⎛
⎝ J ′′

(
σ

(2)
F

)
0

0 J ′′
(
σ

(3)
F

)
⎞
⎠

r̃

= ωr̃
F · I.

A22 = ρ(σ
(4)
F )r̃ · I of appropriate dimensions and

A33 = diag
λi∈σ

(4)

F

|λi|
=ρ(σ
(4)

F
)

(Jdeg λi (λi))
r̃
.

Consequently, ρ(σA33) < ρ(σ
(4)
F )r̃ and, from condition b3, A33 has no real positive

eigenvalues. Hence, by Lemma 3.11, there exists a monic polynomial q(λ) such that

g(λ) = (λ− ρ(σ
(4)
A )r̃) · pA33(λ) · q(λ) = λm − αm−1λ

m−1 − . . .− α1λ− α0

with m finite and αk ≥ 0 for k = 0, 1, . . . ,m− 1.

Since g(ρ(σ
(4)
A )r̃) = 0, then

g(A22) = Am
22 − αm−1A

m−1
22 − . . .− α1A22 − α0I = 0.(3.11)

Moreover, since pA33(A33) = 0, then

g(A33) = Am
33 − αm−1A

m−1
33 − . . .− α1A33 − α0I = 0.(3.12)

From (3.11) and (3.12) it follows that

(
A22 0
0 A33

)m

= αm−1

(
A22 0
0 A33

)m−1

+ . . .

+ α1

(
A22 0
0 A33

)
+ α0I.

Moreover, note that

lim
k→∞

Ar̃kAhb

‖Ar̃kAhb‖
=

⎛
⎝

b1/‖b1‖
0
0

⎞
⎠ = v(h)

∞

with h = 0, . . . , r − 1. Hence, the following holds

(Ar̃)mAhb = αmv(h)
∞ + αm−1(A

r̃)m−1Ahb + . . . + α1(A
r̃)Ahb + α0A

hb(3.13)
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for any h = 0, . . . , r − 1 and with

αm = ‖b1‖ ·
(
ωmr̃
F − αm−1ω

(m−1)r̃
F − . . .− α1ω

r̃
F − α0

)
= ‖b1‖ · g(ωr̃

F ).

Since the polynomial g(λ) has only one real root in ρ(σ
(4)
A )r̃ and limλ→∞ g(λ) = +∞,

then g(ωr̃
F ) > 0, that is, αm > 0. Hence,

KN+1(A
r̃, Ahb) + cone

(
v(h)
∞

)
= KN (Ar̃, Ahb) + cone

(
v(h)
∞

)

with N = m holds for any h = 0, . . . , r− 1. Finally, in view of Lemma 3.4, K(A, b) is
a polyhedral cone.

(Necessity) We begin by proving that if K(A, b) is a polyhedral proper cone and
degωF > 1, then necessarily degωF = 2. Assume then degωF = m ≥ 2 and let

A =

⎛
⎝

ωF 1 0 · · · 0 0
0 A22 0
0 0 A33

⎞
⎠ Ahb =

⎛
⎝

b1
b2
b3

⎞
⎠

with

A22 =

(
Jm−1 (ωF ) 0

0 A∗
22

)
, A∗

22 = diag
λi∈σ

(4)

F
λi 
=0

(Jdeg λi
(λi))

and σA33 contains the remaining eigenvalues of A.
From Lemma 3.4 it follows that there exists a value N such that (3.2) holds for

any h = 0, 1, . . . , r − 1. Since the vector v
(h)
∞ is of the form

v(h)
∞ =

⎛
⎝

∗
0
∗

⎞
⎠ ,

i.e., it has the entries corresponding to A22 equal to zero, then there exist nonnegative
numbers α0, . . . , αN−1 such that the following holds:

ANr+h
22 b2 = αN−1A

(N−1)r+h
22 b2 + . . . + α1A

r+h
22 b2 + α0A

h
22b2.

Let

P =
[
Ah

22b2 Ah+1
22 b2 . . . ANr−1+h

22 b2
]

= Ah
22

[
b2 A22b2 . . . ANr−1

22 b2
]
;

then the matrix A+ solution of the equation A22P = PA+ has a characteristic poly-
nomial equal to

pA+
(λ) = λNr − αN−1λ

(N−1)r − . . .− α1λ
r − α0.

Consequently, from the Descartes rule of signs, the polynomial pA+(λ) has only one
positive real root. Since P is full row-rank,2 then from Lemma 3.10, pA22(λ) di-
vides pA+

(λ), so that also pA22(λ) has only one positive real root, that is, ωF , and
consequently degωF = 2.

2It is immediate to verify that condition (3.2) holds for any M ≥ N so that by choosing N in P
large enough, full-row rankness of P follows from reachability of the pair (A22, b2) and from the fact
that A22 has no zero eigenvalues.
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We are now able to split the proof into two parts: degωF = 1 or degωF = 2.
We begin with degωF = 2, i.e., with the necessity of Case 2. From polyhedrality and
A-invariance of K(F, g), as proved in [1], it follows that condition a2 holds. We will
prove necessity of condition a3 by contradiction. Assume then that there exists an

eigenvalue λ̃ ∈ σ
(4)
F such that λ̃ �= 0 and having an argument ϕ = 2πm/r for some

positive integer m.
Without loss of generality up to a similarity transformation, we can write

A =

⎛
⎜⎜⎜⎜⎝

A11 I 0 0 0
0 A11 0 0 0
0 0 A22 0 0
0 0 0 A33 0
0 0 0 0 A44

⎞
⎟⎟⎟⎟⎠

b =

⎛
⎜⎜⎜⎜⎝

b11
b21
b2
b3
b4

⎞
⎟⎟⎟⎟⎠

with

A11 = diag
λi∈σ

(2)

F

γi∈σ
(3)

F
deg γi=2

(λi) , A22 = diag
λi∈σ

(3)

F
deg λi=1

(λi) , A33 = diag
λi∈σ

(4)

F
λi 
=0

(Jdeg λi
(λi))

and σA44
containing all the zero eigenvalues, if any.

From Lemma 3.4 it follows that there exists a finite value N such that (3.2) holds

for every h = 0, . . . , r − 1. Since the vector v
(h)
∞ has the form

v(h)
∞ =

⎛
⎜⎜⎜⎜⎝

∗
0
0
0
0

⎞
⎟⎟⎟⎟⎠

,

then there exist nonnegative numbers α0, . . . , αN−1 such that the following holds:

ÂNr+hb̂ = αN−1Â
(N−1)r+hb̂ + . . . + α1Â

r+hb̂ + α0Â
hb̂

with

Â =

⎛
⎝

A11 0 0
0 A22 0
0 0 A33

⎞
⎠ b̂ =

⎛
⎝

b21
b2
b3

⎞
⎠ .

Let

P =
[
Âhb̂ Âh+1b̂ . . . ÂNr−1+hb̂

]
= Âh

[
b̂ Âb̂ . . . ÂNr−1b̂

]
,

then the matrix A+ solution of the equation ÂP = PA+ has a characteristic polyno-
mial equal to

pA+
(λ) = λNr − αN−1λ

(N−1)r − . . .− α1λ
r − α0.

Consequently, from the Descartes rule of signs, the polynomial pA+(λ) has only one
positive real root. Since P is full row-rank (see footnote 2), then from Lemma 3.10,
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pÂ(λ) divides pA+
(λ) so that, from the Frobenius theorem (see [5, Theorem 2.203]),

the whole spectrum of A+ goes into itself under any rotation of the complex plane by

2πm/r+, with r+ multiple of r. Since there is a λ̃ with an argument ϕ = 2πm/r for
some positive integer m, then the polynomial pA+

(λ) necessarily has a real positive

root |λ̃| other than ωF , which is a contradiction since pA+(λ) has only one positive
real root.

This concludes the proof of necessity of case 2.
We continue assuming degωF = 1. In view of Lemma 3.4, we consider two

possibilities:

(a) v
(h)
∞ ∈ KN (Ar, Ahb) for every h = 0, . . . , r − 1 so that (3.2) reduces to

KN+1(A
r, Ahb) = KN (Ar, Ahb)

or
(b) v

(h)
∞ /∈ KN (Ar, Ahb) for some h’s, so that

KN+1(A
r, Ahb) + cone

(
v(h)
∞

)
= KN (Ar, Ahb) + cone

(
v(h)
∞

)
.

In what follows we will prove that in possibility (a) necessity of case 1 holds while,
necessity of case 3 does in possibility (b).

We begin with possibility (a). From polyhedrality and A-invariance of K(F, g), as
proved in [1], it follows that condition a2 holds. We will prove necessity of condition

a3 by contradiction. Assume then that there exists an eigenvalue λ̃ ∈ σ
(4)
F such that

λ̃ �= 0 and having an argument ϕ = 2πm/r for some positive integer m.
Without loss of generality up to a similarity transformation, we can write

A =

⎛
⎝

A11 0 0
0 A22 0
0 0 A33

⎞
⎠ b =

⎛
⎝

b1
b2
b3

⎞
⎠(3.14)

with

A11 = diag
λi∈σ

(2)

F
∪σ

(3)

F

(λi) , A22 = diag
λi∈σ

(4)

F
λi 
=0

(Jdeg λi
(λi))

and σA33
containing all the zero eigenvalues, if any.

3Since ρ(σA+
) ≥ ωF > 0, then at least one αk must be positive, so that there exists k ≥ 0 such

that α0 = .... = αk−1 = 0 and αk > 0. Consequently, A+ can be written as

A+ =

(
A+

11 0

A+
21 A+

22

)

with

A+
11 =

⎛
⎜⎝

0 0 . . . 0
1 0 . . . 0

. . .
.
..

0 . . . 1 0

⎞
⎟⎠ , A+

22 =

⎛
⎜⎜⎜⎝

0 0 . . . 0 αk

1 0 . . . 0 αk+1

0 1 0 αk+2

..

.
. . .

..

.
0 . . . 0 1 αN−1

⎞
⎟⎟⎟⎠ .

Since αk > 0, then A+
22 is an irreducible nonnegative matrix (see Theorem 1.3 (d) in [5, p. 27]).

Hence, the Frobenius theorem applies to the submatrix A+
22 and, w.r.t. the rotational symmetry, to

the whole matrix A+ since the spectrum of A+
11 contains only zero eigenvalues.
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From the assumption considered in possibility (a), there exist nonnegative num-
bers α0, . . . , αN−1 such that the following holds:

ÂNr+hb̂ = αN−1Â
(N−1)r+hb̂ + . . . + α1Â

r+hb̂ + α0Â
hb̂

with

Â =

(
A11 0
0 A22

)
b̂ =

(
b1
b2

)
.

Let

P =
[
Âhb̂ Âh+1b̂ . . . ÂNr−1+hb̂

]
= Âh

[
b̂ Âb̂ . . . ÂNr−1b̂

]
,

then the matrix A+ solution of the equation ÂP = PA+ has a characteristic polyno-
mial equal to

pA+(λ) = λNr − αN−1λ
(N−1)r − . . .− α1λ

r − α0.

Consequently, from the Descartes rule of signs, the polynomial pA+
(λ) has only one

positive real root. Since P is full row-rank (see footnote 2), then from Lemma 3.10,
pÂ(λ) divides pA+(λ) so that, from the Frobenius theorem (see [5, Theorem 2.20]
and footnote 3), the whole spectrum of A+ goes into itself under any rotation of the

complex plane by 2πm/r+, with r+ multiple of r. Since there is a λ̃ with an argument
ϕ = 2πm/r for some positive integer m, then the polynomial pA+

(λ) necessarily has

a real positive root |λ̃| other than ωF , which is a contradiction since pA+
(λ) has only

one positive real root. This concludes the proof of necessity of case 1.
Let’s tackle now possibility (b). From polyhedrality and A-invariance of K(F, g),

as proved in [1], it follows that the first statement in condition b3 holds. We will prove
necessity of the remaining conditions (namely, b2, the second statement in b3, and b4 )
under the assumption that condition a3 does not hold. In fact, since in this subcase we
have degωF = 1 and the first statement in condition b3 (which is the same as condition
a2 ) holds, then if condition a3 would hold, then also case 1 would. Hence—as proved
in the sufficiency part of case 1—we would have KN+1(A

r, Ahb) = KN (Ar, Ahb) for
any h = 0, . . . , r − 1. This is a contradiction.

We assume then that there exists an eigenvalue λ̃ ∈ σ
(4)
F such that λ̃ �= 0 and

having an argument ϕ = 2πm/r for some positive integer m.
Without loss of generality up to a similarity transformation, we can write the

matrices A and b as in (3.14).
In this case, there exists a finite value N such that (3.2) holds for every h =

0, . . . , r − 1. Since the vector v
(h)
∞ has the form

v(h)
∞ =

⎛
⎝

∗
0
0

⎞
⎠ ,

then there exist nonnegative numbers α0, . . . , αN−1 such that the following holds:

ANr+h
22 b2 = αN−1A

(N−1)r+h
22 b2 + . . . + α1A

r+h
22 b2 + α0A

h
22b2.

Let

P =
[
Ah

22b2 Ah+1
22 b2 . . . ANr−1+h

22 b2
]

= Ah
22

[
b2 A22b2 . . . ANr−1

22 b2
]
,
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then the matrix A+ solution of the equation A22P = PA+ has a characteristic poly-
nomial equal to

pA+(λ) = λNr − αN−1λ
(N−1)r − . . .− α1λ

r − α0.

Consequently, from the Descartes rule of signs, the polynomial pA+(λ) has only one
positive real root, that is, ρ

(
σA+

)
. Moreover, the polynomial

p̂A+(λ) := λN − αN−1λ
N−1 − . . .− α1λ− α0

has only one positive real root in ρ(σA+)r. Since P is full row-rank (see footnote 2),

then from Lemma 3.10, pA22(λ) divides pA+(λ). Since by assumption pA22(λ̃) = 0,

then p̂A+
(λ̃r) = 0 where λ̃r is positive real, so that ρ(σA+

) = |λ̃|. Finally, since

ρ(σA+) ≥ ρ(σA22) = ρ(σ
(4)
F ), then |λ̃| = ρ(σ

(4)
F ). Hence, from the Frobenius theorem

(see [5, Theorem 2.20] and footnote 3), condition b2 and the second statement of
condition b3 hold. Necessity of condition b4 will be proved by contradiction. Assume

then that there exists an eigenvalue λ̂ ∈ σA22 ⊆ σA+ such that λ̂ �= 0, |λ̂| < ρ(σ
(4)
F )

and having an argument ϕ = 2πm/r̃ for some positive integer m. The whole spectrum
of A+ goes into itself under any rotation of the complex plane by 2πm/r+, with r+

multiple of s. Moreover, since pA22(λ̂) = 0, then p̂A+(λ̂r) = 0 so that all the rth roots

of λ̂r are roots of pA+
(λ). Consequently, since r̃ is the least common multiple between

r and s, then the polynomial pA+
(λ) would necessarily have a real positive root |λ̂|

other then ρ(σ
(4)
F ) which is a contradiction since from the Descartes rule of signs, the

polynomial pA+(λ) has only one positive real root.
This concludes the proof of necessity of case 3.
Example 2. In order to illustrate the above theorem, consider the following pair

F = diag (1, λ2, λ3) , g =

⎛
⎝

1
1
1

⎞
⎠

with λ2, λ3 real and such that |λ3| < |λ2| < 1. Hence, A = F , b = g, ωF = 1 and
degωF = 1. Furthermore, condition a1 holds and condition a2 holds with r = 1.
Lastly, conditions b1 and b2 hold and condition b3 holds with r = 1 and s ≤ 2.

When λ2 = −0.9 and λ3 = −0.6, then also condition a3 holds. Moreover, as

expected, condition b4 fails since the dominant eigenvalue of σ
(4)
F is λ2 = −0.9 so

that s = 2, r̃ = 2 and λ3 = −0.6 has a phase equal to π. Hence, the cone K(A, b) is
polyhedral as shown on the left-hand side of Figure 3.2.

When λ2 = 0.9 and λ3 = −0.8, then condition a3 fails since the eigenvalue
λ2 = 0.9 has a phase equal to 2π. By contrast, condition b3 holds with s = 1 so
that r̃ = 1 and consequently condition b4 holds since λ3 = −0.8 has a phase which is
not an integer multiple of 2π. Hence, the cone K(A, b) is polyhedral as shown in the
middle picture of Figure 3.2.

Finally, when λ2 = −0.9 and λ3 = 0.8, then condition a3 fails since the eigenvalue
λ3 = 0.8 has a phase equal to 2π. Moreover, also condition b4 fails since the dominant

eigenvalue of σ
(4)
F is λ2 = −0.9 so that s = 2, r̃ = 2 and λ3 = 0.8 has a phase which

is an integer multiple of π. Hence, the cone K(A, b) is not polyhedral as shown in the
right-hand side of Figure 3.2.

Note that, when χ = 2 the cone K (F, g) is always polyhedral since obviously any
cone in R

2 is polyhedral. In fact, in this case, the conditions of the theorem are always
met as one can easily check.



REACHABILITY SET WITH POSITIVE CONTROLS 323

b

A
2

b

A
3

b

A
4

b

A
5

b

A
6

b
... ...

v

(0)

∞

Ab

b

Ab

v

(0)

∞

A
2

b

A
3

b

A
4

b

A
5

b

...

b

Ab

A
2

b

A
3

b

A
4

b

A
5

b

v

(0)

∞

Fig. 3.2. Planar section of the cone K(A, b) with the plane x1 = 0 for the three cases considered
in Example 2.

Moreover, from the proof of the previous theorem, immediately follows the next
corollaries which provide a geometrical and the corresponding spectral characteriza-
tions of systems for which the cone K (F, g) is reachable in a finite number of steps.
This property is clearly equivalent to requiring polyhedrality of K̂ (A, b), or that the
condition K (F, g) = K̂ (A, b) holds.

Corollary 3.6. Let the pair (F, g) be reachable and ωF > 0. Then, K̂ (A, b) is

a polyhedral proper cone in S (F, g)
⊥

if and only if there exists a finite value N such
that

KN+1(A, b) = KN (A, b).

Corollary 3.7. Let the pair (F, g) be reachable and ωF > 0. Then, K̂ (A, b) is

a polyhedral proper cone in S (F, g)
⊥

if and only if the following conditions hold:
1. degωF = 1;

2. the eigenvalues in σ
(2)
F

⋃
σ

(3)
F are among the rth roots of ωr

F for some positive
integer r;

3. taking the minimal value of r, no nonzero eigenvalue in σ
(4)
F has an argument

which is an integer multiple of 2π/r.
Moreover, the following theorem characterizes the case in which cone K (F, g) is

reachable in at most n steps, that is, K (F, g) is simplicial.
Theorem 3.8. Let the pair (F, g) be reachable and χ > 0. Then K (F, g) is a

polyhedral proper cone in S (F, g)
⊥

with χ extremal vectors (simplicial) if and only if
the polynomial

p(λ) :=
∏

λi∈σ
(3)

A
∪σ

(4)

A

(λ− λi)

has all nonpositive coefficients.
Note that characterizing states reachable in an infinite number of steps is not

trivial. In fact, as shown in the middle picture of Figure 3.2, there may well be states
reachable in an infinite number of steps even if K (F, g) is polyhedral. It would be
interesting to fully characterize the set of states reachable in an infinite number of
steps which is, to the the best of our knowledge, an open question.

Remark 3. As a concluding remark we note that, in the multiple-input case, the
situation is far more complicated and polyhedrality of K (F,G), in general, does not
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depend only on the spectrum of F , as in the single-input case considered in this paper.
In fact, in this case, the reachable set R (F,G) is

R (F,G) =

m∑
i=1

cl
{
cone

(
gi, Fgi, F

2gi . . .
)}

= S (F,G) ⊕
m∑
i=1

K (F, gi) ,

where m is the number of inputs and gi is the ith column of G. It is immediate to
realize that K (F,G) may be polyhedral even if the cones K (F, gi) are not such.

Appendix.
Lemma 3.9. Let the pair (A, b) be reachable. Then pA (λ) coincides with the

minimal polynomial of A.
Proof. From reachability follows that A is similar to the companion matrix of

its characteristic polynomial pA (λ) so that, from Theorem 3.3.15 in [10, p. 147], the
theorem is proved.

Lemma 3.10. If

AP = PB A ∈ Rn×n, P ∈ Rn×p, B ∈ Rp×p, p ≥ n

with rank (P ) = n, then pA (λ) divides pB (λ).
Proof. First we note that there is no loss of generality in assuming that the

columns of P can be freely rearranged. In fact,

A (PT ) = (PT )T−1BT = (PT )C,

where C = TBT−1 is similar to B, i.e., pB (λ) = pC (λ) being T a permutation matrix
and, as such, invertible. Then

AQ = QC Q = PT =
(
Q1 Q2

)

with Q1 ∈ Rn×n full rank (invertible).
Moreover, let S be the matrix such that J = S−1CS is the real Jordan canonical

form of C. Then we can write

AQS = QSS−1CS → A (QS) = (QS)J

with

QS =
(
Q1S Q2S

)
,

where, in particular, Q1S is full rank (invertible) being such both Q1 and S. Conse-
quently, we can write

A
(
Q1S Q2S

)
=

(
Q1S Q2S

)( J1 ∗
0 J2

)

and, in particular,

AQ1S = Q1SJ1 → A = (Q1S)J1 (Q1S)
−1

so that

pA (λ) = pJ1
(λ) .

The theorem is proved by noting that pB (λ) = pC(λ) = pJ(λ) = pJ1(λ)pJ2(λ).



REACHABILITY SET WITH POSITIVE CONTROLS 325

Lemma 3.11 (see [13]). For any monic polynomial p (λ) of positive degree and
with no positive real roots and for any positive number ρ > max{|λi| : p (λi) = 0},
there exists a monic polynomial qρ(λ) such that

(λ− ρ) · p(λ) · qρ(λ) = λN − αN−1λ
N−1 − . . .− α1λ− α0

for some positive integer N and with αk ≥ 0 for k = 0, 1, . . . , N − 1.
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FOR INVARIANT SUBSPACES∗
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Abstract. Invariant subspaces of structured matrices are sometimes better conditioned with
respect to structured perturbations than with respect to general perturbations. Sometimes they are
not. This paper proposes an appropriate condition number cS, for invariant subspaces subject to
structured perturbations. Several examples compare cS with the unstructured condition number.
The examples include block cyclic, Hamiltonian, and orthogonal matrices. This approach extends
naturally to structured generalized eigenvalue problems such as palindromic matrix pencils.
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1. Introduction. An invariant subspace X ⊆ C
n of a matrix A ∈ C

n×n is a
linear subspace that stays invariant under the action of A, i.e., Ax ∈ X for all x ∈ X .
The computation of such an invariant subspace to solve a real-world problem is vir-
tually always affected by some error, e.g., due to the limitations of finite-precision
arithmetic. Instead of X , it is usually the case that only a (hopefully nearby) invari-
ant subspace X̂ of a slightly perturbed matrix A+E is computed, where E represents
measurement, modeling, discretization, or roundoff errors. It is therefore important
to analyze the influence of perturbations in the entries of A on the accuracy of the
invariant subspace X . Stewart [33, 35] developed such a perturbation analysis, yield-
ing a measure on the worst-case sensitivity of X . This measure, the condition number
c(X ), is most appropriate if the only information available on E is that its norm is
below a certain perturbation threshold ε. Often, however, more information is avail-
able, i.e., it is known that the perturbation E preserves some structure of A. For
example, if A is a real matrix, then it is reasonable to assume that E is also a real
matrix. Also, for many classes of structured eigenvalue problems, such as Hamilto-
nian eigenvalue problems, it is more natural to study and analyze perturbations that
respect the structure.

In this paper, we analyze the influence of structured perturbations: A + E ∈ S,
where S is a linear matrix subspace or a smooth submanifold of C

n×n or R
n×n. This

will lead to the notion of a structured condition number cS(X ) for an invariant subspace
X . It occasionally happens that cS(X ) � c(X ), in which case the standard condition
number c(X ) becomes an inappropriate measure on the actual worst-case sensitivity
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of X . An extreme example is provided by

A =

⎡
⎢⎢⎣

0 −1 − α 2 0
1 + α 0 0 2

0 0 0 1 − α
0 0 −1 + α 0

⎤
⎥⎥⎦ , X = span

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

,(1.1)

where α ≥ 0 is considered to be tiny. While c(X ) = 1
2α , we will see that the struc-

tured condition number is given by cS(X ) = 1/2 if the set S of perturbed matrices is

restricted to matrices of the form A+E =
[
Â11

Â21

Â12

Â22

]
with Âij =

[
βij

−γij

γij

βij

]
for some

βij , γij ∈ R.
Structured condition numbers for eigenvectors have been studied in [14, 17] and

for invariant subspaces in [24, 26, 39], mostly for special cases. The (structured)
perturbation analysis of quadratic matrix equations is a closely related area, which is
comprehensively treated in [23, 40]. In this paper, we aim to provide a more general
framework for studying structured condition numbers for invariant subspaces, which
applies to all structures that form smooth manifolds.

The rest of this paper is organized as follows. In section 2, we briefly summarize
known first-order perturbation results for invariant subspace along with associated
notions, such as Sylvester operators and canonical angles. Two conceptually different
approaches to the structured perturbation analysis of invariant subspaces for linear
structures are described in section 3. One approach is based on a Kronecker product
formulation and pattern matrices, much in the spirit of [9, 14, 22, 31, 41]. Although
such an approach yields a computable formula for the structured condition number
cS(X ), it gives little or no first hand information on the relationship between cS(X )
and c(X ). The other approach, possibly offering more insight into this relationship, is
based on the observation that for several relevant structures, the Sylvester operator
associated with an invariant subspace admits an orthogonal decomposition into two
operators, one of them is confined to the structure. This property also allows one
to develop global perturbation results and to deal with invariant subspaces that are
stable under structured perturbations but unstable under unstructured perturbations.
Both approaches extend to structures that form smooth manifolds, as shown in sec-
tion 3.4. Illustrating the results, section 4 explains how structured condition numbers
for product, Hamiltonian, and orthogonal eigenvalue problems can be derived in a
considerably simple manner. The results extend to deflating subspaces of generalized
eigenvalue problems; see section 5 and apply to structured matrix pencils including
palindromic matrix pencils.

2. Preliminaries. Given a k-dimensional invariant subspace X of a matrix A ∈
C

n×n, we need some basis for X to begin with. Let the columns of the matrix
X ∈ C

n×k form such a basis. It is convenient to assume that this basis is orthonormal,
which implies that XHX equals the k × k identity matrix Ik. If the columns of
X⊥ ∈ C

n×k form an orthonormal basis for X⊥, then the orthogonal complement of
X , then A has a block Schur decomposition:

[X,X⊥]HA[X,X⊥] =

[
A11 A12

0 A22

]
,(2.1)

where A11 ∈ C
k×k and A22 ∈ C

(n−k)×(n−k).
An entity closely associated with X is the so-called Sylvester operator

T : R �→ A22R−RA11.(2.2)
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This operator is invertible if and only if A11 and A22 have no eigenvalue in common,
i.e., λ(A11) ∩ λ(A22) = ∅; see [36, Thm. V.1.3]. The separation of A11 and A22,
sep(A11, A22), is defined as the smallest singular value of T:

sep(A11, A22) := min
R �=0

‖T(R)‖F
‖R‖F

= min
R �=0

‖A22R−RA11‖F
‖R‖F

.(2.3)

If T is invertible, this definition implies sep(A11, A22) = 1/‖T−1‖, where ‖ · ‖ is the
norm on the space of linear operators R

k×(n−k) → R
k×(n−k) induced by the Frobenius

norm. Note that neither the invertibility of T nor the value of sep(A11, A22) depend on
the choice of orthonormal bases for X and X⊥. This justifies the following definition.

Definition 2.1. An invariant subspace is called simple if the associated Sylvester
operator is invertible.

We are now prepared to state a first-order perturbation expansion for simple
invariant subspaces, which can be proved by the implicit function theorem [37, 39, 25].

Theorem 2.2. Let A have a block Schur decomposition of the form (2.1) and
assume the invariant subspace X spanned by the columns of X to be simple. Let
A+E ∈ B(A) be a perturbation of A, where B(A) ⊂ C

n×n is a sufficiently small open
neighborhood of A. Then there exists a uniquely defined analytic function f : BA →
C

n×k so that X = f(A) and the columns of X̂ = f(A + E) form a (not-necessarily
orthonormal) basis of an invariant subspace of A + E. Moreover, XH(X̂ − X) = 0
and we have the expansion

X̂ = X −X⊥T−1(XH
⊥EX) + O(‖E‖2

F ),(2.4)

with the Sylvester operator T : R �→ A22R−RA11.

2.1. Canonical angles, a perturbation bound, and c(X ). In order to ob-
tain perturbation bounds and condition numbers for invariant subspaces we require
the notions of angles and distances between two subspaces.

Definition 2.3. Let the columns of X and Y form orthonormal bases for the
k-dimensional subspaces X and Y, respectively, and let σ1 ≤ σ2 ≤ · · · ≤ σk de-
note the singular values of XHY . Then the canonical angles between X and Y are
defined as θi(X ,Y) := arccosσi for i = 1, . . . , k. Furthermore, we set Θ(X ,Y) :=
diag(θ1(X ,Y), . . . , θk(X ,Y)).

Canonical angles can be used to measure the distance between two subspaces. In
particular, it can be shown that any unitarily invariant norm ‖ · ‖γ on C

k×k defines a
unitarily invariant metric dγ on the space of k-dimensional subspaces via dγ(X ,Y) =
‖ sin[Θ(X ,Y)]‖γ ; see [36, p. 93].

In the case that one of the subspaces is spanned by a nonorthonormal basis, as
in Theorem 2.2, the following lemma provides a useful tool for computing canonical
angles.

Lemma 2.4 (see [36]). Let X be spanned by the columns of [Ik, 0]H , and Y by the
columns of [Ik, R

H ]H . If σ1 ≥ σ2 ≥ · · · ≥ σk denote the singular values of R, then
θi(X ,Y) = arctanσi for i = 1, . . . , k.

This yields the following perturbation bound for invariant subspaces.
Corollary 2.5. Under the assumptions of Theorem 2.2,

‖Θ(X , X̂ )‖F ≤ ‖E‖F
sep(A11, A22)

+ O(‖E‖2
F ),(2.5)

where X̂ = range(X̂).
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Proof. Without loss of generality, we may assume X = [I, 0]T . Since XT (X̂ −
X) = 0 the matrix X̂ must have the form [I,RH ]H for some R ∈ C

(n−k)×k. Together
with the perturbation expansion (2.4) this implies

‖R‖F = ‖X̂ −X‖F ≤ ‖E‖F / sep(A11, A22).

Inequality (2.5) is proved by applying Lemma 2.4 combined with the expansion
arctan z = z + O(z3).

The derived bound (2.5) is approximately tight. To see this, let V be a matrix
such that ‖V ‖F = 1 and ‖T−1(V )‖F = 1/ sep(A11, A22). Plugging E = εX⊥V XH

with ε > 0 into the perturbation expansion (2.4) yields

‖Θ(X , X̂ )‖F = ‖X̂ −X‖F + O(‖X̂ −X‖3
F ) = ε/ sep(A11, A22) + O(ε2).

Hence, we obtain the following condition number for a simple invariant subspace X :

c(X ) := lim
ε→0

sup
{
‖Θ(X , X̂ )‖F /ε : E ∈ C

n×n, ‖E‖F ≤ ε
}

(2.6)

= 1/ sep(A11, A22) = ‖T−1‖;

see also [33, 36]. The condition number c(X ) extends to invariant subspaces X which
are not simple by the convention c(X ) = ∞. Unlike eigenvalues, invariant subspaces
with infinite condition numbers are generally discontinuous with respect to changes
in the matrix entries, i.e., they are unstable under unstructured perturbations [36].

2.2. On the computation of sep. To obtain a computable formula for the
quantity sep(A11, A22), a convenient (but computationally expensive) approach is to
express the Sylvester operator T, see (2.2), in terms of Kronecker products:

vec(T(R)) = KT · vec(R),(2.7)

where the k(n− k) × k(n− k) matrix KT is given by

KT = Ik ⊗A22 −AT
11 ⊗ In−k.(2.8)

Here, “⊗” denotes the Kronecker product of two matrices and the vec operator stacks
the columns of a matrix in their natural order into one long vector [12]. Note that AT

11

denotes the complex transpose of A11. Combining (2.3) with (2.7) yields the formula

sep(A11, A22) = σmin(KT) = σmin(Ik ⊗A22 −AT
11 ⊗ In−k),(2.9)

where σmin denotes the smallest singular value of a matrix.
Computing the separation based on a singular value decomposition of KT is

costly in terms of memory and computational time. A cheaper estimate of sep can be
obtained by applying a norm estimator [15] to K−1

T . This amounts to the solution of
a few linear equations KTx = c and KH

T x = d for particular chosen right-hand sides
c and d or, equivalently, the solution of a few Sylvester equations A22X −XA11 = C
and AH

22X − XAH
11 = D. This approach becomes particularly attractive when A11

and A22 are already in Schur form; see [1, 5, 18, 19].

3. The structured condition number cS(X ). The condition number c(X )
for a simple invariant subspace X of A provides a first-order bound on the sensitivity
of X . This bound is strict in the sense that for any sufficiently small ε > 0 there exists
a perturbation E with ‖E‖F = ε such that ‖Θ(X , X̂ )‖F ≈ c(X )ε. If, however, it is
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known that the set of admissible perturbations is restricted to a subset S ⊆ C
n×n,

then c(X ) may severely overestimate the actual worst-case sensitivity of X . To avoid
this effect, we introduce an appropriate notion of structured condition numbers in the
sense of Rice [32] as follows.

Definition 3.1. Let S ⊆ C
n×n and let X be an invariant subspace of A ∈ S.

Then the structured condition number for X with respect to S is defined as

cS(X ) := lim
ε→0

sup
A+E∈S

‖E‖F ≤ε

inf{‖Θ(X , X̂ )‖F /ε : X̂ is an invariant subspace of A + E}.

Note that the structured condition number cS(X ) may be finite even when X
is not simple. This reflects the fact that (as in (1.1) with “α = 0”) an invariant
subspace may be unstable with respect to unstructured perturbation (c(X ) = ∞) but
stable with respect to structured perturbations (cS(X ) < ∞). If S = C

n×n, then
cS(X ) = c(X ).

If X is simple, then Definition 3.1 simplifies to

cS(X ) = lim
ε→0

sup
{
‖Θ(X , X̂ )‖F /ε : A + E ∈ S, ‖E‖F ≤ ε

}
,(3.1)

where X̂ is defined in the sense of Theorem 2.2.
As the supremum in (3.1) is taken over a set which is potentially smaller than for

the unstructured condition number in (2.6), it is clear that cS(X ) ≤ c(X ). Much of
the following discussion will be concerned with the question of how far can cS(X ) be
below c(X ). As a first step, we provide a useful connection between the structured
condition number and T−1.

Lemma 3.2. Let X be a simple invariant subspace of a matrix A corresponding to
a block Schur decomposition of the form (2.1). Then the structured condition number
for X with respect to S ⊆ C

n×n satisfies

cS(X ) = lim
ε→0

sup
{
‖T−1(XH

⊥EX)‖F /ε : A + E ∈ S, ‖E‖F ≤ ε
}
,(3.2)

where T is the Sylvester operator T : R �→ A22R−RA11.
Proof. This statement can be concluded from Theorem 2.2 along the line of

arguments that led to the expression (2.6) for the standard condition number.

3.1. A Kronecker product approach. In the following, we consider pertur-
bations that are linearly structured, i.e., E is known to belong to some linear matrix
subspace L. In this case, Lemma 3.2 implies

cA+L(X ) = sup
{
‖T−1(XH

⊥EX)‖F : E ∈ L, ‖E‖F = 1
}
,(3.3)

provided that X is simple.
The Kronecker product representation of T described in section 2.2 can be used

to turn (3.3) into a computable formula for cA+L(X ). Very similar approaches have
been used to obtain expressions for structured condition numbers in the context of
eigenvalues [14, 22, 31, 41] and matrix functions [9]. Given an m-dimensional linear
matrix subspace L ⊆ K

n×n with K ∈ {R,C}, one can always find an n2 ×m pattern
matrix ML such that for every E ∈ L there exists a uniquely defined parameter vector
p ∈ K

m with

vec(E) = MLp, ‖E‖F = ‖p‖2.
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This implies

vec(T−1(XH
⊥EX)) = K−1

T (XT ⊗XH
⊥ ) vec(E) = K−1

T (XT ⊗XH
⊥ )MLp,(3.4)

where KT is defined as in (2.8). Consequently, we have the formula

cA+L(X ) = sup
‖p‖2=1

‖K−1
T (XT ⊗XH

⊥ )MLp‖2 = ‖K−1
T (XT ⊗XH

⊥ )ML‖2,(3.5)

provided that either K = C or all of K, A, and X are real.
If K = R but A or X is complex, then problems occur because the supremum

in (3.5) is taken with respect to real vectors p but K−1
T (XT ⊗ XH

⊥ )M could be a
complex matrix. Nevertheless, one has the following bounds to address such cases;
see also [6].

Lemma 3.3. Let L ⊆ R
n×n be a linear matrix space with pattern matrix ML and

let X be a simple invariant subspace of A ∈ C
n×n. Then

‖K−1
T (XT ⊗XH

⊥ )ML‖2/
√

2 ≤ cA+L(X ) ≤ ‖K−1
T (XT ⊗XH

⊥ )ML‖2.

Proof. Let B = K−1
T (XT ⊗XH

⊥ )ML and decompose B = B(R) + ıB(I) with real
matrices B(R) and B(I). Then

1√
2

∥∥∥∥
[

BR −BI

BI BR

]∥∥∥∥
2

≤
∥∥∥∥
[

BR

BI

]∥∥∥∥
2

≤
∥∥∥∥
[

BR −BI

BI BR

]∥∥∥∥
2

= ‖B‖2.

Using
∥∥∥
[
BR

BI

]∥∥∥
2

= cA+L(X ), this concludes the proof.

3.2. An orthogonal decomposition approach. Although (3.5) provides an
explicit expression for cA+L(X ), it tells little about the relationship to the unstruc-
tured condition number c(X ). In this section, we provide an alternative approach by
decomposing the associated Sylvester operator T : R �→ A22R − RA11 with respect
to the structure.

For this purpose, assume the invariant subspace X to be simple, and let the
columns of X and X⊥ form orthonormal bases of X and X⊥, respectively. We set

N := {XH
⊥EX : E ∈ L},

which can be considered as the structure induced by L in the (2, 1) block in a block
Schur decomposition (2.1). Moreover, let M denote the preimage of N under T. As
we assume X to be simple, we can simply write M := T−1(N ). Lemma 3.2 shows
that the structured condition number of X is given by

cA+L(X ) = ‖T−1
s ‖,

where Ts is the restriction of T to M → N , i.e., Ts := T
∣∣
M→N . The operator

Ts can be considered as the part of T that acts on the linear spaces induced by the
structure.

In all examples considered in this paper, we additionally have the property that
the operator T� : Q �→ AH

22Q − QAH
11 satisfies T� : N → M. Note that T� is the

Sylvester operator dual to T:

〈T(R), Q〉 = 〈R,T�(Q)〉
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with the matrix inner product 〈X,Y 〉 = trace(Y HX). This implies T : M⊥ → N⊥,
where ⊥ denotes the orthogonal complement w.r.t. the matrix inner product. Hence,
T decomposes orthogonally into Ts and Tu := T

∣∣
M⊥→N⊥ , and we have

c(X ) = max{‖T−1
s ‖, ‖T−1

u ‖}.(3.6)

Hence, comparing c(X ) with cA+L(X ) amounts to comparing ‖T−1
u ‖ with ‖T−1

s ‖.
Remark 3.4. The conditions T : M → N and T� : N → M imply T−1|N→M =

T−1
s and T−�|M→N = T−�

s . Hence ‖T−1
s ‖ =

√
‖(T−� ◦ T−1)|N→N ‖, and the power

method can be applied to T−� ◦ T−1 in order to estimate ‖T−1
s ‖.

Example 3.5. Consider the embedding of a complex matrix B + ıC, with B,C ∈
R

n×n, into a real 2n×2n matrix of the form A =
[

B
−C

C
B

]
. Let the columns of Y + ıZ

and Y⊥ + ıZ⊥, where Y,Z ∈ R
n×k and Y⊥, Z⊥ ∈ R

n×(n−k), form orthonormal bases
for an invariant subspace of B+ıC and its orthogonal complement, respectively. Then

the columns of X =
[

Y
−Z

Z
Y

]
and X⊥ =

[
Y⊥
−Z⊥

Z⊥
Y⊥

]
form orthonormal bases for an

invariant subspace X of A and X⊥, respectively. This corresponds to the block Schur
decomposition

[X,X⊥]TA[X,X⊥] =:

[
A11 A12

0 A22

]
=

⎡
⎢⎢⎣

B11 C11 B12 C12

−C11 B11 −C12 B12

0 0 B22 C22

0 0 −C22 B22

⎤
⎥⎥⎦ ,

and the associated Sylvester operator is given by T : R �→ A22R−RA11.

If we consider perturbations having the same structure as A, then L =
{[

F
−G

G
F

]}

and

N := XT
⊥LX =

{[
F21 G21

−G21 F21

]}
, N⊥ =

{[
F21 G21

G21 −F21

]}
.

Moreover, we have T : N → N and T� : N → N . The restricted operator Ts :=
T
∣∣
N→N becomes singular only if B11 + ıC11 and B22 + ıC22 have eigenvalues in

common, while Tu := T
∣∣
N⊥→N⊥ becomes singular if B11 + ıC11 and B22 − ıC22 have

eigenvalues in common. Thus, there are situations in which the unstructured condition
number c(X ) = max{‖T−1

s ‖, ‖T−1
u ‖} can be significantly larger than the structured

condition number cS(X ) = cA+L(X ) = ‖T−1
s ‖, e.g., if ıγ is nearly an eigenvalue of

B11 + ıC11 while −ıγ is nearly an eigenvalue of B22 + ıC22 for some γ ∈ R.
The introductionary example (1.1) is a special case of Example 3.5, where the

unstructured condition number tends to infinity as the parameter α tends to zero.
The results above imply that the structured condition number is given by

cS(X ) = inf
|β|2+|γ|2=1

{∥∥∥∥
[

0 1 − α
−1 + α 0

] [
β γ
−γ β

]

−
[

β γ
−γ β

] [
0 −1 − α

1 + α 0

] ∥∥∥∥
F

}−1

=
1

2
.

There is evidence to believe that cS(X ) = 1/2 holds even if α = 0. However, all our
arguments so far rest on the perturbation expansion in Theorem 2.2, which requires
the invariant subspace to be simple; a condition that is not satisfied if α = 0. This
restriction will be removed in the following section by adapting the global perturbation
analysis for invariant subspaces proposed by Stewart [35] and refined by Demmel [10];
see also [8].
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3.3. Global perturbation bounds. In addition to the block Schur decompo-
sition (2.1) we now consider the perturbed block Schur decomposition

[X,X⊥]H(A + E)[X,X⊥] =

[
A11 + E11 A12 + E12

E21 A22 + E22

]
=:

[
Â11 Â12

E21 Â22

]
.(3.7)

In order to obtain a formula for X̂, a basis for the perturbed invariant subspace X̂
close to X = span(X), we look for an invertible matrix of the form W =

[
I

−R
0
I

]
so

that

W−1

[
Â11 Â12

E21 Â22

]
W =

[
Â11 − Â12R Â12

E21 + RÂ11 − Â22R−RÂ12R Â22 + RÂ12

]

is in block upper triangular form. This implies that R is a solution of the algebraic
Riccati equation

Â22R−RÂ11 + RÂ12R = E21.(3.8)

To solve this quadratic matrix equation and for deriving the structured condition
number with respect to a linear matrix space L we need to require the following two
conditions on L.

A1: Let N = {XH
⊥ FX : F ∈ L} and T̂ : R �→ Â22R − RÂ11. Then there

exists a linear matrix space M, having the same dimension as N , such that
T̂ : M → N and RÂ12R ∈ N for all R ∈ M.

A2: The restricted operator T̂s := T̂
∣∣
M→N is invertible.

Theorem 3.6. Assume that A1 and A2 hold. If (4‖T̂−1
s ‖2 ‖Â12‖F ‖E21‖F ) < 1,

then there exists a solution R ∈ M of the quadratic matrix equation (3.8) with

‖R‖F ≤ 2‖T̂−1
s ‖ ‖E21‖F

1 +

√
1 − 4‖T̂−1

s ‖2 ‖Â12‖F ‖E21‖F
(3.9)

< 2‖T̂−1
s ‖ ‖E21‖F .

Proof. The result can be proved by constructing an iteration

R0 ← 0, Ri+1 ← T̂−1
s (E21 −RiÂ12Ri),

which is well defined because Ri ∈ M implies RiÂ12Ri ∈ N . This approach is very
similar to the technique used by Stewart; see [33, 35] or [36, Thm. V.2.11]. In fact, it
can be shown in precisely the same way as in [36, Thm. V.2.11] that all iterates Ri

satisfy a bound of the form (3.9) and converge to a solution of (3.8).
Having obtained a solution R of (3.8), a basis for an invariant subspace X̂ of A+E

is given by X̂ = X − X⊥R. Together with Lemma 2.4, this leads to the following
global version of Corollary 2.5.

Corollary 3.7. Under the assumptions of Theorem 3.6 there exists an invariant
subspace X̂ of A + E so that

‖ tan Θ(X , X̂ )‖F ≤ 2‖T̂−1
s ‖ ‖E21‖F

1 +

√
1 − 4‖T̂−1

s ‖2 ‖Â12‖F ‖E21‖F
.(3.10)
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The quantity ‖T̂−1
s ‖ in the bound (3.10) can be related to ‖T−1

s ‖, the norm of
the inverse of the unperturbed Sylvester operator, using the following lemma.

Lemma 3.8. Assume that A1 holds, and that the Sylvester operator T : R �→
A22R − RA11 associated with the unperturbed block Schur decomposition (2.1) also
satisfies T : M → N . If Ts := T

∣∣
M→N is invertible and 1/‖T−1

s ‖ > ‖E11‖F +

‖E22‖F , then T̂s is also invertible and satisfies

‖T̂−1
s ‖ ≤ ‖T−1

s ‖
1 − ‖T−1

s ‖(‖E11‖F + ‖E22‖F )
.(3.11)

Proof. Under the given assumptions we have

‖I − T−1
s ◦ T̂s‖ = sup

R∈M
‖R‖F =1

‖T−1
s (E22R−RE11)‖F ≤ ‖T−1

s ‖(‖E11‖F + ‖E22‖F ) < 1.

Thus, the Neumann series

∞∑
i=0

(I − T−1
s ◦ T̂s)

i ◦ T−1
s

converges to T̂−1
s , which proves (3.11).

Combining Corollary 3.7 with the expansion arctan z = z+O(z3) and Lemma 3.8
yields

‖Θ(X , X̂ )‖F ≤ ‖T−1
s ‖ ‖E‖F + O(‖E‖2

F ).(3.12)

This implies that cA+L(X ), the structured condition number for X , is bounded from
above by ‖T−1

s ‖, even if the operator T itself is not invertible. To show that the
structured condition number and ‖T−1

s ‖ are actually equal, we require the extra
assumption that T� : N → M.

Theorem 3.9. Assume that A1 holds with the same matrix space M for all T̂
corresponding to a perturbation E ∈ L. Moreover, assume that the Sylvester operator
T : R �→ A22R−RA11 additionally satisfies T� : N → M and that Ts := T

∣∣
M→N is

invertible. Then cA+L(X ) = ‖T−1
s ‖.

Proof. By Lemma 3.8, it follows that T̂s is invertible for all sufficiently small
perturbations E. Thus, the discussion provided above proves cA+L(X ) ≤ ‖T−1

s ‖. It
remains to construct perturbations E ∈ L so that

lim
‖E‖F→0

‖Θ(X , X̂ )‖F /‖E‖F ≥ ‖T−1
s ‖,

where X̂ denotes an invariant subspace of A + E nearest to X . For this purpose, we
choose E21 ∈ N such that ‖E21‖F = 1, ‖T−1(E21)‖F = ‖T−1

s ‖, and consider the
perturbation E = εX⊥E21X

H . Because of (3.12) we may assume that the nearest
invariant subspace X̂ of A+E satisfies ‖Θ(X , X̂ )‖2 < π/2 for sufficiently small ε > 0.
In other words, none of the vectors in X̂ is orthogonal to X . This implies the existence
of a matrix R such that the columns of X̂ = X−X⊥R form a basis for X̂ . Equivalently,
R satisfies the matrix equation

T(R) + RA12R = εE21.

If we decompose R = Rs +Ru, where Rs ∈ M and Ru ∈ M⊥, then T(Rs) ∈ N while
T� : N → M implies T(Ru) ∈ N⊥. Similarly, RA12R = Qs + Qu with Qs ∈ N and
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Qu ∈ N⊥. Consequently, T(Rs) + Qs = εE21 and since ‖Qs‖F = O(ε2) it follows
that

lim
ε→0

‖R‖F /ε ≥ lim
ε→0

‖Rs‖F /ε = ‖T−1(E21)‖F = ‖T−1
s ‖.

Combining this inequality with ‖Θ(X , X̂ )‖F = ‖R‖F + O(ε2) yields the desired
result.

Let us briefly summarize the discussion on structured condition numbers. If X is
simple, then cA+L(X ) is given by ‖T−1

s ‖. This equality also holds for the case that X is
not simple but stable under structured perturbations, provided that the assumptions
of Theorem 3.9 are satisfied. It is easy to see that all these extra assumptions are
satisfied by the introductory example (1.1), showing that cA+L(X ) = 1/2 also holds
for α = 0.

3.4. Extension to nonlinear structures. So far we have mainly considered
structures S that form (affine) linear matrix spaces. Nevertheless, the results from the
previous subsections can be used to address a smooth manifold S by observing that
the structured condition number with respect to S equals the one with respect to the
tangent space of S at A. This is a consequence of the following theorem, which is much
in the spirit of the corresponding result in [22, Thm. 2.1] for structured eigenvalue
condition numbers.

Theorem 3.10. Let S be a smooth real or complex manifold and let X be a
simple invariant subspace of A ∈ S corresponding to a block Schur decomposition of
the form (2.1). Then the structured condition number for X with respect to S satisfies

cS(X ) = sup
{
‖T−1(XH

⊥EX)‖F : E ∈ TAS, ‖E‖F = 1
}
,(3.13)

where T is the Sylvester operator T : R �→ A22R−RA11 and TAS is the tangent space
of S at A.

Proof. Let E ∈ TAS with ‖E‖F = 1. Then there is a sufficiently smooth curve
GE : (−ε, ε) → K

n×n (K = R or C) satisfying GE(0) = 0, G′
E(0) = E and A+GE(t) ∈

S for all t. We have GE(t) = Et + O(|t|2) and, by Lemma 3.2,

cA+GE(·)(X ) = lim
ε→0

sup
{
‖T−1(XH

⊥GE(t)X)‖F /ε : |t| ≤ ε
}

= lim
ε→0

sup
{
‖T−1(XH

⊥EtX)‖F /ε : |t| ≤ ε
}

= ‖T−1(XH
⊥EX)‖F .

The curves A + GE(·) form a covering of an open neighborhood of A ∈ S, implying

cS(X ) = sup
{
cA+GE(·)(X ) : E ∈ TAS, ‖E‖F = 1

}
,

which proves (3.13).
Theorem 3.10 admits the derivation of an explicit expression for cS(X ), e.g., by

applying the Kronecker product approach from section 3.1 to TAS. This requires
the computation of a pattern matrix for TAS; an issue which has been discussed for
automorphism groups in [22].

4. Examples. In this section, we illustrate the applicability of the theory de-
veloped in the preceding section for product, Hamiltonian, and orthogonal eigenvalue
problems.
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4.1. Block cyclic matrices. Let us consider a matrix product

Π = A(p)A(p−1) · · ·A(1),

where A(1), . . . , A(p) ∈ C
n×n. Computing invariant subspaces of matrix products has

applications in several areas, such as model reduction, periodic discrete-time systems,
and bifurcation analysis; see [42] for a recent survey. In many of these applications
it is reasonable to consider factorwise perturbations, i.e., the perturbed product Π =
(A(p) + E(p))(A(p−1) + E(p−1)) · · · (A(1) + E(1)). What seems to be a multilinearly
structured eigenvalue problem can be turned into a linearly structured eigenvalue
problem associated with the block cyclic matrix

A =

⎡
⎢⎢⎢⎢⎣

0 A(p)

A(1) . . .

. . .
. . .

A(p−1) 0

⎤
⎥⎥⎥⎥⎦
.

To see this, let the columns of the block diagonal matrix X = X(1)⊕X(2)⊕· · ·⊕X(p)

with X(1), . . . , X(p) ∈ C
n×k form a basis for an invariant subspace X of A. By direct

computation, it can be seen that the columns of X(1) form a basis for an invariant
subspace of Π. Vice versa, the periodic Schur decomposition [4, 13] shows that any
basis X(1) for an invariant subspace of Π can be extended to a basis X(1) ⊕X(2) ⊕
· · · ⊕X(p) for an invariant subspace X of A.

To perform a structured perturbation analysis for an invariant subspace X ad-
mitting an orthonormal basis X = X(1) ⊕X(2) ⊕ · · · ⊕X(p), we first note that there

is an orthonormal basis X⊥ of X⊥ having the form X⊥ = X
(1)
⊥ ⊕X

(2)
⊥ ⊕ · · · ⊕X

(p)
⊥ .

This leads to the block Schur decomposition

[X,X⊥]TA[X,X⊥] =

[
A11 A12

0 A22

]
,

where A11 ∈ cyc(k, k, p), A12 ∈ cyc(k, n − k, p), A22 ∈ cyc(n − k, n − k, p), and
cyc(n1, n2, p) denotes the set of p× p block cyclic matrices with n1 × n2 blocks. The
corresponding Sylvester operator is given by T : R �→ A22R−RA11.

Factorwise perturbations in Π correspond to block cyclic perturbations in A,
i.e., S = cyc(n, n, p). The set N = XT

⊥SX coincides with cyc(n− k, k, p) and we have
T : M → N , where M equals diag(n−k, k, p), the set of p×p block diagonal matrices
with (n − k) × k blocks. Moreover, it can be directly verified that T� : N → M.
Letting Ts = T

∣∣
M→N and Tu = T

∣∣
M⊥→N⊥ , we thus have cS(X ) = ‖T−1

s ‖ and

c(X ) = max{‖T−1
s ‖, ‖T−1

u ‖}. Note that M⊥, N⊥ coincide with the set of all p × p
block matrices with (n− k) × k blocks that are zero in their block diagonal or block
cyclic part, respectively.

Although Ts is invertible if and only if T is invertible [25], the following exam-
ple reveals that there may be significant difference between ‖T−1

s ‖ and ‖T−1‖ (and
consequently between the structured and unstructured condition numbers for X ).

Example 4.1 (see [25]). Let p = 2, A11 =
[
0
1

0
0

]
, and A22 =

[
0
D

C
0

]
, where

C =

[
105 105

0 10−5

]
, D =

[
10−5 0

0 105

]
.
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Then the structured condition number is given by

cS(X ) =

∥∥∥∥∥
[

C −I2
0 D

]−1
∥∥∥∥∥

2

=
√

2 × 105,

while the unstructured condition number is much higher,

c(X ) = max

{
cS(X ),

∥∥∥∥∥
[

D −I2
0 C

]−1
∥∥∥∥∥

2

}
= 1010.

Other and more detailed approaches to the perturbation analysis for invariant
subspaces of (generalized) matrix products, yielding similar results, can be found
in [3, 27].

4.2. Hamiltonian matrices. A Hamiltonian matrix is a 2n × 2n matrix A of
the form

A =

[
−B G
Q BT

]
, G = GT , Q = QT ,

where B,G,Q ∈ R
n×n. Hamiltonian matrices arise from, e.g., linear-quadratic opti-

mal control problems and certain quadratic eigenvalue problems; see [2, 29] and the
references therein. A particular property of A is that its eigenvalues are symmetric
with respect to the imaginary axis. Hence, if A has no purely imaginary eigenvalues,
there are n eigenvalues having negative real part. The invariant subspace X belonging
to these n eigenvalues is called the stable invariant subspace. For all x ∈ X we have

Jx ⊥ X with J =
[

0
−In

In
0

]
, a property which makes X an isotropic vector space [30].

If the columns of X ∈ R
2n×n form an orthonormal basis for X , the isotropy of X

implies that [X, JX] is an orthogonal matrix and we have the structured block Schur
decomposition

[X,X⊥]TA[X,X⊥] =

[
−B̃ G̃

0 B̃T

]
, G̃ = G̃T .

The corresponding Sylvester operator is given by T : R �→ B̃TR + RB̃.
If we restrict the set S of admissible perturbations to be Hamiltonian, then N =

XT
⊥SX equals symm(n), the set of n × n symmetric matrices, while N⊥ = skew(n),

the set of n×n skew-symmetric matrices. It can be directly seen that T : N → N and,
moreover, T� = T. Thus, by letting Ts = T

∣∣
N→N and Tu = T

∣∣
N⊥→N⊥ , we have

cS(X ) = ‖T−1
s ‖ and c(X ) = max{‖T−1

s ‖, ‖T−1
u ‖}. It is known that the expression

‖B̃TR+RB̃‖F /‖R‖F , R �= 0, is always minimized by a symmetric matrix R [7, Thm.
8], which implies ‖T−1

u ‖ ≤ ‖T−1
s ‖. Hence, the structured and unstructured condition

numbers for the stable invariant subspace of a Hamiltonian matrix are always the
same.

A more general perturbation analysis for (block) Hamiltonian Schur forms, based
on the technique of splitting operators and Lyapunov majorants, can be found in [24].

4.3. Orthogonal matrices. As an orthogonal matrix A ∈ R
n×n is normal, the

block Schur decomposition associated with a simple invariant subspace X is block
diagonal:

[X,X⊥]TA[X,X⊥] =

[
A11 0
0 A22

]
.
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Here, we will assume for convenience that X and X⊥ are real. Both diagonal blocks,
A11 ∈ R

k×k and A22 ∈ R
(n−k)×(n−k), are again orthogonal matrices.

The set of orthogonal matrices S = {A : ATA = I} forms a smooth real manifold
and the tangent space of S at A is given by TAS = {AW : W ∈ skew(n)}. According
to Theorem 3.10, this implies that the structured condition number is given by

cS(X ) = sup
{
‖T−1(XT

⊥AWX)‖F : W ∈ skew(n), ‖AW‖F = 1
}

= sup
{
‖T−1(A22X

T
⊥WX)‖F : W ∈ skew(n), ‖W‖F = 1

}

= sup
{
‖T−1(A22W21)‖F : W21 ∈ R

(n−k)×k, ‖W21‖F = 1
}

= sup
{
‖T−1(W̃21)‖F : W̃21 ∈ R

(n−k)×k, ‖W̃21‖F = 1
}

= c(X ),

where T : R �→ A22R − RA11. Here we used the fact that the “off-diagonal” block
W21 = XT

⊥WX of a skew-symmetric matrix W has no particular structure. Hence,
there is no difference between structured and unstructured condition numbers for
invariant subspaces of orthogonal matrices.

5. Extension to matrix pencils. In this section, we extend the results of
section 3 to deflating subspaces of matrix pencils. The exposition is briefer than for
the standard eigenvalue problem as many of the results can be derived by similar
techniques.

Throughout this section it is assumed that our matrix pencil A− λB of interest,
with n × n matrices A and B, is regular, i.e., det(A − λB) �≡ 0. The roots λ ∈ C (if
any) of det(A − λB) = 0 are the finite eigenvalues of the pencil. In addition, if B is
not invertible, then the pencil has infinite eigenvalues. A k-dimensional subspace X
is called a (right) deflating subspace of A−λB if AX and BX are both contained in a
subspace Y of dimension k. The regularity of A− λB implies that such a subspace Y
is uniquely defined; we call Y a left deflating subspace and (X ,Y) a pair of deflating
subspaces; see [36] for a more detailed introduction.

Let (X ,Y) be such a pair of deflating subspaces and let the columns of X,X⊥, Y, Y⊥
form orthonormal bases for X ,X⊥,Y,Y⊥, respectively. Then A− λB admits the fol-
lowing generalized block Schur decomposition:

[Y, Y⊥]H (A− λB) [X,X⊥] =

[
A11 A12

0 A22

]
− λ

[
B11 B12

0 B22

]
.(5.1)

The eigenvalues of A−λB are the union of the eigenvalues of the k×k pencil A11−λB11

and the (n− k) × (n− k) pencil A22 − λB22.
An entity closely associated with (5.1) is the generalized Sylvester operator

T : (Rr, Rl) �→ (A22Rr −RlA11, B22Rr −RlB11),(5.2)

where Rr and Rl are (n − k) × k matrices. It can be shown [34] that T is invertible
if and only if the matrix pencils A11 − λB11 and A22 − λB22 have no eigenvalues in
common. Clearly, this property is independent of the choice of orthonormal bases for
X and Y, justifying the following definition.

Definition 5.1. Deflating subspaces are called simple if the associated gen-
eralized Sylvester operator is invertible, i.e., if the matrix pencils A11 − λB11 and
A22 − λB22 in (5.1) have no eigenvalues in common.

Provided that T is invertible, the separation of two matrix pencils A11 − λB11

and A22 − λB22 can be defined via the norm of the inverse of T:

dif[(A11, B11), (A22, B22)] := 1/ sup
{
‖T−1(E21, F21)‖F : ‖(E21, F21)‖F = 1

}

= 1/‖T−1‖,
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where we let ‖(E21, F21)‖F =
√
‖E21‖2

F + ‖F21‖2
F . Not surprisingly, it turns out that

T−1 governs the sensitivity of (X ,Y) with respect to perturbations in A and B.

Theorem 5.2 (see [38, 25]). Let the matrix pencil A − λB have a generalized
block Schur decomposition of the form (5.1) and assume the pair of deflating subspaces
(X ,Y) = (span(X), span(Y )) to be simple. Let (A + E,B + F ) ∈ B(A,B) be a
perturbation of (A,B), where B(A,B) ⊂ C

n×n × C
n×n is a sufficiently small open

neighborhood of (A,B). Then there exists an analytic function f : B(A,B) → C
n×k×

C
n×k so that (X,Y ) = f(A,B), and the columns of (X̂, Ŷ ) = f(A + E,B + F ) span

a pair of deflating subspaces for the perturbed matrix pencil (A + E) − λ(B + F ).
Moreover, XH(X̂ −X) = Y H(Ŷ − Y ) = 0, and we have the expansion

(X̂, Ŷ ) = (X,Y ) − (X⊥Rr, Y⊥Rl) + O(‖[E,F ]‖2),(5.3)

where (Rr, Rl) = T−1(Y H
⊥ EX,Y H

⊥ FX) and T is the generalized Sylvester operator
defined in (5.2).

By using similar techniques as in section 3, it can be concluded from (5.3) that
the condition number for (X ,Y), defined as

c(X ,Y) := lim
ε→0

sup
{
‖(Θ(X , X̂ ),Θ(Y, Ŷ))‖F /ε : E,F ∈ C

n×n, ‖(E,F )‖F ≤ ε
}
,

happens to coincide with ‖T−1‖ = 1/dif[(A11, B11), (A22, B22)]; a result which goes
back to Stewart [34, 35]. If dif[(A11, B11), (A22, B22)] = 0, then T is not invertible
and, by convention, c(X ,Y) = ∞. Algorithms that estimate dif efficiently by solving
only a few generalized Sylvester equations can be found in [20, 21].

It may happen that X and Y are not equally sensitive to perturbations. In this
case, c(X ,Y) overestimates the sensitivity of one of the deflating subspaces; an aspect
emphasized by Sun [38, 39], who has also pointed out that separating the influence
of the operator T−1 on X and Y resolves this difficulty. However, for the purpose of
simplifying the presentation we will only consider joint (structured) condition numbers
for (X ,Y).

Definition 5.3. Let S ⊆ C
n×n × C

n×n and let (X ,Y) be a pair of deflating
subspaces of a matrix pencil A− λB with (A,B) ∈ S. Then the structured condition
number for (X ,Y) with respect to S is defined as

cS(X ,Y) := lim
ε→0

sup
(A+E,B+F )∈S

‖(E,F )‖F ≤ε

inf

⎧⎨
⎩‖(Θ(X , X̂ ),Θ(Y, Ŷ))‖F /ε :

(X̂ , Ŷ) is a deflating
subspace pair for
(A + E) − λ(B + F )

⎫⎬
⎭ .

If S = C
n×n × C

n×n, then cS(X ,Y) = c(X ,Y).

A straightforward generalization of Lemma 3.2 relates cS(X ,Y) to the norm of
T−1 restricted to a certain subset.

Lemma 5.4. Let (X ,Y) be a pair of simple deflating subspaces of a matrix pencil
A − λB corresponding to a generalized block Schur decomposition of the form (2.1).
Then the structured condition number for X with respect to S ⊆ C

n×n satisfies

cS(X ) = lim
ε→0

sup
{
‖T−1(Y H

⊥ EX,Y H
⊥ FX)‖F /ε : (A + E,B + F ) ∈ S, ‖(E,F )‖F ≤ ε

}
,

where T is the generalized Sylvester operator defined in (5.2).
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5.1. A Kronecker product approach. Using Kronecker products, the gener-
alized Sylvester operator T can be represented as

vec(T(Rr, Rl)) = KT

[
vec(Rr)
vec(Rl)

]
,

with the 2k(n− k) × 2k(n− k) matrix

KT =

[
Ik ⊗A22 −AT

11 ⊗ In−k

Ik ⊗B22 −BT
11 ⊗ In−k

]
.

This implies c(X ,Y) = ‖T−1‖ = ‖K−1
T ‖2.

In the following, we will assume that the structure S under consideration takes
the form S = (A,B) + L. Here, L denotes a linear matrix pencil subspace, i.e.,
(E1, F1) ∈ L and (E2, F2) ∈ L imply (αE1 + βE2, αF1 + βF2) ∈ L for all α, β ∈ K,
where K = R if L is real or K = C if L is complex. Let m be the dimension of L.
Then one can always find a 2n2×m pattern matrix ML such that for every (E,F ) ∈ L

there exists a uniquely defined parameter vector p ∈ K
m with

[
vec(E)
vec(F )

]
= MLp, ‖(E,F )‖F = ‖p‖2.

This yields for (Rr, Rl) = T−1(Y H
⊥ EX,Y H

⊥ FX) with (E,F ) ∈ L,

[
vec(Rr)
vec(Rl)

]
= K−1

T

[
X ⊗ Y H

⊥ 0
0 X ⊗ Y H

⊥

]
MLp.

Hence, Lemma 5.4 implies

c(A,B)+L(X ,Y) = sup
p∈Km

‖p‖2=1

∥∥∥∥K−1
T

[
X ⊗ Y H

⊥ 0
0 X ⊗ Y H

⊥

]
MLp

∥∥∥∥
2

=

∥∥∥∥K−1
T

[
X ⊗ Y H

⊥ 0
0 X ⊗ Y H

⊥

]
ML

∥∥∥∥
2

.(5.4)

Note that the latter equality only holds provided that either K = C, or all of K, A, B,
X , and Y are real. Otherwise, inequalities analogous to Lemma 3.3 can be derived.

5.2. An orthogonal decomposition approach. In this section, we extend the
orthogonal decomposition approach of section 3.2 to matrix pencils in order to gain
more insight into the relationship between the structured and unstructured condition
numbers for a pair of deflating subspaces.

For this purpose, assume the pair of deflating subspaces (X ,Y) to be simple, and
let the columns of X,X⊥, Y, Y⊥ form orthonormal bases for X ,X⊥,Y,Y⊥, respec-
tively. Let

N := {(Y H
⊥ EX,Y H

⊥ FX) : (E,F ) ∈ L},

and let M denote the preimage of N under T, i.e., M := T−1(N ). Then Lemma 5.4
implies that the structured condition number for (X ,Y) is given by

c(A,B)+L(X ,Y) = ‖T−1
s ‖,

where Ts is the restriction of T to M → N , i.e., Ts := T
∣∣
M→N .
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Let us assume that we additionally have the property that the linear matrix
operator

T� : (Qr, Ql) �→ (AH
22Qr + BH

22Ql,−QrA
H
11 −QlB

H
11)

satisfies T� : N → M. This is equivalent to the condition T : M⊥ → N⊥, where
⊥ denotes the orthogonal complement w.r.t. the inner product 〈(Xr, Xl), (Yr, Yl)〉 =
trace(Y H

r Xr + Y H
l Xl). Note that T� can be considered as the linear operator dual

to T:

〈T(Rr, Rl), (Qr, Ql)〉 = 〈(Rr, Rl),T
�(Qr, Ql)〉.

The same conclusions as for the matrix case in section 3.2 can be drawn: T decomposes
orthogonally into Ts and Tu := T

∣∣
M⊥→N⊥ , and we have

c(X ,Y) = max{‖T−1
s ‖, ‖T−1

u ‖}.

5.3. Global perturbation bounds. To derive global perturbation bounds we
consider, in addition to (5.1), the perturbed generalized block Schur decomposition

[Y, Y⊥]H
(
(A + E) − λ(B + F )

)
[X,X⊥] =

[
Â11 Â12

E21 Â22

]
− λ

[
B̂11 B̂12

F21 B̂22

]
.(5.5)

The following approach follows the work by Stewart [34, 35], which has been refined
by Demmel and K̊agström in [11]. In order to obtain bases (X̂, Ŷ ) for a nearby pair
of perturbed deflating subspaces (X̂ , Ŷ) we look for (n − k) × k matrices Rr and Rl

such that the matrix pencil

[
Ik 0
Rl In−k

]([
Â11 Â12

E21 Â22

]
− λ

[
B̂11 B̂12

F21 B̂22

])[
Ik 0

−Rr In−k

]

is in block upper triangular form. This is equivalent to the condition that the pair
(Rr, Rl) satisfies the following system of quadratic matrix equations:

Â22Rr −RlÂ11 + RlÂ12Rr = E21,

B̂22Rr −RlB̂11 + RlB̂12Rr = F21.
(5.6)

The following assumptions on the linear structure L ⊆ C
n×n × C

n×n are related to
the solvability of (5.6), along the lines of assumptions A1 and A2 for the matrix case:

A3: Let N = {(Y H
⊥ GX,Y H

⊥ HX) : (G,H) ∈ L} and

T̂ : (Rr, Rl) �→ (Â22Rr −RlÂ11, B̂22Rr −RlB̂11).

Then there exists a linear matrix space M, having the same dimension as N ,
such that T̂ : M → N and (RlÂ12Rr, RlB̂12Rr) ∈ N for all (Rr, Rl) ∈ M.

A4: The restricted operator T̂s := T̂
∣∣
M→N is invertible.

Theorem 5.5. Assume that A3 and A4 hold. If

κ := 4‖T̂−1
s ‖2 ‖(Â12, B̂12)‖F ‖(E21, F21)‖F < 1,
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then there exists a solution (Rr, Rl) ∈ M of (5.6) with

‖(Rr, Rl)‖F ≤ 2‖T̂−1
s ‖ ‖(E21, F21)‖F
1 +

√
1 − κ

< 2‖T̂−1
s ‖ ‖(E21, F21)‖F .

Proof. It follows from A3 that the iteration

(R0, L0) ← (0, 0), (Ri+1, Li+1) ← T̂−1
s (E21 − LiÂ12Ri, F21 − LiB̂12Ri)

is well defined and (Ri, Li) ∈ M for all i. Its convergence and the bound (5.5) can be
proved along the lines of the proof of [36, Thm. V.2.11].

Any solution (Rr, Rl) of (5.6) yields a pair of deflating subspaces (X̂ , Ŷ) of the
perturbed pencil (A+E)−λ(B+F ) with the bases X̂ = X−X⊥Rr and Ŷ = Y −Y⊥Rl.
Considering the solution constructed in Theorem 5.5, we obtain

‖(tan Θ(X , X̂ ), tan Θ(Y, Ŷ))‖F ≤ 2‖T̂−1
s ‖ ‖(E21, F21)‖F
1 +

√
1 − κ

.(5.7)

The proof of Lemma 3.8 can be easily adapted to relate ‖T̂−1
s ‖ to ‖T−1

s ‖.
Lemma 5.6. Assume that A3 holds, and that the unperturbed generalized Sylvester

operator T defined in (5.2) also satisfies T : M → N . If Ts := T
∣∣
M→N is invertible

and 1/‖T−1
s ‖ > ‖(E11, F11)‖F +‖(E22, F22)‖F , then T̂s is also invertible and satisfies

‖T̂−1
s ‖ ≤ ‖T−1

s ‖
1 − ‖T−1

s ‖(‖(E11, F11)‖F + ‖(E22, F22)‖F )
.(5.8)

Combining (5.7) and (5.8) implies c(A,B)+L(X ,Y) ≤ ‖T−1
s ‖. Assuming T� : N →

M, it can be shown that c(A,B)+L(X ,Y) and ‖T−1
s ‖ are equal.

Theorem 5.7. Assume that A3 holds with the same matrix space M for all T̂
corresponding to perturbations (E,F ) ∈ L. Moreover, assume that the generalized
Sylvester operator T defined in (5.2) additionally satisfies T� : N → M and that
Ts := T

∣∣
M→N is invertible. Then c(A,B)+L(X ,Y) = ‖T−1

s ‖.
Proof. To adapt the proof of Theorem 3.9 to matrix pencils, we consider pertur-

bations of the form (E,F ) = (εY⊥E21X
H , εY⊥F21X

H), where (E21, F21) ∈ N is cho-
sen such that ‖(E21, F21)‖F = 1 and ‖T−1(E21, F21)‖F = ‖T−1

s ‖. The bound (5.7)
implies for sufficiently small ε > 0 that the nearest deflating subspace (X̂ , Ŷ) of
(A + E) − λ(B + F ) satisfies

max{‖Θ(X , X̂ )‖2, ‖Θ(Y, Ŷ)‖2} < π/2.

This yields the existence of a matrix pair (R,L) such that the columns of (X̂, Ŷ ) =
(X −X⊥R, Y − Y⊥L) form bases for (X̂ , Ŷ). Equivalently, (R,L) satisfies

T(R,L) + Q(R,L) = (εE21, εF21),

where Q(R,L) = (LÂ12R,LB̂12R). Let us decompose (R,L) = (Rs, Ls) + (Ru, Lu),
where (Rs, Ls) ∈ M and (Ru, Lu) ∈ M⊥. Then T(Rs, Ls) ∈ N and T(Ru, Lu) ∈ N⊥.
This implies, as in the proof of Theorem 3.9, that

lim
ε→0

‖(R,L)‖F /ε ≥ lim
ε→0

‖(Rs, Ls)‖F /ε = ‖T−1(E21, F21)‖F = ‖T−1
s ‖,

and consequently c(A,B)+L(X ,Y) ≥ ‖T−1
s ‖, which concludes the proof.
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5.4. Nonlinear structures. The following theorem shows that the results of
sections 5.1 and 5.2 can also be used to address matrix pencil structures that form
smooth manifolds.

Theorem 5.8. Let S ⊆ K
n×n×K

n×n with K ∈ {R,C} be a smooth manifold. Let
(X ,Y) be a pair of simple deflating subspaces of A−λB with (A,B) ∈ S, corresponding
to a generalized block Schur decomposition of the form (5.1). Then the structured
condition number for (X ,Y) with respect to S satisfies

cS(X ,Y) = sup
{
‖T−1(Y H

⊥ EX,Y H
⊥ FX)‖F : (E,F ) ∈ T(A,B)S, ‖(E,F )‖F = 1

}
,

where T is the generalized Sylvester operator defined in (5.2) and T(A,B)S is the tan-
gent space of S at (A,B).

Proof. The result follows from a rather straightforward extension of the proof of
Theorem 3.10.

5.5. Example: Palindromic matrix pencils. To illustrate the obtained re-
sults for structured matrix pencils, let us consider a matrix pencil of the form A+λAT

with A ∈ C
2n×2n. A matrix pencil that takes this form is called palindromic; it

arises, e.g., from structure-preserving linearizations of palindromic matrix polynomi-
als [16, 28]. The following result provides a structured Schur form.

Lemma 5.9 (see [16]). Let A ∈ C
2n×2n, then there exists a unitary matrix

U ∈ C
2n×2n such that

UTAU =

⎡
⎢⎢⎢⎢⎣

0 · · · 0 t1,2n
... . .. t2,2n−1 t2,2n

0 . .. . .. ...
t2n,1 t2n,2 · · · t2n,2n

⎤
⎥⎥⎥⎥⎦

=: T,

i.e., T is antitriangular.
It should be emphasized that UT in Lemma 5.9 denotes the complex transpose of

U , i.e., UTAU is not similar to A. Nevertheless, T + λTT is equivalent to A + λAT ,
implying that the eigenvalues of A + λAT are given by

−t1,2n/t2n,1, . . . ,−tn,n+1/tn+1,n,−tn+1,n/tn,n+1, . . . ,−t2n,1/t1,2n.

It follows immediately that the eigenvalues have the following pairing: λ is an eigen-
value of A+ λAT if and only if 1/λ is an eigenvalue. Zero eigenvalues are included in
these pairings as λ = 0 and 1/λ = ∞.

In the following, we consider the (right) deflating subspace X belonging to the
eigenvalues −tn+1,n/tn,n+1, . . . ,−t2n,1/t1,2n. Let the columns of X and X⊥ form
orthonormal bases for X and X⊥, respectively. Then Lemma 5.9 implies a structured
generalized block Schur decomposition of the form

[X⊥, X]T (A + λAT )[X,X⊥] =

[
A11 A12

0 A22

]
+ λ

[
AT

22 AT
12

0 AT
11

]
(5.9)

with A11, A22 ∈ C
n×n. Note that this also shows that X⊥, obtained from X⊥ by

conjugating its entries, spans a left deflating subspace Y belonging to the eigenval-
ues −tn+1,n/tn,n+1, . . . ,−t2n,1/t1,2n. We require the following preliminary result for
obtaining the structured condition number of (X ,Y) with respect to palindromic per-
turbations.
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Lemma 5.10. Let C,D ∈ C
n×n, then the matrix equation

CR + αRTDT = F,(5.10)

where α ∈ {1,−1}, has a unique solution R for any F ∈ C
n×n if and only if the

following two conditions hold for the eigenvalues of C − λD:
1. if λ �= α is an eigenvalue, then 1/λ is not an eigenvalue;
2. if λ = α is an eigenvalue, it has algebraic multiplicity one.

Proof. The proof can be found in the appendix.
The generalized Sylvester operator associated with (5.9) takes the form

T : (Rr, Rl) �→ (A22Rr + RlA11, A
T
11Rr + RlA

T
22).

Considering the linear space

N :=
{
(XTEX,−XTETX) : E ∈ C

2n×2n
}

=
{
(E21,−ET

21) : E21 ∈ C
n×n

}
,

we have T : N → N and T : N⊥ → N⊥, where N⊥ =
{
(E21, E

T
21) : E21 ∈ C

n×n
}
.

Moreover, (RlA12Rr,−RlA
T
12Rr) ∈ N for all (Rl, Rr) ∈ N . The restricted Sylvester

operators Ts = T
∣∣
N→N and Tu = T

∣∣
N⊥→N⊥ can be identified with the matrix

operators

Ss : R �→ A22R−RTA11, Su : R �→ A22R + RTA11,

in the sense that

Ts(R,−RT ) = (Ss(R),−Ss(R)T ), Tu(R,RT ) = (Su(R),Su(R)T ).

In particular, Ts is invertible if and only if Ss is invertible, which in turn is equivalent
to require A22 − λAT

11 to satisfy the conditions of Lemma 5.10 for α = −1. In
this case, all assumptions of Theorem 5.7 are satisfied and the structured condition
number for the deflating subspace pair (X ,Y) = (span(X), span(X⊥)) with respect
to S = {(E,−ET ) : E ∈ C

2n×2n} is given by

cS(X ,Y) = ‖T−1
s ‖ =

√
2 ‖S−1

s ‖ =

√
2

inf{‖A22R−RTA11‖F : R ∈ Cn×n, ‖R‖F = 1} .

On the other hand, the unstructured condition number satisfies

c(X ,Y) =
√

2 max{‖S−1
s ‖, ‖S−1

u ‖}.

This shows that the unstructured condition number can be much larger than the
structured condition number, e.g., if A22−λAT

11 has a simple eigenvalue close to −1. If
one of the eigenvalues of A22−λAT

11 happens to be exactly −1, then (X ,Y) is not stable
under unstructured perturbations, but Lemma 5.10 implies that it can still be stable
under structured perturbations. In these cases, the use of a computational method
that yields structured backward errors is likely to be significantly more accurate than
other methods.

Example 5.11. For n = 1, we obtain

‖S−1
s ‖ =

1

|A22 −A11|
, ‖S−1

u ‖ =
1

|A22 + A11|
.

Hence, if A22/A11 ≈ −1, then c(X ,Y) � cS(X ,Y).
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6. Conclusions. We have derived directly computable expressions for struc-
tured condition numbers of invariant and deflating subspaces for smooth manifolds
of structured matrices and matrix pencils. An orthogonal decomposition of the asso-
ciated Sylvester operators yields global perturbation bounds that remain valid even
in cases where the subspace is unstable under unstructured perturbations. It also
provides additional insight into the difference between structured and unstructured
condition numbers. We have identified structures for which this difference can be
significant (block cyclic, palindromic) or negligible (Hamiltonian, orthogonal). De-
veloping efficient structured condition estimators going beyond the simple method
mentioned in Remark 3.4 remains an important future task.

The examples suggest some relation between structures that admit the proposed
orthogonal decomposition approach and those that admit structured Schur decompo-
sitions. However, addressing this question thoroughly requires further investigation.

Appendix.
Proof of Lemma 5.10. We only have to show the case α = 1, as α = −1 follows

from α = 1 after replacing DT by −DT . First, we prove by induction that (5.10)
has a solution for any F if the two conditions hold. For n = 1, the first condition
implies C �= −D and thus R = F/(C + D). For n > 1, using the generalized Schur
decomposition of C − λD, we may assume without loss of generality that C and D
have upper triangular form. Partition the matrices

C =

[
C11 C12

0 C22

]
, D =

[
D11 D12

0 D22

]
, F =

[
F11 F12

F21 F22

]
, R =

[
R11 R12

R21 R22

]

conformally with no void blocks, then (5.10) can be written as

F11 = C11R11 + C12R21 + RT
11D11 + RT

21D12,(A.1)

F21 = C22R21 + RT
12D11 + RT

22D12,(A.2)

F12 = C11R12 + C12R22 + RT
21D22,(A.3)

F22 = C22R22 + RT
22D22.(A.4)

By the induction assumption, the matrix equation (A.4) is solvable. Thus, R22 can be
regarded as known, which turns (A.2)–(A.3), after transposing (A.3), into a general-
ized Sylvester equation associated with the matrix pencils C22+λDT

11 and DT
22+λC11.

Under the given conditions these two pencils have no eigenvalue in common. Hence,
(A.2)–(A.3) is solvable and R12 as well as R21 can be regarded as known. This turns
(A.1) into a matrix equation of the form (5.10) of smaller dimension, which is—by
the induction assumption—solvable. The uniqueness of the constructed solution R
follows from the fact that (5.10) can be regarded as a square linear system of equations
in the entries of R.

For the other direction, consider the linear matrix operator S : R �→ CR+RTDT .
We will make use of the fact that the matrix equation (5.10) is uniquely solvable if
and only if kernel(S) = {0}. Suppose that λ = −1 is an eigenvalue of C − λD and let
x be an associated eigenvector. Then the nonzero matrix R0 = xxTDT satisfies

S(R0) = CxxTDT + DxxTDT = CxxTDT − CxxTDT = 0,

i.e., R0 ∈ kernel(S). Now, suppose that λ �= −1 and 1/λ are eigenvalues of C − λD
and let x, y be corresponding eigenvectors such that x, y are linearly independent (for
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λ = 1 this is only possible if λ has geometric multiplicity of at least 2). If λ �= 0, the
nonzero matrix R1 = xyTDT − yxTCT satisfies

S(R1) = CxyTDT − CyxTCT + DyxTDT − CxyTDT

= − 1

λ
DyxTCT +

1

λ
DyxTCT = 0.

Analogously for λ = 0, the matrix R2 = xyTCT − yxTDT is nonzero and satisfies
S(R2) = 0. It remains to be seen that kernel(S) �= {0} holds if λ = 1 is an eigenvalue
of C − λD with algebraic multiplicity of at least 2 but with geometric multiplicity 1.
This is, however, an immediate consequence of the fact that S cannot be nonsingular
at isolated points. Hence, if one of the two conditions of Lemma 5.10 is violated,
then (5.10) is not uniquely solvable, which concludes the proof.
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Abstract. The following problem is addressed: given square matrices A and B, compute
the smallest ε such that A + E and B + F have a common eigenvalue for some E, F with
max(‖E‖2, ‖F‖2) ≤ ε. An algorithm to compute this quantity to any prescribed accuracy is pre-
sented, assuming that eigenvalues can be computed exactly.
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1. Introduction. The quantity sepλ(A,B) was introduced by Varah in [Var79]
and further investigated by Demmel in [Dem83, Dem86, Dem87]; it measures how
much perturbation is required to modify two square matrices A and B so that they
have a common eigenvalue. Let A ∈ Cm×m and B ∈ Cn×n. The functions studied
by Varah and Demmel are defined slightly differently, namely

sepV
λ (A,B) = min{ε ∈ R : ∃ E ∈ Cm×m, F ∈ Cn×n with ‖E‖ + ‖F‖ ≤ ε(1)

such that A + E and B + F have a common eigenvalue}

and

(2)

sepD
λ (A,B) = min{ε ∈ R : ∃ E ∈ Cm×m, F ∈ Cn×n with max (‖E‖, ‖F‖) ≤ ε

such that A + E and B + F have a common eigenvalue},

respectively, where ‖ · ‖ denotes the 2-norm. Clearly,

1

2
sepV

λ (A,B) ≤ sepD
λ (A,B) ≤ sepV

λ (A,B).

The lower bound is tight, with equality holding for normal matrices. A standard
argument based on the singular value decomposition shows that

sepV
λ (A,B) = min

z∈C
(σmin(A− zI) + σmin(B − zI))(3)

and

sepD
λ (A,B) = min

z∈C
max (σmin(A− zI), σmin(B − zI)) ,(4)
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where σmin denotes least singular value. This also shows that the quantities sepV
λ and

sepD
λ remain unchanged if the Frobenius norm is substituted for the 2-norm.
Sepλ may also be defined in terms of pseudospectra. The ε-pseudospectrum of A

is [ET]

Λε(A) =
{
z ∈ C : ∃ E ∈ Cm×m with ‖E‖ ≤ ε and det(A + E − zI) = 0

}

= {z ∈ C : σmin(A− zI) ≤ ε} ,

so sepV
λ (A,B) is the minimal value of ε1 + ε2 such that Λε1(A)∩Λε2(B) is nonempty,

while sepD
λ (A,B) is the minimal value of ε such that Λε(A) ∩ Λε(B) is nonempty.

Indeed, Trefethen and Embree [TE05, section 1.6] attribute the earliest known defini-
tion of pseudospectra to Varah in his Ph.D. thesis [Var67] and the earliest published
computer-generated pseudospectral plot to Demmel in [Dem87]. It is well known that
the pseudospectrum Λε(A) consists of at most n components,1 and that each com-
ponent is compact, contains at least one eigenvalue of A and has a piecewise smooth
boundary; however, it may not be convex or even simply connected.

Obviously, sepV
λ (A,B) = sepD

λ (A,B) = 0 if and only if A and B have a common
eigenvalue, and it is well known that this holds if and only if the Sylvester equation
AX−XB = 0 has a nontrivial solution X ∈ Cm×n, or equivalently, that the Kronecker
difference I ⊗ A − BT ⊗ I is singular [HJ91, section 4.4].2 Varah’s notational choice
sepλ was inspired by its relationship to the quantity sep introduced by Stewart [Ste73]
to study angles between subspaces,

sep(A,B) = min
X∈Cm×n

‖AX −XB‖F
‖X‖F

= σmin(I ⊗A−BT ⊗ I).

Varah observed that sep(A,B) ≤ sepV
λ (A,B)/2 (so sep(A,B) ≤ sepD

λ (A,B)) but that
very often, sep and sepλ differ by several orders of magnitude. This fact is related
to the now well known one that pseudospectra and spectra provide very different
information for nonnormal matrices, which is the theme of the comprehensive book
[TE05]. Thus, even if one is prepared to compute sep(A,B) via the singular value
decomposition of I⊗A−BT ⊗I, a computation whose complexity is roughly O(m3n3)
flops, this does not provide a very useful lower bound for sepλ(A,B).

Upper bounds for sepλ are immediately obtained by evaluating σmin(A− zI) and
σmin(B− zI) for any z ∈ C, or, more effectively, by applying an optimization method
to carry out the minimization in (3) or (4) respectively, perhaps initialized at many
systematically generated starting points. However, even though there are only two
real variables in each of these minimization problems, solving them is not easy. The
main difficulty is that the optimization objectives are nonconvex and may have many
local minimizers. No bound is known on the number of possible local minimizers,
although it seems a good guess that m + n (or at least its square) might be an
upper bound, based on related recent results and conjectures [BLO04]. A second, less
crucial, difficulty is that (for reasons to be seen in the next section) the optimization
objective in (4) is virtually always nondifferentiable at a local optimizer, and while
this may not be the case for the objective in (3), it will be if, as often happens, the
local optimizer is an eigenvalue of A or B (i.e., the minimum in (1) is attained with
either E = 0 or F = 0). This second difficulty may be overcome by using a method for
nonsmooth, nonconvex optimization such as that described in [BLO05] instead of a

1Throughout, we use component to mean connected component.
2The size of the identity matrix I is context-dependent.
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standard method for smooth, nonconvex optimization such as BFGS, but the inability
to verify global optimality remains a stumbling block preventing the computation of
sepλ, or even the assessment of the quality of upper bounds, via optimization.

For these reasons, no algorithm to compute sepV
λ or sepD

λ or to reliably approxi-
mate them has appeared to date. In this paper, we give an algorithm to compute sepD

λ

to any specified accuracy in O((m + n)m3n3) flops. Here we are adopting the usual
convention for approximate floating point complexity estimates, taking the computa-
tion of the eigenvalues of an m×m matrix or pencil to be an atomic operation requiring
O(m3) flops, and assuming that such eigenvalues are delivered exactly. The main idea
is borrowed from an algorithm of Gu [Gu00] for approximating the distance from a
matrix pair to the set of “uncontrollable” pairs. Gu’s algorithm was later refined to
approximate the uncontrollability distance to any prescribed accuracy [BLO04]. As
it happens, our algorithm to compute sepD

λ is substantially less complicated than the
algorithm to compute the uncontrollability distance, so readers interested in the latter
may find our description of the former to be a good introduction.

The new algorithm to compute sepD
λ obviously approximates sepV

λ within a fac-
tor of two; we do not see any way to improve this at present. Optimization experi-
ments indicate that very often, e.g., for many randomly generated triangular matrices,
sepV

λ (A,B) equals the trivial upper bound

u(A,B) = min

(
min

z∈Λ0(B)
σmin(A− zI), min

z∈Λ0(A)
σmin(B − zI)

)
.

It is tempting to conjecture on the basis of such experiments that sepV
λ (A,B) can

never be much less than u(A,B), and if this were true, it would provide an easy way
to approximate sepD

λ (A,B) as well. However, this is not the case, as can be seen by
setting both A and B to Jordan blocks of the same size, with eigenvalues 0 and 1,
respectively. Then the objectives in (3) and (4) are both minimized at z = 0.5 with
sepV

λ (A,B) = 2 sepD
λ (A,B), and sepV

λ (A,B)/u(A,B) → 0 exponentially as m → ∞.
The importance of the quantity sepλ is that it measures the distance from a pair

(A,B) to the set of pairs (A+E,B +F ) for which the corresponding Sylvester equa-
tion is singular (i.e., (A + E)X − X(B + F ) = 0 has a nontrivial solution X). The
generic subject of computing the distance from a given matrix or matrix pair to the
set of matrices or matrix pairs with certain undesirable properties, such as singularity,
instability, or uncontrollability, has been a frequent theme in the literature, one that
has been intensively studied and applied by the robust control community in various
contexts. We note that Alam and Bora [AB05] have recently proved a result that uses
pseudospectra to characterize the so-called Wilkinson distance, i.e., the distance from
a matrix to the set of matrices with a multiple eigenvalue, a problem also studied in
[Dem83, Dem86]. While computing the Wilkinson distance is superficially similar to
the problem of computing sepλ, it seems to be fundamentally harder. It is perhaps
worth mentioning that in applications, lower bounds for such distance functions are
more important than upper bounds, as they provide “safety margins.” Even though
the optimization approach mentioned above often provides good upper bounds on
sepλ, one can never be sure without good lower bounds. Prior to this work, the only
nontrivial known lower bound on sepλ was provided by sep, which, as already noted,
is often a poor lower bound despite requiring O(m3n3) flops for its computation.

2. The algorithm. For the remainder of the paper we drop the superscript in
sepD

λ and take (2) (equivalently (4)) as the definition of sepλ. Assume that A and B
have no common eigenvalue, so that sepλ(A,B) > 0. The first key observation, based
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on the maximum modulus principle, is that the only local minimizers of σmin (A− zI)
as a function of z are the eigenvalues of A [BLO03, Theorem 4.2]. Consequently, local
minimizers of (4) can be achieved only at a point z where, for some ε > 0,

ε = σmin (A− zI) = σmin(B − zI).(5)

Such points are exactly those where the boundaries of Λε(A) and Λε(B) intersect, and
sepλ(A,B) is precisely the smallest such value of ε, i.e.,

sepλ(A,B) = min{ε : ε = σmin (A− zI) = σmin (B − zI) for some z ∈ C}.(6)

The next key observation is that given any component of Λε(A) and any compo-
nent of Λε(B), one of three conditions must hold: they are disjoint, their boundaries
intersect, or one is strictly inside the other. Thus, for any given ε > 0, at least one of
the following three conditions holds:

• Λε(A) and Λε(B) are disjoint, in which case there does not exist any z satis-
fying (5).

• The boundaries of Λε(A) and Λε(B) intersect, in which case there exists z
satisfying (5).

• There is a component of Λε(A) that lies strictly inside a component of Λε(B)
or vice versa, in which case there may or may not exist z satisfying (5).

The basic idea of the algorithm is to first determine an upper bound U on sepλ(A,B)
such that, for all ε ≤ U , the third possibility is excluded (we explain how later), and
then use a bisection method based on deciding which of the first and second cases
hold. Once the third case is excluded, the nonexistence of z satisfying (5) implies that
Λε(A) and Λε(B) are disjoint, so that sepλ(A,B) > ε, while the existence of such a z
obviously implies that sepλ(A,B) ≤ ε.

Figure 1 illustrates the situation for a specific pair A and B. Both are randomly
generated complex triangular 10 × 10 matrices. The real and imaginary parts of the
entries of A are generated from the uniform distribution on [−1, 1], while those of B
come from the uniform distribution on [−0.5, 0.5]. The eigenvalues of A are plotted
as crosses and those of B as dots. The four subfigures show the boundaries of the
pseudospectra Λε(A) (solid curve) and Λε(B) (dotted curve) for four different values
of ε. At the top left, ε = 0.5 sepλ(A,B), so Λε(A) and Λε(B) are disjoint. At the
top right, ε = sepλ(A,B), so the boundaries of Λε(A) and Λε(B) are tangent to each
other at one point, but do not cross. At the bottom left, ε = 5 sepλ(A,B), for
which the boundaries of Λε(A) and Λε(B) cross each other. At the bottom right,
ε = 15 sepλ(A,B), for which Λε(B) lies inside Λε(A).

Given a value ε, how do we determine the points z = x + iy, if any, where the
boundaries of Λε(A) and Λε(B) intersect, i.e., (5) holds? Following Byers [Bye88], we
observe that A − (x + iy)I has a singular value (not necessarily the least one) equal
to ε if and only if

[
εI A− (x + iy)I

A∗ − (x− iy)I εI

]

is singular, or equivalently, postmultiplying by the canonical skew symmetric matrix,
that the Hamiltonian matrix

G(x) =

[
A− xI −εI

εI −A∗ + xI

]
(7)
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Fig. 1. The boundaries of the pseudospectra Λε(A) (solid curve) and Λε(B) (dotted curve) for
ε equal to half, one, five, and fifteen times sepλ(A,B), respectively.

has an imaginary eigenvalue iy. Likewise, B − (x + iy)I has a singular value ε if and
only if the Hamiltonian matrix

H(x) =

[
B − xI −εI

εI −B∗ + xI

]
(8)

has an imaginary eigenvalue iy. Furthermore, G(x) and H(x) have a common eigen-
value (not necessarily imaginary) if and only if

det
(
I ⊗G(x) −H(x)T ⊗ I

)
= 0.(9)
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This equation is a generalized eigenvalue problem in x; to see this, write

G(x) = G1 − xG2, H(x) = H1 − xH2,

and let

K = I ⊗G1 −HT
1 ⊗ I, L = I ⊗G2 −HT

2 ⊗ I,(10)

with K,L ∈ C4mn×4mn. Then the solutions x of (9) are the roots of det(K − xL).
Since L is singular, the generalized eigenvalue problem is not trivially convertible to
an ordinary one. However, using the assumption that A and B have no common
eigenvalue, it can be shown (see section 3) that the pencil K − xL is regular, i.e.,
its determinant is not identically zero for all x, and of its 4mn eigenvalues, half are
finite and half are infinite. Under our assumptions, the eigenvalues can be computed
in O(m3n3) flops. Thus we have the following algorithm to find all solutions of (5),
assuming that eigenvalues and singular values can be computed exactly.

Algorithm 1.

Input: A ∈ Cm×m, B ∈ Cn×n, ε ∈ R with ε > 0
Output: all z ∈ C satisfying (5)

1. Compute all finite real eigenvalues of the pencil K − xL, i.e., all finite real
roots x of det(K − xL) (see (10)).

2. For each such x, compute the eigenvalues of G(x) and H(x) and determine
all real y such that G(x) and H(x) have a common imaginary eigenvalue iy
(see (7), (8)).

3. For each such pair (x, y), let z = x+ iy and compute the least singular value
of A − zI and B − zI. If these are both equal to ε, then z is a solution of
(5). Conversely, if there is no pair (x, y) for which this is the case, (5) has
no solution.

An easy mistake to make in implementing this algorithm is to use the conjugate
transpose H∗

1 and H∗
2 in place of the ordinary transpose HT

1 , HT
2 in (10).

Algorithm 1 provides the basis of a bisection method to compute sepλ(A,B).
This requires initialization with lower and upper bounds; either 0 or sep(A,B) (see
section 1) can be used for the initial lower bound. We choose an initial upper bound
U for which we can guarantee that, for all ε ≤ U , no component of Λε(A) lies strictly
inside a component of Λε(B) or vice versa. With this initialization a bisection method
based on Algorithm 1 must converge to sepλ(A,B). The question remaining then is
how to determine a value U that has the desired property.

Let L denote a line in the complex plane and consider the problem (6) restricted
to the line L, i.e., the problem of computing

γL = min {γ : γ = σmin (A− zI) = σmin (B − zI) for some z ∈ L}.(11)

Now let θ ∈ [0, π) be fixed and consider the m + n lines parameterized by

Lj = {z : z = μj + teiθ for some t ∈ R},(12)

where μj , j = 1, . . . ,m + n, are the eigenvalues of A and B. Define

U = min
1≤j≤m+n

γLj .(13)

We claim that this value of U has the desired property. If not, then for some ε ≤ U ,
a pseudospectral component of one of the matrices, say a component CA of Λε(A),
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lies strictly inside a pseudospectral component of the other, say a component CB of
Λε(B). There must be an eigenvalue of A, say μj , lying inside the inner component
CA. The line Lj passing through μj must intersect the boundary of CA at two or
more points. At z = μj , 0 = σmin(A− zI) < σmin(B − zI), but at the points z where
the line crosses the boundary of CA, we have ε = σmin(A−zI) > σmin(B−zI). Thus,
by continuity of σmin, 0 < σmin(A− zI) = σmin(B− zI) < ε for some z on the line Lj

and strictly contained in CA. This contradicts the definition of U .
In order to solve (11) on the line Lj we need to determine all real quantities t

and γ for which, setting z = μj + teiθ, we have σmin(A − zI) = σmin(B − zI) = γ.
We want the least such γ. A necessary condition for the two least singular values to
equal each other is that

M(t) =

[
0 A− (μj + teiθ)I

A∗ − (μ̄j + te−iθ)I 0

]
(14)

and

N(t) =

[
0 B − (μj + teiθ)I

B∗ − (μ̄j + te−iθ)I 0

]
(15)

have a common eigenvalue, i.e., that

det
(
I ⊗M(t) −N(t)T ⊗ I

)
= 0.(16)

As earlier, this is a generalized eigenvalue problem; to see this, write

M(t) = M1 − tM2, N(x) = N1 − tN2

and let

P = I ⊗M1 −NT
1 ⊗ I, Q = I ⊗M2 −NT

2 ⊗ I.(17)

Then the solutions t of (16) are the roots of det(P − tQ). Whether or not the pencil
P − tQ is regular depends on the choice of the angle θ defining the line through
the eigenvalue μj ; see section 3 for details. Provided that θ is chosen correctly, the
pencil P − tQ is regular with 2mn finite and 2mn infinite eigenvalues, and under our
assumptions the eigenvalues can be computed in O(m3n3) flops. For every finite real
eigenvalue t, we set z = μj + teiθ and check whether σmin(A − zI) = σmin(B − zI);
we then set γLj to be the smallest such common value. This process is summarized
in Algorithm 2.

Algorithm 2.

Input: A ∈ Cm×m, B ∈ Cn×n, θ ∈ R, j ∈ {1, 2, . . . ,m + n}
Output: γLj (see (11), (12))

1. Compute all finite real eigenvalues of the pencil P − tQ, i.e., all finite real
roots t of det(P − tQ) (see (17)).

2. For each such t, set z = μj +teiθ and check whether σmin(A−zI) = σmin(B−
zI); set γLj to be the smallest such common value (or to ∞ if there are none).

We are now ready to state the complete algorithm. Unfortunately, to exclude the
possibility of any pseudospectral component of A lying strictly inside one of B or vice
versa, we must carry out the steps in Algorithm 2 a total of m + n times,3 making
the total cost O((m + n)m3n3) flops.

3Of course, this can be somewhat reduced if the lines Lj are not all distinct.
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Algorithm 3.

Input: A ∈ Cm×m, B ∈ Cn×n, τ ∈ R with τ > 0
Output: L, U satisfying L ≤ sepλ(A,B) ≤ U and U − L ≤ τ

1. For each j = 1, . . . ,m+n, choose θ ∈ [0, 2π) and use Algorithm 2 to compute
γLj .

2. Set L = 0 or L = σmin(I ⊗A−BT ⊗ I) and set U = min1≤j≤m+n γLj
(or, if

this is ∞, to max(σmin(A), σmin(B)).
3. While U − L > τ :

(a) Set ε = (L + U)/2 and use Algorithm 1 to determine whether there is
any solution to (5).

(b) If a solution was found, set U = ε; if not, set L = ε.
Under the assumptions that A and B have no common eigenvalue, that the pencils

encountered by Algorithm 2 are all regular, and that all eigenvalue and singular value
computations are exact, Algorithm 3 is guaranteed to approximate sepλ(A,B) to any
prescribed accuracy.

3. Further details. A Matlab implementation of Algorithm 3 is freely avail-
able.4 The eigenvalues of the pencils K−xL (see (10)) and P −tQ (see (17)) are com-
puted by calls to the standard Matlab eigensolver, i.e., by eig(K,L) and eig(P,Q),
respectively. However, it is of interest for several reasons to consider these generalized
eigenvalue problems in more detail.

Let us start with taking a more careful look at the pencil K − xL. By definition,
x satisfies det(K − xL) = 0 if and only if the matrix equation

G(x)T − TH(x) = 0(18)

has a nontrivial solution T , where G(x) and H(x) were defined in (7), (8). Let

T =

[
V W
Y Z

]
.(19)

The eigenvalue parameter x vanishes from the (1,1) and (2,2) blocks of (18) because
of cancellation; these blocks reduce to

AV − V B = ε(W + Y ) and A∗Z − ZB∗ = ε(W + Y ).

These are Sylvester equations defining V and Z in terms of W and Y ; furthermore,
they are nonsingular (i.e., V and Z are uniquely defined by any W and Y ) because of
the assumption that A and B do not have a common eigenvalue. Thus we need only
find x such that the (1,2) and (2,1) block equations in (18) hold. These equations are

AW + WB∗ + ε(V − Z) = 2xW

and

A∗Y + Y B − ε(V − Z) = 2xY.

Because V and Z depend linearly on W and Y , these equations together reduce to an
ordinary eigenvalue problem of size 2mn with eigenvalue parameter x and eigenvector
[vec(W ); vec(Y )]. There are therefore 2mn (not necessarily distinct) eigenvalues. This
proves that the pencil K−xL is regular with 2mn finite and 2mn infinite eigenvalues.

4http://www.cs.nyu.edu/overton/faculty/software/seplambda
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The pencil P − tQ is more complicated. By definition, t satisfies det(P − tQ) = 0
if and only if the matrix equation

M(t)T − TN(t) = 0(20)

has a nontrivial solution T , where M(t) and N(t) were defined in (14), (15), and we
again partition T by (19). For brevity, let Â = A− μjI and B̂ = B − μjI. The (1,1)
and (2,2) block equations of (20) are

(Â− teiθI)Y = W (B̂ − teiθI)∗(21)

and

(Â− teiθI)∗W = Y (B̂ − teiθI).(22)

Adding these equations, the terms involving t cancel and we obtain

ÂY − Y B̂ = −Â∗W + WB̂∗.(23)

Because A and B (and therefore Â and B̂) have no common eigenvalue, it follows that
Y is uniquely defined in terms of W (or vice versa) by solving a Sylvester equation.
Now it also follows from (21) and (22) that

(Â− teiθI)(Â− teiθI)∗W = W (B̂ − teiθI)∗(B̂ − teiθI),

which simplifies to

ÂÂ∗W −WB̂∗B̂ = t(eiθ(Â∗W −WB̂∗) + e−iθ(ÂW −WB̂)).(24)

This is a generalized eigenvalue problem in the eigenvalue parameter t and eigenvector
vec(W ). It can be reduced to an ordinary eigenvalue problem provided that the
linear operator defining the right-hand side in terms of W is invertible. This linear
operator is a weighted sum of two nonsingular linear operators, since the equation
ÂW −WB̂ = 0 has only the trivial solution W = 0 (since Â and B̂ have no common
eigenvalue) and the same is true for the equation Â∗W − WB̂∗ = 0. Clearly it
is possible to choose θ so that the weighted sum of these two linear operators is
also nonsingular; we call this condition the first condition on θ. Thus as long as
the first condition on θ holds, there are mn (not necessarily distinct) eigenvalues t
corresponding to the eigenvector vec(W ), and W then uniquely determines Y from
(23).

We now turn to the (1,2) and (2,1) block equations of (20). These are

(Â− teiθI)Z = V (B̂ − teiθI)(25)

and

(Â− teiθI)∗V = Z(B̂ − teiθI)∗.(26)

Adding e−iθ times (25) to eiθ times (26) yields

(e−iθÂ)Z − Z(eiθB̂∗) = −(eiθÂ∗)V + V (e−iθB̂),(27)

with all terms involving the eigenvalue parameter t cancelling as earlier. To be able
to always solve this equation uniquely for Z in terms of V , or vice versa, we need the
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following condition to hold: e−iθÂ and eiθB̂∗ have no common eigenvalue. We call
this the second condition on θ. Clearly it is possible to choose θ so that the second
condition, as well as the first condition, holds. Finally, it also follows from (25) and
(26) that

(Â− teiθI)(Â− teiθI)∗V = V (B̂ − teiθI)(B̂ − teiθI)∗,

which simplifies to

ÂÂ∗V − V B̂B̂∗ = t(eiθ(Â∗V − V B̂∗) + e−iθ(ÂV − V B̂)).

This is a generalized eigenvalue problem in the eigenvalue parameter t and eigenvector
vec(V ) with exactly the same structure as (24). Provided the first condition on θ
holds, this reduces to an ordinary eigenvalue problem, with the same mn eigenvalues
t corresponding to the eigenvector vec(V ) that we obtained corresponding to the
eigenvector vec(W ) previously. Furthermore, provided the second condition on θ
holds, V uniquely defines Z from (27).

It turns out that when A and B are diagonal, the first condition states that θ
should not be the angle of the perpendicular bisector of any of the line segments
joining an eigenvalue of Â to an eigenvalue of B̂, and the second condition states that
θ should not be the angle of any such perpendicular bisector that contains the origin
(in fact, this characterization of the second condition does not require A and B to be
diagonal). It is the second condition that is relevant to the problem of solving (11).
For example, suppose

A =

[
0 0
0 −0.1i

]
, B =

[
1 0
0 0.1i

]
,

with μj = 0, so Â = A, B̂ = B. Geometrically, it is clear that the corresponding
pencil P − tQ must be singular when θ = 0, because there is a continuum of points z
on the real axis where the boundaries of Λε(A) and Λε(B) intersect for some ε. Indeed,
the second condition on θ is precisely θ 
= 0, or geometrically, that θ should not be
the angle of the perpendicular bisector of the line segment [−0.1i, 0.1i]. But what
then is the significance of the first condition on θ? To understand this, recall that
det(P − tQ) = 0 if and only if the matrices (14) and (15) have a common eigenvalue,
or equivalently that Â − teiθ and B̂ − teiθ have a common singular value—but this
is only a necessary condition for these two matrices to have a common least singular
value. Thus, most of the restrictions on θ have nothing to do with pseudospectra,
but comprise a technical condition that ensures that the pencil P − tQ is nonsingular.
Even the second condition may not be relevant to (11), as we see if we change the (2,2)
entries of A and B to −10i and 10i, respectively, or add a nonzero upper triangular
entry to A or B.

Thus, as long as θ is chosen correctly (and choosing it randomly will almost
certainly be adequate), the pencil P − tQ is guaranteed to be regular, with 2mn
finite eigenvalues (mn pairs of double eigenvalues) and 2mn infinite eigenvalues. In
practice, even when the pencil is singular, as in the example given above, rounding
comes to our assistance, so always using θ = 0 seems adequate. Indeed, for randomly
generated A with ‖A‖ ≈ 1, the algorithm typically approximates sepλ(A,AT ) = 0
to about machine precision, although the basic assumption that A and B have no
common eigenvalue is violated.
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4. Concluding remarks. We conclude the paper with brief discussions of two
key issues: efficiency and numerical stability.

When a QR-based method such as the one invoked by the Matlab function eig

is used to compute the eigenvalues of the pencils K − xL and P − tQ, the complex-
ity of the algorithm is, as already noted, O((m + n)m3n3). This can potentially be
reduced by using an iterative method with a shift-and-invert preconditioner based on
a Sylvester solver, allowing exploitation of the structure of the generalized eigenvalue
problems discussed in the previous section. Since all real eigenvalues must be found,
one might well doubt whether such an approach would work in practice. Nonethe-
less, a novel divide-and-conquer approach to searching for real eigenvalues, introduced
recently in [GMO+06], works very well in the context of computing the distance to
uncontrollability, where the issues are similar: the key step is computing all real eigen-
values of a large structured generalized eigenvalue problem. Although there are some
inevitable difficulties with the numerical stability of this approach, the complexity
drops significantly. For computing the distance to uncontrollability of a matrix pair
(A,B), where A is p× p and B is p× q, with q ≤ p, the complexity drops from O(p6)
to O(p5) in the worst case and to O(p4) on average (both in theory and in practice).
For computing sepλ(A,B), where A and B are both m × m, the analogous drop in
complexity would be from O(m7) to O(m6) in the worst case and O(m5) on average,
but this has not been implemented.

On the other hand, even using a QR-based algorithm to compute the eigenvalues
is not enough to ensure numerical stability of the new algorithm. In order to obtain
a numerically stable algorithm, it seems essential to exploit the skew-Hamiltonian
structure of the pencils K − xL and P − tQ. Assuming θ = 0, the finite eigenvalues
of these pencils have skew-Hamiltonian symmetry around the real axis: those that
are not real occur in complex conjugate pairs (regardless of whether A and B are
real). The Matlab function eig does not exploit this symmetry and hence real
eigenvalues often have small imaginary rounding errors, occasionally defeating the test
in the code that checks whether they are real and therefore returning invalid lower
bounds. Ideally one would like to use a skew-Hamiltonian generalized eigensolver that
exploits symmetry and delivers real eigenvalues with no imaginary rounding errors.
Likewise, one should use a Hamiltonian eigensolver to compute the eigenvalues of the
Hamiltonian matrices G(x) and H(x) in Step 2 of Algorithm 1, delivering imaginary
eigenvalues with no real rounding errors. The design of such specialized eigensolvers
has been a very active research area in recent years [MW01, BKM04].

In summary, an algorithm to compute sepλ to arbitrary accuracy has been de-
scribed, assuming that eigenvalues and singular values can be computed exactly. Since
this assumption is very much an idealized one, some interesting questions regarding
implementation of the algorithm remain open for future investigation.
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A QUADRATICALLY CONVERGENT NEWTON METHOD FOR
COMPUTING THE NEAREST CORRELATION MATRIX∗
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Abstract. The nearest correlation matrix problem is to find a correlation matrix which is
closest to a given symmetric matrix in the Frobenius norm. The well-studied dual approach is
to reformulate this problem as an unconstrained continuously differentiable convex optimization
problem. Gradient methods and quasi-Newton methods such as BFGS have been used directly to
obtain globally convergent methods. Since the objective function in the dual approach is not twice
continuously differentiable, these methods converge at best linearly. In this paper, we investigate a
Newton-type method for the nearest correlation matrix problem. Based on recent developments on
strongly semismooth matrix valued functions, we prove the quadratic convergence of the proposed
Newton method. Numerical experiments confirm the fast convergence and the high efficiency of the
method.
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1. Introduction. Given a symmetric matrix G ∈ Sn, computing its nearest
correlation matrix, a problem from finance, is recently studied by Higham [25] and is
given by

min
1

2
‖G−X ‖2

s.t. Xii = 1, i = 1, . . . , n,
X ∈ Sn

+ ,

(1)

where Sn and Sn
+ are, respectively, the space of n × n symmetric matrices and the

cone of positive semidefinite matrices in Sn, and ‖ · ‖ is the Frobenius norm. It
is noted that by introducing auxiliary variables, one may reformulate problem (1)
as semidefinite programs or second-order cone programs, which may be solved by
the well-developed modern interior point methods. However, when n is reasonably
large, the direct use of interior point methods seems infeasible [25].1 In tackling this
difficulty, an alternating projection method of Dykstra [20] was proposed by Higham
[25]. The projection method converges at best linearly. The latest study on problem
(1) includes a dual approach proposed by Malick [35] and Boyd and Xiao [7]. This dual
approach falls within the framework suggested by Rockafellar [43, p. 4] for general
convex optimization problems.

Problem (1) is a special case of the following convex optimization problem:

∗Received by the editors February 16, 2005; accepted for publication (in revised form) by N. J.
Higham January 4, 2006; published electronically May 5, 2006.
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1By using preconditioned conjugate gradient methods to solve the linear system resulting from
the interior point method, one may expect the interior point method to work well in practice [48].
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min
1

2
‖x0 − x ‖2

s.t. Ax = b
x ∈ K ,

(2)

where K ⊆ X is a closed convex subset in a Hilbert space X endowed with an inner
product 〈·, ·〉 and its induced norm ‖ · ‖, A : X �→ R

n is a bounded linear operator,
b ∈ R

n and x0 ∈ X are given data (for problem (1), X = Sn, K = Sn
+, b = e, the

vector of all ones, x0 = G, and AX = diag[X], the vector formed by all diagonal
elements of X ∈ Sn). Problem (2) is also known as the best approximation from a
closed convex set in a Hilbert space. See the recent book by Deutsch [13] and the
references therein for details on this topic.

It has now become well known [14] that the (unique) solution x∗ of (2) has the
representation

x∗ = ΠK(x0 + A∗y∗)(3)

if and only if the set {K,A−1(b)} has the so-called strong conical hull intersection
property (CHIP), where ΠK(·) denotes the metric projection operator onto K under
the inner product 〈·, ·〉, y∗ is a solution of the equation

AΠK(x0 + A∗y) = b,(4)

and A∗ denotes the adjoint of A (when A = diag, A∗y = Diag[y], the diagonal
matrix whose ith diagonal element is given by yi). The property CHIP was initially
characterized by Chui, Deutsch, and Ward [9] and was refined by Deutsch, Li, and
Ward [14] to strong CHIP, which turns out to be a necessary and sufficient condition
for the solution of (2) to have representation (3). In practice, however, strong CHIP
is often difficult to verify for many interesting cases. Fortunately, there is an easy-to-
verify sufficient condition:

b ∈ ri (A(K)) .(5)

A(K) is often called the data cone when K is a cone in X [9] and ri denotes the relative
interior. We refer the reader to [2, 3, 5, 6, 10, 15, 36, 37] for related developments.

One well-studied concrete example of problem (2) is the convex best interpolation
problem studied in [22, 27, 28, 36], where K is a closed convex cone given by

K := {x ∈ L2[0, 1] |x ≥ 0 a.e. on [0, 1]}.

Newton’s method for the dual of the convex best interpolation problem has been
known to be the most efficient algorithm since [29, 1, 17]. The effectiveness of Newton’s
method was successfully explained very recently by Dontchev, Qi, and Qi [18, 19],
where the authors established the superlinear (quadratic) convergence of Newton’s
method. The success of Newton’s method for solving the convex best interpolation
problem motivates us to study Newton’s method for matrix nearness problem (1).

Coming to problem (1), we see b = e and A(Sn
+) = R

n
+, the nonnegative orthant

of R
n. Obviously, e ∈ intRn

+ = ri R
n
+. Hence, (3) and (4) imply that there exists

y∗ ∈ R
n such that the unique solution X∗ of (1) has the representation

X∗ = (G + A∗y∗)+(6)
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and y∗ is a solution of the equation

A (G + A∗y)+ = b, y ∈ R
n ,(7)

where X+ denotes the metric projection of X onto Sn
+, i.e., X+ := ΠSn

+
(X). In fact,

(7) is just the optimality condition of the following unconstrained and differentiable
convex optimization problem [43]:

min
y∈Rn

θ(y) :=
1

2
‖ (G + A∗y)+ ‖2 − bT y.(8)

This is the dual problem of (1) studied in [35, 7]. The function θ(·) is continuously
differentiable, and its gradient mapping ∇θ(·) is globally Lipschitz continuous with the
Lipschitz constant 1. Moreover, since Slater’s condition is satisfied, θ(·) is coercive;
i.e., θ(y) → +∞ as ‖y‖ → +∞ [43]. These nice properties allow one to apply
either gradient-type methods or quasi-Newton methods to problem (8) directly [25,
35, 7]. However, since θ(·) is not twice continuously differentiable, the convergence
rate of these methods is at best linear. In this paper, we will show that Newton’s
method for solving problem (8) can achieve quadratic convergence by using the fact
that the metric projection operator ΠSn

+
(·) is strongly semismooth [46, 8]. We refer

the interested reader to [47] for the strong semismoothness of the metric projection
operator over the symmetric cones which include the nonnegative orthant, the second-
order cone, and the positive semidefinite cone Sn

+.
The paper is organized as follows. In section 2, we review some basic concepts and

results concerning semismooth functions, especially in association with the projection
X+. In section 3, we develop Newton’s method and show that it is quadratically
convergent. As by-products of our analysis, we prove that the solution y∗ is unique
for any G ∈ Sn and b > 0 and is strongly semismooth as a function of G and b. This
further implies that the solution X∗ is also strongly semismooth as a function of G
and b. Section 4 discusses some extensions which cover the W -weighted version of
(1), a case with lower bounds, and a nonsymmetric case. We demonstrate that the
developed Newton method applies to all those extensions under mild conditions. In
section 5, we discuss the implementation issues and report our preliminary numerical
results, which show that the Newton method is very efficient compared to existing
methods. The conjugate gradient (CG) method is employed to solve the linear system
obtained by Newton’s method. We conclude our paper in section 6.

We use ◦ to denote the Hardmard product of matrices; i.e., for any B,C ∈ Sn

B ◦ C = [BijCij ]
n
i,j=1.

We let E denote the matrix of all ones in Sn. For subsets α, β of {1, 2, . . . , n}, we
denote Bαβ as the submatrix of B indexed by α and β. Let e denote the vector of all
ones.

2. Preliminaries. In this section, we review some basic concepts such as semi-
smooth functions and generalized Jacobian of Lipschitz functions. These concepts
will be used to define Newton’s method for solving (7) and play an important role
in our convergence analysis. We also review a perturbation result on eigenvalues of
symmetric matrices.

Let Φ : R
m �→ R

� be a (locally) Lipschitz function. According to Redemacher’s
theorem (see [44, Sect. 9.J] for a proof), Φ is differentiable almost everywhere. We let

DΦ := {x ∈ R
m| Φ is differentiable at x} .
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Let Φ′(x) denote the Jacobian of Φ at x ∈ DΦ. The Bouligand subdifferential of Φ at
x ∈ R

n is then defined by

∂BΦ(x) :=
{
V ∈ R

�×m |V is an accumulation point of Φ′(xk), xk → x, xk ∈ DΦ

}
.

The generalized Jacobian in the sense of Clarke [11] is the convex hull of ∂BΦ(x), i.e.,

∂Φ(x) = co ∂BΦ(x).

Note that ∂Φ(x) is compact and upper-semicontinuous.
When � = m, a direct generalization of classical Newton’s method for a system

of smooth equations to Φ(x) = 0 with a Lipschitz function Φ is given by [32, 42]

xk+1 = xk − V −1
k Φ(xk), Vk ∈ ∂Φ(xk), k = 0, 1, 2, . . . ,(9)

with x0 as an initial guess. In general, the above iterative method does not con-
verge. For a counterexample, see Kummer [32]. In extending Kojima and Shindo’s
condition for superlinear (quadratic) convergence of Newton’s method for piecewise
smooth equations [30], Kummer [32] proposed a general condition for guaranteeing the
superlinear convergence of (9). However, Qi and Sun [42] popularized (9) by showing
that the iterate sequence generated by (9) converges superlinearly if Φ belongs to an
important subclass of Lipschitz functions—semismooth functions.

We say that Φ is semismooth at x if (i) Φ is directionally differentiable at x and
(ii) for any V ∈ ∂Φ(x + h),

Φ(x + h) − Φ(x) − V h = o(‖h‖).

Φ is said to be strongly semismooth at x if Φ is semismooth at x and for any V ∈
∂Φ(x + h),

Φ(x + h) − Φ(x) − V h = O(‖h‖2).

The concept of semismoothness was introduced by Mifflin [38] for functionals. In
order to study the convergence of (9), Qi and Sun [42] extended the definition of
semismoothness to vector-valued functions and established the following convergence
result.

Theorem 2.1 (see [42, Thm. 3.2]). Let x∗ be a solution of the equation Φ(x) = 0
and let Φ be a locally Lipschitz function which is semismooth at x∗. Assume that
all V ∈ ∂Φ(x∗) are nonsingular matrices. Then every sequence generated by (9) is
superlinearly convergent to x∗, provided that the starting point x0 is sufficiently close
to x∗. Moreover, if Φ is strongly semismooth at x∗, the convergence rate is quadratic.

A similar result to the above theorem on the superlinear convergence of (9) can
be found in [32, Prop. 3]. Theorem 2.1 gave the rates of convergence of (9) once the
starting point x0 is within the convergence region. The next theorem provides an
estimate on how large the region of convergence can be.

Theorem 2.2 (see [42, Thm. 3.3]). Suppose that Φ is locally Lipschitz continuous
and semismooth on S := {x ∈ R

m | ||x − x0‖ ≤ r}. Also suppose that for any V ∈
∂Φ(x), x, y ∈ S, V is nonsingular,

‖V −1‖ ≤ β, ‖V (y − x) − Φ′(x; y − x)‖ ≤ γ‖y − x‖,

and

‖Φ(y) − Φ(x) − Φ′(x; y − x)‖ ≤ δ‖y − x‖,
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where β‖Φ(x0)‖ ≤ r(1−α) and α := β(γ + δ) < 1. Then the iterates (9) remain in S
and converges to the unique solution of Φ(x) = 0 in S. Moreover, the error estimate

‖xk − x∗‖ ≤ [α/(1 − α)]‖xk − xk−1‖

holds for k = 1, 2, . . . .
Theorem 2.2 is an extension of the classical Newton–Kantorovich convergence

theorem of Newton’s method for solving smooth equations [40, Sect. 12.6]. Now we
return our attention to problem (1). To facilitate our analysis, we define F : R

n �→ R
n

by

F (y) := A(G + A∗y)+.

Then (7) becomes

F (y) = b(10)

with b = e. It has been proved recently that (·)+ is strongly semismooth everywhere
on Sn [46, 8]. Since the composite of strongly semismooth functions is still strongly
semismooth, F is strongly semismooth everywhere on R

n. So, in order to apply
Theorem 2.1 to get a quadratically convergent Newton method, we need only to
address the nonsingularity of ∂F (y∗). It turns out to be the most difficult part in the
analysis of Newton’s method for solving (10). We will devote the whole next section
to this issue.

We will also need the following perturbation result of Weyl for eigenvalues of
symmetric matrices; see [4, p. 63] and [26, p. 367].

Lemma 2.3. Let λ1 ≥ · · · ≥ λn be the eigenvalues of any X ∈ Sn and μ1 ≥ · · · ≥
μn be the eigenvalues of any Y ∈ Sn. Then

|λi − μi| ≤ ‖X − Y ‖ ∀i = 1, . . . , n.

3. Newton’s method. In this section, we consider the nonsmooth Newton
method for (10):

yk+1 = yk − V −1
k (F (yk) − b), Vk ∈ ∂F (yk), k = 0, 1, 2, . . . .(11)

As we briefly discussed in section 2, the core issue for (11) is the nonsingularity
of ∂F (y) when y is near y∗, which is a solution of (10). Our main result in this
section is that every element in ∂F (y∗) is positive definite. Since F is already known
to be strongly semismooth, Theorem 2.1 implies that method (11) is quadratically
convergent if the initial point y0 is sufficiently near y∗.

To facilitate our proofs for the positive definiteness of ∂F (y∗) we need a few more
notions. For any given X ∈ Sn, let λ(X) denote the eigenvalue vector of X arranged
in the nonincreasing order, i.e., λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X). Let O denote the set
of all orthogonal matrices in R

n×n and OX be the set of orthonormal eigenvectors of
X defined by

OX :=
{
P ∈ O| X = PDiag[λ(X)]PT

}
.

Let f : R → R be a continuous function. Then one can define Löwner’s function
f : Sn → Sn (we adopt the convention of using f to denote both the scalar-valued
and matrix-valued functions) by

f(X) := PDiag[f(λ1(X)), f(λ2(X)), . . . , f(λn(X))]PT , P ∈ OX .(12)
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The study on the matrix-valued function f(X) defined in (12) was initiated by Löwner
in his landmark paper [33]. See Donoghue [16] and Bhatia [4] for detailed discussions
on (12).

For any μ = (μ1, . . . , μn)T ∈ R
n such that f is differentiable at μ1, . . . , μn, we

denote by f [1](μ) the n× n symmetric matrix whose (i, j)th entry is

(
f [1](μ)

)
ij

=

{
f(μi) − f(μj)

μi − μj
if μi �= μj ,

f ′(μi) if μi = μj .

The matrix f [1](μ) is called the first divided difference of f at μ. The following
result of Löwner is well known. For a proof, see Donoghue [16, Chap. VIII] or [4,
Chap. V.3.3].

Lemma 3.1. Let P ∈ O be such that X = PDiag[λ1(X), . . . , λn(X)]PT . Let
(a1, a2) be an open interval in R that contains λj(X), j = 1, . . . , n. If f is continuously
differentiable on (a1, a2), then f is differentiable at X and its derivative, for any
H ∈ Sn, is given by

f ′(X)H = P
(
f [1](λ(X)) ◦ (PTHP )

)
PT .(13)

Throughout the remainder of the paper, we let f(t) = t+ := max(0, t), t ∈ R. It is
easy to derive from Moreau’s theorem on the characterization of the metric projection
operator over closed convex cones that (see [24, 50] for a proof)

X+ = f(X) = PDiag[max{λ1(X), 0},max{λ2(X), 0}, . . . ,max{λn(X), 0}]PT .

By using Lemma 3.1 (by considering any continuously differentiable scalar-valued
function with value one on an open set containing all the nonnegative eigenvalues of
X and zero on an open set containing all negative eigenvalues of X) and the fact that
(·)+ is (continuously) differentiable at X ∈ Sn if and only if X is nonsingular, we
obtain the following useful result.

Proposition 3.2. Let P ∈ O be such that X = PDiag[λ1(X), . . . , λn(X)]PT .
Then ΠSn

+
(·) is (continuously) differentiable at an X ∈ Sn with eigenvalues λ1(X), . . . ,

λn(X) if and only if λi(X) �= 0, i = 1, . . . , n. Moreover, if λi(X) �= 0, i = 1, . . . , n,
then the derivative of ΠSn

+
(·) at X, for any H ∈ Sn, is given by (13) with f(t) = t+,

t ∈ R.
See [8, Props. 4.3, 4.4] for a generalization on Proposition 3.2. We further let

C(y) := G + A∗y and λ(y) := λ(C(y)).

We define three index sets associated with λ(y):

α(y) := {i| λi(y) > 0}, β(y) := {i| λi(y) = 0}, and γ(y) := {i| λi(y) < 0}.

We also let Λ(y) := Diag[λ(y)]. When no confusion is involved, we often omit y for
brevity. Let y∗ be a solution of (4) throughout this section. For simplicity, we let

λ∗ := λ(y∗), α∗ := α(y∗), γ∗ := γ(y∗), and Λ∗ := Λ(y∗).

Now we present our first technical result which is a direct consequence of the posi-
tiveness of b.
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Lemma 3.3. Suppose that b > 0 in (10). Then α∗ �= ∅. Moreover, for any
P ∈ OC(y∗) we have

∑
�∈α∗

P 2
i� > 0 ∀i = 1, . . . , n.

Proof. Suppose that P ∈ OC(y∗) is arbitrarily given. Then

(C(y∗))+ = P

⎛
⎝

Λ∗
α

0
0

⎞
⎠PT

and (10) implies

AP

⎛
⎝

Λ∗
α

0
0

⎞
⎠PT = b ,

where Λ∗
α is a diagonal matrix of |α∗| × |α∗| with its diagonal elements given by

λ∗
i , i ∈ α∗. The fact that b �= 0 implies that α∗ is not empty. Equivalently, we have

(∑
�∈α∗

λ∗
�P

2
1�,

∑
�∈α∗

λ∗
�P

2
2�, . . . ,

∑
�∈α∗

λ∗
�P

2
n�

)
= (b1, b2, . . . , bn).

Since λ∗
� > 0 for all � ∈ α∗, the lemma is proved to be true.

Let

δ∗ :=
1

2
min

i∈α∗∪γ∗
|λ∗

i |

and

B(y∗, δ∗) := {y ∈ R
n| ‖y − y∗‖ ≤ δ∗}.

Then the perturbation result in Lemma 2.3 implies that for all y ∈ B(y∗, δ∗),

|λi(y) − λ∗
i | ≤ ‖C(y) − C(y∗)‖ ≤ ‖y − y∗‖ ≤ δ∗ ∀ i = 1, . . . , n.

Lemma 3.4. F is differentiable at y if and only if f is differentiable at C(y).
And in this case

F ′(y)h = Af ′(C(y))H ∀h ∈ R
n ,

where H := A∗h = Diag[h] and

f ′(C(y))H = P
(
f [1](λ(y)) ◦ (PTHP )

)
PT ∀P ∈ OC(y).

Moreover, when y ∈ B(y∗, δ∗), we have

(
f [1](λ(y))

)
ij

= 1 ∀ i, j ∈ α∗

and
(
f [1](λ(y))

)
ij

= 0 ∀ i, j ∈ γ∗,
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i.e.,

(
f [1](λ(y))

)
α∗α∗

= Eα∗α∗ ,
(
f [1](λ(y))

)
γ∗γ∗

= 0γ∗γ∗ .(14)

Proof. It is obvious that if f is differentiable at C(y), then F is differentiable at
y because it is composed of f with linear transformations.

Suppose f is not differentiable at C(y). Then Proposition 3.2 implies that f
is not differentiable at λi(y) for some i ∈ {1, . . . , n}. The special structure of
f(t) = max{0, t} yields that λi(y) = 0. Since f(t) is directionally differentiable
and nondecreasing, it holds that

f ′(x; 1) ≥ f ′(x;−1) ∀x ∈ R.

In particular,

f ′(λi; 1) = 1 > 0 = f ′(λi;−1).

We let d, d̂ ∈ R
n be defined, respectively, by

d� = f ′(λ�; 1) and d̂� = f ′(λ�;−1), � = 1, . . . , n.

Since di = 1 > d̂i = 0, we see that d �= d̂ and d ≥ d̂. Consider two sequences,
respectively, specified by {y + te}t>0 and {y − te}t>0. We have

C(y + te) = PDiag[λ + te]PT and C(y − te) = PDiag[λ− te]PT , P ∈ OC(y).

Hence,

lim
t↓0

F (y + te) − F (y)

t
= APDiag[d]PT and lim

t↓0

F (y − te) − F (y)

−t
= APDiag[d̂]PT .

With a bit of further calculation, we see by noticing d� ≥ d̂� for � = 1, . . . , n and
di > d̂i that

APDiag[d]PT −APDiag[d̂]PT =

⎛
⎜⎝

∑n
�=1(d� − d̂�)P

2
1�

...∑n
�=1(d� − d̂�)P

2
n�

⎞
⎟⎠ �= 0.

This means that

lim
t↓0

F (y + te) − F (y)

t
�= lim

t↓0

F (y − te) − F (y)

−t
,

implying that F is not differentiable at y. This establishes the first part of the lemma.
The formula for F ′ follows just from the chain rule and Proposition 3.2. The

relation in (14) follows from the definition of f [1] and the fact that for any y ∈
B(y∗, δ∗), λi(y) > 0 for all i ∈ α∗ and λi(y) < 0 for all i ∈ γ∗.

We now define a collection of matrices in relation to λ∗:

M :=

⎧⎪⎪⎨
⎪⎪⎩
M ∈ R

n×n | M =

⎛
⎜⎜⎝

Eα∗α∗ Eα∗β∗ (τij)i∈α∗
j∈γ∗

Eβ∗α∗ (ωij)i∈β∗
j∈β∗

0

(τji)i∈α∗
j∈γ∗

0 0

⎞
⎟⎟⎠

ωij = ωji ∈ [0, 1],
for i, j ∈ β∗,
τij = λ∗

i /(λ
∗
i − λ∗

j ),
for i ∈ α∗, j ∈ γ∗.

⎫⎪⎪⎬
⎪⎪⎭
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We note that M is a compact set and 1 > τij > 0 for any M ∈ M.
Lemma 3.5. For any h ∈ R

n we have

∂BF (y∗)h ⊆ {AWH : W ∈ W} ,

where H := A∗h =Diag[h] and

W :=
{
W | WH = P

(
M ◦ (PTHP )

)
PT , P ∈ OC(y∗), M ∈ M and h ∈ R

n
}
.

Proof. Let V ∈ ∂BF (y∗). By the very definition of ∂BF we have a sequence
{yk} converging to y∗ such that F is differentiable at each yk and F ′(yk) → V .
Equivalently, we have

lim
k→∞

F ′(yk)h = V h ∀h ∈ R
n.(15)

Then it follows from Lemma 3.4 that there exists P k ∈ OC(yk) such that

F ′(yk)h = Af ′(C(yk))H,

where H = A∗h = Diag[h] and

f ′(C(yk))H = P k
(
f [1](λ(yk)) ◦ ((P k)THP k)

)
(P k)T .

Denoting λk := λ(yk) for simplicity, when yk ∈ B(y∗, δ∗),

λk
i > 0 for i ∈ α∗ and λk

i < 0 for i ∈ γ∗,

and λk
i for i ∈ β∗ could be positive or nonpositive but converges to λ∗

i = 0. Hence,
the definition of f [1] yields

(
f [1](λk)

)
ij

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, i, j ∈ α∗,
0, i, j,∈ γ∗,

λk
i − (λk

j )+

λk
i − λk

j

, i ∈ α∗, j ∈ β∗,

λk
i

λk
i − λk

j

, i ∈ α∗, j ∈ γ∗,

and (f [1](λk))ij = (f [1](λk))ji (i.e., it is symmetric). Because 0 ≤ (f [1](λk))ij ≤ 1 for
all i, j, there exists a sequence (still denoted by {yk} without loss of generality) such
that f [1](λk) converges to a matrix, say M∗. It is easy to see that M∗ ∈ M. The
boundedness of {P k} also implies that there exists a sequence (also denoted by {yk})
such that P k → P ∗. Then we have

C(y∗) = lim
k→∞

C(yk) = lim
k→∞

P kDiag[λk](P k)T = P ∗Diag[λ](P ∗)T .

Hence, P ∗ ∈ OC(y∗), and consequently we have by (15) that

V h = lim
k→∞

F ′(yk)h ∈ {AWH : W ∈ W} ∀h ∈ R
n.

Since V ∈ ∂BF (y∗) is arbitrary, we establish our result.
Now we are ready to prove our main result in this section.
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Proposition 3.6. Each element V ∈ ∂BF (y∗) is positive definite. Consequently,
each element V ∈ ∂F (y∗) is also positive definite.

Proof. Let V ∈ ∂BF (y∗) be arbitrarily chosen. We want to show that for any
0 �= h ∈ R

n

hTV h > 0.

We note that it follows from Lemma 3.5 that there exist M ∈ M and P ∈ OC(y∗)

such that

V h = A
(
P (M ◦ (PTHP )

)
PT .

Then

〈h, V h〉 = 〈A∗h, P (M ◦ (PTHP ))PT 〉
= 〈PTHP,M ◦ (PTHP )〉.

Let H̃ := PTHP . Then we have

〈h, V h〉 = 〈H̃,M ◦ H̃〉

≥
∑
i∈α∗

⎛
⎝ ∑

j∈α∗∪β∗

H̃2
ij +

∑
j∈γ∗

τijH̃
2
ij

⎞
⎠

≥ τ
∑
i∈α∗

n∑
j=1

H̃2
ij ,

where τ = mini∈α∗,j∈γ∗ τij > 0. Because V is positive semidefinite, we see that
〈h, V h〉 = 0 only if

H̃ij = 0 ∀i ∈ α∗ and j ∈ {1, . . . , n}.

The above condition is equivalent to

(H̃i1, H̃i2, . . . , H̃in) = (0, 0, . . . , 0) ∀i ∈ α∗.

By recalling that H̃ = PTHP and H = Diag[h], we have

(H̃i1, H̃i2, . . . , H̃in) = (h1P1i, h2P2i, . . . , hnPni)P = (0, 0, . . . , 0)

if and only if

(h1P
2
1i, h2P

2
2i, . . . , hnP

2
ni) = (0, 0, . . . , 0) (because P is nonsingular).

Summarizing over i ∈ α∗ in the above relation yields

(
h1

∑
i∈α∗

P 2
1i, h2

∑
i∈α∗

P 2
2i, . . . , hn

∑
i∈α∗

P 2
ni

)
= (0, 0, . . . , 0).

According to Lemma 3.3, the above condition holds if and only if

(h1, h2, . . . , hn) = (0, 0, . . . , 0),
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i.e., h = 0. This establishes the positive definiteness of V .

Since ∂BF (y∗) is compact and its every element is positive definite, any convex
combination of its elements is also positive definite. That is, every element of ∂F (y∗)
is positive definite.

The first of two important consequences of the above regularity result is on the
convergence of Newton’s method (11). It is just a direct application of Theorem 2.1,
given that we have already known that F is strongly semismooth and every element
in ∂F (y∗) is positive definite.

Corollary 3.7. Newton’s method (11) is quadratically convergent, provided that
y0 is sufficiently close to y∗.

The second corollary is on the uniqueness of the solution to (10) and its strong
semismoothness.

Corollary 3.8. For any given G ∈ Sn and 0 < b ∈ R
n, there is a unique

solution y∗ to (10). If y∗ is viewed as a function of G and b, denoted y∗(G, b), then
y∗ is strongly semismooth with respect to (G, b) ∈ Sn × R

n
++. Consequently, X∗ as a

function of G and b is also strongly semismooth with respect to (G, b) ∈ Sn × R
n
++.

Proof. The proof of Proposition 3.6 is independent of the choice of G and b
as long as it belongs to Sn × R

n
++. Hence, the Clarke inverse theorem says that

there is a unique solution y∗(G, b) for any (G, b) ∈ Sn × R
n
++. We note that the

existence of a solution is guaranteed because 0 < b ∈ R
n
++ and b ∈ intA(Sn

+). The
strong semismoothness of y∗ follows from a result of Sun [45] on an implicit theorem
of strongly semismooth functions. Since X∗ is composed of strongly semismooth
functions, it is also strongly semismooth with respect to (G, b) ∈ Sn × R

n
++.

4. Extensions.

4.1. The W -weighted version. In practice, the W -weighted version of (1) is
very useful [25]:

min
1

2
‖G−X‖2

W

s.t. Xii = 1, i = 1, . . . , n,
X � 0,

(16)

where W ∈ Sn is positive definite and for any Y ∈ Sn,

‖Y ‖W = ‖W 1/2YW 1/2‖.

Let

Ḡ = W 1/2GW 1/2 and X̄ = W 1/2XW 1/2 .

Then problem (16) becomes standard in the form of (1):

min
1

2
‖Ḡ− X̄‖2

s.t. (W−1/2X̄W−1/2)ii = 1, i = 1, . . . , n,
X̄ � 0.

In fact, the constraint X̄ � 0 should be W−1/2X̄W−1/2 � 0. It is easy to see that
they are equivalent. For simplicity, we drop the bars in the above formulation and
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have

min
1

2
‖G−X‖2

s.t.
(
W−1/2XW−1/2

)
ii

= 1, i = 1, . . . , n,
X � 0.

(17)

Define the linear operator A : Sn �→ R
n by

(AX)i =
(
W−1/2XW−1/2

)
ii
, i = 1, . . . , n.(18)

The adjoint operator A∗ : R
n �→ Sn is given by

〈A∗y,X〉 = 〈y,AX〉
= 〈y,diag[W−1/2XW−1/2]〉
= 〈Diag[y],W−1/2XW−1/2〉
= 〈W−1/2Diag[y]W−1/2, X〉.

Hence

A∗y = W−1/2Diag[y]W−1/2.(19)

It is easy to see that e ∈ intASn
+. With this fact, we once again get (10) with A and

A∗ defined by (18) and (19), respectively. With no difficulty, we can develop parallel
results as in Lemmas 3.3–3.5 and in Proposition 3.6. For example, Lemma 3.3 now
becomes the following result.

Lemma 4.1. Suppose that b > 0 in (10) and that A and A∗ are defined by (18)
and (19), respectively. Then α∗ �= ∅. Moreover, for any P ∈ OC(y∗) we have

∑
�∈α∗

P̂ 2
i� > 0 ∀i = 1, . . . , n ,

where P̂ = W−1/2P .
The proof follows just that of Lemma 3.3 and makes use of (18). Lemmas 3.4

and 3.5 remain true with H = A∗h = W−1/2Diag[h]W−1/2 for h ∈ R
n. The proof for

Proposition 3.6 is also true now with H̃ = PTHP and H as just defined. Starting
from

(H̃i1, H̃i2, . . . , H̃in) = (0, 0, . . . , 0) ∀i ∈ α∗

in the proof of Proposition 3.6, we have
(
h1

∑
i∈α∗

P̂ 2
1i, h2

∑
i∈α∗

P̂ 2
2i, . . . , hn

∑
i∈α∗

P̂ 2
ni

)
= (0, 0, . . . , 0)

by noticing

H̃ = PTW−1/2Diag[h]W−1/2P = P̂Diag[h]P̂ .

According to Lemma 4.1, the above condition holds if and only if

(h1, h2, . . . , hn) = (0, 0, . . . , 0).

This proves Proposition 3.6 with A and A∗ defined by (18) and (19), respectively.
Therefore, for the W -weighted version, Newton’s method is quadratically convergent.
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4.2. The case of lower bounds. The nearest correlation matrix is often rank-
deficient [25]. To avoid the ill-conditionedness and to increase the stability, one often
requires the matrix to be not less than a positive diagonal matrix. This gives the
so-called calibration of correlation matrices, i.e.,

min
1

2
‖G−X‖2

s.t. X � αI,
AX = e ,

(20)

where α ∈ (0, 1) and AX = diag[X]. We will see that it is quite straightforward to
apply the generalized Newton method to this case.

First, we note that the following condition is automatically valid:
{
A∗y : (1 − α)yT e ≥ 0, y ∈ R

n
}
∩ (−Sn

+) = {0}.

This condition corresponds to the condition [37, (2.17)], so that [37, Thm. 2.2] (this
theorem considers only the case which corresponds to G = 0 in (20); however, it
also holds for G �= 0) implies that the unique solution of (20) has the following
representation:

X∗ = (G− αI + A∗y∗)+ + αI,

where y∗ is a solution of the following equation:

A(G− αI + A∗y)+ + αAI = e,

which is obviously equivalent to

A(G− αI + A∗y)+ = (1 − α)e.(21)

We now note that this equation actually defines a new problem similar to (1):

min
1

2
‖(G− αI) −X‖2

s.t. Ae = (1 − α)e,
X ∈ Sn

+.

(22)

Hence, by following the discussion in section 1 and noting that (1−α)e > 0, we know
that the unique solution of problem (22) has the form

X∗ = (G− αI + A∗y∗)+,

where y∗ is the unique solution of (21). We note that the uniqueness of y∗ follows
from Corollary 3.8 applied to (22). Therefore, Newton’s method also applies to (21)
and is quadratically convergent by Corollary 3.7, and hence solves (20).

A more complicated problem of the calibration of covariance matrix was also
discussed by Malick [35] and is defined by

min
1

2
‖X − Q̃‖2

s.t. X � αI,

〈I,X〉 = tr(Q̃),
〈Gi, X〉 = σ2

i , i = 1, . . . ,m,

(23)
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where α > 0, Q̃ is a first estimate of the true covariance matrix Q used in portfolio risk
analysis, and σ2

i represent “ex-post” volatilities of well-chosen portfolios; Gi ∈ Sn.
We now demonstrate how Newton’s method can be applied to this problem.

The feasibility of problem (23) requires

tr(Q̃) ≥ nα.

To facilitate our analysis, let

b0 := tr(Q̃), bi := σ2
i , i = 1, . . . ,m, and b := (b0, b1, . . . , bm)T ∈ R

m+1,

G0 := I, A := (G0, G1, . . . , Gm)

with

AX := (〈G0, X〉, 〈G1, X〉, . . . , 〈Gm, X〉)T ∈ R
m+1.

Suppose that Gi’s are positive semidefinite nonzero matrices. Then tr(Gi) > 0 for
each i. Let α be chosen such that

0 < α < min{bi/tr(Gi) | i = 0, 1, . . . ,m}.(24)

We also assume that for any y ∈ R
m+1 with y� > 0 for some � ∈ {0, 1, . . . ,m}, we

have

A∗y :=

m∑
i=1

Giyi �� 0.(25)

Conditions (24) and (25) indicate how α and Gi are chosen in problem (23). Under
these two conditions, we see that condition (2.17) in [37] is valid for problem (23),
i.e.,

{A∗y : yT (b− αz0) ≥ 0} ∩ (−Sn
+) = {0},

where z0 := AI = (tr(G0), tr(G1), . . . , tr(Gm))T ∈ R
m+1. Hence, once again [37,

Thm. 2.2] implies that the unique solution of (23) has the representation

X∗ = (Q̃− αI + A∗y∗)+ + αI ,

where y∗ is a solution to the following equation:

A(Q̃− αI + A∗y)+ = b− αz0.(26)

Now the generalized Newton method can be applied to this equation. If we further
assume that the matrices Gi, i = 1, . . . ,m, are mutually diagonalizable, Newton’s
method is also quadratically convergent following our results in the last section. To
see this, let P ∈ O be a matrix such that Gi are simultaneously diagonalizable by P ,
i.e.,

Gi = PΓiPT , i = 1, . . . ,m,

where each Γi is a nonnegative diagonal matrix. Let Γ0 = I and define

L := (Γ0,Γ1, . . . ,Γm)
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so that

LX = (〈Γ0, X〉, 〈Γ1, X〉, . . . , 〈Γm, X〉)T

and

L∗y =

m∑
i=0

Γiyi.

Then (26) becomes

L(PT (Q̃− αI)P + L∗y)+ = b̃ ,(27)

where b̃ := diag[PT (b− αz0)P ]. Since b− αz0 > 0 by the assumed conditions, we see
that b̃ > 0. Now we note that (27) defines a new problem given by

min
1

2
‖PT (Q̃− αI)P −X‖2

s.t. 〈Γi, X〉 = b̃i, i = 0, . . . ,m,
X ∈ Sn

+.

It is easy to repeat the arguments for problem (1) to verify that Newton’s method for
the above problem is quadratically convergent.

Finally, we note that all the assumptions made so far for problem (23) are au-
tomatically satisfied if each Gi = Ei, where Ei is the diagonal matrix whose only
nonzero element is its ith diagonal element and equals 1.

4.3. The nonsymmetric case. In some applications [31], X may be only re-
quired to be positive semidefinite but not necessarily symmetric. Then we have the
following matrix nearness problem:

min
1

2
‖X −G ‖2

s.t. AX = b,
X ∈ Kn ,

(28)

where Kn is the cone of n × n positive semidefinite matrices (not necessarily sym-
metric)

Kn = {X ∈ R
n×n |X is positive semidefinite} .

By assuming the strong CHIP on {Kn,A−1(b)}, we know from section 1 that the
unique solution X∗ to problem (28) has the representation

X∗ = ΠKn(G + A∗y∗)(29)

and y∗ is a solution of the equation

F (y) := AΠKn(G + A∗y) = b, y ∈ R
n .(30)

Next, we derive an explicit formula for computing ΠKn(X) for a given X ∈ R
n×n.

It is easy to see that ΠKn(X) is the unique solution to

min
1

2
‖Y −X ‖2

s.t.
1

2
(Y + Y T ) ∈ Sn

+ .

(31)
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Since the Slater condition for problem (31) holds automatically, ΠKn(X), together
with the Lagrange multiplier Λ ∈ Sn

+, satisfies the KKT conditions [34, Chap. 8]
{

Y −X − Λ = 0,
1

2
(Y + Y T ) ∈ Sn

+ , Λ ∈ Sn
+ ,

1

2
(Y + Y T )Λ = 0 .

These conditions can be equivalently written as
{

Y −X − Λ = 0,
Λ − ΠSn

+
[Λ − 1

2 (Y + Y T )] = 0 ,

which imply

Λ − 1

2
(Y + Y T ) = −1

2
(X + XT )

and

Λ =
1

2
ΠSn

+
[−(X + XT )] .

Hence

ΠKn(X) = X +
1

2
ΠSn

+
[−(X + XT )] =

1

2
(X −XT ) +

1

2
ΠSn

+
(X + XT ) .

Therefore, by [46, Thm 4.13], we get the following result.
Proposition 4.2. The metric projection operator ΠKn(·) is strongly semismooth

at any X ∈ R
n×n.

Proposition 4.2 implies that the function F defined in (30) is strongly semismooth
everywhere on R

n. Then, in a similar way as for the symmetric case, we may use our
Newton’s method to find a solution of F (y) = b.

To establish the quadratic convergence of Newton’s method, we restrict ourselves
to the case that the linear operator A : R

n×n �→ R
n is defined by AX = diag[X]. In

this case, the adjoint of A is A∗y = Diag[y] (note that the inner product in R
n×n is

〈X,Y 〉 = tr(XTY ).) Noticing that

A(X −XT ) = 0,

we see that the nonsmooth equation (30) becomes

F (y) =
1

2
AΠSn

+
(C(y) + CT (y)) = b,

where as before we denote C(y) = G + A∗y. In a more explicit form we have

F (y) = AΠSn
+

(
1

2
(G + GT ) + A∗y

)
= b.(32)

This is the nonsmooth equation derived from the following standard problem in the
form of (1):

min
1

2
‖(G + GT )/2 −X‖2

s.t. Xii = bi, i = 1, . . . , n,
X ∈ Sn

+ .

(33)

Under the condition that b > 0, we see from our previous results for the symmetric
case similar to (33) that Proposition 3.6 holds for (32). Hence, Newton’s method is
quadratically convergent for the special case.
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5. Numerical results. In numerical experiments, we used the following glob-
alized version of Newton’s method for solving the dual problem (8). Recall that for
any y ∈ R

n, ∇θ(y) = F (y) − b and b = e.
Algorithm 5.1. Newton’s method.

Step 0. Given y0 ∈ R
n, η ∈ (0, 1), ρ, σ ∈ (0, 1/2). k := 0.

Step 1. Select an element Vk ∈ ∂F (yk) and apply the conjugate gradient (CG)
method of Hestenes and Stiefel [23] to find an approximate solution dk to

∇θ(yk) + Vkd = 0(34)

such that

‖∇θ(yk) + Vkd
k‖ ≤ ηk‖∇θ(yk)‖ ,(35)

where ηk := min{η, ‖∇θ(yk)‖}. If (35) is not achievable or if the condition

∇θ(yk)T dk ≤ −ηk‖dk‖2(36)

is not satisfied, let dk := −B−1
k ∇θ(yk), where Bk is any symmetric positive

definite matrix in Sn.
Step 2. Let mk be the smallest nonnegative integer m such that

θ(yk + ρmdk) − θ(yk) ≤ σρm∇θ(yk)T dk.

Set tk := ρmk and yk+1 := yk + tkd
k.

Step 3. Replace k by k + 1 and go to Step 1.
An alternative to calculating the Newton direction is to apply the CG method to

the following perturbed Newton equation:

∇θ(yk) + (Vk + εkI) d = 0 with εk > 0.

The classical choice of εk is the norm of the residue, i.e., εk = ‖F (yk) − b‖. Since Vk

is always positive semidefinite, the matrix (Vk + εkI) is always positive definite for
any εk > 0.

We provide a proof for the sake of completeness.
The global convergence analysis of Algorithm 5.1 is quite standard. Since the CG

method is used to calculate the Newton direction, it is actually an inexact Newton
direction that was used in our implementation. Hence, our local convergence anal-
ysis is a bit different from the standard ones. We provide a proof for the sake of
completeness.

First, we need the following result due to Facchinei [21, Thm. 3.3 and Remark
3.4]. A similar result was also obtained by Pang and Qi [41].

Lemma 5.2. Suppose that, for every k,

∇θ(yk)T dk ≤ −ρ̂‖dk‖2

for some ρ̂ > 0. Then, for any μ ∈ (0, 1/2), there exists a k̄ such that for all k ≥ k̄,

θ(yk + dk) ≤ θ(yk) + μ∇θ(yk)T dk .

Theorem 5.3. Suppose that in Algorithm 5.1 both {‖Bk‖} and {‖B−1
k ‖} are

uniformly bounded. Then the iteration sequence {yk} generated by Algorithm 5.1
converges to the unique solution y∗ of F (y) = b quadratically.
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Proof. Since for any k ≥ 0, dk is always a descent direction of θ(·) at yk, Algorithm
5.1 is well defined. Moreover, from the coercive property of θ we know that {yk} is
bounded. Then, by employing standard convergence analysis (cf. [12, Thm 6.3.3]), we
can conclude that

lim
k→∞

∇θ(yk) = 0 ,

which, together with the convexity of θ(·) and the boundedness of {yk}, implies that
yk → y∗.

Since, by Proposition 3.6, any element V ∈ ∂F (y∗) is positive definite, it holds
that for all k sufficiently large, Vk is positive definite and {‖V −1

k ‖} is uniformly
bounded. Hence, for all k sufficiently large, the CG method can find dk such that
both (35) and (36) are satisfied. This, together with the facts that ∇θ(y∗) = 0 and
∇θ(·) is strongly semismooth at y∗, further implies that for all k sufficiently large,

‖yk + dk − y∗‖ = ‖yk + V −1
k [(∇θ(yk) + Vkd

k) −∇θ(yk)] − y∗‖

≤ ‖yk − y∗ − V −1
k ∇θ(yk)‖ + ‖V −1

k (∇θ(yk) + Vkd
k)‖

≤ ‖V −1
k ‖‖∇θ(yk) −∇θ(y∗) − Vk(y

k − y∗)‖ + ηk‖V −1
k ‖‖∇θ(yk)‖

≤ O(‖yk − y∗‖2) + ‖V −1
k ‖‖∇θ(yk)‖2

≤ O(‖yk − y∗‖2) + O(‖∇θ(yk) −∇θ(y∗)‖)2,
= O(‖yk − y∗‖2),

(37)

where in the last equality we used the Lipschitz continuity of ∇θ(·). From (37) and
the fact that yk → y∗, we have for all k sufficiently large that

yk − y∗ = −dk + O(‖dk‖2) and ‖dk‖ → 0.(38)

For each k ≥ 0, let rk := ∇θ(yk) + Vkd
k. Then for all k sufficiently large,

−∇θ(yk)T dk = 〈dk, Vkd
k〉 − 〈dk, rk〉

≥ 〈dk, Vkd
k〉 − ‖dk‖‖rk‖

≥ 〈dk, Vkd
k〉 − ηk‖dk‖‖∇θ(yk)‖

= 〈dk, Vkd
k〉 − ‖dk‖‖∇θ(yk)‖2

≥ 〈dk, Vkd
k〉 − ‖dk‖‖yk − y∗‖2,(39)

which, together with (38) and the uniform positive definiteness of Vk, implies that
there exists ρ̂ > 0 such that for all k sufficiently large,

−∇θ(yk)T dk ≥ ρ̂‖dk‖2.

It then follows from Lemma 5.2 that for all k sufficiently large, tk = 1 and

yk+1 = yk + dk .

The proof is completed by observing (37).
Next, we discuss several issues regarding the implementation of Algorithm 5.1.
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(a) Forming the Newton matrix. In Algorithm 5.1, we need to find a V ∈ ∂F (y)
to form (34). For a given y ∈ R

n, let C(y) have the following spectral decomposition:

C(y) = PDiag[λ(y)]PT , P ∈ OC(y).

Let

My :=

⎛
⎜⎝

Eαα Eαβ (τij(y)) i∈α
j∈γ

Eβα 0 0
(τji(y)) i∈α

j∈γ
0 0

⎞
⎟⎠ , τij(y) :=

λi(y)

λi(y) − λj(y)
, i ∈ α, j ∈ γ.

Define the matrix Vy ∈ R
n×n by

Vyh = AP
(
My ◦ (PTHP )

)
PT , h ∈ R

n ,(40)

where H := Diag[h].
Proposition 5.4. Let the matrix Vy be defined by (40). Then

Vy ∈ ∂BF (y) ⊆ ∂F (y).

Proof. Recall that the scalar-valued function f(t) = max(0, t), t ∈ R. For each
k > 0, let tk := −1/k. We now consider the sequence {zk} with zk given by zk :=
y − tke = y + (1/k)e. Then λ(y) − tke is the spectrum of C(zk), i.e.,

C(zk) = C(y) − tkC(e) = PDiag[λ(y) − tke]P
T = PDiag[λ(y) + (1/k)e]PT .

Let k̄ > 0 be sufficiently large such that 1/k̄ < min{|λi(y)| | i ∈ α ∪ γ} (recall the
definitions of α and γ). Then, for each k ≥ k̄, the matrix-valued function f : Sn → Sn

is differentiable at C(zk) because C(zk) is nonsingular and in this case, by Lemma
3.1, f is differentiable at C(zk) and for any Z ∈ Sn,

f ′(C(zk))Z = P
(
f [1](λ(y) + (1/k)e) ◦ (PTZP )

)
P .

Therefore, from Lemma 3.4 we know that for each k ≥ k̄, F is differentiable at zk and
for any h ∈ R

n,

F ′(zk)h = Af ′(C(zk))H,

where H := Diag[h]. After direct computations we can see that

My = lim
k→∞

f [1](λ(y) + (1/k)e).

Hence, for each h ∈ R
n,

lim
k→∞

F ′(zk)h = AP
(
My ◦ (PTHP )

)
PT ,

which, together with (40), implies that

Vy = lim
k→∞

F ′(zk).

Thus, by the definition of ∂BF (y), Vy ∈ ∂BF (y). The proof is completed by observing
that ∂F (y) = co ∂BF (y).
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We see from Proposition 5.4 that we can obtain an element Vy ∈ ∂F (y) by the
spectral decomposition of C(y). Since we use the CG method to solve (34), we do not
need to form Vy explicitly.

(b) Testing examples. We tested the following four classes of problems.
Example 5.5. C is a randomly generated n × n correlation matrix by gallery

(’randcorr’,n) of MATLAB 7.0.1. R is a random n × n symmetric matrix with
Rij ∈ [−1, 1], i, j = 1, 2, . . . , n. Then we set

G = C + αR ,

where α = 0.01, 0.1, 1.0, 10.0. We fix n = 1000 in our numerical reports. This problem
was tested by Higham [25].

Example 5.6. G is a randomly generated symmetric matrix as in the first
example of Malick [35] with Gij ∈ [−1, 1] and Gii = 1.0, i, j = 1, 2, . . . , n, and
n = 500, 1000, 1500, 2000.

Example 5.7. G is a randomly generated symmetric matrix with Gij ∈ [0, 2] and
Gii = 1.0, i, j = 1, 2, . . . , n, and n = 500, 1000, 1500, 2000.

Example 5.8. G is a randomly generated symmetric matrix as in the second
example of Malick [35] with

Gii ∈ [−2.0 × 104, 2.0 × 104], i = 1, 2, . . . , n.

We add to G a perturbed n × n random symmetric matrix with entries in [−α, α],
where α = 0.0, 0.01, 0.1, 1.0. We report our numerical results for n = 1000.

(c) Initial parameters. In our numerical experiments, two initial points were used:
(i) b−diag(G); and (ii) b−diag(G)+e. Other initial points may be used. For example,
we may start from a positive point, i.e., y0 > 0, such that C(y0) is positive definite.
The performance of Newton’s method is similar, as we reported below. We set other
parameters as η = 10−5, ρ = 0.5, and σ = 2.0 × 10−4. For simplicity, we fix Bk ≡ I
for all k ≥ 0.

(d) Comparison and observations. For the purpose of comparison, we tested the
performance of the BFGS method with the Wolfe line search used by Malick [35]
and the alternating projection method employed by Higham [25]. The details of the
implementation of the BFGS method can be found in [39, Chap. 8]. As observed by
Malick [35, Thm. 5.1], Higham’s method is the following standard gradient optimiza-
tion algorithm applied to (8):

yk+1 := yk −∇θ(yk) , k = 0, 1, . . . ,

and is therefore called the gradient method. We also tested a hybrid method that
combines the BFGS method and Newton’s method. The hybrid method, which is
called BFGS-N here, starts with the BFGS method and switches to Newton’s method
when ‖∇θ(yk)‖ ≤ 1.0.

All tests were carried out in MATLAB 7.0.1 running on a PC Pentium IV. In our
experiments, our stopping criterion is

‖∇θ(yk)‖ ≤ 10−5 .

The reason that we chose 10−5 instead of 10−6 or higher accuracy is because the
BFGS method and the gradient method ran into difficulty for a higher accuracy in a
few cases. Our numerical results are reported in Tables 1–4, where Init., Iter., Func.,
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Table 1

Numerical results of Example 5.5.

Init. Algorithm α cputime Iter. Func. Res.

(i) Newton 0.01 2 m 13 s 1 2 2.6 × 10−7

0.1 2 m 58 s 3 4 2.0 × 10−8

1.0 3 m 38 s 5 6 2.7 × 10−8

10.0 4 m 13 s 7 8 9.9 × 10−8

BFGS 0.01 2 m 19 s 2 3 2.3 × 10−7

0.1 3 m 03 s 5 6 8.0 × 10−7

1.0 6 m 27 s 18 19 9.7 × 10−6

10.0 15 m 10 s 53 54 6.4 × 10−6

BFGS-N 0.01 2 m 16 s 1 2 7.2 × 10−8

0.1 3 m 10 s 4 5 4.9 × 10−11

1.0 3 m 50 s 7 8 4.0 × 10−6

10.0 6 m 00 s 15 16 2.6 × 10−10

Gradient 0.01 2 m 20s 2 3 6.0 × 10−6

0.1 4 m 56 s 13 14 6.6 × 10−6

1.0 24 m 38 s 107 108 9.3 × 10−6

10.0 1 h 57 m 54 s 500 501 8.2 × 10−3

(ii) Newton 0.01 0.22 s 2 3 1.4 × 10−6

0.1 3 m 12 s 4 5 1.1 × 10−10

1.0 3 m 41 s 5 6 4.5 × 10−7

10.0 4 m 39 s 7 8 1.2 × 10−7

BFGS 0.01 2 m 50 s 3 4 6.9 × 10−8

0.1 3 m 25 s 6 7 6.9 × 10−6

1.0 8 m 09 s 19 20 6.3 × 10−6

10.0 15 m 11 s 53 54 7.9 × 10−6

BFGS-N 0.01 2 m 39 s 2 3 4.6 × 10−6

0.1 3 m 08 s 4 5 6.3 × 10−7

1.0 4 m 16 s 7 8 4.0 × 10−6

10.0 6 m 37 s 15 16 2.3 × 10−9

Gradient 0.01 02 m 48s 3 4 5.1 × 10−6

0.1 5 m 24 s 14 15 6.0 × 10−6

1.0 24m 06 s 106 107 9.2 × 10−6

10.0 1 h 59 m 53 s 500 501 8.4 × 10−3

and Res. stand for, respectively, the initial point used, the number of iterations, the
number of function evaluations of θ, and the residual ‖∇θ(yk)‖ at the final iterate of
an algorithm (we set a maximum of 500 iterations). LS failed means that the line
search failed (the steplength is too small to proceed) during the computation.

An outstanding observation is that Newton’s method took less than 10 iterations
for all the problems to reach the reported accuracy and the quadratic convergence
was observed. The BFGS method performed quite well for Examples 5.5, 5.6, and
5.8, while there are four line search failures in Example 5.7. Sometimes it took much
longer to reach the required accuracy. Numerical results for BFGS-N clearly showed
that Newton’s method can be used to save a lot of computing time required by the
BFGS method. The gradient method is generally outperformed by the BFGS method.
Compared to the numerical results reported in [49] on the inexact primal-dual path
following interior point methods for the similar tested examples, our proposed Newton
method is much faster (4 to 5 times) in terms of the cputime. The main reason is
that the proposed Newton method needs fewer iterations and at each iteration it needs
only one eigenvalue decomposition instead of two as in the inexact primal-dual path
following interior point methods [49].

More specific observations are included in the following remarks.
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Table 2

Numerical results of Example 5.6.

Init. Algorithm n cputime Iter. Func. Res.

(i) Newton 500 16.6 s 5 6 1.0 × 10−9

1,000 1 m 49 s 5 6 3.3 × 10−8

1,500 5 m 44 s 5 6 2.7 × 10−7

2,000 12 m 34 s 5 6 1.5 × 10−6

BFGS 500 32.1 s 16 17 5.5 × 10−6

1,000 4 m 03 s 19 20 5.7 × 10−6

1,500 13 m 26 s 20 21 9.1 × 10−6

2,000 33 m 10 s 22 23 3.9 × 10−6

BFGS-N 500 15.1 s 6 7 4.0 × 10−6

1,000 2 m 00 s 7 8 3.6 × 10−6

1,500 7 m 44 s 7 8 7.4 × 10−6

2,000 17 m 06 s 8 9 1.9 × 10−11

Gradient 500 2 m 43 s 76 77 9.2 × 10−6

1,000 25 m 26 s 106 107 9.0 × 10−6

1,500 1 h 24 m 44 s 126 127 9.5 × 10−6

2,000 3 h 41 m 16 s 144 145 1.0 × 10−5

(ii) Newton 500 16.4 s 5 6 4.3 × 10−9

1,000 1 m 50 s 5 6 9.4 × 10−8

1,500 6 m 10 s 5 6 7.0 × 10−7

2,000 13 m 38 s 5 6 2.2 × 10−6

BFGS 500 32.2 s 17 18 8.1 × 10−6

1,000 4 m 14 s 19 20 7.0 × 10−6

1,500 15 m 23 s 21 22 4.9 × 10−6

2,000 35 m 04 s 22 23 3.9 × 10−6

BFGS-N 500 14.8 s 6 7 6.7 × 10−6

1,000 2 m 02 s 7 8 3.3 × 10−6

1,500 5 m 57 s 7 8 9.5 × 10−6

2,000 18 m 35 s 8 9 8.3 × 10−11

Gradient 500 2 m 25 s 78 79 9.4 × 10−6

1,000 21 m 31 s 105 106 9.0 × 10−6

1,500 1 h 46 m 40 s 127 128 9.7 × 10−6

2,000 3 h 34 m 59 s 144 145 9.4 × 10−6

Remark 5.9. Newton’s method takes less cputime and fewer iterations. For
all the tested examples, it is observed that the Newton method always took the
unit steplength and achieved the quadratic convergence at the last several iterations.
Typically, Newton’s method was terminated in two or three steps after the residue of
the gradient was below 10−1 or 10−2.

Remark 5.10. The major cost in Newton’s method includes two parts: (1) the
spectral decomposition and (2) the CG method for solving the linear system. In
order to form the linear system, we need the computation of the full eigensystem. So
it seems that the computing time involved in part (1) is inevitable. The computing
time in part (2) may be reduced by making use of the special structure of ∂BF (y),
y ∈ R

n. We did not explore the latter in our implementation, as we are quite satisfied
with the performance of Newton’s method.

Remark 5.11. The major cost in the BFGS method and the gradient is the
spectral decomposition. By doing a partial spectral decomposition as outlined in [25],
we may be able to save some cputime. We did not exploit this, as we do not know
the distributions of the eigenvalues of the optimal correlation matrix.

Remark 5.12. It can be seen clearly from the numerical results for BFGS-N that
Newton’s steps reduced the cputime committed by the BFGS method substantially.
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Table 3

Numerical results of Example 5.7.

Init. Algorithm n cputime Iter. Func. Res.

(i) Newton 500 34.3 s 8 9 3.7 × 10−9

1,000 4 m 55 s 9 10 3.1 × 10−9

1,500 14 m 04 s 9 10 4.5 × 10−7

2,000 33 m 52 s 9 10 2.6 × 10−6

BFGS 500 2 m 46 s 88 89 9.4 × 10−6

1,000 LS failed 110 119 2.3 × 10−5

1,500 LS failed 111 123 4.7 × 10−5

2,000 LS failed 112 129 8.1 × 10−5

BFGS-N 500 43.1 s 12 13 1.4 × 10−7

1,000 6 m 09 s 15 17 9.8 × 10−10

1,500 19 m 03 s 15 17 3.6 × 10−10

2,000 1 h 08 m 36 s 20 28 1.1 × 10−7

Gradient 500 15 m 53 s 500 501 3.7 × 10−2

1,000 2 h 01 m 01 s 500 501 1.3 × 10−1

1,500 5 h 25 m 42 s 500 501 2.0 × 10−1

2,000 – – – –

(ii) Newton 500 35.6 s 8 9 1.7 × 10−7

1,000 4 m 34 s 9 10 6.1 × 10−8

1,500 15 m 37 s 9 10 6.2 × 10−7

2,000 40 m 06 s 9 10 3.8 × 10−6

BFGS 500 2 m 51 s 89 90 9.3 × 10−6

1,000 26 m 01 s 116 118 9.6 × 10−6

1,500 LS failed 122 126 2.6 × 10−5

2,000 3 h 43 m 33 s 139 140 1.0 × 10−5

BFGS-N 500 45.2 s 12 15 2.4 × 10−6

1,000 6 m 16 s 15 17 2.6 × 10−9

1,500 18 m 55 s 15 17 8.3 × 10−8

2,000 50 m 56 s 14 18 7.0 × 10−7

Gradient 500 15 m 13 s 500 501 3.7 × 10−2

1,000 1 h 54 m 18 s 500 501 1.2 × 10−1

1,500 5 h 22 m 08 s 500 501 1.9 × 10−1

2,000 – – – –

If one can calculate F (y) much less costly than via the computation of the full eigen-
system, then it may be a good choice to start with a method such as the BFGS, which
costs less than Newton’s method at each step, and then switch to Newton’s method
when the iterates are close to the solution. In this case, BFGS-N may be an ideal
choice.

6. Conclusion. In this paper, a close look at the nearest correlation matrix
problem as the best approximation from a convex set in a Hilbert space led us to
consider Newton’s method. Theoretically, we proved that Newton’s method is well
defined and is quadratically convergent. Our theoretical results were then extended
to such problems as the W -weighted nearest correlation problem, the case with lower
bounds, and the nonsymmetric case. Numerically, Newton’s method is shown to be
extremely efficient, taking less than 10 iterations to solve all the test problems. This
research opens the possibility of developing Newton’s method for other least-square
semidefinite problems. We shall pursue this possibility in our future research.

Acknowledgments. The authors are grateful to Professor N. J. Higham for
suggesting the present title and to the referees for their helpful comments.
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Table 4

Numerical results of Example 5.8.

Init. Algorithm α cputime Iter. Func. Res.

(i) Newton 0.0 9.4 s 1 2 2.3 × 10−13

0.01 1 m 52 s 5 6 1.4 × 10−6

0.1 2 m 33 s 6 7 3.9 × 10−7

1.0 4 m 19 s 8 9 1.6 × 10−8

BFGS 0.0 28.0 s 2 9 4.6 × 10−13

0.01 5 m 00 s 23 27 1.4 × 10−6

0.1 5 m 23 s 27 29 8.9 × 10−6

1.0 9 m 24 s 50 52 9.1 × 10−6

BFGS-N 0.0 8.7 s 1 2 1.6 × 10−13

0.01 2 m 03 s 5 6 1.4 × 10−6

0.1 2 m 25 s 11 12 4.1 × 10−9

1.0 6 m 11 s 20 25 2.0 × 10−9

Gradient 0.0 27 m 29 s 500 501 1.6 × 10−2

0.01 1 h 36 m 35 s 500 501 5.6 × 10−2

0.1 1 h 26 m 35 s 500 501 4.0 × 10−1

1.0 1 h 51 m 23 s 500 501 4.0 × 100

(ii) Newton 0.0 14.3 s 2 3 1.4 × 10−13

0.01 2 m 19 s 6 7 1.3 × 10−6

0.1 3 m 08 s 7 8 2.1 × 10−7

1.0 4 m 11 s 8 9 1.7 × 10−7

BFGS 0.0 32.6 s 3 10 7.2 × 10−11

0.01 3 m 47 s 17 20 4.6 × 10−6

0.1 5 m 50 s 25 28 6.9 × 10−7

1.0 LS failed 60 74 1.1 × 10−5

BFGS-N 0.0 12.7 s 2 3 2.7 × 10−13

0.01 2 m 06 s 6 7 1.3 × 10−6

0.1 2 m 33 s 9 10 2.5 × 10−9

1.0 6 m 36 s 21 25 3.4 × 10−7

Gradient 0.0 27 m 35 s 500 501 1.6 × 10−2

0.01 1 h 25 m 10 s 500 501 5.6 × 10−2

0.1 1 h 28 m 51 s 500 501 4.0 × 10−1

1.0 1 h 23 m 17 s 500 501 4.0 × 100
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AN A PRIORI BOUND FOR AUTOMATED MULTILEVEL
SUBSTRUCTURING∗

KOLJA ELSSEL† AND HEINRICH VOSS†

Abstract. The automated multilevel substructuring (AMLS) method has been developed to
reduce the computational demands of frequency response analysis and has recently been proposed as
an alternative to iterative projection methods like those of Lanczos or Jacobi–Davidson for computing
a large number of eigenvalues for matrices of very large dimension. Based on Schur complements and
modal approximations of submatrices on several levels, AMLS constructs a projected eigenproblem
which yields good approximations of eigenvalues at the lower end of the spectrum. Rewriting the
original problem as a rational eigenproblem of the same dimension as the projected problem and
taking advantage of a minmax characterization for the rational eigenproblem, we derive an a priori
bound for the AMLS approximation of eigenvalues.

Key words. eigenvalues, AMLS, substructuring, nonlinear eigenproblem, minmax characteri-
zation
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1. Introduction. Over the last few years, a new method for performing fre-
quency response and eigenvalue analysis of complex finite element (FE) structures
has been developed by Bennighof and collaborators [2], [3], [4], [5], [9], known as
automated multilevel substructuring (AMLS). In AMLS the large FE model is recur-
sively divided into many substructures on several levels based on the sparsity structure
of the system matrices. Assuming that the interior degrees of freedom of substruc-
tures depend quasi-statically on the interface degrees of freedom, and modeling the
deviation from quasi-static dependence in terms of a small number of selected sub-
structure eigenmodes, the size of the FE model is reduced substantially while yielding
satisfactory accuracy over a wide frequency range of interest. Recent studies ([11], [9],
e.g.) in vibro-acoustic analysis of passenger car bodies, where very large FE models
with more than one million degrees of freedom appear and several hundred eigenfre-
quencies and eigenmodes are needed, have shown that AMLS is considerably faster
than Lanczos-type approaches.

We stress the fact that substructuring does not mean that the partitioning is
obtained by a domain decomposition of a real structure. It is understood in a purely
algebraic sense; i.e., the dissection of the matrices can be derived by applying a
graph partitioner like CHACO [7] or METIS [10] to the matrix under consideration.
However, because of the pictographic nomenclature of frequency response analysis we
will use terms like substructure or eigenmode when recalling the AMLS method.

From a mathematical point of view AMLS is a projection method where the ansatz
space is constructed by exploiting Schur complements of submatrices and truncation
of spectral representations of subproblems. In this paper we will take advantage of the
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fact that the original eigenproblem is equivalent to a rational eigenvalue problem of
the same dimension as the projected problem in AMLS, which can be interpreted as
exact condensation of the original eigenproblem with respect to an appropriate basis.
The eigenvalues at the lower end of the spectrum can be characterized as minmax
values of a Rayleigh functional of this rational eigenproblem. Hence, comparing the
Rayleigh quotient of the projected problem and the Rayleigh functional of the rational
problem, we derive an a priori bound for the error of the AMLS method. Following
the same lines, the corresponding a priori bound for the static condensation method
was already proved in [12].

In a recent paper Yang et al. [14] considered a single level version of AMLS
(actually only the component mode synthesis method (CMS), since they did not
reduce the number of interface degrees of freedom by modal truncation). The authors
obtained a simple heuristic for choosing spectral components from each substructure,
suggesting that we drop all eigenpairs (ω, φ) of substructures in the reduction process
such that

ρ1(ω) :=
λ1

ω − λ1
≤ τ.

Here λ1 is the smallest eigenvalue of the problem under consideration and τ is a
given tolerance. By our new a priori bound this omission rule guarantees that the
relative error of the smallest eigenvalue of the projected problem is not greater than
the tolerance τ . Moreover, for all eigenvalues λj ∈ (0, τ) the relative error of the CMS
approximation is less than λj/(ω − λj).

Our presentation is organized as follows. In section 2, we give a brief overview of
the AMLS method. We interpret AMLS as a sequence of consecutive CMS steps. In
section 3, we provide a variational characterization of nonlinear and nonoverdamped
eigenvalue problems. This characterization is exploited in section 4 to derive an a
priori bound for the relative errors of the component mode synthesis method. As it is
often the case for a priori bounds in general problems, the error bound overestimates
the true relative error by one or two orders of magnitude. However, an example
demonstrates that the bound cannot be improved without further assumptions. We
also provide an error bound for the general multilevel substructuring method. The
paper closes with a numerical example in section 5.

2. Substructuring of eigenproblems. We are concerned with the linear eigen-
value problem

Kx = λMx,(2.1)

where K ∈ R
n×n and M ∈ R

n×n are symmetric and positive definite matrices. We
recall that the terms structure, substructure, interface, and domain are meant in the
algebraic sense to follow.

We first consider the CMS method, which is the essential building block of the
AMLS method. Assume that the graph of the matrix |K| + |M | is partitioned into r
substructures such that the rows and columns of K can be reordered in the following
way,

K =

⎛
⎜⎜⎜⎝

K��1 . . . O K�i1

...
. . .

...
...

O . . . K��r K�ir

Ki�1 . . . Ki�r Kii

⎞
⎟⎟⎟⎠ ,
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and that M after reordering has the same block form. Here K��j , j = 1, . . . , r, is
the local stiffness matrix corresponding to the jth substructure, i denotes the set
of interface vertices, and K�ij describes the interaction of the interface degrees of
freedom and the jth substructure.

We distinguish only between local and interface degrees of freedom. Then K and
M have the following form:

K =

(
K�� K�i

Ki� Kii

)
and M =

(
M�� M�i

Mi� Mii

)
.(2.2)

We transform the matrix K to block diagonal form using block Gaussian elimination;
i.e., we apply the congruence transformation

P =

(
I −K−1

�� K�i

0 I

)

to the pencil (K,M) to obtain the equivalent pencil

(PTKP,PTMP ) =

((
K�� 0

0 K̃ii

)
,

(
M�� M̃�i

M̃i� M̃ii

))
.(2.3)

Here K�� and M�� stay unchanged, and

K̃ii = Kii −KT
�iK

−1
�� K�i is the Schur complement of K��,

M̃�i = M�i −M��K
−1
�� K�i = M̃T

i� ,

M̃ii = Mii −Mi�K
−1
�� K�i −Ki�K

−1
�� M�i + Ki�K

−1
�� M��K

−1
�� K�i.

We further transform the pencil (2.3), taking advantage of a modal basis for the local
degrees of freedom. To this end we consider the eigenvalue problem

K��Φ = M��ΦΩ, ΦTM��Φ = I,(2.4)

where Ω is a diagonal matrix containing the eigenvalues. Then applying the congru-
ence transformation diag{Φ, I} to (2.2) yields the equivalent pencil

((
Ω 0

0 K̃ii

)
,

(
I ΦT M̃�i

M̃i�Φ M̃ii

))
.(2.5)

In structural dynamics, (2.5) is called Craig–Bampton form of the eigenvalue problem
(2.1) corresponding to the partitioning (2.2). In terms of linear algebra it results from
block Gaussian elimination to reduce K to block diagonal form, and diagonalization
of the block K�� using a spectral basis.

Selecting some eigenmodes of problem (2.4) (usually the ones associated with
eigenvalues below a cut-off threshold; however, in a recent paper Bai and Lia [1]
suggested a different choice based on a moment-matching analysis) and dropping the
rows and columns in (2.5) corresponding to the other modes, one arrives at the CMS
method introduced by Hurty [8] and Craig and Bampton [6]. Hence, if the diagonal
matrix Ω1 contains on its diagonal the eigenvalues to drop and Φ1 the corresponding
eigenvectors, and if Ω2 and Φ2 contain the eigenvalues and eigenvectors, respectively,
to keep, then the eigenproblem (2.5) can be rewritten as

⎛
⎝

Ω1 0 0
0 Ω2 0

0 0 K̃ii

⎞
⎠

⎛
⎝
x1

x2

x3

⎞
⎠ = λ

⎛
⎝

I 0 M̃�i1

0 I M̃�i2

M̃i�1 M̃i�2 M̃ii

⎞
⎠

⎛
⎝
x1

x2

x3

⎞
⎠(2.6)
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with

M̃�ij = ΦT
j (M�i −M��K

−1
�� K�i) = M̃T

i�j , j = 1, 2,

and the CMS approximations to the eigenpairs of (2.1) are obtained from the reduced
eigenvalue problem

(
Ω2 0

0 K̃ii

)
y = λ

(
I M̃�i2

M̃i�2 M̃ii

)
y.(2.7)

AMLS generalizes CMS in the following way. Again the graph of |K| + |M | is par-
titioned into a small number of subgraphs, but more generally than in CMS these
subgraphs in turn are substructured on a number p of levels, yielding a tree topol-
ogy for the substructures. This induces the following partitioning of the index set
I = {1, . . . , n} of degrees of freedom. Let I1 be the set of indices corresponding to
interface degrees of freedom on the coarsest level, and for j = 2, . . . , p define Ij to
be the set of indices of interface degrees of freedom on the jth level which are not
contained in Ij−1. Finally, let Ip+1 be the set of interior degrees of freedom on the
finest level.

With this notation, AMLS works as follows. Its first step is the CMS method
with cut-off frequency τ1 applied to the finest substructuring; i.e., Ip+1 is the set of

local degrees of freedom, and Ĩp+1 := ∪p
j=1Ij is the set of interface degrees of freedom.

After j steps, 1 ≤ j ≤ p− 1, one derives a reduced pencil

⎛
⎜⎝

⎛
⎜⎝

Ωf O O

O K
(j)
�� K

(j)
�i

O K
(j)
i� K

(j)
ii

⎞
⎟⎠ ,

⎛
⎜⎝
M

(j)
ff M

(j)
f� M

(j)
fi

M
(j)
�f M

(j)
�� M

(j)
�i

M
(j)
if M

(j)
i� M

(j)
ii

⎞
⎟⎠

⎞
⎟⎠ ,(2.8)

where f denotes the degrees of freedom obtained in the spectral reduction in the
previous steps, � collects the indices in Ip+1−j , and i corresponds to the index set

∪p−j
k=1Ik of interface degrees of freedom on levels which are not yet treated. Applying

the CMS method to the southeast 2 × 2 blocks of the matrices, i.e., annihilating the

off-diagonal block K
(j)
�i by block Gaussian elimination and reducing the set of �-indices

by spectral truncation with cut-off frequency τj+1, one arrives at the next level.
After p CMS steps we obtain the reduced problem

((
Ωp O

O K
(p)
��

)
,

(
M

(p)
ff M

(p)
f�

K
(p)
�f M

(p)
��

))
,(2.9)

and a final spectral truncation of the lower-right blocks with cut-off frequency τp+1

yields the reduction of problem (2.1) by AMLS.
We have chosen this unusual description of AMLS because it is very convenient

for deriving the error bound in section 4. Note that this description neglects the

algorithmically important fact that all matrices K
(j)
�� and M

(j)
�� are block diagonal.

Hence, the annihilation of the off-diagonal blocks K
(j)
�i and the spectral reduction

on each level is quite inexpensive. A matrix and variational analysis of AMLS is
contained in [5]; implementation details can be found in [9].

3. A minmax principle for nonlinear eigenproblems. In this section we
provide a minmax result for symmetric nonlinear eigenvalue problems, which gener-
alizes the well-known variational characterization of Poincaré for linear problems and
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which will be used in section 4. We consider the nonlinear eigenvalue problem

T (λ)x = 0,(3.1)

where T (λ) ∈ R
n×n is a family of real symmetric matrices for every λ in an open real

interval J .
For a linear symmetric and positive definite problem Kx = λMx all eigenvalues

are real. If they are ordered by magnitude regarding their multiplicity λ1 ≤ λ2 ≤ · · · ≤
λn, then it is well known that they can be characterized by the minmax principle of
Poincaré,

λk = min
V ∈Sk

max
x∈V, x�=0

xTKx

xTMx
, k = 1, 2, . . . , n.(3.2)

Here Sk denotes the set of all k dimensional subspaces of R
n.

Similar results also hold for certain nonlinear eigenvalue problems (cf. [13]). We
assume that for every fixed x ∈ R

n \ {0} the real function f(λ;x) := xTT (λ)x is
continuously differentiable in J , and that the real equation

f(λ;x) = 0(3.3)

has at most one solution in J . Then (3.3) implicitly defines a functional p on some
subset D of R

n \ {0}. For a linear problem T (λ) := λM − K this is exactly the
Rayleigh quotient, and we therefore call p the Rayleigh functional of problem (3.1).

Assume that

xTT ′(p(x))x > 0 for every x �= 0,(3.4)

generalizing the definiteness requirement for M in the linear case.
If

inf
x∈D

p(x) ∈ J,(3.5)

then it follows from the general minmax principle for nonlinear eigenproblems proved
in [13] that problem (3.1) has at most n eigenvalues. These eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λm, m ≤ n, ordered by magnitude satisfy the minmax characterization (cf.
Theorems 2.1 and 2.9 in [13])

λk = min
V ∈Sk,V⊂D∪{0}

max
x∈V, x�=0

p(x), k = 1, 2, . . . ,m.(3.6)

4. A priori error bounds. We first consider the component mode synthesis
method (2.7). If λ is not a diagonal entry of Ω1, then the first equation of (2.6) yields

x1 = λ(Ω1 − λI)−1M̃�i1x3,

and λ is an eigenvalue of (2.1) if and only if it is an eigenvalue of the rational eigen-
problem

T (λ)y = 0,(4.1)

where

T (λ) = −
(

Ω2 0

0 K̃ii

)
+ λ

(
I M̃�i2

M̃i�2 M̃ii

)
+ λ2

(
0

M̃i�1

)
(Ω1 − λI)−1

(
0 M̃�i1

)
.

(4.2)
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We denote by

ω := min diag Ω1(4.3)

the smallest eigenvalue of problem (2.4) neglected in the CMS method (which can be
replaced by the cut-off threshold). Let λ1 ≤ λ2 ≤ · · · ≤ λn denote the eigenvalues of
problem (2.1) ordered by magnitude, and let m ∈ N such that λm < ω ≤ λm+1. Then
λ1, . . . , λm ∈ J are the eigenvalues of the nonlinear eigenproblem (4.1) in J . We show
that these eigenvalues satisfy the minmax principle in section 3.

For

f(λ; y) := yTT (λ)y(4.4)

it follows from the positive definiteness of ( I
M̃i�2

M̃�i2

M̃ii
) that

∂

∂λ
f(λ; y) = yT

(
I M̃�i2

M̃i�2 M̃ii

)
y +

∑
ωj≥ω

(2λωj − λ2)a2
j

(ωj − λ)2
> 0(4.5)

for every y ∈ R
ν \ {0}. Here ν denotes the dimension of the reduced problem (2.7),

and a := (0 M̃�i1)y.
Hence, due to the monotonicity of f(λ; y) for every y ∈ R

ν \{0} the real equation
f(λ; y) = 0 has at most one solution p(y) ∈ J , and condition (3.4) holds.

If y := (x2

x3
) ∈ R

ν (where we have used the same partitioning of y as in section 2),

then it easily seen that for x1 := λ(Ω1 − λI)−1M̃i�1x3 it holds that

(xT
2 , x

T
3 )T (λ)

(
x2

x3

)
= (xT

1 , x
T
2 , x

T
3 )

⎛
⎝
λI − Ω1 O λM̃�i1

O λI − Ω2 λM̃�i2

λM̃i�1 λM̃i�2 λM̃ii − K̃ii

⎞
⎠

⎛
⎝
x1

x2

x3

⎞
⎠ .

Therefore, (x2

x3
) ∈ D if and only if the Rayleigh quotient R of the linear eigenproblem

(2.6) at x := (xT
1 , x

T
2 , x

T
3 )T is contained in J , and p(y) = R(x). In particular,

inf
y∈D

p(y) = inf
x∈Rn, x �=0

R(x) = λ1 ∈ J,

and the eigenvalues λ1, . . . , λm of problem (4.1) satisfy the minmax characterization
(3.6).

The eigenvalues λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃ν of the reduced problem (2.7) are minmax
values of the Rayleigh quotient ρ(x) corresponding to problem (2.7). Comparing p
and ρ on appropriate subspaces of R

ν , we arrive at the following a priori bound for
the relative errors of the CMS approximations λ̃j to λj .

Theorem 4.1. Let K,M ∈ R
n×n be symmetric and positive definite, and let

λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of problem (2.1), which we assume to be
ordered by magnitude.

Denote by λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃ν the eigenvalues of the CMS approximation (2.7)
of problem (2.1) corresponding to some partition of the graph |K| + |M | and some
cut-off threshold ω.

Assume that the interval (0, ω) contains m eigenvalues λ1, . . . , λm of (2.1). Then
it holds that

0 ≤ λ̃j − λj

λj
≤ λj

ω − λj
≤ λ̃j

ω − λ̃j

, j = 1, . . . ,m.(4.6)
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Proof. The left inequality, i.e., λj ≤ λ̃j , is trivial since CMS is a projection
method. The right inequality follows from the monotonicity of the function λ �→
λ/(ω − λ).

To prove the inequality in the middle, denote by V ∈ Sj , V \ {0} ⊂ D the
j-dimensional subspace of R

ν such that

λj = max
y∈V, y �=0

p(y).

Then p(y) ≤ λj for every y ∈ V , y �= 0, and therefore it follows from the mono-
tonicity of the function f(λ; y) with respect to λ that

−yT
(

Ω2 0

0 K̃ii

)
y+λjy

T

(
I M̃�i2

M̃i�2 M̃ii

)
y+λ2

jy
T

(
0

M̃i�1

)
(Ω1−λjI)

−1
(
0 M̃�i1

)
y ≥ 0.

Hence, for every y ∈ V , y �= 0 one obtains

λj ≥
yT

(
Ω2 0

0 K̃ii

)
y

yT
(

I M̃�i2

M̃i�2 M̃ii

)
y

− λ2
j

yT
(

0

M̃i�1

)
(Ω1 − λjI)

−1
(
0 M̃�i1

)
y

yT
(

I M̃�i2

M̃i�2 M̃ii

)
y

.

In particular, for ŷ ∈ V such that ρ(ŷ) = maxy∈V, y �=0 ρ(y) we have

λj ≥ max
y∈V, y �=0

ρ(y) − λ2
j

ŷT
(

0

M̃i�1

)
(Ω1 − λjI)

−1
(
0 M̃�i1

)
ŷ

ŷT
(

I M̃�i2

M̃i�2 M̃ii

)
ŷ

≥ min
dimW=j

max
y∈W, y �=0

ρ(y) − λ2
j

ŷT
(

0

M̃i�1

)
(Ω1 − λjI)

−1
(
0 M̃�i1

)
ŷ

ŷT
(

I M̃�i2

M̃i�2 M̃ii

)
ŷ

≥ λ̃j −
λ2
j

ω − λj
max

y∈Rn,y �=0

yT
(

0

M̃i�1

)(
0 M̃�i1

)
y

yT
(

I M̃�i2

M̃i�2 M̃ii

)
y

.(4.7)

From the positive definiteness of the transformed mass matrix
⎛
⎝

I 0 M̃�i1

0 I M̃�i2

M̃i�1 M̃i�2 M̃ii

⎞
⎠

it follows that the Schur complement
(

I M̃�i2

M̃i�2 M̃ii

)
−
(

0

M̃i�1

)(
0 M̃�i1

)

is positive definite as well. Thus,

max
y∈Rn,y �=0

yT
(

0

M̃i�1

)(
0 M̃�i1

)
y

yT
(

I M̃�i2

M̃i�2 M̃ii

)
y

≤ 1,
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and (4.7) yields

λj ≥ λ̃j −
λ2
j

ω − λj
,(4.8)

which completes the proof.
Numerical examples (cf. section 5) demonstrate that the error bound in (4.6)

overestimates the true relative error of CMS by one or two orders of magnitude. The
following example demonstrates that the bound cannot be improved without further
assumptions.

Example. Consider the eigenvalue problem
⎛
⎝
ω 0 0
0 1 0
0 0 1

⎞
⎠

⎛
⎝
x1

x2

x3

⎞
⎠ = λ

⎛
⎝

1 0 m
0 1 0
m 0 1

⎞
⎠

⎛
⎝
x1

x2

x3

⎞
⎠ ,(4.9)

where ω > 1 and m ∈ (0, 1). Its eigenvalues are

λ2 = 1 and λ1/3 =
1

2(1 −m2)

(
ω + 1 ∓

√
(ω + 1)2 − 4ω(1 −m2)

)
.

Let x1 and x2 be the local degrees of freedom, and x3 be the interface variable. With
cut-off frequency ω the reduced problem is

(
1 0
0 1

)(
x2

x3

)
= λ

(
1 0
0 1

)(
x2

x3

)
,

and its minimum eigenvalue is λ̃1 = 1.
Letting m → 1−0, l’Hospital’s rule yields that the left-hand side of (4.6) converges

to

lim
m→1−0

λ̃1 − λ1

λ1
= lim

m→1−0

1

λ1
− 1 = lim

m→1−0

2(1 −m2)

ω + 1 −
√

(ω + 1)2 − 4ω(1 −m2)
− 1

= lim
m→1−0

−2

−0.5((ω + 1)2 − 4ω(1 −m2))−1/24ω
− 1 =

1

ω
,

and the right-hand side also converges to

lim
m→1−0

λ1

ω − λ1
=

1

ω limm→1−0
1
λ1

− 1
=

1

ω
.

Remark. Based on accuracy considerations and an a priori error bound for the
smallest eigenvalue (which, however, usually cannot be evaluated, since it depends on
unknown quantities like a bound for the components of M̃�i1x̃3, where x̃3 is the inter-
face portion of an eigenvector of (2.5) or the minimal distance of neglected diagonal
entries of Ω1 belonging to the same substructure) Yang et al. [14] suggested that one
neglect all eigenmodes (ωj , φj) in (2.6) for which

λ1

ωj − λ1
< τ,

where τ � 1 is a small quantity. Theorem 4.1 guarantees that with this choice the
relative error of the CMS approximation λ̃1 to the smallest eigenvalues λ1 is less than
τ .
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Since AMLS can be understood as a sequence of p consecutive CMS steps and a
terminating spectral truncation, it is clear how to obtain an a priori bound for the
general AMLS method. Every reduction step in which a quasi-static/modal represen-
tation is obtained, and the dimension reduced by spectral truncation, is identical to
a CMS step utilizing the substructuring of the next level.

Hence, if λ
(ν)
j denotes the eigenvalues of the reduced eigenvalue problem corre-

sponding to the νth level ordered by magnitude, then it holds by (4.8) that

λ
(ν)
j ≤ λ

(ν−1)
j

(
1 +

λ
(ν−1)
j

ων − λ
(ν−1)
j

)
, ν = 1, 2, . . . , p + 1,(4.10)

where on the νth level eigenvalues exceeding ων are neglected. Here, λ
(0)
j := λj , and

λ
(p+1)
j denote the eigenvalues of the projected eigenproblem of AMLS with p levels of

substructuring.
Thus, it follows for all λj ≤ minν=1,...,p ων that

λ
(p+1)
j ≤ λj

p∏
ν=0

(
1 +

λ
(ν)
j

ων+1 − λ
(ν)
j

)
,(4.11)

and we have proved the following result.
Theorem 4.2. Let K, M , and λj, j = 1, . . . , n, be given as in Theorem 4.1. Let

the graph of |K|+ |M | be substructured with p levels, and denote by λ̃
(ν)
1 ≤ λ̃

(ν)
2 ≤ · · ·

the eigenvalues obtained by AMLS with cut-off threshold ων on level ν.
If m ∈ N such that

λm < min
ν=0,...,p

ων ≤ λm+1,

then it holds that

λ̃j − λj

λj
≤

p∏
ν=0

(
1 +

λ
(ν)
j

ων − λ
(ν)
j

)
− 1, j = 1, . . . ,m.(4.12)

Since the final problem is a projection of each of the intermediate eigenproblems

in the AMLS reduction, it follows from the minmax characterization that λ
(ν)
j ≤ λ̃j for

ν = 0, . . . , p. Therefore the a priori bound (4.12) can be replaced by the computable
bound

λ̃j − λj

λj
≤

p∏
ν=0

(
1 +

λ̃j

ων − λ̃j

)
− 1, j = 1, . . . ,m.(4.13)

5. Numerical experiments. To verify the quality of our a priori bounds we
considered the problem of determining the 50 smallest eigenvalues of the FE model
of a container ship with 35262 degrees of freedom (cf. Figure 1).

To apply the CMS method and the single-level version of AMLS we partitioned
the FEM model into ten substructures, as shown in Figure 2. This substructuring
by hand, suggested by the geometry of the ship, yielded a much smaller number of
interface degrees of freedom than automatic graph partitioners, which try to construct
a partition where the substructures have nearly equal size. For instance, our model
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Fig. 1. FE model of a container ship.
            

Fig. 2. Substructuring.

ends up with 1960 degrees of freedom on the interfaces, whereas CHACO [7] ends up
with a substructuring into ten substructures with 4985 interface degrees of freedom.

We solved the eigenproblem by the CMS method using a cut-off bound of 20,000
(about 10 times the largest wanted eigenvalue λ50 ≈ 2183). 329 eigenvalues of the
substructure problems were less than our threshold, and the dimension of the resulting
projected problem was 2289. Figure 3 shows the relative errors for the smallest 50
eigenvalues (lower crosses) and the error bounds by Theorem 4.1 (upper crosses). We
reduced the interface degrees of freedom as well with the same cut-off bound 20,000.
This reduced the dimension of the projected eigenproblem to 436. The relative errors
(lower circles) and bounds by Theorem 4.2 with p = 1 (upper circles) are also shown
in Figure 3.

We substructured the FE model using METIS with four levels of substructuring.
Neglecting eigenvalues exceeding 20,000 and 40,000 on all levels, AMLS produced a
projected eigenvalue problem of dimension 451 and 911, respectively. The relative
errors and the bounds are shown in Figure 4, where the lower and upper crosses
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Fig. 3. Errors and bounds for CMS and single level AMLS. See text for further explanation.
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Fig. 4. Errors and bounds for AMLS. See text for further explanation.

correspond to the threshold 20,000, and the lower and upper circles to 40,000.

Acknowledgments. Thanks are due to Christian Cabos, Germanischer Lloyd,
who provided us with the finite element model of the container ship.
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THE SNAP-BACK PIVOTING METHOD FOR SYMMETRIC
BANDED INDEFINITE MATRICES∗

DROR IRONY† AND SIVAN TOLEDO†

Abstract. The four existing stable factorization methods for symmetric indefinite matrices
suffer serious defects when applied to banded matrices. Partial pivoting (row or column exchanges)
maintains a band structure in the reduced matrix and the factors, but destroys symmetry completely
once an off-diagonal pivot is used. Two-by-two block pivoting and Gaussian reduction to tridiagonal
(Aasen’s algorithm) maintain symmetry at all times, but quickly destroy the band structure in
the reduced matrices. Orthogonal reductions to tridiagonal maintain both symmetry and the band
structure, but are too expensive for linear-equation solvers.

We propose a new pivoting method, which we call snap-back pivoting. When applied to banded
symmetric matrices, it maintains the band structure (like partial pivoting does), it keeps the reduced
matrix symmetric (like 2-by-2 pivoting and reductions to tridiagonal), and it is fast.

Snap-back pivoting reduces the matrix to a diagonal form using a sequence of elementary elim-
ination steps, most of which are applied symmetrically from the left and from the right (but some
are applied unsymmetrically).

In snap-back pivoting, if the next diagonal element is too small, the next pivoting step might
be unsymmetric, leading to asymmetry in the next row and column of the factors. But the reduced
matrix snaps back to symmetry once the next step is completed.

Key words. symmetric-indefinite matrices, pivoting, banded matrices, matrix factorizations,
element growth

AMS subject classifications. 15A06, 15A23, 65F05

DOI. 10.1137/040610106

1. Introduction. We propose a new method for the direct solution of a linear
system of equations Ax = b where A is an n-by-n banded symmetric indefinite matrix
with half bandwidth m. The method performs O(nm2) work. Our method reduces
A to a diagonal matrix by eliminating one or two rows and columns in each step.
After each elimination step, the reduced matrix is a banded symmetric matrix with
half bandwidth at most 2m. Although at each step the reduced matrix is symmetric,
the factors corresponding to steps in which we eliminate two columns together may
not be symmetric. The algorithm requires a mixture of symmetric and unsymmetric
data. The element growth in the reduced matrices is bounded by 4n−1. Elements
of the factors are bounded by 3 or by the elements of the reduced matrices. Our
method achieves these goals using an intricate elimination scheme that employs both
Gaussian row and column operations and Givens rotations.

Our method reduces the matrix to a diagonal one or two rows/columns at a time.
If the next diagonal element is large, an ordinary symmetric Gaussian elimination
step will reduce the next row and column. Such a step adds a column to the left
factor and its transpose to the right factor. Since a symmetric matrix is subtracted
from the symmetric trailing submatrix, it remains symmetric. If the next diagonal
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element is too small, we use a more complex elimination step. During that step, the
trailing submatrix becomes unsymmetric, but it snaps back to symmetry at the end
of the step. That is why we call our method snap-back pivoting. Such a complex
elimination step contributes one row to the right factor that is not a transpose of a
column in the left factor. Therefore, the amount of asymmetry in the factors depends
on the number of these complex elimination steps.

The paper is organized as follows. The next section surveys existing factorization
methods that can be applied to banded symmetric matrices. Section 3 describes the
new method; the presentation is not specific to banded matrices. Section 4 shows
how to adapt the general method to preserve the band structure. Section 5 bounds
the element growth in the reduced matrices and in the factors. Section 6 presents the
results of experiments that we conducted to assess the performance and stability of
our method. We present our conclusions from this research and list open problems in
section 7.

2. Related work. Several existing direct factorization methods can reduce a
banded symmetric matrix to a diagonal, tridiagonal, or block-diagonal form. If the
matrix is indefinite, either some form of pivoting or an orthogonal reduction must be
employed to ensure stability.

Gaussian elimination with partial pivoting (GEPP) maintains a band structure
in the reduced matrices, but not symmetry. The first off-diagonal pivot that is chosen
completely destroys symmetry in the reduced matrix, so from that row/column until
the end of the matrix, both the reduced matrix and the factors become unsymmetric.
The loss of symmetry results in doubling the computational and storage costs. On
the other hand, GEPP maintains a band structure in the reduced matrix and in the
factors. No matter how many off-diagonal pivots are chosen, the reduced matrix and
the right upper-triangular factor have half bandwidth at most 2m. The left lower
triangular factor, and also the lower triangular part of the reduced matrices, maintain
half bandwidth m.

Two other factorization techniques employ pivoting but maintain symmetry in
the factors and in the reduced matrices. One technique, which is used in several
algorithms [4, 6, 7, 8, 14], uses 2-by-2 block pivots. In other words, it reduces the
matrix to a block diagonal form with 1-by-1 and 2-by-2 blocks. This technique usually
cannot be applied to banded matrices, because every 2-by-2 pivot might increase the
half-bandwidth by m − 2. Therefore, the half bandwidth can quickly expand. This
bandwidth expansion can lead to catastrophic increase in the computational and
storage requirements of the algorithm. Still, in some special cases this technique can
be applied to banded matrices. Bunch and Kaufman showed that if m ≤ 2, then one of
the variants of their algorithm (variant D) maintains the band structure [4]. They also
showed that the number of 2-by-2 pivots is bounded by the minimum of the number
of positive and the number of negative eigenvalues of A. This observation led Jones
and Patrick [14] to propose that the Bunch–Kaufman algorithm can be used when A
has very few negative or very few positive eigenvalues; in such cases, the bandwidth
expansion might still be preferable to GEPP. A combination of 1-by-1 and 2-by-2
pivoting steps is also used in multifrontal factorization algorithms for general sparse
matrices [6, 7, 8], but without any a priori bound on the fill that pivoting might cause.

In the 2-by-2 pivoting methods of Bunch and Kaufman, the element growth in the
reduced matrices is bounded by 2.57n−1, but the magnitude of elements in the lower-
triangular factor is not bounded by the magnitude of elements in the reduced matrices.
(In most other factorization methods, the elements of the factors are bounded by 1
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or by the elements of the reduced matrices.) This fact, along with some disappoint-
ing practical experience, led some to question the reliability of these methods [2].
However, the methods were found to be formally backward stable [11, 12].

Another pivoting symmetric factorization technique reduced A to a tridiagonal
form using a sequence of 1-by-1 but off-diagonal pivots. The resulting tridiagonal
matrix is subsequently factored using GEPP, but the cost of that step is usually
insignificant. This technique was initially proposed for dense matrices by Parlett and
Reid [17], and later improved by Aasen [1]. The trouble with these methods is that
they can also quickly expand the bandwidth, so they have never been applied to
banded matrices.

Another way to reduce a banded symmetric matrix to a tridiagonal form is to
employ orthonormal transformations. This technique is used in eigensolvers, which
can only use orthonormal transformations. Algorithms that use this technique [3, 5,
15, 16, 18, 19] annihilate in every step one row and column, or even just one element.
The annihilation creates fill in the form of a bulge, which expands the band. To avoid
gradual band expansion, the algorithm then “chases” the bulge down the matrix, so
that the matrix regains the original half bandwidth m before the next annihilation
step. The trouble with these approaches is that chasing the bulge is expensive, so
the total computational cost of these algorithm is proportional to n2m. By contrast,
the cost of GEPP, as well as the cost of our algorithm, is only nm2. For m � n, the
difference can be enormous.

From the band-preservation viewpoint, the difference between 2-by-2 block al-
gorithms and the orthonormal algorithms lies not in the elementary transformations
that are used, but in whether the bulge is chased or not. In the 2-by-2 block algo-
rithms of Bunch and Kaufman, as well as in the Parlett–Reid and Aasen algorithms,
the bulge is not chased, so the band expands without a bound. In the orthonormal
reductions to tridiagonal, the bulge is chased, so the bandwidth remains bounded, but
at an unacceptable cost to linear-equation solvers. (The use of orthonormal trans-
formations also causes the bulge to always appear, whereas in the other factorization
algorithms the size of the bulge depend on the choice of pivots, but that is not the
main point here.) We believe that a bulge-chasing variant of the other algorithms
can also be developed, but that its cost will still be proportional to n2m, just like the
orthonormal reductions.

3. Snap-back pivoting. This section presents the new pivoting strategy that
we proposed, called snap-back pivoting. We mostly ignore the issue of the bandwidth
of the matrix in this section and focus instead on the mathematical and algorithmic
ideas. Bandwidth issues do narrow down some of the algorithmic design space that
we explore; the text explicitly highlights these cases. The next section explains how
to apply snap-back pivoting to banded matrices.

Let A be a symmetric n-by-n nonsingular matrix. We show how to perform a se-
quence of elementary elimination steps that reduce the matrix to a diagonal form. The
sequence is quasi-symmetric: the trailing uneliminated submatrix is always symmet-
ric. Most, but not all, of the elementary transformations are applied symmetrically
from the left and from the right. We use three classes of elementary transformations:
Gauss transforms, Givens rotations, and permutations. Each elimination step, which
often consists of applying multiple elementary transformations, eliminates the offdi-
agonals in either one row and column or in two. The first row and column are always
eliminated; in some cases, another row and columns, not necessarily the second, are
also eliminated.
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Our method uses three kinds of elimination steps. The next subsection provides
a high-level overview of the possible elimination steps and the one that follows spec-
ifies the transformation matrices in detail. To further clarify the algorithm, we have
produced a Matlab implementation (of the banded variant, described below). This
implementation is freely available.1 It stops after every elimination step, shows the
nonzero structure of the reduced matrix, and prints the class of transformation that
it just applied. It also produces transformation matrices that correspond exactly to
the notation in this section.

3.1. An overview of the elimination process. We begin the presentation
with a high-level overview of the structure of the algorithm.

Elimination steps of the first kind. When a11 is nonzero (to avoid growth it
will need to be not only nonzero, but large; we ignore numerical issues for now), we
can eliminate the offdiagonals in the first row and column using ordinary symmetric
Gaussian elimination,

A =

⎡
⎢⎢⎢⎢⎣

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

⎤
⎥⎥⎥⎥⎦

−→

⎡
⎢⎢⎢⎢⎣

×
× × × ×
× × × ×
× × × ×
× × × ×

⎤
⎥⎥⎥⎥⎦

= L−1AL−T .

In this notation, × symbols denote nonzero elements in a symmetric matrix (that is,
if aij is denoted by a ×, then aij = aji, and they are not necessarily zero). Elements
that are blank are zeros. The matrix product on the right means that we transform
the matrix on the left, A, to the matrix on the right by multiplying A by a lower
triangular matrix L−1 and its transpose. We also use this kind of elimination step,
with L an identity matrix, when the first row and column are identically zero. We
defer the exact specification of the transformation matrices to the next subsection;
here L is an elementary Gauss transform.

Elimination steps of the second kind. When a11 is zero (or simply too small),
our method uses a more elaborate sequence of elementary transformations. We begin
with a series of either Givens or Gauss transforms that eliminate all the nonzeros in
the first column except for the last,

A =

⎡
⎢⎢⎢⎢⎣

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

⎤
⎥⎥⎥⎥⎦

−→

⎡
⎢⎢⎢⎢⎣

× ×
× × × ×
× × × ×
× × × ×

× × × × ×

⎤
⎥⎥⎥⎥⎦

= Y −1AY −T .

Next, we eliminate element (n, 1) in the reduced matrix, which we shall show later
is always nonzero, using a Givens rotation that transforms the first and last rows. If
element

[
Y −1AY −T

]
11

= 0, the Givens rotation is essentially a row exchange, so we

1The code is available from http://www.tau.ac.il/∼stoledo/research.html.
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get the following form:
⎡
⎢⎢⎢⎢⎣

× ×
× × × ×
× × × ×
× × × ×

× × × × ×

⎤
⎥⎥⎥⎥⎦

−→

⎡
⎢⎢⎢⎢⎣

× ⊗ ⊗ ⊗ ⊗
× × × ⊗
× × × ⊗
× × × ⊗

×

⎤
⎥⎥⎥⎥⎦

= G−1Y −1AY −T ,

where

G =

⎡
⎢⎣

0 · · · 1
...

. . .
...

−1 · · · 0

⎤
⎥⎦.

The symbol ⊗ denotes a nonsymmetric nonzero, i.e., an aij that might be nonzero
and might be different from aji. Here, when aij is denoted by a ⊗, aji = 0, so it is
left blank. When both aij and aji might be nonzeros and different from each other,
we denote one by ⊗ and the other by ⊕ to emphasize the lack of symmetry, as in the
next equation. If

[
Y −1AY −T

]
11

�= 0, then we get another form, which turns out to
be simpler,

⎡
⎢⎢⎢⎢⎣

× ×
× × × ×
× × × ×
× × × ×

× × × × ×

⎤
⎥⎥⎥⎥⎦

−→

⎡
⎢⎢⎢⎢⎣

× ⊗ ⊗ ⊗ ⊗
× × × ⊗
× × × ⊗
× × × ⊗
⊕ ⊕ ⊕ ×

⎤
⎥⎥⎥⎥⎦

= G−1Y −1AY −T .

This is a simpler case than the previous one, because the last row and the last column,
while not a transpose of each other, are symmetric up to a scaling factor (and up to
the first element, which is zero in the row but not zero in the column). In either case,
we now eliminate the offdiagonals in the first row, which have just filled. We use an
ordinary sequence of column operations (a Gauss transform applied from the right),

⎡
⎢⎢⎢⎢⎣

× ⊗ ⊗ ⊗ ⊗
× × × ⊗
× × × ⊗
× × × ⊗
⊕ ⊕ ⊕ ×

⎤
⎥⎥⎥⎥⎦

−→

⎡
⎢⎢⎢⎢⎣

×
× × × ⊗
× × × ⊗
× × × ⊗
⊕ ⊕ ⊕ ×

⎤
⎥⎥⎥⎥⎦

= G−1Y −1AY −TU−1

(the offdiagonals in the last row might be zero). If
[
Y −1AY −T

]
11

�= 0, then the last
row and column are symmetric up to a scaling, so we scale the reduced matrix back
to symmetry,

⎡
⎢⎢⎢⎢⎣

×
× × × ⊗
× × × ⊗
× × × ⊗
⊕ ⊕ ⊕ ×

⎤
⎥⎥⎥⎥⎦

−→

⎡
⎢⎢⎢⎢⎣

×
× × × ×
× × × ×
× × × ×
× × × ×

⎤
⎥⎥⎥⎥⎦

= S−1G−1Y −1AY −TU−1.

If
[
Y −1AY −T

]
11

was zero, then scaling does not symmetrize the matrix, so instead
of scaling we switch to an elimination step of the third kind. To achieve numerical
stability we also switch to an elimination of the third kind if

[
Y −1AY −T

]
11

was not

zero, but it was so small that after the multiplication by G−1, the (n, n) element was
larger than all the other elements in the last row.
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Elimination steps of the third kind. When we switch from an elimination of
the second kind to an elimination of the third kind, the reduced matrix has the form

⎡
⎢⎢⎢⎢⎣

×
× × × ⊗
× × × ⊗
× × × ⊗
⊕ ⊕ ⊕ ×

⎤
⎥⎥⎥⎥⎦

= G−1Y −1AY −TU−1,

where the offdiagonals in the last row might be either all zeros (this is the only case in
exact arithmetic), or else they are identical up to a scaling factor to the last column.
We treat both cases, although some of the transformations in the identically-zero case
can be skipped. We begin by permuting the last row and column to be the second;
this is a bandwidth issue, and if the matrix is not banded, we could continue with the
last row and column in place. We now have
⎡
⎢⎢⎢⎢⎣

×
× × × ⊗
× × × ⊗
× × × ⊗
⊕ ⊕ ⊕ ×

⎤
⎥⎥⎥⎥⎦

−→

⎡
⎢⎢⎢⎢⎣

×
× ⊕ ⊕ ⊕
⊗ × × ×
⊗ × × ×
⊗ × × ×

⎤
⎥⎥⎥⎥⎦

= PTG−1Y −1AY −TU−1P.

We now use a sequence of symmetric Gauss or Givens transforms to eliminate all but
the last element in the second row and column. Because the second row and column
are scaled copies of each other, the same transformations applied to both the rows
and the columns eliminate the nonzeros in both,

⎡
⎢⎢⎢⎢⎣

×
× ⊕ ⊕ ⊕
⊗ × × ×
⊗ × × ×
⊗ × × ×

⎤
⎥⎥⎥⎥⎦

−→

⎡
⎢⎢⎢⎢⎣

×
× ⊕

× × ×
× × ×

⊗ × × ×

⎤
⎥⎥⎥⎥⎦

= X−1PTG−1Y −1AY −TU−1PX−T .

The last step is to eliminate the offdiagonal nonzero in the second row and column.
We eliminate them using two elementary unsymmetric Gauss transforms. We show
later that this is always possible and stable,

⎡
⎢⎢⎢⎢⎣

×
× ⊕

× × ×
× × ×

⊗ × × ×

⎤
⎥⎥⎥⎥⎦

−→

⎡
⎢⎢⎢⎢⎣

×
×

× × ×
× × ×
× × ×

⎤
⎥⎥⎥⎥⎦

= K−1X−1PTG−1Y −1AY −TU−1PX−T K̂−T .

This concludes the overview of our new elimination method.

3.2. Specification of the transformations. We now specify exactly each one
of the transformations that are involved in the new elimination method. More specifi-
cally, we show how to construct the matrices L, Y , G, U , S, P , X, K, and K̂. Some of
them can be constructed in many different ways; we present the different options, but
focus on the ones that guarantee stability and maintain the bandwidth of the matrix.
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The matrix L. When a11 is large in absolute value relative to the rest of the
first column, the column can be eliminated using a conventional Gauss transform

A =

⎡
⎢⎢⎢⎣

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

1
l2,1 1
...

. . .

ln,1 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

a1,1 0 · · · 0

0 a
(1)
2,2 · · · a

(1)
2,n

...
...

. . .
...

0 a
(1)
n,2 · · · a

(1)
n,n

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 l2,1 · · · ln,1
1

. . .

1

⎤
⎥⎥⎥⎦,

where li,1 = ai,1/a1,1. If all the elements in the first row and column are zeros, then
we simply set L to be the identity matrix.

The matrix Y . The task of Y is to zero rows 2, . . . , n − 1 in the first column
of A, even when a11 is zero or small. There are many choices for Y . For example,
we could define Y to be a product of a permutation matrix that exchanges row n
with the row whose first element is largest in absolute value, and a Gauss transform
that uses the last row to zero the first element in the other rows. For example, if the
largest element in the first column is in row 2,

Y −1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 yn,2

1 yn,3

1
...

1 yn,n−1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
0 1

1
. . .

1
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

However, this would ruin the banded structure, so we resort to a slightly more com-
plex transformation. Our strategy is to annihilate the nonzeros in the first column
sequentially from top to bottom, and, in particular, to annihilate nonzero in position
(i, 1) using a row operation involving only rows i and i+1. That row operation can be
either a Givens rotation or a Gauss transform possibly preceded by a row exchange,
to ensure that the first element in row i+ 1 is larger or equal in absolute value to the
first element in row i. Our implementation uses a Givens rotation. The matrix Y has
the following structure:

Y −1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
1

y
(n−1)
n−1,n−1 y

(n−1)
n−1,n

y
(n−1)
n,n−1 y

(n−1)
n,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
· · ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

y
(2)
2,2 y

(2)
2,3

y
(2)
3,2 y

(2)
3,3

1
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Each 2-by-2 block is either a Givens rotation, or (if we use Gauss transforms) a
product of a row exchange, perhaps identity, and a row operation on one row. After
the application of Y −1 and Y −T to A, the (n, 1) element of the reduced matrix cannot
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be zero: if it is, then all the subdiagonal elements of A in the first column were zeros,
and we would have eliminated the first column using an elimination step of the first
kind.

The matrix G. The role of G is to annihilate the (n, 1) element in the reduced
matrix. If we are using G, then that element is larger than the (1, 1) element, oth-
erwise we would have used an elimination step of the first kind. Therefore, there
are essentially two options for G−1: an exchange of rows 1 and n, followed by a row
operation that reduces row n using row 1, or a Givens transform on rows 1 and n.
We always use a Givens transform, but the other choice is valid as well.

The matrix U . After the application of G−1, the (1, 1) element of the reduced
matrix is always nonzero, although it is not necessarily large relative to the rest of
row 1. We use a matrix U−1, an elementary Gauss transform applied from the right
to annihilate elements (1, 2), (1, 3), . . . , (1, n) using column operations with the first
column. Because only the first element in the first column is nonzero, the trailing
submatrix is not modified. This will prove to be important when we analyze the
numerical stability of the algorithm, since U is potentially ill-conditioned. Formally,

U−1 =

⎡
⎢⎢⎢⎣

u1,1 u1,2 · · · u1,n

1
. . .

1

⎤
⎥⎥⎥⎦.

The matrix S. The job of S is simply to scale the last row so that it becomes
identical to the last column, so it is a diagonal matrix with 1s on the diagonal, except
for the last element, which is nonzero but different from 1.

The matrix P . If an appropriate S does not exist or if it would be too ill-
conditioned, the algorithm switches to an elimination step of the third kind. The
matrix P now moves the last row and column to the second position, so that they
can be eliminated. If there are no band issues, we could simply use a single row
and column exchange. But to maintain the band, we do not exchange rows 2 and
n. Instead, we use a cyclic permutation that puts row n in row 2 and shifts rows
2, . . . , n− 1 one row down each,

P−1 =

⎡
⎢⎢⎢⎢⎢⎣

1
0 1
1 0

. . .
. . .

1 0

⎤
⎥⎥⎥⎥⎥⎦
.

The matrix X. The matrix X has the same structure as Y , except that it
operates on the second column, not the first. Although row 2 and column 2 in the
reduced matrix are not transposes of each other, they are transposes up to a scaling
except for the diagonal element. Since X and XT do not use the diagonal element,
they reduce the matrix to the desired form when applied symmetrically.

The matrices K and K̂. These two matrices use the (2, 2) element in the
reduced matrix to annihilate the (n, 2) and (2, n) elements in the reduced matrix.
These elements are different, so we use two different Gauss transforms from the left
and the right.
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Y −1

U−1
G−1 U−1

Y −1

(f)(e)(d)

(c)(b)(a)

Fig. 1. An elimination step of the second kind.

4. Applying the new method to banded matrices. When A is banded, we
need to modify the elimination algorithm to avoid increasing the band too much. To
simplify the description of the algorithm, we assume that no exact cancellation occurs;
but the algorithm itself copes easily with exact cancellations. It turns out that with
a careful selection of transformations, the bandwidth of the reduced matrix grows,
but not by much. We denote the half-bandwidth of A by m, so all but 2m+ 1 of A’s
diagonals are zero. An elimination step of the first kind does not fill the matrix at all,
so it does not require any special attention, except to ensure that no computation on
zeros occurs. Elimination steps of the second and third kinds require more care.

Figures 1 and 2 illustrate elimination steps of the second and third kinds. They
depict nonzero elements in gray; light gray signifies that an element has not been
modified in this elimination step, and dark gray signifies that an element has been
modified. The original profile of the matrix is indicated by a heavy black border.
The arrows show which column/row are scaled and subtracted from which other
column/row to annihilate a nonzero. The letters indicate the transformation matrix
that performs the elimination.

When an elimination step of the second kind is applied to a banded matrix, we
must construct transformation Y in a way that A does not fill too much. Specifically,
we eliminate element i in the first row and column using columns/rows i and i+1, but
we stop if elements i+ 2, . . . , n are all zeros. We do not “roll” the last nonzero in the
row/column down to the end of the row/column. This is illustrated in Figure 1 (top
row). The rest of the step proceeds without modification. As shown in the figure,
an elimination step of the second kind can increase the half-bandwidth of the matrix,
but only by one, and only in rows and columns 2, . . . ,m′, where m′ +1 is the number
of nonzeros in row/column 1 (m′ might be larger than m if the bandwidth increased
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K̂−1X−1
K−1

X−1P

(f)(e)(d)

(b) (c)(a)

Fig. 2. An elimination step of the third kind. The top left illustration describes the matrix
after all the operations of a second-kind elimination step have been applied.

in previous elimination steps).

Applying an elimination step of the third kind to a banded matrix is more in-
volved. After the permutation P has been applied, the second row and column are
eliminated. The elimination of these nonzeros can destroy the band structure if done
carelessly. We can eliminate all but one of the nonzeros using a series X of Givens
transforms, as we have done (using Y ) in the beginning of the second-kind elimination.
We can also use column operations to annihilate the second row using its diagonal
element as a pivot, and then row operations to annihilate the second column; these
are the transformations K and K̂ that we described above. In the dense case, we
use K and K̂ only to annihilate a single nonzero in the row and a single nonzero in
the column. But in the banded case, we need to restrict X to the annihilation of
just m′ − 2 nonzeros near the diagonal, and use K and K̂ to annihilate the rest. As
we shall see later, this does not introduce growth in the reduced matrix, since the
diagonal element in row 2 is larger than the offdiagonal nonzeros.

The strategy that we use is shown in Figure 2. It is easy to see that if we use
Givens transforms to annihilate all but the last element in the second row and column,
the band will grow by one in rows/columns higher than m′, which we try to avoid.
On the other hand, if we use only diagonal Gauss transforms, an entire bulge outside
the band would fill, which we also seek to avoid. Therefore, we use Givens transforms,
which only increase the band locally by one, to annihilate m′− 2 nonzeros in the first
row and column, and Gauss transforms, which introduce no fill at all, to annihilate
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the rest.

4.1. Bound on half-bandwidth. We now prove that this strategy ensures that
the half-bandwidth of the reduced matrix is bounded by 2m − 1. We do this in two
steps. We first define a variant of our algorithm, which we call ALG2, and show that
the fill in our algorithm is a subset of the fill created by ALG2. This variant always
uses reductions of the second type; it may be unstable, so it is not useful in practice.
We only use it to bound the bandwidth of the reduced matrix.

In the context of this section we ignore any numerical considerations. Our analysis
deals only with the structural aspects of our algorithm (and of the variant ALG2). In
particular, we assume that A has no zeros inside its band and we ignore zeros that
may appear during the reduction process.

We start with a few definitions. A reduction step in our algorithm starts with a
symmetric banded matrix A(k), where k denotes the size of the matrix (in the first
step, A(n) = A), and outputs a reduced symmetric matrix A(k−s) of size (k − s)-by-
(k − s). The number s of eliminated rows and columns may be 1 or 2. This notation

is borrowed from [4]. We denote by a
(k)
ij both the ij element of A(k) at the start and

during the reduction step. The local half-bandwidth of a banded matrix B in column
(row) j, defined as the minimum r′ ≥ 0 for which bij = 0 for all i > j + r′, is denoted

by rjB . In the case of the input matrix A, all the columns (rows) have the same local
half bandwidth m.

We now define the variant algorithm, ALG2. It is similar to our actual algorithm,
which we denote by ALG1, except that it only uses reduction steps of the second
type, and that it eliminates the offdiagonal nonzeros in the first column only using
Givens rotations. (ALG1 uses Gauss transforms, perhaps with row exchanges.) ALG2
eliminates one row and column in each reduction step, so it uses exactly n−1 reduction
steps. We denote by Ã(k) the reduced matrix we get after applying the first n − k
reduction steps of ALG2 on A, where 0 < k ≤ n. Note that Ã(k) is k-by-k.

The following theorem states the main result of this section.
Theorem 4.1. Let m be the bandwidth of A. Then the local half-bandwidth of

the reduced matrices in our algorithm (ALG1) satisfies ri
A(k) < 2m for 0 < k ≤ n,

1 ≤ i ≤ k.
This theorem is an immediate corollary of Lemmas 4.3 and 4.4, which we state

and prove below. But we first state and prove a technical lemma.
Lemma 4.2. In ALG2, ri+1

Ã(k)
≤ ri

Ã(k)
≤ ri+1

Ã(k)
+1, where 1 < k ≤ n and 1 ≤ i < k.

Proof. We prove the lemma by induction on k. The lemma holds for A = Ã(n).
We assume that the lemma holds for Ã(k). During the n − k + 1th reduction step,
each of the columns 2, . . . , r1

Ã(k)
gets the structure of the column to its right. This is

because

ri
Ã(k) ≤ ri+1

Ã(k)
+ 1

by the induction assumption. Each of the rows 2, . . . , r1
Ã(k)

behaves in a symmetric

way. For j such that 1 ≤ j < r1
Ã(k)

− 1, we have (see Figure 3)

rj
Ã(k−1)

= rj+2

Ã(k)
+ 1

and

rj+1

Ã(k−1)
= rj+3

Ã(k)
+ 1.
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Ã(k)

Ã(k−1)

column j + 2 of Ã(k)

column j of Ã(k−1)

i + 1, j + 2

l′ − k + i, l′ − k + j + 2

i, j

l − k + i, l − k + i − m − 1

(e)

(d)(c)

(b)

l + 1 − k + i, l + 1 − k + i − m

l + 1

l

l′

k + 1k

(a)

Fig. 3. Left: An illustration of the proof of Lemma 4.2. Right: An illustration of the main
steps in the proof of Lemma 4.4. The submatrix depicted in gray is always k-by-k. The row and
column indices of the black element are shown below each matrix (the black element within the gray
submatrix).

From this and the induction assumption,

rj+1

Ã(k−1)
≤ rj

Ã(k−1)
≤ rj+1

Ã(k−1)
+ 1,

where 1 ≤ j < r1
Ã(k)

− 1. We also have

rj
Ã(k−1)

= rj+2

Ã(k)
+ 1 = rj+1

Ã(k−1)
+ 1

for j = r1
Ã(k)

− 1, which means that

rj+1

Ã(k−1)
≤ rj

Ã(k−1)
≤ rj+1

Ã(k−1)
+ 1



410 DROR IRONY AND SIVAN TOLEDO

is true also for such j. For r1
Ã(k)

− 1 < j < k − 1 the lemma is immediate from the
induction assumption.

Lemma 4.3. Denote by ηM the set of nonzero entries in a given matrix M . If
A(k) is a reduced matrix that ALG1 generates when it is applied to A, and if Ã(k) is
a reduced matrix that ALG2 generates when it is applied to A, then

ηA(k) ⊆ ηÃ(k) .

Proof. Let A(k) be the reduced matrix we get from the lth reduction step of
ALG1, when applied to A.

The proof is immediate for l = 0 (and so k = n) when no reduction step has been
applied to A yet.

Otherwise, the output of the previous reduction step is either A(k+1) or A(k+2).
If the output of reduction step l − 1 is A(k+1), then by the induction assumption we
have

ηA(k+1) ⊆ ηÃ(k+1) .

Moreover, it is guaranteed that either Gaussian elimination or a reduction of the
second kind is applied to A(k+1) in order to get A(k). Due to the facts that the
reduction applied on Ã(k+1) by ALG2 is of the second kind and that the Gaussian
elimination, if applied by ALG1 to A(k+1), does not increase the band, we have

ηA(k) ⊆ ηÃ(k) .

If the output of the l− 1th reduction step is A(k+2), then a reduction of the third
kind is applied to A(k+2) in order to get A(k). The operations whose effect on the
structure of A(k) we need to consider are applying Y −1, bringing column and row

r
(1)

Ak+2 + 1 to the second position, applying X−1, and finally applying a nonsymmetric
Gauss reduction. Let B be the k + 1× k + 1 right bottom block of the matrix we get
after applying Y −1 to A(k+2). We have

ηB ⊆ ηÃ(k+1)(4.1)

due to similar arguments to those by which we have shown that ηA(k) ⊆ ηÃ(k) , in case

the output of the l − 1th reduction step is A(k+1). Let C be the matrix we get after

bringing the r
(1)

A(k+2) column and row of B to the first column and row, respectively.

During this operation, each of the columns (rows) 1, . . . , r
(1)

A(k+2) − 1 of B is moved
one location to the right (down). From the combination of (4.1) with Lemma 4.2 we

have that the structures of columns (rows) 2, ldots, r
(1)

A(k+2) in C are contained in the

structures of these columns (rows) in Ã(k+1), respectively. We get

ηC[k]
⊆ η

Ã
(k+1)
[k]

,(4.2)

where M[k] denotes the k-by-k right bottom block of the matrix M . The next
structure-relevant part of a third-kind reduction is X−1. The last element elimination
performed during applying X−1 on C in the first column is done by the r1

A(k+2)th row.
The last element elimination performed during the Y −1 part in the ALG2 reduction
step of Ã(k+1) in the first column is done by the r1

Ã(k+1)
+ 1th row. For these two

indices, we have

r1
A(k+2) ≤ r1

Ã(k+2) ≤ r2
Ã(k+2) + 1 ≤ r1

Ã(k+1) + 1(4.3)
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by the induction assumption, Lemma 4.2, and the trivial fact r2
Ã(k+2)

≤ r1
Ã(k+1)

. De-

note the matrix we get by applying X−1 on C by D. By combining (4.3) with (4.2) we

get that the structure of D[k] is contained in the structure of Ã(k). The last operation
performed during a reduction of the third kind is a nonsymmetric Gauss reduction.
The effect on the fill that this operation may have on D is limited to elements dij ,
where

r1
A(k+2) ≤ i, j ≤ r1

C + 1.

The fact that Ã(k+1) has a nonzero element in entry (r1
C + 1, r1

A(k+2)) (because B has
a nonzero there, and due to (4.1)) and Lemma 4.2 bring us to the conclusion that the

elements of Ã(k) in entries i, j, where r1
A(k+2) − 1 ≤ i, j ≤ r1

C are all nonzeros. We got

ηA(k) ⊆ ηÃ(k) .

We now prove the following lemma on ALG2.
Lemma 4.4. Let m be the half-bandwidth of A. Then ri

Ã(k)
< 2m for 0 < k ≤ n,

1 ≤ i ≤ k.
Proof. Let us focus in a nonzero element located at i, j such that i− j is maximal

over all elements that appear during the factorization. More formally, i and j are

such that i − j = maxi′,j′,t{i′ − j′ : ã
(t)
i′j′ �= 0}, i > j. Assume, without loss of

generality, that this nonzero is the first to fill the criterion and that the reduced
matrix F = Ã(k) is the first in which the nonzero appears (see Figure 3:A). The

appearance of the nonzero in the jth column of the ith row of Ã(k) implies that the
i+1, j+2 element in Ã(k+1) is nonzero (Figure 3:B). This, in turn, implies that there

is some l′ > k + 1 s.t. ã
(l′)
l′−k+i,l′−k+j+2 �= 0 (Figure 3:C). If we continue similarly, we

get to the observation that there is some l > k+i−j−m−2 s.t. ã
(l)
l−k+i,l−k+i−m−1 �= 0

(Figure 3:D). Assume, without loss of generality, that l is maximal, which means that

ã
(l+1)
l+1−k+i,l+1−k+i−m−1 = 0 (Figure 3:E). This implies that r1

Ã(l+1)
≥ 2i− j − 2m− 1.

On the other hand, r1
Ã(l+1)

< i− j. We get 2i− j − 2m− 1 < i− j, i.e., i < 2m + 1
and therefore i− j < 2m. This proves the lemma.

4.2. Storing the factors. We store the input matrix and the factors in a format
that is quite similar to LAPACK’s banded storage format. The code expects to receive
only the upper triangle of A. The representation of the matrix A will be stored in
a two-dimensional array, with n columns and with a number of rows related to the
half-bandwidth m. On input, each column of A will be stored in the corresponding
column of the representation. Each row of the representation will correspond to a
diagonal of A, with the main diagonal given as the first row of the representation, the
first superdiagonal of A as the second row of the representation, and so forth. Rows
of A will correspond to diagonals of the representation, filling the first m rows of the
representation. As the algorithm runs, rows of A are overwritten with elements of the
factors.

The factors of A require more storage than A itself. We accomodate the factors by
requiring that the row dimension of the representation array be larger than the half-
bandwidth m. This storage format is similar to the input/output format of LAPACK’s
dgbtrf routine, which implements Gaussian elimination with partial pivoting, where
reduced rows also expand.

Strictly speaking, the leading dimension of the array should be at least eight times
the half-bandwidth, to allow for storage of the output. Since most matrices do not
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require that much storage to factor, the code can be called with a smaller leading
dimension. In particular, we have never encountered a matrix that requires more
than six times the half-bandwidth, so all the runs reported later in this paper use a
leading dimension that is six times the half-bandwidth.

The details of how we pack the representation of the factors into the array are not
important and are omitted. Only three aspects of the data structure are important.
First, the fact that rows of A are not packed, but stored with spaces in between
them, allows the algorithm to reduce the remaining rows in each elimination step.
That is, the algorithm is essentially a right-looking algorithm. A fully packed storage
would not have allowed a right-looking algorithm. Second, the coefficients of the
transformations that eliminate a row are stored in the memory that was used to store
the row of A and additional memory locations that are statically preallocated for that
row in the input/output array. Third, the representation of each Givens rotation is
stored in one word using the scheme of [20].

We note that it is possible to reduce the storage requirements of the algorithm
using dynamic storage allocation for the factors, rather than using static preallocated
areas. The static allocation leaves some unused storage.

5. Numerical stability: Bounding the factors. In this section we show that
the growth during the algorithm is bounded from above by 4n−1, and that the factors
are bounded. The growth factor ρA is the ratio of the largest element in absolute
value in the reduced matrices to the largest element in A,

ρA =
maxi,j,k

∣∣∣a(k)
i,j

∣∣∣
maxi,j |ai,j |

.

A bound of this form, even an exponential bound like the one that we prove here,
is often associated with backward stable elimination algorithms. In particular, the
growth in GEPP is bounded by 2n−1, the growth in Bunch and Kaufman’s algorithm
is bounded by 2.57n−1, and the growth in Aasen’s algorithm is bounded by 4n−2. In
practice, such growth factors are rarely encountered; the growth in practice is usually
small. Researchers have shown that when the growth is small, these algorithms are
backward stable [11, 12, 21, 22]. Since large growth factors are rare, these algorithms
are stable in practice [9, 13]. Although we do not show that a similar implication
holds for our algorithm, we believe that one does.

Moreover, the fact that a bound on the growth exists at all, even if the bound is
exponential, is usually a reflection of a sound numerical design of the pivoting strategy.
This observation does hold for our algorithm. The careful design of the snap-back
pivoting strategy ensures that the elements of the reduced matrix can grow by at
most a factor of 4 in every step.

Growth is measured on the reduced matrices, the intermediate matrices after
some elimination steps have been carried out. In some algorithms, such as GEPP
and Aasen, the entries in the factors are also bounded. In GEPP, for example, the
magnitude of the entries of the lower triangular factor are bounded by 1 and the mag-
nitudes in the upper triangular factor are bounded by the magnitude of elements in
reduced matrices. Bounded factors are a stronger property than bounded growth. In
particular, in some cases, bounded factors imply backward stability [2, Appendix B].
We show in this section that the factors in our algorithm are bounded, although this
does not formally imply backward stability. We note that in the algorithms of Bunch
and Kaufman, the factors are not bounded: they can have large entries even when
the reduced matrices remain small (see, for example, [13, p. 219]).
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Before we analyze growth, we should define formally the conditions by which we
choose the next type of reduction step to perform. If possible, Gaussian elimination
is applied. The condition for applying this reduction is the same as the condition
that appears in the Bunch–Kaufman algorithm. This condition involves a constant

α with a value between 0 and 1 and the values γ
(k)
1 = max1<l≤k | a(k)

l,1 | and γ
(k)
t =

max1<l≤k | a(k)
l,t |, where t is the index of the row of the entry with the maximum

magnitude in the first column. Using this notation, we use a reduction of the first
kind if one of the following conditions is satisfied:

1. | a(k)
1,1 |> α · γ(k)

1 , or

2. | a(k)
1,1 | ·γ(k)

t > α(γ
(k)
1 )2 (optional; see below).

Otherwise, a reduction of one of the other two types is applied. Condition 2 is optional
in the sense that if we use it, growth in the reduced matrices is still bounded, but
the factors may grow; if we only use a reduction of the first type when condition 1 is
satisfied, then both the reduced matrices and the factors are bounded.

The two other types of reductions start with the same sequences of elementary
transformations. The decision about the chosen type is taken only after this shared
sequence of transformations terminates. If the element ar1

A(k)+1,r1

A(k)+1 is less than or

equal (a threshold may be used) to all the other elements in its row, then the second
type of reduction is chosen and S−1 is applied. Otherwise, the reduction proceeds as
a third type reduction.

We now analyze the growth.
Consider first symmetric Gauss transformations. The analysis of this case is the

same as in [4, 2]. For an element a
(k)
ij in the input matrix A(k) and an element a

(k−1)
ij

in the reduced matrix A(k−1) we have

a
(k−1)
ij = a

(k)
ij −

a
(k)
i1 a

(k)
1j

a
(k)
11

, i > 1, j > 1.(5.1)

Let μ be the magnitude of the largest entry in A(k) and μ′ the maximum magnitude

of any entry in the reduced matrix A(k−1). If a
(k)
11 > α · max1<l≤k(a

(k)
l,1 ), then from

(5.1) we get

μ′ ≤ μ +
| a(k)

i1 a
(k)
1j |

| a(k)
11 |

≤ μ

(
1 +

1

α

)
.(5.2)

If | a(k)
11 | ·γ(k)

t ≥ α · (γ(k)
1 )2, then using (5.1)

μ′ ≤ μ +
(γ

(k)
1 )2

| a(k)
11 |

≤ μ +
γ

(k)
t

α
≤ μ

(
1 +

1

α

)
.(5.3)

Now, consider the second and third kinds of transformations. In order to analyze
the growth for these kinds of transformations, we look at the elementary transforma-
tions from which these two complex kinds are made up. We may divide the elementary
transformations into four categories. The first category includes the transformation
that annihilates an element in the first or second column (row) by its nearby element
in the same column (row). In our algorithm, this transformation is applied as a part
of an elimination of a full column. During such an elimination, the first annihilated
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element is the one directly under the diagonal. The next elementary transforma-
tion annihilates the element located two entries under the diagonal, and so on. If
an element to be annihilated is greater than the element under it, the rows of these
two elements and the symmetric columns are swapped first. The second category
of elementary transformations is the Gauss transformations, and the third includes
the Givens transformation that annihilates one nondiagonal element by a diagonal
element, both in the first column. The fourth category includes the one-row-scaling
diagonal transformation S−1, in which all of the diagonal is 1’s, except, maybe, for
one diagonal element, whose magnitude is smaller than 1.

The last three categories of transformations with the conditions for applying them
trivially imply an upper bound of 2 on the growth the transformations induce on the
matrix they are applied on. We now focus on the first category. We show it has an
upper bound of 4 on the growth it induces. Assume that a sequence of Q elementary
transformations of the first category, as described above, is applied on a matrix B(0),
with a maximum magnitude element ν, in order to eliminate its first column. Denote
the matrix we get after applying q ≤ Q such elementary transformations by B(q), and

its i, j element by b
(q)
ij .

Lemma 5.1. A. If i ≥ q + 2 and j ≥ q + 2, then | b(q)ij |≤ ν.

B. If 1 ≤ i < q + 2 and j ≥ q + 2 (or i ≥ q + 2 and 1 ≤ j < q + 2), then

| b(q)ij |≤ 2 · ν.

C. If 1 ≤ i < q + 2 and 1 ≤ j < q + 2, then | b(q)ij |≤ 4 · ν.

Proof. The lemma is trivially correct for q = 0.

Assume the lemma is correct for some q ≤ Q− 1.

The only rows that may change due to the q+1th left elementary transformation
are the q + 2 and q + 3 rows, and similarly, the q + 2 and q + 3 columns are the only
columns that may change due to the q + 1th right elementary transformation.

Elements b
(q+1)
i,q+3 and b

(q+1)
q+3,i , where i > q+3 are equal either to elements b

(q)
i,q+3 and

b
(q)
q+3,i, where i > q + 3 or to elements b

(q)
i,q+2 and b

(q)
q+2,i, where i > q + 3, respectively,

depends on whether or not a swap is part of the q + 1th elementary transformation.

Similarly, element b
(q+1)
q+3,q+3 equals either to b

(q)
q+3,q+3 or to b

(q)
q+2,q+2. By the induction

assumption we have | b(q+1)
ij |≤ ν for i ≥ q + 3 and j ≥ q + 3. By that we proved A.

We also have | b(q+1)
ij |≤ 2ν for i ≥ q + 3 and j = q + 2 and for i = q + 2 and

j ≥ q+3, because each of these elements is computed as a sum of two elements in B(q),
which are at most ν by the induction assumption. In addition, from the induction

assumption, | b(q+1)
ij |≤ 2ν for i ≥ q + 3 and 1 ≤ j < q + 2 and for 1 ≤ i < q + 2 and

j ≥ q + 3. This completes the proof of B.

In order to prove C it is enough to show that | b(q+1)
ij |≤ 4 · ν for i = q + 2 and

1 < j < q + 3 (and for 1 < i < q + 3 and j = q + 2). When i �= j this bound holds
because each of the elements is computed as the sum of two elements in B(q), which

are at most 2ν by the induction assumption. If i = j = q + 2 then b
(q+1)
i,j , is the sum

of the four elements b
(q)
i,j , b

(q)
i+1,j , b

(q)
i,j+1, and b

(q)
i+1,j+1. By the induction assumption,

each of these elements is at most ν. This completes the proof.

A similar lemma holds for the case where the second column and row are elimi-
nated using a sequence of transformations of the first category. Such a case may be
interpreted simply as eliminating the first row and column of a matrix C, which is B(0)

without its first row and column and with some permutation on its columns/rows.
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This extraction of the lemma bounds the growth induced by the second sequence of
transformations of the first category applied during the third type of reduction.

From the above upper bounds on growth during the first type of reduction and
on growth induced by the four categories of elementary transformations, we can now
conclude an upper bound on the growth during the full reduction step. In case the first
type of elimination is chosen, the growth is bounded by 1 + 1

α . In case the second or
third type is applied, we have from Lemma 5.1 that the sequences of the first category
of elementary transformations (Y −1or X−1) causes each a growth bounded by 4. The
other elementary transformations may cause growth only to elements that didn’t grow
above the old maximum element in the matrix during the last applied Y −1 (or X−1)
transformation. It means that at the end of a second type reduction step, the growth
is bounded by 4. It means also that this is the case just before applying X−1. The
growth caused by the X−1 transformation itself and the elementary transformation
that follows, is again bounded by 4 .This brings us to total growth bounded by 16 for
the third type of reduction.

We now can use a similar approach to the one used by the Bunch–Kaufman
algorithm to determine the value α. We have growth bounded by 16 for a double
column elimination done during the third type of reduction, and bounded by 4 for a
single column elimination done during the second type. It means that the elimination
of a column during the second or third reduction types induces a growth of 4. In
order to minimize the bound that we have on a general reduction step, we need to
find α such that

μ

(
1 +

1

α

)
≤ 4μ.

Therefore, we need to ensure that α ≥ 1/3; by setting α = 1/3, we maximize the
opportunity to use elimination steps of the first type, which is the cheapest type.

In total we have an upper bound of 4n−1 on the growth factor during the factor-
ization.

We now prove a bound on the entries of the factors.

Lemma 5.2. Suppose that we use a reduction of the first type only when | a(k)
1,1 |>

α ·γ(k)
1 for some 0 < α ≤ 1. Then the magnitude of elements of the factors is bounded

by α−1 or by the elements of the reduced matrices. By reduced matrix we refer here
to the matrix after the application of both full and partial elimination steps, not just
after some rows and columns have been completely eliminated.

Proof. We show that elements of the nine matrices L, Y , G, U , S, P , X, K,
and K̂ are all bounded. L is a Gauss transform in which the pivot is smaller than
the elements in its row and column by at most a factor of α, so the elements of L
are bounded by α−1. K is a similar transform, except that the pivot is larger or
equal to the rest of its row. Therefore, the elements of K are bounded by 1 ≤ α−1.
G represents a single Givens rotation, so its entries are bounded by 1. Y and X
represent either a sequence of Givens rotations, or a sequence of offdiagonal Gauss
transforms in which the pivot is larger than the element that it annihilates. If we
use Givens rotations, Y and X are orthonormal so their entries are bounded by 1.
If we use Gauss transforms, Y and X are row permutations of unit lower-triangular
matrices with subdiagonal elements bounded by 1. The matrix U represents a series
of column operations that annihilate a row in a reduced matrix. Thus, U is an upper
triangular matrix, with one row that contains a copy of the annihilated row in the
reduced matrix, and with a unit diagonal elsewhere. Therefore, the elements of U are
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elements of a reduced matrix and 1’s, so they are bounded. The matrix K̂ is similar,
except that it represents row operations. P is a permutation matrix, so its entries are
bounded by 1. S is a transformation that scales a single row down (S−1 scales a row
up), so it is a diagonal matrix, with diagonal entries that are 1 except for one entry,
which is smaller than 1.

The qualification that the factors are bounded with respect to partially-eliminated
reduced matrices, not with respect to reduced matrices after the full elimination of
some rows and columns, is not a significant one. Our previous analysis of the growth
in the reduced matrices covers partially-eliminated reduced matrices as well.

6. Implementation and results. This section describes our implementation of
the algorithm and presents results of experiments that investigate the behavior and
performance of the algorithm.

6.1. Implementation and benchmark codes. We have implemented the al-
gorithm in the C language2 using LAPACK-style interfaces. The implementation
includes two externally-visible routines, one to factor a symmetric banded matrix and
another to solve a linear system using a previously-computed factorization.

The threshold value α that our implementation uses is α = 1/3, the value that
minimizes worst-case element growth. The implementation uses Givens rotations in
the Y and X factors.

We tested this implementation against three other codes: LAPACK’s banded LU
with partial pivoting (dgbtrf), LAPACK’s banded LU with partial pivoting but
without blocking (dgbtf2; this is an internal LAPACK routine), and the symmetric
band reduction, an orthogonal factorization code for banded symmetric matrices [3].
Our code is not blocked. That is, it does not partition the matrix into blocks to
achieve high cache efficiency. Thus, from the algorithmic point of view, it is most
appropriate to compare it to other nonblocked factorization codes, such as dgbtf2.
From the practical point of view, it is also important to know how our implementation
compares to the best existing factorization code, which is dgbtrf. (This comparison,
however, does not reveal much about our algorithm, since it is difficult to separate
the algorithmic and cache issues that influence the performance of dgbtrf.)

6.2. Test environment. We conducted the experiments on two different ma-
chines. Some of the experiments were conducted on a 3.2 GHz Pentium 4 computer
running Linux with 2 GB of main memory. We compiled our code using GCC version
4.0.0. The version of LAPACK that we used was compiled using GCC 2.91 from C
sources that were generated from the Fortran sources using f2c. We linked our code
as well as LAPACK with an implementation of the blas by Kazushige Goto, version
0.99 for Pentium 4 (Coppermine). We measured this LAPACK/blas combination
against Intel’s Math Kernel Library (MKL) version 7.2.1 and found that the per-
formance of the banded GEPP subroutines in the two implementations was similar.
Therefore, the performance that we report does not appear to be affected by the use
of the Fortran-to-C translation or of GCC. We used this LAPACK/blas combination
because it delivered better performance for our algorithm than MKL.

Other experiments were performed on a dual 3 GHz AMD Opteron machine with
8 GB of main memory. On this machine we used GCC 3.4.2 and Goto’s blas version
0.97 for 64-bit Opterons (we do not report detailed timing data on this machine, only
accuracy data).

2The code is available from http://www.tau.ac.il/∼stoledo/research.html.
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Table 1

Test matrices from the Gould–Scott study.

# name n m # name n m # name n m

1 linverse 11999 4 12 crystk02 13965 821 23 bcsstk39 46772 817
2 spmsrtls 29995 4 13 mario001 38434 356 24 dawson5 51537 867
3 dtoc 24993 5 14 aug3d 24300 759 25 bcsstk35 30237 1764
4 dixmaanl 60000 7 15 crystk03 24696 1034 26 vibrobox 12328 4535
5 sit100 10262 396 16 bratu3d 27792 945 27 helm3d01 32226 2593
6 tuma2 12992 322 17 cont-201 80595 403 28 ncvxbqp1 50000 1682
7 stokes64 12546 384 18 ncvxqp1 12111 2692 29 k1 san 67759 1574
8 stokes64s 12546 384 19 aug3dcqp 35543 994 30 olesnik0 88263 1214
9 aug2d 29008 198 20 bcsstk37 25503 1427 31 cont-300 180895 603

10 aug2dc 30200 202 21 ncvxqp9 16554 2216 32 copter2 55476 2304
11 tuma1 22967 483 22 stokes128 49666 768 33 qa8fk 66127 2016

Table 2

Test matrices from John Betts.

# name n m # name n m # name n m

1 traj02 1665 457 4 traj15a 1999 1882 7 traj15d 1999 1882
2 traj06a 1665 466 5 traj15b 1999 1882
3 traj06b 1665 466 6 traj15c 1999 1882

We used two different machines because we had the MKL performance of GEPP
as a baseline only on Intel Pentium 4 machines, but 32-bit Pentium 4 machines could
not factor some of the larger test matrices. The 64-bit Opteron allowed us to factor
large matrices.

6.3. Reliability, stability, and accuracy. We performed several experiments
in order to assess the reliability, stability, and accuracy of the algorithm. These were
all conducted on the Opteron machine. We used three families of test matrices for
these experiments. One family consists of the 61 matrices that Gould and Scott used
to evaluate sparse symmetric indefinite direct solvers [10]. We reordered the rows and
columns using reverse Cuthill–McKee ordering, to reduce their bandwidth. Of the 61
matrices, our algorithm ran out of memory on 28 on a machine with 8 GB of memory,
leaving for our experiment the 33 matrices listed in Table 1. Another family consisted
of 7 matrices that were collected by Roger Grimes from John Betts of Boeing, listed
in Table 2. They are KKT matrices extracted out of a sparse nonlinear optimization
package called SOCS. These problems were among those that led to the discovery
that the Bunch–Kaufman algorithm can create large entries in the lower-triangular
factor. Solving linear systems with these factors resulted in very-low-accuracy solu-
tions, which led to convergence failures in the nonlinear optimization algorithm.

Figure 4 shows the growth and the norm of the residual on the Gould–Scott
matrices. These runs were performed with α = 1/3. The right-hand-side b was
generated by multiplying A by a random solution vector x. The figure shows the
growth in the reduced matrices in our algorithm and the residual in both our algorithm
and LAPACK’s GEPP. Our code failed on one matrix due to overflows in the solve
phase (GEPP overflowed on 4), and produced an unacceptable residual on only one
matrix. That matrix suffered from large growth. The data suggests that very large
growth leads to backward instability in the algorithm. The data also suggests that
problems in the solve phase can occur even when there is no growth. On the other
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Fig. 4. Growth in the reduced matrices in our algorithm and the residual in both our algorithm
and GEPP on the 33 matrices from the Gould–Scott study.

hand, our algorithm suffers from fewer problems in the solve phase than GEPP. On
the 7 Betts matrices the residual was always at least a factor of 1012 smaller than the
right-hand side; we did not detect any problems.

We also conducted experiments to assess the behavior of the algorithm under
various α-thresholds. For this experiment we selected two of the Betts matrices and
two particularly difficult matrices from the Gould–Scott collection, cont-300 and
bratu3d. These two matrices caused large growth under α = 1/3; cont-300 caused
instability, but bratu3d did not. Figure 5 shows the norms of the forward errors,
normalized with respect to ‖x‖, as a function of α. The results show that increasing
α can improve significantly the accuracy of the algorithm. This is particularly pro-
nounced in the difficult Gould–Scott matrices. The accuracy appears to be roughly
monotone with α. We note that a small α improves performance, as we shall see later,
but even with a large α our theoretical results concerning growth and bandwidth hold.

6.4. Performance. Next, we describe several experiments that evaluate the per-
formance of our algorithm. These experiments were all carried out on the Pentium 4
machine.
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Fig. 5. Forward accuracy as a function of α on four matrices.

Fig. 6. Performance as a function of the bandwidth.

Figure 6 shows the performance of our algorithm relative to LAPACK’s implemen-
tations of GEPP. The experiment was performed on random 1000-by-1000 matrices
with 50 negative eigenvalues. We generated the matrices as follows. We start with
a real normally distributed random nonsymmetric matrix T , and compute its QR
factorization, T = QR, where Q is unitary and R is upper triangular. We then select
1000 uniform random values wi between 0 and 25. From the wi’s we construct a
diagonal matrix Λ with diagonal elements λi = (−1)[i≤ν]2wi , where [i ≤ ν] is 1 when
i ≤ ν and 0 otherwise. Next, we compute QΛQT , which has eigenvalues λi, exactly ν
of which are negative and the rest positive. Finally, we apply the SBR library [3] to
QΛQT with the target bandwidth as input. This unitarily reduces QΛQT to a banded
symmetric matrix A with the same spectrum as QΛQT and Λ. By the construction of
the λi’s, A is ill conditioned but far from numerical rank deficiency in double-precision
IEEE 754 arithmetic.

The results show that our algorithm is always faster than LAPACK’s subroutine
DGBTF2, which is not blocked for cache efficiency. When the bandwidth is small (e.g.,
60 in this experiment), our algorithm is also faster than DGBTRF, which partitions
the matrix for cache efficiency. For matrices with higher bandwidth, DGBTRF is
faster than our algorithm.

Figure 7 presents similar results on real-world, nonrandom matrices, s3rmt3m1
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Fig. 7. Performance on two real-world matrices, shifted to produce different numbers of negative
eigenvalues.

and bcsstk15. Both are available from public sparse-matrix collections.3 The figure
plots the performance of the three algorithms on shifted versions of the two matrices.
All the shifts are half-way between eigenvalues, so the matrices are relatively well
conditioned. On s3rmt3m1, which has a relatively narrow bandwidth, our algorithm
outperforms both GEPP implementations at many inertia values, and is always at
least as fast as DGBTF2. On bcsstk15, which has a much larger bandwidth, our
algorithm is sometimes faster and sometimes slower than DGBTF2 but usually slower
than DGBTRF. On this matrix our algorithm exhibits another behavior: higher per-
formance at the ends of the inertia axis than in the middle. We further explore this
behavior below.

In another experiment on real-world matrices, we compared the performance of
our algorithm to that of DGBTF2 and DGBTRF on the 33 matrices from the Gould–

3For example, from http://math.nist.gov/MatrixMarket/.
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Fig. 8. Running times of our algorithm on random 5000-by-5000 matrices with bandwidth 50,
and the number of type 2 and type 3 eliminations steps (combined). Each dot corresponds to one
matrix.

Scott study, on the Opteron machine. Most of these matrices have high bandwidths.
Our algorithm delivered similar performance to DGBTF2, but DGBTRF was much
faster than our algorithm. We omit the detailed results of this experiment.

Figure 8 presents the results of another experiment. For this experiment, we
used random 5000-by-5000 matrices with bandwidth 50 and with varying inertia, 10
matrices for each inertia value. We used the Pentium 4 machine for the experiment.
The data shown in the top graph of Figure 8 shows that the algorithm runs fastest
when most of the eigenvalues have the same sign, and it degrades as the ratio of
positive to negative eigenvalues nears 1. This is consistent with the results on some
real-world matrices, such as bcsstk15. The algorithm does not always exhibit this
behavior, as the results on s3rmt3m1 show, but it often does.

The bottom graph in Figure 8 explains this phenomenon. The graph shows that
near the middle of the inertia axis, the number of type-two and -three elimination
steps grows. These elimination steps are more expensive than type-one steps, and
they produce more fill, so a larger number of these steps slows down the algorithm. It
appears that at least in some cases, the number of type-two and -three steps depends
on the inertia.
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6.5. Comparisons to other symmetric-indefinite factorization codes. In
addition for the tests introduced in this section, we have performed some tests on the
SBR library. We have found that the performances of SBR and of our algorithm are
almost incomparable: SBR is about three orders of magnitude (about 1000 times)
slower.

We were not able to obtain the code of Jones and Patrick [14]. Therefore, we did
not compare our algorithm to theirs. We believe that when matrices have only few
negative (or few positive) eigenvalues, the behavior of our algorithm and of Jones and
Patrick’s Bunch–Kaufman code are similar. However, Jones and Patrick’s algorithm
is not designed for general symmetric banded matrices; it may suffer catastrophic fill
when the ratio of positive to negative eigenvalues is near 1, whereas our algorithm de-
grades smoothly toward this case, and the degradation is never catastrophic (because
the bandwidth of the reduced matrices is bounded).

7. Conclusions. The algorithm that we propose in this paper is the first banded
symmetric direct solver that exploits symmetry and achieves an O(nm2) running time
and an O(nm) storage requirement.

The reduced matrices in our algorithm may fill somewhat, but they remain
banded. This behavior is similar to that of Gaussian elimination with partial piv-
oting (GEPP) when applied to a banded matrix. However, representation of the fac-
tors in our algorithm can require more memory than the representation of the GEPP
factors. Also, our algorithm represents the factors in a product form, consisting of
several elementary transformation matrices per elimination step. This representation
does not allow our algorithm to be easily blocked for cache efficiency, so for large m
and highly-indefinite matrices, our algorithm can be slower than the blocked version
of GEPP.

When most of the diagonal elements are large enough to be used as 1-by-1 pivots,
our algorithm performs much less work than GEPP. The performance of the algorithm
seems to be related to the ratio of the numbers of positive and negative eigenvalues.
When there are only a few negative (or only a few positive) eigenvalues, our algo-
rithm uses mostly cheap symmetric Gaussian reduction steps. When there are many
eigenvalues of both signs, the algorithm must resort to more expensive Givens and
unsymmetric Gaussian reduction steps, so its performance degrades. But even when
m is large and A is highly indefinite, our new algorithm is competitive with the un-
blocked version of GEPP. For small m, our algorithm outperforms even the blocked
version of GEPP.

The new algorithm is reliable when implemented in floating-point arithmetic.
More specifically, we believe that the algorithm is backward stable, but we formally
show only a weaker result: that the element growth is bounded by 4n−1. That is,
the entries of the reduced matrices are at most a factor of 4n−1 larger in absolute
value than the entries of A. In most of the existing elimination algorithms, including
GEPP, Bunch–Kaufman and Aasen, a result of this type holds (2 in GEPP, 2.57 in
Bunch–Kaufman and 4 in Aasen) and can be used to show backward stability. The
existence of such a bound on the growth, in both existing algorithms and in our
new algorithm, reflects a careful numerical design whose goal is to avoid catastrophic
cancellation. In particular, the growth bound that we show in section 5 holds thanks
to an intricate elimination strategy that is designed to simultaneously avoid growth,
maintain symmetry, and maintain the band structure. Also, the elements of the factors
in our method are bounded in magnitude by the maximum of 1 and the elements of
the reduced matrices. We note that the backward stability of the Aasen and Bunch–
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Kaufman algorithms, which were proposed in 1971 and 1977, respectively, was only
formally proved by Higham in [11, 12].

Numerical experiments show that in practice, growth is almost always much
smaller than the worst-case bound, and residuals are small, suggesting that the algo-
rithm is backward stable. Furthermore, the accuracy (forward errors) of our algorithm
is similar to that of GEPP even on notoriously difficult matrices. This suggests that
the accuracy problems in Bunch–Kaufman, reported in [2], are not present in our
algorithm.

This paper leaves a few interesting questions open.

• Can this algorithm be blocked for cache efficiency? That is, can this algorithm
be accelerated by exploiting fast level-3 blas subroutines?

• Is this algorithm backward stable? Our bound on the element growth, the
boundedness of the factors, and our numerical experiments suggest that it is,
but we have not formally proved backward stability.

• Can a similar elimination scheme be developed for symmetric indefinite ma-
trices with a general sparsity pattern?

REFERENCES

[1] J. O. Aasen, On the reduction of a symmetric matrix to tridiagonal form, Nordisk Tidskr.
Informationsbehandling (BIT), 11 (1971), pp. 233–242.

[2] C. Ashcraft, R. G. Grimes, and J. G. Lewis, Accurate symmetric indefinite linear equation
solvers, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 513–561.

[3] C. H. Bischof, B. Lang, and X. Sun, A framework for symmetric band reduction, ACM
Trans. Math. Software, 26 (2000), pp. 581–601.

[4] J. R. Bunch and L. Kaufman, Some stable methods for calculating inertia and solving sym-
metric linear systems, Math. Comput., 31 (1977), pp. 163–179.

[5] I. A. Cavers, A hybrid tridiagonalization algorithm for symmetric sparse matrices, SIAM J.
Matrix Anal. Appl., 15 (1994), pp. 1363–1380.

[6] I. S. Duff and J. K. Reid, MA27 – A Set of Fortran Subroutines for Solving Sparse Symmetric
Sets of Linear Equations, Tech. report AERE R10533, AERE Harwell Laboratory, London,
UK, 1982.

[7] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear
systems, ACM Trans. Math. Software, 9 (1983), pp. 302–325.

[8] I. S. Duff and J. K. Reid, MA47, a Fortran Code for Direct Solution of Indefinite Sparse
Symmetric Linear Systems, Tech. report RAL-95-001, Rutherford Appleton Laboratory,
Didcot, Oxon, UK, 1995.

[9] L. Fox, H. D. Huskey, and J. H. Wilkinson, Notes on the solution of algebraic linear simul-
taneous equations, Quart. J. Mech. Appl. Math., 1 (1948), pp. 149–173.

[10] N. I. M. Gould and J. A. Scott, Complete Results from a Numerical Evaluation of hsl
Packages for the Direct-Solution of Large Sparse, Symmetric Linear Systems of Equations,
Tech. report, Numerical Analysis Internal Report 2003-2, Rutherford Appleton Laboratory,
2003. Available online from http://www.numerical.rl.ac.uk/reports/reports.shtml.

[11] N. J. Higham, Stability of Aasen’s method, manuscript, 1997.
[12] N. J. Higham, Stability of the diagonal pivoting method with partial pivoting, SIAM J. Matrix

Anal. Appl., 18 (1997), pp. 52–65.
[13] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., Society for Industrial

and Applied Mathematics, Philadelphia, 2002.
[14] M. T. Jones and M. L. Patrick, Bunch-Kaufman factorization for real symmetric indefinite

banded matrices, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 553–559.
[15] B. Lang, A parallel algorithm for reducing symmetric banded matrices to tridiagonal form,

SIAM J. Sci. Comput., 14 (1993), pp. 1320–1338.
[16] K. Murata and K. Horikoshi, A new method for the tridiagonalization of the symmetric band

matrix, Information Processing in Japan, 15 (1975), pp. 108–112.
[17] B. N. Parlett and J. K. Reid, On the solution of a system of linear equations whose matrix

is symmetric but not definite, BIT, 10 (1970), pp. 386–397.



424 DROR IRONY AND SIVAN TOLEDO

[18] H. Rutishauser, On Jacobi rotation patterns, Proc. Sympos. Appl. Math. 15, Amer. Math.
Soc., Providence, RI, 1963, pp. 219–239.

[19] H. R. Schwarz, Tridiagonalization of a symmetric band matrix, Numer. Math., 12 (1968),
pp. 231–241.

[20] G. W. Stewart, The economical storage of plane rotations, Numer. Math., 25 (1976), pp. 137–
138.

[21] J. H. Wilkinson, Error analysis of direct methods of matrix inversion, J. Assoc. Comput.
Math., 8 (1961), pp. 281–330.

[22] J. H. Wilkinson, Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood Cliffs,
NJ, 1963.



SIAM J. MATRIX ANAL. APPL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 425–445

FINDING A GLOBAL OPTIMAL SOLUTION FOR A
QUADRATICALLY CONSTRAINED FRACTIONAL QUADRATIC

PROBLEM WITH APPLICATIONS TO THE REGULARIZED TOTAL
LEAST SQUARES∗

AMIR BECK† , AHARON BEN-TAL† , AND MARC TEBOULLE‡

Abstract. We consider the problem of minimizing a fractional quadratic problem involving
the ratio of two indefinite quadratic functions, subject to a two-sided quadratic form constraint.
This formulation is motivated by the so-called regularized total least squares (RTLS) problem. A
key difficulty with this problem is its nonconvexity, and all current known methods to solve it are
guaranteed only to converge to a point satisfying first order necessary optimality conditions. We prove
that a global optimal solution to this problem can be found by solving a sequence of very simple
convex minimization problems parameterized by a single parameter. As a result, we derive an efficient
algorithm that produces an ε-global optimal solution in a computational effort of O(n3 log ε−1). The
algorithm is tested on problems arising from the inverse Laplace transform and image deblurring.
Comparison to other well-known RTLS solvers illustrates the attractiveness of our new method.
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1. Introduction. In this paper we consider the problem of minimizing a frac-
tional quadratic function subject to a quadratic constraint:

min
x∈F

f1(x)

f2(x)
,(1)

where

fi(x) = xTAix − 2bT
i x + ci, i = 1, 2,(2)

A1,A2 ∈ R
n×n are symmetric matrices, b1,b2 ∈ R

n, c1, c2 ∈ R, and 0 ≤ L < U . We
do not assume that A1 and A2 are positive semidefinite, and the only assumption
required for the problem to be well defined is that f2(x) is bounded away from zero.
We will discuss two cases of the feasible set F :

F1 = {x ∈ R
n : L2 ≤ xTTx ≤ U2},

where T is a positive definite matrix and U > L ≥ 0, and

F2 = {x ∈ R
n : xTBx ≤ U2},

where B is a positive semidefinite matrix and U > 0.
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The major difficulty associated with problem (1) is the nonconvexity of the ob-
jective function and in the case of F1 also the nonconvexity of the feasible set.

The main motivation for considering problem (1) comes from the so-called reg-
ularized total least squares (RTLS) problem. Many problems in data fitting and
estimation give rise to an overdetermined system of linear equations Ax ≈ b, where
both the matrix A ∈ R

m×n and the vector b ∈ R
m are contaminated by noise. The

total least squares (TLS) approach to this problem [9, 10, 15] is to seek a perturba-
tion matrix E ∈ R

m×n and a perturbation vector r ∈ R
m that minimize ‖E‖2 + ‖r‖2

subject to the consistency equation (A+E)x = b+ r (here and elsewhere in this pa-
per a matrix norm is always the Frobenius norm and a vector norm is the Euclidean
one). The TLS approach was extensively used in a variety of scientific disciplines
such as signal processing, automatic control, statistics, physics, economic, biology,
and medicine (see, e.g., [15] and the references therein). The TLS problem has es-
sentially an explicit solution, expressed by the singular value decomposition of the
augmented matrix (A,b).

Regularization of the TLS solution is required in the case where A is nearly
rank deficient. Such problems arise, for example, from the discretization of ill-posed
problems such as integral equations of the first kind (see, e.g., [8, 13] and the references
therein). In these problems the TLS solution can be physically meaningless, and thus
regularization is employed in order to stabilize the solution.

Regularization of the TLS solution was addressed by several approaches: trun-
cation methods [5, 13], Tikhonov regularization [8], and recently by introducing a
quadratic constraint [20, 11, 8]. All the above methods are still trapped in the non-
convexity of the problem and thus are not guaranteed to converge to a global optimum.
At best, they are proven to converge to a point satisfying first order necessary opti-
mality condition. In contrast, in this paper, we develop an efficient algorithm which
finds the global optimal solution by converting the original problem into a sequence
of very simple convex optimization problems parameterized by a single parameter α.
The optimal solution corresponds to a particular value of α, which can be found by a
simple one-dimensional search. The algorithm finds an ε-optimal solution x∗ of (1),
i.e.,

f1(x
∗)

f2(x∗)
≤ min

x∈F
f1(x)

f2(x)
+ ε,

in a computational effort of order O
(
n3 log

(
1
ε

))
.

The paper is organized as follows. In the next section, we show how to recover the
formulation of the RTLS problem as a quadratically constrained fractional quadratic
problem. Section 3 describes a schematic algorithm designed to solve (1) for general
quadratic functions f1 and f2 that provides the starting point of the analysis and the
main results that are developed in section 4. In section 5 we return to the RTLS
problem and give a detailed algorithm (RTLSC) for its solution. In order to illustrate
the performance of algorithm RTLSC, two problems from the “Regularization Tools”
[13] are employed: a problem that arises from the discretization of the inverse Laplace
transform and an image deblurring problem. These numerical examples are reported
in section 6, where we also compare the performance of our algorithm RTLSC with
other well-known RTLS solvers. Some useful technical results used throughout the
paper are collected in the appendix.

2. The RTLS problem. In this section we show how to recover a known for-
mulation of the RTLS problem as a quadratically constrained fractional quadratic
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programming. This result is well known [9, 15, 20]. However, we believe that the
derivation we give below is simpler. The RTLS problem as stated in [20] is

minE,r,x ‖E‖2 + ‖r‖2

subject to (A + E)x = b + r,
x ∈ F2.

(3)

To show that the RTLS problem (3) is a special case of problem (1), let us write (3)
as

min
x∈F2

min
E,r:(A+E)x=b+r

‖E‖2 + ‖r‖2.(4)

Next, fix x ∈ F2 and consider the inner minimization problem in (4). Denote w =
vec(E, r), where, for a matrix M, vec(M) denotes the vector obtained by stacking the
columns of M. The linear constraint (in E and r) (A + E)x = b + r can be written
as Qxw = b − Ax, where

Qx =

⎛
⎜⎜⎜⎝

x̃T 0 . . . 0
0 x̃T . . . 0
...

...
...

0 0 . . . x̃T

⎞
⎟⎟⎟⎠

and x̃ = (xT ,−1)T . Thus, the inner minimization problem in (4) takes the form

min
Qxw=b−Ax

‖w‖2.(5)

Using the KKT conditions, it is easy to see that the solution of (5) is attained at
w = QT

x (QxQ
T
x )−1(b−Ax), and as a result the optimal value of problem (5) is equal

to

(b − Ax)T (QxQ
T
x )−1(b − Ax).

Since QxQ
T
x = ‖x̃‖2I we deduce that the value of the inner minimization problem (5)

is equal to ‖Ax−b‖2

‖x̃‖2
= ‖Ax−b‖2

‖x‖2+1 . Consequently, the value of the RTLS problem (3)

reduces to

min
x∈F2

‖Ax − b‖2

‖x‖2 + 1
,(6)

which is indeed a special case of problem (1).

3. A schematic algorithm. We consider problem (1) and henceforth make the
following assumption.

Assumption 1. f2 is bounded below on F by a positive number N .
Let m and M be numbers such that

m ≤ min
x∈F

f1(x)

f2(x)
≤ M.(7)

Such bounds are easy to find; see section 4.3.
Remark 3.1. For the RTLS problem (6), Assumption 1 is trivially satisfied for

N = 1. The lower bound m can be chosen as 0 and M can be taken to be f(0) = ‖b‖2.
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Although both denominator and nominator in the RTLS problem (6) are convex, this
property does not make the problem simpler since the quotient of convex functions is
not necessarily convex.

A simple observation that goes back to Dinkelbach [4] and will enable us to solve
(1) is the following.

Observation. The following two statements are equivalent:

1. minx∈F
f1(x)
f2(x) ≤ α.

2. minx∈F{f1(x) − αf2(x)} ≤ 0.
Using the above observation, we can solve (1) by the following schematic bisection

algorithm.

Schematic Algorithm

Initial Step: Set lb0 = m and ub0 = M .
General Step: For every k ≥ 1:

1. Define αk = lbk−1+ubk−1

2 .

2. Calculate βk = minx∈F {f1(x) − αkf2(x)}.
(a) If βk ≤ 0, then define lbk = lbk−1 and ubk = αk.

(b) If βk > 0, then define lbk = αk and ubk = ubk−1.

Stopping Rule: Stop at the first iteration k∗ that satisfies ubk∗ − lbk∗ ≤ ε.
Output:

x∗ ∈ argmin
x∈F

{f1(x) − ubk∗f2(x)} .(8)

Proposition 3.1. The schematic algorithm ends after
⌈
ln
(
M−m

ε

)
/ln(2)

⌉
itera-

tions with an output x∗ that is an ε-optimal solution of problem (1). More precisely,

x∗ ∈ F , α∗ ≤ f1(x
∗)

f2(x∗)
≤ α∗ + ε,

where α∗ = minx∈F
f1(x)
f2(x) .

Proof. The length of the initial interval is ub0− lb0 = M−m. By the definition of
lbk and ubk, we have that for every k ≥ 1, ubk− lbk = 1

2 (ubk−1− lbk−1), and therefore

ubk − lbk = (M −m)
(

1
2

)k
. From this it follows that k∗, the number of iterations of

the schematic algorithm, is the smallest integer k satisfying

(M −m)

(
1

2

)k

≤ ε,

which is equivalent to k ≥
⌈
ln
(
M−m

ε

)
/ln(2)

⌉
. By (8), x∗ is feasible, i.e., x∗ ∈ F .

Also, by the definition of the bisection process we have that lbk ≤ α∗ ≤ ubk. By (8)

we have that lbk ≤ α∗ ≤ f1(x
∗)

f2(x∗) ≤ ubk for every k and finally, since ubk∗ ≤ lbk∗ + ε,

the result follows.
Remark 3.2. By writing “min” and not “inf” in statements 1 and 2 of the

observation and in the above scheme, we implicitly assumed that the minimum of
the corresponding problems is attained (which is certainly the case when F = F1).
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Otherwise, the inequalities in the statements of the observation should be replaced
by strict inequalities and the schematic algorithm revised accordingly. The schematic
algorithm then terminates with a point x∗, at which the objective value is at most
ε away from the infimum. Thus henceforth we will assume that the minimum is
attained.

To convert the schematic algorithm to a practical scheme we still need to address
the following two questions:

1. How do we choose the lower and upper bound m and M?
2. How do we solve the subproblem

min
x∈F

{f1(x) − αf2(x)}?(9)

The first question is rather easy (see section 4.3). The second one is seemingly more
difficult since problem (9), like the original problem (1), is nonconvex. In the next
section we give complete answers to these two questions.

4. Analysis and main results. In sections 4.1 and 4.2 we show how to effi-
ciently solve the subproblem (9). We first transform the problem (9) into a convex
optimization problem by using the methodology of Ben-Tal and Teboulle [2]. We
then show that the solution of the derived convex optimization problem consists of
one eigenvector decomposition and solutions of at most two one-dimensional secular
equations [17]. Finally, in section 4.3 we show how to find the lower and upper bounds
m and M .

4.1. Solving the subproblem in the case F = F1. In this section we con-
sider the case in which the feasible set is equal to {x : L2 ≤ xTTx ≤ U2}, where
T is a positive definite matrix. Notice that in this case, the feasible set is compact,
and thus the minimum is always attained both in the original problem (1) and in
the subproblem (9). First, we convert problem (9) to one with an Euclidean norm
constraint by making the change of variables s = T1/2x. The result is the following
optimization problem:

min
L2≤‖s‖2≤U2

{
f1(T

−1/2s) − αf2(T
−1/2s)

}
.(10)

Using the notation

Ã = T−1/2(A1 − αA2)T
−1/2,

b̃ = T−1/2(b1 − αb2),

c̃ = c1 − αc2,

we obtain that problem (10) is the same as

(P) : min
L≤‖s‖≤U

{sT Ãs − 2b̃T s + c̃}.(11)

Ã is symmetric and hence can be diagonalized by an orthogonal matrix U, so that

UT ÃU = D = diag(λ1, λ2, . . . , λn),(12)

where λ1 ≥ λ2 ≥ · · · ≥ λn. Making the change of variables s = Uz we obtain that
(11) is equivalent to

min
L2≤‖z‖2≤U2

⎧⎨
⎩

n∑
j=1

(λjz
2
j − 2fjzj) + c̃

⎫⎬
⎭ ,(13)
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where f = UTb. The following lemma will enable us to transform problem (13) into
a convex optimization problem.

Lemma 4.1. Let (z∗1 , z
∗
2 , . . . , z

∗
n) be an optimal solution of

min
L2≤‖z‖2≤U2

q(z),

where

q(z) =
n∑

j=1

(λjz
2
j − 2fjzj).(14)

Then z∗j fj ≥ 0 for every j = 1, 2, . . . , n for which fj �= 0.

Proof. Since w = (z∗1 , z
∗
2 , . . . , z

∗
n) is optimal it is in particular feasible, i.e., L2 ≤

‖w‖2 ≤ U2. An immediate result is that (z∗1 , z
∗
2 , . . . , z

∗
k−1,−z∗k, z

∗
k+1, . . . , z

∗
n) is also

feasible for every k = 1, 2, . . . , n. Since w is optimal we have that for every k =
1, 2, . . . , n,

q(z∗1 , . . . , z
∗
n) ≤ q(z∗1 , . . . , z

∗
k−1,−z∗k, z

∗
k+1, . . . , z

∗
n).(15)

Substituting (14) into (15) yields

n∑
j=1

(λj(z
∗
j )2 − 2fjz

∗
j ) ≤

n∑
j=1,j �=k

(λj(z
∗
j )2 − 2fjz

∗
j ) + λk(−z∗k)2 + 2fkz

∗
k.

Therefore, fkz
∗
k ≥ 0, and the result follows.

Note that if fj = 0 for some j, then the objective function q(z) is symmetric
with respect to zj and as a result we can arbitrarily restrict zj to be nonnegative or
nonpositive. In view of this and Lemma 4.1, we can make the change of variables

zj = sign(fj)
√
vj , j = 1, 2, . . . , n,(16)

where vj ≥ 0. Substituting (16) into (13), we conclude that problem (9) is equivalent
to the convex optimization problem

min
vj≥0

⎧⎨
⎩

n∑
j=1

(
λjvj − 2|fj |

√
vj
)

+ c̃ : L2 ≤
n∑

j=1

vj ≤ U2

⎫⎬
⎭ .(17)

Proposition 4.1. Let Ã ∈ R
n×n be a symmetric matrix, b̃ ∈ R

n, c̃ ∈ R, and the
spectral decomposition of Ã be given by Ã = UDUT , where D = diag(λ1, λ2, . . . , λn)
and λ1 ≥ λ2 ≥ · · · ≥ λn. Then the global solution to the optimization problem

min
L2≤‖s‖2≤U2

{
sT Ãs − 2b̃T s + c̃

}

is given by s = Uz, where

zj = sign(fj)
√
vj , j = 1, 2, . . . , n,

and v is the solution of the convex optimization problem (17).
Proposition 4.1 shows that the main step in the schematic algorithm (step 2)

consists of solving the linearly constrained convex optimization problem (17). This
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will be done by solving the dual problem, since, as we are about to show, the latter
requires the solution of at most two single-variable convex problems.

To develop the dual problem of (17), we assign a nonnegative multiplier ξ to the
linear inequality constraint −

∑n
j=1 vj +L2 ≤ 0 and a nonpositive multiplier η to the

linear inequality constraint −
∑n

j=1 vj + U2 ≥ 0 and form the Lagrangian of (17):

L(v, η, ξ) =

n∑
j=1

(
λjvj − 2|fj |

√
vj
)
− η

⎛
⎝

n∑
j=1

vj − U2

⎞
⎠+ ξ

⎛
⎝−

n∑
j=1

vj + L2

⎞
⎠ c̃

=
n∑

j=1

(
(λj − η − ξ)vj − 2|fj |

√
vj
)

+ ηU2 + ξL2 + c̃.(18)

Differentiating (18) with respect to vj and equating to zero, we obtain

vj =
f2
j

(λj − η − ξ)2
, j = 1, 2, . . . , n,(19)

subject to the conditions η + ξ ≤ λn, η ≤ 0, and ξ ≥ 0. Thus, the dual objective
function is given by

inf
vj≥0

L(v, η, ξ) =

{
h(η, ξ) if η − ξ > −λn, η ≤ 0, ξ ≥ 0,
−∞ otherwise,

where

h(η, ξ)
	
= −

n∑
j=1

f2
j

λj − η − ξ
+ ηU2 + ξL2 + c̃

and the dual problem of (17) is

(D) : max
η,ξ

{h(η, ξ) : η + ξ < λn, η ≤ 0, ξ ≥ 0} .

From duality theory for convex optimization problems we have that [19, 3]

val(P) = val(D),

where val(P) (val(D)) denotes the optimal value of problem (P) (problem (D)). Now
we note that the dual variables η and ξ cannot both be nonzero, since in that case
we would have by the complementarity slackness condition that

∑n
j=1 vj is equal to

both U2 and L2, which is clearly a contradiction. As a result, instead of considering
the problem (D) in two variables, we can consider the following two single-variable
convex optimization problems (maximization of concave functions subject to a simple
convex bound constraint):

(D1) : max
η≤min{λn,0}

−
n∑

j=1

f2
j

λj − η
+ ηU2 + c̃

︸ ︷︷ ︸
h(η,0)

and

(D2) : max
0≤ξ<λn

−
n∑

j=1

f2
j

λj − ξ
+ ξL2 + c̃

︸ ︷︷ ︸
h(0,ξ)

.

We thus obtain that in order to solve (D), we need to follow the following three steps:
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1. Find a solution η of (D1).
2. Find a solution ξ of (D2).
3. If h(η, 0) > h(0, ξ), then the solution of (D) is (η, 0). Otherwise, the solution

is (0, ξ).
Notice that both (D1) and (D2) are easy problems to solve since they consist of
maximizing a concave function of a single variable. A very efficient algorithm for
solving problems with an exact structure as (D1) and (D2) will be discussed at the
end of this section.

We summarize our results on the solution of (11) in the following theorem.

Theorem 4.1. Let Ã ∈ R
n×n be a symmetric matrix, b̃ ∈ R

n, c̃ ∈ R, and the
spectral decomposition of Ã be given by Ã = UDUT , where D = diag(λ1, λ2, . . . , λn)
with λ1 ≥ λ2 ≥ · · · ≥ λn. Then the solution to the optimization problem

min
L2≤‖s‖2≤U2

{
sT Ãs − 2b̃T s + c̃

}

is s = Uz, where z ∈ R
n is given by

zj =
fj

λj − η∗ − ξ∗
, j = 1, 2, . . . , n,

with (η∗, ξ∗) given by

(η∗, ξ∗) =

{
(η̄, 0) if [λn > 0 and h(η̄, 0) > h(0, ξ̄)] or λn ≤ 0,
(0, ξ̄) if [λn > 0 and h(η̄, 0) ≤ h(0, ξ̄)],

where η̄ and ξ̄ are the optimal solution of problems (D1) and (D2), respectively.
As was already mentioned, solving problems (D1) and (D2) is an easy task; to

demonstrate this fact, let us consider the solution of (D1) in the case λn ≤ 0 (all other
instances can be similarly treated). In this case, (D1) takes the following form:

max
η<λn

⎧⎨
⎩−

n∑
j=1

f2
j

λj − η
+ ηU2 + c̃

⎫⎬
⎭ .

Since h1(η) = h(η, 0) is continuous and strictly concave for η < λn and also satisfies

lim
η→−∞

h1(η) = −∞, lim
η→λ−

n

h1(η) = −∞,

we conclude that the maximum is obtained at a unique point η < λn that satisfies
h′

1(η) = 0. Therefore, in this case we need to find the unique root of the following
so-called secular equation [17]:

η < λn, G(η) = U2,(20)

where

G(η) ≡
n∑

j=1

f2
j

(η − λj)2
.(21)

Finding the unique root, which lies to the left of λn, of the secular equation (20) is
a well-studied problem (see, e.g., [17, 7]). Specifically, Melman [17] transforms the
problem into the equivalent problem

G−1/2(η) = U−1(22)
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for which Newton’s method exhibits global quadratic convergence. The algorithm is
as follows.

Algorithm SEC.

Input: (f ,Λ, U), where f ∈ R
n, Λ = diag(λ1, λ2, . . . , λn) with λ1 ≥ λ2 ≥ · · · ≥ λn

and U > 0.
Output: η∗ < λn that satisfies |G(η∗) − U2| < ε2, where G is defined in (21).
Initial step: η0 = λn − ε1.
General step: for every k ≥ 0,

ηk+1 = ηk + 2
G−1/2(ηk) − U−1

G−3/2(ηk)G′(ηk)
.

Stopping rule: Stop at the first iteration k∗ that satisfies |G(ηk∗) − U2| < ε2. Set
η∗ = ηk∗ .

In our implementation the tolerance parameters ε1 and ε2 take the values ε1 =
10−4, ε2 = 10−15. Melman’s algorithm solves the secular equation very fast (typically
5 or 6 iterations suffice to achieve 15 digit accuracy independently of n).

Example. To demonstrate the rate of convergence of algorithm SEC we consider
problem (20) with n = 100, λi = i, fi = 1 (i = 1, 2, . . . , 100), and U = 1. We compare
algorithm SEC with a simple bisection algorithm with initial interval [−100, λn] and
an identical stopping criteria as the one of algorithm SEC.

Table 1

Quadratic rate of convergence of Melman’s algorithm.

Iteration G(ηk) − U2

Bisection SEC
1 −0.9866 1.0e+8
2 −0.9676 0.6349
3 −0.9264 0.0365
4 −0.8378 0.0002
5 −0.6375 1.19e-008
6 −0.1358 −1.11e-016

From Table 1 it is clear that the algorithm exhibits quadratic rate of convergence right
from the very first iteration. The bisection algorithm terminated in this example after
55 iterations.

The dominant computational effort when solving the subproblem in the case
F = F1 are (i) the calculation of the matrices T1/2,T−1/2 and (ii) the spectral

decomposition of the matrix Ã. Each requires a computational effort of O(n3). By
Proposition 3.1, the schematic algorithm requires solving O(log ε−1) subproblems in
order to generate a ε-global optimal solution. We thus conclude that the overall
computational effort of the schematic algorithm is O(n3 log ε−1).

4.2. Solving the subproblem in the case F = F2. Here we consider prob-
lem (9) in the case where the feasible set is F2 = {x : xTBx ≤ U2}, where B is
positive semidefinite but not positive definite. Thus, the subproblem in step 2 of the
schematic algorithm under consideration here is

β∗ = min
xTBx≤U2

{xTAx − 2bTx + c},(23)

where

A = A1 − αA2, b = b1 − αb2, c = c1 − αc2.
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Notice that since B is singular the feasible set F2 is not compact, and therefore
the solution of the subproblem (23) might be −∞. This issue is addressed in the
following.

Lemma 4.2. Let A ∈ R
n×n be a symmetric matrix, b ∈ R

n, c ∈ R, U > 0, and
B ∈ R

n×n be a positive semidefinite matrix. Then
1. if there exists λ ≥ 0 such that A + λB � 0, then the minimum of (23) is

finite: β∗ > −∞;
2. if no λ ≥ 0 exists such that A + λB � 0, then the minimum of (23) is not

finite.
Proof. The optimal value β∗ of problem (23) is finite if and only if the following

statement is true:

∃μ ∈ R, xTBx ≤ U2 ⇒ xTAx + 2bTx + c ≥ μ,(24)

which by the S-lemma (see Lemma A.1 in the appendix) is equivalent to

∃μ ∈ R, λ ∈ R+,

(
A −b

−bT c− μ

)
� λ

(
−B 0
0 U2

)

and which can also be written as

∃μ ∈ R, λ ∈ R+,

(
A + λB −b
−bT c− μ− U2

)
� 0.(25)

Since a necessary condition for the validity of (25) is that there exists a λ ≥ 0 such
that A + λB � 0, we conclude that the second statement of the lemma is proven.
Moreover, if there exists a λ0 ≥ 0 such that A + λ0B � 0, then taking μ0 < c−U2 −
bT (A+λ0B)−1b we have by Schur’s complement (Lemma A.2) that the linear matrix
inequality (LMI) (25) is satisfied for λ = λ0 and μ = μ0, and therefore β∗ > −∞ and
the first statement of the lemma is proven.

Notice that the only case not covered by Lemma 4.2 is the case where there is a
λ ≥ 0 such that A + λB � 0 but there does not exist a λ ≥ 0 such that A + λB � 0.
Later, we will see that we can ignore this case.

In the next result we find equivalent conditions for the finiteness of the minimiza-
tion problem (23) that can be easily checked and analyzed.

Lemma 4.3. Let A ∈ R
n×n be a symmetric matrix and B ∈ R

n×n be a positive
semidefinite matrix of rank r. Denote by F the n× (n− r) matrix whose columns are
a basis for the null space of B. Then the following two statements are equivalent:

1. There exists λ ≥ 0 such that A + λB � 0.
2. FTAF � 0.

Proof. First, since B � 0, statement 1 is equivalent to the same statement without
the sign constraint on λ:

∃λ ∈ R, A + λB � 0.

By Finsler’s theorem (see Theorem A.1 in the appendix), this condition is equivalent
to the following statement:

xTAx > 0 for every x �= 0 such that xTBx = 0.(26)

Now, since B � 0, we have that xTBx = 0 is equivalent to x ∈ Null(B). Thus, (26)
is equivalent to

xTAx > 0 for every x �= 0 such that x ∈ Null(B),
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which is equivalent to saying that FTAF � 0.
A direct consequence of Lemmas 4.3 and 4.2 is that if

FTAF � 0,(27)

then β∗ > −∞ and if FTAF is not positive semidefinite (i.e., has at least one negative
eigenvector), then β∗ = −∞. In the case where condition (27) is satisfied we can
simultaneously diagonalize A and B (see Appendix B), and therefore we can continue
with the hidden convexity argument.

Let C be a nonsingular matrix that simultaneously diagonalizes A and B:

CTBC = diag(1, 1, . . . , 1︸ ︷︷ ︸
r times

, 0, 0, . . . , 0︸ ︷︷ ︸
n− r times

),

CTAC = diag(λ1, λ2, . . . , λr, 1, 1, . . . , 1︸ ︷︷ ︸
n− r times

),

where λ1 ≥ λ2 ≥ · · · ≥ λr (see Appendix B for details). Making the change of
variables x = Cz we obtain that (23) is equivalent to

min

⎧⎨
⎩

r∑
j=1

λjz
2
j +

n∑
j=r+1

z2
j − 2

n∑
j=1

fjzj + c :

r∑
j=1

z2
j ≤ U2

⎫⎬
⎭ ,(28)

where f = CTb. The same argument as in Lemma 4.1 shows that we can make the
change of variables

zj = sign(fj)
√
vj , j = 1, 2, . . . , n,

where vj ≥ 0. We obtain the following equivalent convex optimization problem:

min
vj≥0

⎧⎨
⎩

r∑
j=1

(
λjvj − 2|fj |

√
vj
)

+

n∑
j=r+1

(
vj − 2|fj |

√
vj
)

+ c :

r∑
j=1

vj ≤ U2

⎫⎬
⎭ .(29)

To develop the dual problem of (29), we assign a nonpositive multiplier λ to the
linear inequality constraint −

∑r
j=1 vj+U2 ≥ 0 and form the Lagrangian of (29) given

by

L(v, η, ξ) =
r∑

j=1

(
λjvj − 2|fj |

√
vj
)

+

n∑
j=r+1

(
vj − 2|fj |

√
vj
)
− λ

⎛
⎝

r∑
j=1

vj − U2

⎞
⎠+ c

=
r∑

j=1

(
(λj − λ)vj − 2|fj |

√
vj
)

+

n∑
j=r+1

(
vj − 2|fj |

√
vj
)

+ λU2 + c.(30)

Differentiating (18) with respect to vj and equating to zero, we obtain

vj =
f2
j

(λj − λ)2
, j = 1, 2, . . . , r,

vj = f2
j , j = r + 1, . . . , n,
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subject to the condition λ ≤ min{λn, 0}. Thus, the dual objective function is given
by

h(λ) = inf
vj≥0

L(v, η, ξ) =

{
−
∑r

j=1

f2
j

λj−λ + λU2 + d, λ < min{λr, 0},
−∞ otherwise,

where d = c−
∑n

j=r+1 f
2
j . The dual problem of (29) is therefore

(D) : max
λ≤min{λr,0}

h(λ).

From duality theory for convex optimization problems we have that [19, 3]

val(P) = val(D).

The solution of (D) involves the solution of a single secular equation of the form (20).
We summarize the above discussion in Theorem 4.2.

Theorem 4.2. Let A ∈ R
n×n be a symmetric matrix, B ∈ R

n×n a positive
semidefinite matrix of rank r, b ∈ R

n, and c ∈ R. Moreover, suppose that FTAF � 0,
where F is an n× (n− r) matrix whose columns are an orthogonal basis for the null
space of B. Let C be a nonsingular matrix for which the following is satisfied:

CTBC =

(
Ir 0
0 0

)
, CTAC =

(
Λ 0
0 In−r

)
,

where Λ = diag(λ1, λ2, . . . , λr) and λ1 ≥ λ2 ≥ · · · ≥ λr. Then the solution to the
optimization problem

min
xTBx≤U2

{
xTAx − 2bTx + c

}

is x = Cz, where z ∈ R
n is given by

zj =

{
fj

λj−λ , j = 1, 2, . . . , r,

fj , j = r + 1, . . . , n
(f = CTb)

and λ is the solution to the maximization problem

max
λ≤min{λr,0}

⎧⎨
⎩−

r∑
j=1

f2
j

λj − λ
+ λU2

⎫⎬
⎭ ,

whose solution consists of at most one root finding of a secular equation with one
variable of the form (20).

We will impose an additional assumption on the quadratic function f2(x).
Assumption 2. f2 is a strongly convex function (i.e., A2 � 0).
Note that Assumption 2 is readily satisfied by the RTLS problem (6). Recall that

in the schematic algorithm A = A1 − αA2, so (27) is equivalent to

FTA1F − αFTA2F � 0.(31)

F is full column rank and, by Assumption 2, we have that A2 is positive definite, and
as a consequence FTA2F is also positive definite. Multiplying (31) from the right and
left by Q = (FTA2F)−1/2, we obtain the following equivalent LMI:

Q(FTA1F)Q − αI � 0.
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The last LMI is equivalent to α < λmin(Q(FTA1F)Q). We summarize this in the
following proposition.

Proposition 4.2. Let ᾱ = λmin(Q(FTA1F)Q), where Q = (FTA2F)−1/2.
Then the minimum of (23) is finite if α < ᾱ and equal to −∞ if α > ᾱ.

ᾱ is of course an upper bound for the minimal value of the original problem (1),
and thus, in the schematic algorithm, we will always take an upper bound M that is
of most ᾱ. We therefore conclude that throughout the schematic algorithm, we need
to consider only subproblems with a finite minimum that satisfies (27).

A similar argument to the one given in the case F = F1 shows that in the case F =
F2 as well, the algorithm produces an ε-global optimal solution in a computational
effort of O(n3 log ε−1).

4.3. Finding the bounds. In this section we present some suggestions for the
lower and upper bounds m and M of the schematic algorithm. In the special case of
the original RTLS problem, simpler bounds are derived in section 5.

4.3.1. The case F = F1. In this case the constraint is given by L2 ≤ xTTx ≤
U2. From this it follows that ‖x‖2 ≤ U2/λmin(T). We can therefore bound the
objective function of problem (1) as follows:

∣∣∣∣
f1(x)

f2(x)

∣∣∣∣ =

∣∣∣∣
xTA1x

T − 2bT
1 x + c1

xTA2x − 2bT
2 x + c2

∣∣∣∣ ≤
1

N

∣∣xTA1x
T − 2bT

1 x + c1
∣∣

≤ 1

N
(|xTA1x

T | + |2bT
1 x| + |c1|) ≤

1

N

(
U2λmax(A1)

λmin(T)
+ 2

‖b1‖U√
λmin(T)

+ |c1|
)
.

Thus, we can choose m and M to be

M =
1

N

(
U2λmax(A1)

λmin(T)
+ 2

‖b1‖U√
λmin(T)

+ |c1|
)
, m = −M.

The only element in the definition of m and M which is not given explicitly is the
positive number N , defined in Assumption 1. For the RTLS problem, where f2(x) =
‖x‖2 +1, we can take N to be equal to 1. Also, for other problems we can define N to
be the optimal value of the minimization problem minL≤‖x‖T≤U{xTA2x−2bT

2 x+c2}.
4.3.2. The case F = F2. In this case the constraint is given by xTBx ≤

U2, where B is a positive semidefinite matrix. We consider the case where both
Assumptions 1 and 2 hold true and that f2 is bounded below in R

n. The upper
bound can be taken as M = ᾱ, where ᾱ is given in Proposition 4.2. To find a lower
bound m, we first make the change of variables z = x − A−1

2 b2 resulting with the
following form of the objective function:

zTA1z − 2eT z + f

zTA2z + d
,(32)

where d = c2 −bT
2 A−1

2 b2 > 0, e = b1 −A1A
−1
2 b2, and f = c1 + bT

2 A−1
2 A1A

−1
2 b2 −

2bT
1 A−1

2 b2.
The unconstrained minimum of the last expression (32) is a lower bound on the

optimal value, and we can lower bound it using a relaxation technique.

min
z

zTA1z − 2eT z + f

zTA2z + d

w=A
1/2
2 z

= min
w

wTA
−1/2
2 A1A

−1/2
2 w − 2eTA

−1/2
2 w + f

‖w‖2 + d
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= min
w,t=

√
d

wTA
−1/2
2 A1A

−1/2
2 w − 2√

d
eTA

−1/2
2 wt + f

d t
2

‖w‖2 + t2

≥ min
w,t

wTA
−1/2
2 A1A

−1/2
2 w − 2√

d
eTA

−1/2
2 wt + f

d t
2

‖w‖2 + t2

= λmin

(
A

−1/2
2 A1A

−1/2
2

1√
d
A

−1/2
2 e

1√
d
eTA

−1/2
2

f
d

)

Thus, we can take

m = λmin

(
A

−1/2
2 A1A

−1/2
2

1√
d
A

−1/2
2 e

1√
d
eTA

−1/2
2

f
d

)
.

5. A detailed algorithm for the RTLS problem. In this section we use the
results obtained so far to write in full details the schematic algorithm of section 3 as
applied to the RTLS problem:

min
x

{
f(x) ≡ ‖Ax − b‖2

‖x‖2 + 1
: ‖Lx‖ ≤ U

}
.(33)

We call this algorithm RTLSC.
The RTLSC algorithm solves at each iteration a subproblem of the form

min
{
xTQx − 2dTx : ‖Lx‖ ≤ U

}
.(34)

The detailed algorithm SUBP for solving the latter problem is explicitly written below.
It invokes three procedures:

• SDG—an algorithm for simultaneous diagonalization of two matrices, one of
which is positive definite (see Appendix B).

• SDGP—an algorithm for simultaneous diagonalization of two matrices, one
of which is positive semidefinite (see Appendix B).

• SEC—Melman’s algorithm for solving secular equations given in section 4.
Algorithm SUBP.

Input: (Q,d,L, U,F), where Q ∈ R
n×n is a symmetric matrix, d ∈ R

n,L ∈
R

r×n(r ≤ n) is a full rank matrix, U > 0, and F ∈ R
n×(n−r) is a matrix whose

columns are an orthogonal basis for the null space of L.
Output: (x∗, μ). x∗ is an optimal solution to problem (34) and μ is the corresponding
optimal value.

1. If r < n, then call algorithm SDG with input (A,LTL,F) and obtain an
output (C,Λ). Else call algorithm SDGP with input (A,LTL) and obtain
an output (C,Λ).

2. Set f = CTd.

3. If λr > 0 and
∑r

j=1

f2
j

λ2
j

< U2, then set λ∗ = 0. Else call algorithm SEC with

input (f ,Λ, U) and obtain an output λ∗.

4. Let vj =
fj

λj−λ∗ , j = 1, . . . , r, and vj = fj , j = r+1, . . . , n (Λ = diag(λ1, . . . , λr)).

5. Set x∗ = Cv and μ = (x∗)TQx∗ − 2fTx∗.
Algorithm RTLSC.

Input: (A,b,L, U, ub, ε), where A ∈ R
m×n(m ≥ n),b ∈ R

m,L ∈ R
r×n(r < n) has

full row rank, U > 0, ub > 0 is an upper bound on the optimal function value, and
ε > 0 is a tolerance parameter.
Output: x∗—an ε-optimal solution of problem (33).
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1. Set k = 0, lb0 = 0, ub0 = ub.
2. Calculate a matrix F ∈ R

n×(n−r) whose columns are an orthogonal basis for
the null space of L.

3. While ubk − lbk > ε, do
(a) αk = lbk+ubk

2 .
(b) Call algorithm SUBP with input (ATA − αkI,A

Tb,L, U) and obtain
an output (xk, βk).

(c) Calculate fk = f(xk).
(d) If βk + ‖b‖2 − αk > 0, then

lbk+1 = αk, ubk+1 = min{ubk, fk},(35)

else

lbk+1 = lbk, ubk+1 = min{αk, fk}.(36)

(e) Set k ← k + 1.
End.

4. Define x∗ = xm, where m is chosen so that fm = min{f0, f1, . . . , fk−1}.
Choice of lower and upper bounds. In the case where L is square and nonsin-

gular, the upper bound can be chosen as ub = f(x̃), where x̃ is any feasible point (such
as 0). A tight upper bound can be obtained by choosing x̃ as a solution of another
method such as regularized least squares. In the rank deficient case, Proposition 4.2
implies that λmin(FTAF) is an upper bound on the optimal function value. Hence,
an initial upper bound is given by min{λmin(FTAF), f(x̃)}. This choice guarantees
that all subproblems have a finite value.

Remark 5.1. Note that the update equations (35) and (36) for the upper bound
ubk are different from the naive implementation suggested in the schematic algorithm
of section 3. The idea behind the revised update formulas is to incorporate the
information gained at previous iterations in order to find better upper bounds. At
each iteration we calculate a new feasible point xk, which induces a new upper bound
fk ≡ f(xk) on the optimal function value. Thus, the update equation ubk+1 = ubk in
the original schematic algorithm is converted to ubk+1 = min{ubk, fk}. The following
example demonstrates the advantage of using the new update equations.

Example. In this section we illustrate a single run of the RTLSC algorithm. We
consider problem (33) with

n = 2, A =

(
1 2
3 4

)
, b =

(
10
25

)
, L =

(
1 0
0 2

)
, ρ = 10.

Table 2 describes the first six iterations of algorithm RTLSC. The initial upper
bound ub0 was chosen to be f(0) = ‖b‖2 = 725. Note that the decrease in the upper
bound is very drastic at the first few iterations. The size of the interval [lbk, ubk]
decreases by a factor of 3000 between iteration 0 and iteration 1 (instead of a factor
of 2 in the old update equations). The minimum value is equal to 0.047501 and is
reached after only three iterations. This run is typical in the sense that usually the
algorithm converges to a point after very few iterations.

6. Numerical examples. In order to test the performance of algorithm RTLSC,
two problems from the “Regularization Tools” [13] are employed: a problem that arises
from the discretization of the inverse Laplace transform and an image deblurring
problem. The following algorithms are tested:
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Table 2

Single run of algorithm RTLSC.

k (# of iterations) lbk ubk αk fk
0 0 725 362.5 0.240383
1 0 0.243083 0.121541 0.047513
2 0 0.047513 0.023756 0.085005
3 0.023756 0.047513 0.035634 0.047501
4 0.035634 0.047501 0.041567 0.047501
5 0.041567 0.047501 0.044534 0.047501
6 0.044534 0.047501 0.046017 0.047501

Table 3

Relative errors of various regularization solvers.

n σ RTLSC QEP RLS GR TTLS

1e-1 5.9e-1 5.9e-1 7.1e-1 4.6e+0 1.2e+0
20 1e-2 2.5e-1 2.5e-1 2.5e-1 5.8e-1 8.1e-1

1e-4 7.4e-2 7.4e-2 7.6e-2 9.7e-2 6.5e-1
1e-1 2.2e-1 2.2e-1 3.3e-1 2.3e+0 9.2e-1

100 1e-2 1.5e-1 1.5e-1 1.7e-1 2.3e-1 7.0e-1
1e-4 4.7e-2 4.7e-2 2.9e-2 3.1e-2 4.3e-1

• RLS—Regularized Least Squares. This is the solution to the problem

min{‖Ax − b‖2 : ‖Lx‖ ≤ ρ},

implemented in the function lsqi from [13].
• TTLS—Truncated Total Least Squares originating from [5] and implemented

in the function ttls from [13].
• RTLSC—Our algorithm from section 5.
• QEP—Sima, Van Huffel, and Golub’s solver for RTLS [20].
• GR—Guo and Renaut’s eigenvalue method for RTLS [11] with the RLS so-

lution as a starting vector.

6.1. Inverse Laplace transform. We consider the problem of estimating the
function f(t) from its given Laplace transform [21]:

∫ ∞

0

e−stf(t)dt =
2

(s + 1/2)3
.

By means of Gauss–Laguerre quadrature, the problem reduces to a linear system
Ax = b. This system and its solution xR are implemented in the function ilaplace(n,3)
from [13]. The perturbed right-hand side is generated by

b̃ = (A + σE)xR + σe,(37)

where each component of E and e is generated from a standard normal distribution
and σ runs thorough the values 1e-1, 1e-2, and 1e-4. The matrix L approximates
the first-derivative operator implemented in the function get l(n,1) from [13]. Two
cases are tested: m = n = 20 and m = n = 100. Table 3 describes the relative error
‖x − xR‖/‖xR‖ averaged over 300 random realizations of E and e.

The best results in each row are emphasized in boldface. The RTLSC and QEP
methods give the best results in all but one case. The RLS also performed quite well.
Note that the average relative error for the RTLSC and QEP solvers are equal. It
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is interesting to note that not only the average was the same but in fact for all 1800
simulations of QEP and RTLSC, the results were the same. Incidentally, this provides
an experimental evidence to the claim that QEP finds the global minimum, although
such a theoretical claim was not proved in [20].

The CPU time in seconds of the three RTLS solvers averaged over 20 realizations
of E and e is given in Table 4 (σ was fixed to be 1e-4). To make a fair comparison, we
employed the same stopping rule for each of the methods: ‖xk+1 −xk‖/‖xk‖ < 10−3.

Table 4

CPU time in seconds on a Pentium 4, 1.8Ghz.

n RTLSC QEP GR

20 5.6e-2 5.3e-2 2e-1
50 1.9e-1 2.1e-1 1.2
100 2.27 2.4 23.2
200 3.2 3.1 112.3
1000 296 312 -

It is clear from Table 4 that RTLSC and QEP are significantly faster than GR.
Moreover, RTLSC and QEP require more or less the same running time.

6.2. Image deblurring. We consider the problem of estimating a 32× 32 two-
dimensional image obtained from the sum of three harmonic oscillations:

x(z1, z2) =

3∑
l=1

ai cos(wl,1z1 + wl,2z2 + φl),

(
wl,i =

2πkl,i
n

)
, 1 ≤ z1, z2 ≤ 32,

where kl,i ∈ Z
2 (see Figure 1(A)). The specific values of the parameters are given in

Table 5.
The image is blurred by atmospheric turbulence blur originating from [12] and

implemented in the function blur(n,3,1) from [13].
The blurred image is generated by the relation (37) with σ = 0.1, which results

in a highly noisy image (see Figure 1(B)).
Choice of regularization matrix. We first ran algorithm RLS with standard

regularization (L = I). The result is the poor image given in Figure 1(C). We then
chose L as a discrete approximation of the Laplace operator [16] which is a two-
dimensional convolution with the following mask:

⎡
⎣

−1 −1 −1
−1 8 −1
−1 −1 −1

⎤
⎦ .

The above results demonstrate the importance of the choice of the regularization
matrix. In the following experiments we use the nonstandard L. The result for
algorithm TTLS is given in Figure 1(E). A much improved result is obtained by our
algorithm RTLSC (Figure 1(F)). Here again algorithm QEP gave the same result as
algorithm RTLSC. Also, algorithm GR gave in this example the same image as RLS.

It is interesting to note that in this and many other examples algorithm RTLSC
required only three iterations in order to produce quality reconstructions. As an
illustration, Figure 2 shows the result of the first three iterations of algorithm RTLSC.
The function values of the images generated in iterations 1, 2, and 3 are 2.0934,
1.5715, and 1.5566, respectively. The difference between the first and second iteration
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(A) True Image (B) Observation
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(C) RLS with L = I (D) RLS with Laplace operator
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(E) TTLS (F) RTLSC
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Fig. 1. Results for different regularization solvers.

is substantial. However, the image produced at the third iteration is almost identical
to the image produced at the third iteration. Further iterations of RTLSC do not
improve the image, although the function value reduces to the minimal value 1.5234.
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Table 5

Image parameters.

l al wl,1 wl,2 φl

1 1.3936 0.1473 0.0982 5.8777
2 0.5579 0.0982 0.0982 5.7611
3 0.8529 0.0491 0.0982 2.5778
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Fig. 2. First three iterations of algorithm RTLSC.

Appendix A. Known results.
Lemma A.1 (S-lemma [1]). Let A and B be n×n symmetric matrices, e, f ∈ R

n,
and g, h ∈ R. Assume that the quadratic inequality

xTAx + 2eTx + g ≥ 0(38)

is strictly feasible; i.e., there exists x̄ such that x̄TAx̄ + 2eT x̄ + g > 0. Then the
quadratic inequality

xTBx + 2fTx + h ≥ 0(39)

is a consequence of (38) if and only if there exists a nonnegative λ such that
(

B f
fT h

)
� λ

(
A e
eT g

)
.

Lemma A.2 (Schur’s complement [1]). Let

M =

(
A BT

B C

)

be a symmetric matrix with C � 0. Then M � 0 if and only if ΔC � 0, where ΔC is
the Schur complement of C in M and is given by

ΔC = A − BTC−1B.

Theorem A.1 (Finsler’s theorem [6]). Let A and B be symmetric n× n matri-
ces. Then the quadratic inequality

xTBx > 0

is a consequence of the quadratic equality

xTAx = 0
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if and only if there exists α ∈ R such that B − αA � 0.

Appendix B. Algorithms for simultaneous diagonalization. In this section
we recover an algorithm for the simultaneous diagonalization of an n× n symmetric
matrix A and a positive semidefinite matrix B ∈ R

n×n of rank r(< n). We denote
by F the n× (n− r) matrix whose columns are an orthogonal basis for the null space
of B and assume that the condition

FTAF � 0(40)

is satisfied, which implies that the matrices A and B are simultaneously diagonalizable
by a nonsingular matrix. This fact follows directly from [18, Theorem 6.2.2]. Here we
explicitly recover the algorithm that follows from [18] for the special case where (40)
is satisfied.

Algorithm SDG.

Input: (A,B,F), where A ∈ R
n×n is a symmetric matrix, B ∈ R

n×n is a positive
semidefinite of rank r(r < n), and F ∈ R

n×(n−r) is a matrix whose columns are an
orthogonal basis for the null space of B.
Condition: FTAF � 0.
Output: (C,Λ). C is a nonsingular matrix and Λ = diag(λ1, λ2, . . . , λr) (λ1 ≥ λ2 ≥
· · · ≥ λr) is a diagonal matrix such that

CTBC =

(
Ir 0
0 0

)
, CTAC =

(
Λ 0
0 In−r

)
.

1. Find a full row rank r × n matrix L such that1 B = LTL.
2. Define M = LT (LLT )−1 (M is a right inverse of L). We have MTBM = Ir.
3. Define S =

(
M − F(FTAF)−1FTAM, F

)
. We have

STBS =

(
Ir 0
0 0

)
, STAS =

(
E 0
0 FTAF

)
,

where E is an r × r symmetric matrix.
4. Find an r × r orthogonal matrix Q1 such that QT

1 EQ1 = Λ, where Λ =
diag(λ1, . . . , λr) with λ1 ≥ λ2 ≥ · · · ≥ λr.

5. Find an (n − r) × (n − r) matrix Q2 such that QT
2 (FTAF)Q2 = In−r (this

is possible since we assume that FTAF � 0).
6. Define

C = S

(
Q1 0
0 Q2

)
.

In the case where one of the matrices is positive definite, simultaneous diagonaliza-
tion is always possible without any restrictions [14]. The procedure for simultaneous
diagonalization in that case is much simpler and is given below.

Algorithm SDGP.

Input: (A,B), where A ∈ R
n×n is a symmetric matrix and B ∈ R

n×n is a positive
definite matrix.
Output: (C,Λ). C is a nonsingular matrix and Λ = diag(λ1, λ2, . . . , λn) (λ1 ≥ λ2 ≥
· · · ≥ λn) is a diagonal matrix such that

CTBC = I, CTAC = Λ.

1This step can be done by, e.g., Cholesky’s factorization. In some applications B is already given
in that form.
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1. Find a singular matrix L such that B = LTL.
2. Calculate the spectral decomposition of (LT )−1AL−1:

UT ((LT )−1AL−1)U = D,

where U is an orthogonal matrix, D = diag(λ1, λ2, . . . , λn), and λ1 ≥ λ2 ≥
· · · ≥ λn.

3. Set C = L−1U,Λ = D.
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Abstract. Let Ā be an arbitrary matrix and let A be a slight random perturbation of Ā.
We prove that it is unlikely that A has a large condition number. Using this result, we prove
that it is unlikely that A has large growth factor under Gaussian elimination without pivoting. By
combining these results, we show that the smoothed precision necessary to solve Ax = b, for any b,
using Gaussian elimination without pivoting is logarithmic. Moreover, when Ā is an all-zero square
matrix, our results significantly improve the average-case analysis of Gaussian elimination without
pivoting performed by Yeung and Chan (SIAM J. Matrix Anal. Appl., 18 (1997), pp. 499–517).
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1. Introduction. Spielman and Teng [ST04], introduced the smoothed analysis
of algorithms to explain the success of algorithms and heuristics that could not be
well understood through traditional worst-case and average-case analyses. Smoothed
analysis is a hybrid of worst-case and average-case analyses in which one measures
the maximum over inputs of the expected value of a measure of the performance of an
algorithm on slight random perturbations of that input. For example, the smoothed
complexity of an algorithm is the maximum over its inputs of the expected running
time of the algorithm under slight perturbations of that input. If an algorithm has
low smoothed complexity and its inputs are subject to noise, then it is unlikely that
one will encounter an input on which the algorithm performs poorly. (See also the
smoothed analysis homepage [Smo].)

Smoothed analysis is motivated by the existence of algorithms and heuristics
that are known to work well in practice, but which are known to have poor worst-
case performance. Average-case analysis was introduced in an attempt to explain the
success of such heuristics. However, average-case analyses are often unsatisfying as
the random inputs they consider may bear little resemblance to the inputs actually
encountered in practice. Smoothed analysis attempts to overcome this objection by
proving a bound that holds in every neighborhood of inputs.

In this paper, we prove that perturbations of arbitrary matrices are unlikely to
have large condition numbers or large growth factors under Gaussian elimination with-
out pivoting. As a consequence, we conclude that the smoothed precision necessary
for Gaussian elimination is logarithmic. We obtain similar results for perturbations
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that affect only the nonzero and diagonal entries of symmetric matrices. We hope that
these results will be a first step toward a smoothed analysis of Gaussian elimination
with partial pivoting—an algorithm that is widely used in practice but known to have
poor worst-case performance.

In the rest of this section, we recall the definitions of the condition numbers and
growth factors of matrices, and review prior work on their average-case analysis. In
section 3, we perform a smoothed analysis of the condition number of a matrix. In
section 4, we use the results of section 3 to obtain a smoothed analysis of the growth
factors of Gaussian elimination without pivoting. In section 5, we combine these re-
sults to obtain a smoothed bound on the precision needed by Gaussian elimination
without pivoting. Definitions of zero-preserving perturbations and our results on per-
turbations that only affect the nonzero and diagonal entries of symmetric matrices
appear in section 6. In the conclusion section, we explain how our results may be
extended to larger families of perturbations, present some counter-examples, and sug-
gest future directions for research. Other conjectures and open questions appear in
the body of the paper.

The analysis in this paper requires many results from probability. Where reason-
able, these have been deferred to the appendices.

1.1. Condition numbers and growth factors. We use the standard notation
for the 1-, 2-, and ∞-norms of matrices and column vectors, and define

‖A‖max = max
i,j

|Ai,j | .

Definition 1.1 (condition number). For a square matrix A, the condition num-
ber of A is defined by

κ(A) = ‖A‖2

∥∥A−1
∥∥

2
.

The condition number measures how much the solution to a system Ax = b
changes as one makes slight changes to A and b. A consequence is that if ones solves
the linear system using fewer than log(κ(A)) bits of precision, one is likely to obtain a
result far from a solution. For more information on the condition number of a matrix,
we refer the reader to one of [GL83, TB97, Dem97].

The simplest and most often implemented method of solving linear systems is
Gaussian elimination. Natural implementations of Gaussian elimination use O(n3)
arithmetic operations to solve a system of n linear equations in n variables. If the
coefficients of these equations are specified using b bits, in the worst case it suffices
to perform the elimination using O(bn) bits of precision [GLS91]. This high precision
may be necessary because the elimination may produce large intermediate entries
[TB97]. However, in practice one usually obtains accurate answers using much less
precision. In fact, it is rare to find an implementation of Gaussian elimination that
uses anything more than double precision, and high-precision solvers are rarely used
or needed in practice [TB97, TS90] (for example, LAPACK uses 64 bits [ABB+99]).
One of the main results of this paper is that O (b + log n) bits of precision usually
suffice for Gaussian elimination in the smoothed analysis framework.

Since Wilkinson’s seminal work [Wil61], it has been understood that it suffices to
carry out Gaussian elimination with b + log2(5nκ(A) ‖L‖∞ ‖U‖∞ / ‖A‖∞ + 3) bits
of accuracy to obtain a solution that is accurate to b bits. In this formula, L and U
are the LU-decomposition of A; that is, U is the upper-triangular matrix and L is
the lower-triangular matrix with 1s on the diagonal for which A = LU .
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1.2. Prior work. The average-case behaviors of the condition numbers and
growth factors of matrices have been studied both analytically and experimentally.
In [Dem88], Demmel proved that it is unlikely that a Gaussian random matrix centered
at the origin has large condition number. Demmel’s bounds on the condition number
were improved by Edelman [Ede88].

Average-case analysis of growth factors began with the experimental work of
Trefethen and Schreiber [TS90], who found that Gaussian random matrices rarely
have large growth factors under partial or full pivoting.

Definition 1.2 (Gaussian matrix). A matrix G is a Gaussian random matrix
of variance σ2 if each entry of G is an independent univariate Gaussian variable with
mean 0 and standard deviation σ.

Yeung and Chan [YC97] study the growth factors of Gaussian elimination without
pivoting on Gaussian random matrices of variance 1. They define ρU and ρL by

ρU (A) = ‖U‖∞ / ‖A‖∞ , and ρL(A) = ‖L‖∞ ,

where A = LU is the LU-factorization of A obtained without pivoting. They prove
the following theorem.

Theorem 1.3 (Yeung-Chan). There exist constants c > 0 and 0 < b < 1 such
that if G is an n × n Gaussian random matrix of variance 1 and G = LU is the
LU-factorization of G, then

Pr [ρL(G) > x ] ≤ cn3

x
, and

Pr [ρU (G) > x ] ≤ min

(
cn7/2

x
,
1

n

)
+

cn5/2

x
+ bn.

As it is generally believed that partial pivoting is better than no pivoting, their
result provides some intuition for the experimental results of Trefethen and Schreiber
demonstrating that random matrices rarely have large growth factors under partial
pivoting. However, we note that it is difficult to make this intuition rigorous as there
are matrices A for which no pivoting has ‖L‖max‖U‖max/‖A‖max = 2 while partial
pivoting has growth factor 2n−1. (See also [Hig90].)

The running times of many numerical algorithms depend on the condition num-
bers of their inputs. For example, the number of iterations taken by the method of
conjugate gradients can be bounded in terms of the square root of the condition num-
ber. Similarly, the running times of interior-point methods can be bounded in terms
of condition numbers [Ren95]. Blum [Blu89] suggested that a complexity theory of
numerical algorithms should be parameterized by the condition number of an input in
addition to the input size. Smale [Sma97] proposed a complexity theory of numerical
algorithms in which one:

1. proves a bound on the running time of an algorithm solving a problem in
terms of its condition number, and then

2. proves that it is unlikely that a random problem instance has large condition
number.

This program is analogous to the average-case complexity of theoretical computer
science.

1.3. Our results. To better model the inputs that occur in practice, we propose
replacing step 2 of Smale’s program with
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2′. proves that for every input instance it is unlikely that a slight random per-
turbation of that instance has large condition number.

That is, we propose to bound the smoothed value of the condition number. Our
first result in this program is presented in section 3, where we improve upon Dem-
mel’s [Dem88] and Edelman’s [Ede88] average-case results to show that a slight Gaus-
sian perturbation of an arbitrary matrix is unlikely to have large condition number.

Definition 1.4 (Gaussian perturbation). Let Ā be an arbitrary n × n matrix.
The matrix A is a Gaussian perturbation of Ā of variance σ2 if A can be written as
A = Ā + G, where G is a Gaussian random matrix of variance σ2. We also refer to
A as a Gaussian matrix of variance σ2 centered at Ā.

In our smoothed analysis of the condition number, we consider an arbitrary n×n
matrix Ā of norm at most

√
n, and we bound the probability that κ(Ā + G), the

condition number of its Gaussian perturbation, is large, where G is a Gaussian random
matrix of variance σ2 ≤ 1. We bound this probability in terms of σ and n. In
contrast with the average-case analysis of Demmel and Edelman, our analysis can
be interpreted as demonstrating that if there is a little bit of imprecision or noise in
the entries of a matrix, then it is unlikely it is ill-conditioned. On the other hand,
Edelman [Ede92] writes of random matrices:

What is a mistake is to psychologically link a random matrix with
the intuitive notion of a “typical” matrix or the vague concept of
“any old matrix.”

The reader might also be interested in recent work on the smoothed analysis of the
condition numbers of linear programs [BD02, DST02, ST03].

In section 4, we use results from section 3 to perform a smoothed analysis of
the growth factors of Gaussian elimination without pivoting. If one specializes our
results to perturbations of an all-zero square matrix, then one obtains a bound on ρU

that improves the bound obtained by Yeung and Chan by a factor of n and which
agrees with their experimental observations. The result obtained for ρL also improves
the bound of Yeung and Chan [YC97] by a factor of n. However, while Yeung and
Chan compute the density functions of the distribution of the elements in L and U ,
such precise estimates are not immediately available in our model. As a result, the
techniques we develop are applicable to a wide variety of models of perturbations
beyond the Gaussian. For example, one could use our techniques to obtain results of
a similar nature if G were a matrix of random variables chosen uniformly in [−1, 1].
We comment further upon this in the conclusions section of the paper.

The less effect a perturbation has, the more meaningful the results of smoothed
analysis are. As many matrices encountered in practice are sparse or have structure,
it would be best to consider perturbations that respect their sparsity pattern or struc-
ture. Our first result in this direction appears in section 6, in which we consider the
condition numbers and growth factors of perturbations of symmetric matrices that
only alter their nonzero and diagonal elements. We prove results similar to those
proved for dense perturbations of arbitrary matrices.

2. Notation and mathematical preliminaries. We use bold lower-case Ro-
man letters such as x, a, bj to denote vectors in R

?. Whenever a vector, say a ∈ R
n is

present, its components will be denoted by lower-case Roman letters with subscripts,
such as a1, . . . , an. Matrices are denoted by bold upper-case Roman letters such as A
and scalars are denoted by lower-case roman letters. Indicator random variables and
random event variables are denoted by upper-case Roman letters. Random variables
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taking real values are denoted by upper-case Roman letters, except when they are
components of a random vector or matrix.

The probability of an event A is written Pr [A ], and the expectation of a variable
X is written E [X]. The indicator random variable for an event A is written [A].

We write ln to denote the natural logarithm, base e, and explicitly write the base
for all other logarithms.

For integers a ≤ b, we let a : b denote the set of integers {x : a ≤ x ≤ b}. For
a matrix A we let Aa:b,c:d denote the submatrix of A indexed by rows in a : b and
columns in c : d.

We will bound many probabilities by applying the following proposition.
Proposition 2.1 (minimum ≤ average ≤ maximum). Let μ(X,Y ) be a non-

negative integrable function, and let X and Y be random variables distributed accord-
ing to μ(X,Y ). If A(X,Y ) is an event and F (X,Y ) is a function, then

min
X

Pr
Y

[A(X,Y ) ] ≤ Pr
X,Y

[A(X,Y ) ] ≤ max
X

Pr
Y

[A(X,Y ) ] , and

min
X

EY [F (X,Y )] ≤ EX,Y [F (X,Y )] ≤ max
X

EY [F (X,Y )] ,

where in the left-hand and right-hand terms, Y is distributed according to the induced
distribution on μ(X,Y ).

We recall that a matrix Q is an orthonormal matrix if its inverse is equal to its
transpose, that is, QTQ = I. In section 3 we will use the following proposition.

Proposition 2.2 (orthonormal transformation of Gaussian). Let Ā be a matrix
in R

n×n and Q be an orthonormal matrix in R
n×n. If A is a Gaussian perturbation

of Ā of variance σ2, then QA is a Gaussian perturbation of QĀ of variance σ2.
We will also use the following extension of Proposition 2.17 of [ST04].
Proposition 2.3 (Gaussian measure of halfspaces). Let t be any unit vector in

R
n and r be any real. Let b̄ be a vector in R

n and b be a Gaussian perturbation of b̄
of variance σ2. Then

Pr
b

[∣∣tT b
∣∣ ≤ r

]
≤ 1√

2πσ

∫ t=r

t=−r

e−t2/2σ2

dt.

In this paper we will use the following properties of matrix norms and vector
norms.

Proposition 2.4 (product). For any pair of matrices A and B such that AB
is defined, and for every 1 ≤ p ≤ ∞,

‖AB‖p ≤ ‖A‖p ‖B‖p .

Proposition 2.5 (vector norms). For any column vector a in R
n, ‖a‖1 /

√
n ≤

‖a‖2 ≤ ‖a‖1.
Proposition 2.6 (2-norm). For any matrix A,

‖A‖2 =
∥∥AT

∥∥
2
,

as both are equal to the largest eigenvalue of
√

ATA.
Proposition 2.7 (‖A‖∞: the maximum absolute row sum norm). For every

matrix A,

‖A‖∞ = max
i

∥∥aT
i

∥∥
1
,
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where a1, . . . ,an are the rows of A. Thus, for any submatrix D of A,

‖D‖∞ ≤ ‖A‖∞.

Proposition 2.8 (‖A‖1: the maximum absolute column sum norm). For every
matrix A,

‖A‖1 = max
i

‖ai‖1,

where a1, . . . ,an are the columns of A. Thus

‖A‖1 =
∥∥AT

∥∥
∞.

3. Smoothed analysis of the condition number of a matrix. In this sec-
tion, we will prove the following theorem which shows that for every matrix it is
unlikely that a slight perturbation of that matrix has large condition number.

Theorem 3.1 (smoothed analysis of condition number). Let Ā be an n×n
matrix satisfying

∥∥Ā
∥∥

2
≤

√
n, and let A be a Gaussian perturbation of Ā of variance

σ2 ≤ 1. Then for all x ≥ 1,

Pr [κ(A) ≥ x ] ≤
14.1n

(
1 +

√
2 ln(x)/9n

)
xσ

.

As bounds on the norm of a random matrix are standard, we focus on the norm
of the inverse. Recall that 1/

∥∥A−1
∥∥

2
= minx ‖Ax‖2 / ‖x‖2.

The first step in the proof is to bound the probability that
∥∥A−1v

∥∥
2

is small
for a fixed unit vector v. This result is also used later (in section 4.1) in studying
the growth factor. Using this result and an averaging argument, we then bound the
probability that

∥∥A−1
∥∥

2
is large.

Lemma 3.2 (projection of A−1
). Let Ā be an arbitrary square matrix in R

n×n,
and let A be a Gaussian perturbation of Ā of variance σ2. Let v be an arbitrary unit
vector. Then

Pr
[∥∥A−1v

∥∥
2
> x

]
<

√
2

π

1

xσ
.

Proof. Let Q be an orthonormal matrix such that QTe1 = v. Let B̄ = QĀ and
B = QA. By Proposition 2.2, B is a Gaussian perturbation of B̄ of variance σ2. We
have

∥∥A−1v
∥∥

2
=

∥∥A−1QTe1

∥∥
2

=
∥∥(QA)−1e1

∥∥
2

=
∥∥B−1e1

∥∥
2
.

Thus, to prove the lemma it is sufficient to show

Pr
B

[∥∥B−1e1

∥∥
2
> x

]
<

√
2

π

1

xσ
.

We observe that
∥∥B−1e1

∥∥
2

=
∥∥(B−1):,1

∥∥
2
,

the length of the first column of B−1. The first column of B−1, by the definition of
the matrix inverse, is the vector that is orthogonal to every row of B but the first and
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that has inner product 1 with the first row of B. Hence its length is the reciprocal of
the length of the projection of the first row of B onto the subspace orthogonal to the
rest of the rows.

Let b1, . . . , bn be the rows of B and b̄1, . . . , b̄n be the rows of B̄. Note that bi is a
Gaussian perturbation of b̄i of variance σ2. Let t be the unit vector that is orthogonal
to the span of b2, . . . , bn. Then

∥∥(B−1):,1
∥∥

2
=

∣∣∣∣
1

tT b1

∣∣∣∣ .

Thus,

Pr
B

[∥∥B−1v
∥∥

2
> x

]
= Pr

b1,...,bn

[∣∣∣∣
1

tT b1

∣∣∣∣ > x

]

≤ max
b2,...,bn

Pr
b1

[∣∣tT b1

∣∣ < 1/x
]

<

√
2

π

1

xσ
,

where the first inequality follows from Proposition 2.1 and the second inequality fol-
lows from Lemma A.2.

Theorem 3.3 (smallest singular value). Let Ā be an arbitrary square matrix
in R

n×n, and let A be a Gaussian perturbation of Ā of variance σ2. Then

Pr
A

[∥∥A−1
∥∥

2
≥ x

]
≤ 2.35

√
n

xσ
.

Proof. Let v be a uniformly distributed random unit vector in R
n. It follows

from Lemma 3.2 that

Pr
A,v

[∥∥A−1v
∥∥

2
≥ x

]
≤

√
2

π

1

xσ
.(3.1)

Since A is a Gaussian perturbation of Ā, with probability 1 there is a unique pair
(u,−u) of unit vectors such that

∥∥A−1u
∥∥

2
=

∥∥A−1
∥∥

2
. From the inequality

∥∥A−1v
∥∥

2
≥

∥∥A−1
∥∥

2

∣∣uTv
∣∣ ,

we know that for every c > 0,

Pr
A,v

[ ∥∥A−1v
∥∥

2
≥ x

√
c/n

]
≥ Pr

A,v

[ ∥∥A−1
∥∥

2
≥ x and

∣∣uTv
∣∣ ≥ √

c/n
]

= Pr
A,v

[∥∥A−1
∥∥

2
≥ x

]
Pr
A,v

[ ∣∣uTv
∣∣ ≥ √

c/n
∣∣ ∥∥A−1

∥∥
2
≥ x

]

= Pr
A

[∥∥A−1
∥∥

2
≥ x

]
Pr
A,v

[ ∣∣uTv
∣∣ ≥ √

c/n
∣∣ ∥∥A−1

∥∥
2
≥ x

]

≥ Pr
A

[∥∥A−1
∥∥

2
≥ x

]
min

A:‖A−1‖2≥x
Pr
v

[ ∣∣uTv
∣∣ ≥ √

c/n
]

(by Proposition 2.1)

≥ Pr
A

[∥∥A−1
∥∥

2
≥ x

]
Pr
G

[
|G| ≥

√
c
]

(by Lemma B.1),
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where G is a Gaussian random variable with mean 0 and variance 1. To prove this
last inequality, we first note that v is a random unit vector and independent from
u. Thus, in a basis of R

n in which u is the first vector, v is a uniformly distributed
random unit vector with the first coordinate equal to uTv, and so we may apply
Lemma B.1 to bound Prv

[ ∣∣uTv
∣∣ ≥ √

c/n
]

from below by PrG [|G| ≥
√
c ]. So,

Pr
A

[∥∥A−1
∥∥

2
≥ x

]
≤

PrA,v

[ ∥∥A−1v
∥∥

2
≥ x

√
c/n

]

PrG [|G| ≥
√
c ]

≤
√

2

π

√
n

xσ
√
cPrG [|G| ≥

√
c ]

(by (3.1)).

Because this inequality is true for every c, we will choose a value for c that almost
maximizes

√
cPrG [|G| ≥

√
c ] and which in turn almost minimizes the right-hand side.

Choosing c = 0.57, and evaluating the error function numerically, we determine

Pr
A

[∥∥A−1
∥∥

2
≥ x

]
≤ 2.35

√
n

xσ
.

Note that Theorem 3.3 gives a smoothed analogue of the following bound of
Edelman [Ede88] on Gaussian random matrices.

Theorem 3.4 (Edelman). Let G ∈ R
n×n be a Gaussian random matrix with

variance σ2, then

Pr
G

[∥∥G−1
∥∥

2
≥ x

]
≤

√
n

xσ
.

As Gaussian random matrices can be viewed as Gaussian random perturbations of
the n×n all-zero square matrix, Theorem 3.3 extends Edelman’s theorem to Gaussian
random perturbations of an arbitrary matrix. The constant 2.35 in Theorem 3.3 is
bigger than Edelman’s 1 for Gaussian random matrices. We conjecture that it is
possible to reduce 2.35 in Theorem 3.3 to 1 as well.

Conjecture 1 (smallest singular value). Let Ā be an arbitrary square matrix
in R

n×n, and let A be a Gaussian perturbation of Ā of variance σ2. Then

Pr
A

[∥∥A−1
∥∥

2
≥ x

]
≤

√
n

xσ
.

We now apply Theorem 3.3 to prove Theorem 3.1.
Proof of Theorem 3.1. As observed by Davidson and Szarek [DS01, Theorem II.7],

one can apply inequality (1.4) of [LT91] to show that for all k ≥ 0,

Pr
A

[∥∥Ā − A
∥∥

2
≥ σ

(
2
√
n + k

) ]
≤ e−k2/2.

Replacing σ by its upper bound of 1 and setting ε = e−k2/2, we obtain

Pr
A

[ ∥∥Ā − A
∥∥

2
≥ 2

√
n +

√
2 ln(1/ε)

]
≤ ε

for all ε ≤ 1. By assumption,
∥∥Ā

∥∥
2
≤

√
n; so,

Pr
A

[
‖A‖2 ≥ 3

√
n +

√
2 ln(1/ε)

]
≤ ε.
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From the result of Theorem 3.3, we have

Pr
A

[∥∥A−1
∥∥

2
≥ 2.35

√
n

εσ

]
≤ ε.

Combining these two bounds, we find

Pr
A

[
‖A‖2

∥∥A−1
∥∥

2
≥ 7.05n + 2.35

√
2n ln(1/ε)

εσ

]
≤ 2ε.

So that we can express this probability in the form of PrA

[
‖A‖2

∥∥A−1
∥∥

2
≥ x

]
, for

x ≥ 1, we let

x =
7.05n + 2.35

√
2n ln(1/ε)

εσ
.(3.2)

It follows from (3.2) and the assumption σ ≤ 1 that xε ≥ 1, implying ln(1/ε) ≤
lnx. From (3.2), we derive

2ε =
2
(
7.05n + 2.35

√
2n ln(1/ε)

)
xσ

≤
2
(
7.05n + 2.35

√
2n lnx

)
xσ

≤
14.1n

(
1 +

√
2 ln(x)/9n

)
xσ

.

Therefore, we conclude

Pr
[
‖A‖2

∥∥A−1
∥∥

2
≥ x

]
≤

14.1n
(
1 +

√
2 ln(x)/9n

)
xσ

.

We conjecture that the 1+
√

2 ln(x)/9n term should be unnecessary because those
matrices for which ‖A‖2 is large are less likely to have

∥∥A−1
∥∥

2
large as well.

4. Growth factor of Gaussian elimination without pivoting. We now
turn to proving a bound on the growth factor. We will consider a matrix A ∈
R

n×n obtained from a Gaussian perturbation of variance σ2 of an arbitrary matrix
Ā satisfying

∥∥Ā
∥∥

2
≤ 1. With probability 1, none of the diagonal entries that occur

during elimination will be 0. So, in the spirit of Yeung and Chan [YC97], we analyze
the growth factor of Gaussian elimination without pivoting. When we specialize our
smoothed analyses to the case Ā = 0, we improve the bounds of Yeung and Chan
(see Theorem 1.3) by a factor of n. Our improved bound on ρU agrees with their
experimental analyses.

4.1. Growth in U . We recall that

ρU (A) =
‖U‖∞
‖A‖∞

.

In this section, we give two bounds on ρU (A). The first will have a better dependence
on σ, and the second will have a better dependence on n. It is the latter bound,
Theorem 4.3, that agrees with the experiments of Yeung and Chan [YC97] when
specialized to the average-case by setting Ā = 0 and σ = 1.
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4.1.1. First bound.
Theorem 4.1 (first bound on ρU (A)). Let Ā be an n × n matrix satisfying∥∥Ā
∥∥

2
≤ 1, and let A be a Gaussian perturbation of Ā of variance σ2 ≤ 1. Then,

Pr [ρU (A) > 1 + x ] <
1√
2π

n(n + 1)

xσ
.

Proof. By Proposition 2.7.

ρU (A) =
‖U‖∞
‖A‖∞

= max
i

∥∥(Ui,:)
T
∥∥

1

‖A‖∞
.

So, we need to bound the probability that the 1-norm of the vector defined by
each row of U is large and then apply a union bound to bound the overall probability.

Fix for now a k between 2 and n. We denote the upper triangular segment of
the kth row of U by uT = Uk,k:n, and observe that u can be obtained from the
formula

uT = aT − bTC−1D,(4.1)

where

aT = Ak,k:n, bT = Ak,1:k−1, C = A1:k−1,1:k−1, D = A1:k−1,k:n.

This expression for u follows immediately from

A1:k,: =

(
C D
bT aT

)
=

(
L1:k−1,1:k−1 0

Lk,1:k−1 1

)(
U1:k−1,1:k−1 U1:k−1,k:n

0 uT

)
.

From (4.1), we derive

‖u‖1 =
∥∥a −

(
bTC−1D

)T ∥∥
1
≤ ‖a‖1 + ‖

(
bTC−1D

)T ‖1

≤ ‖aT ‖∞ + ‖
(
CT

)−1
b‖1 ‖D‖∞

(by Propositions 2.4 and 2.8)

≤ ‖A‖∞ (1 + ‖(CT )−1b‖1),(4.2)

by Proposition 2.7.
We now bound the probability ‖(CT )−1b‖1 is large. By Proposition 2.5,

‖(CT )−1b‖1 ≤
√
k − 1‖(CT )−1b‖2.

Note that b and C are independent of each other. Therefore,

Pr
b,C

[
‖
(
CT

)−1
b‖1 > x

]
≤ Pr

b,C

[
‖
(
CT

)−1
b‖2 > x/

√
k − 1

]
(4.3)

≤
√

2

π

√
k − 1

√
(k − 1)σ2 + 1

xσ
<

√
2

π

k

xσ
,
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where the second inequality follows from Lemma 4.2 below and the last inequality
follows from the assumption σ2 ≤ 1.

We now apply a union bound over the choices of k to obtain

Pr [ρU (A) > 1 + x ] <

n∑
k=2

√
2

π

k

xσ
≤ 1√

2π

n(n + 1)

xσ
.

Lemma 4.2. Let C̄ be an arbitrary square matrix in R
d×d, and C be a Gaussian

perturbation of C̄ of variance σ2. Let b̄ be a column vector in R
d such that

∥∥b̄
∥∥

2
≤ 1,

and let b be a Gaussian perturbation of b̄ of variance σ2. If b and C are independent
of each other, then

Pr
b,C

[∥∥C−1b
∥∥

2
≥ x

]
≤

√
2

π

√
σ2d + 1

xσ
.

Proof. Let b̂ be the unit vector in the direction of b. By applying Lemma 3.2, we
obtain for all b,

Pr
C

[∥∥C−1b
∥∥

2
> x

]
= Pr

C

[
‖C−1b̂‖2 >

x

‖b‖2

]
≤

√
2

π

1

xσ
‖b‖2 .

Let μ(b) denote the density according to which b is distributed. Then, we have

Pr
b,C

[∥∥C−1b
∥∥

2
> x

]
=

∫
b∈Rd

Pr
C

[∥∥C−1b
∥∥

2
> x

]
μ(b)db

≤
∫

b∈Rd

(√
2

π

1

xσ
‖b‖2

)
μ(b)db

=

√
2

π

1

xσ
Eb [‖b‖2].

It is known [KJ82, p. 277] that Eb[‖b‖2
2] ≤ σ2d + ‖b̄‖2

2. As E [X] ≤
√

E [X2]

for every positive random variable X, we have Eb [‖b‖2] ≤
√
σ2d + ‖b̄‖2

2 ≤√
σ2d + 1.

4.1.2. Second bound for ρU(A). In this section, we establish an upper bound
on ρU (A) which dominates the bound in Theorem 4.1 for σ ≥ n−3/2.

If we specialize the parameters in this bound to Ā = 0 and σ2 = 1, we improve
the average-case bound proved by Yeung and Chan [YC97] (see Theorem 1.3) by a
factor of n. Moreover, the resulting bound agrees with their experimental results.

Theorem 4.3 (second bound on ρU (A)). Let Ā be an n × n matrix satisfying∥∥Ā
∥∥

2
≤ 1, and let A be a Gaussian perturbation of Ā of variance σ2 ≤ 1. For n ≥ 2,

Pr [ρU (A) > 1 + x ] ≤
√

2

π

1

x

(
2

3
n3/2 +

n

σ
+

4

3

√
n

σ2

)
.

Proof. As in the proof of Theorem 4.1, we will separately consider the kth row
of U for each 2 ≤ k ≤ n. For any such k, define u, a, b, C, and D as in the proof of
Theorem 4.1.



SMOOTHED ANALYSIS: COND. NUMBERS AND GROWTH FACTORS 457

In the case when k = n, we may apply (4.3) in the proof of Theorem 4.1, to show

Pr

[
‖u‖1

‖A‖∞
> 1 + x

]
≤

√
2

π

n

xσ
.(4.4)

We now turn to the case k ≤ n− 1. By (4.1) and Proposition 2.5, we have

‖u‖1 ≤ ‖a‖1 + ‖(bTC−1D)T ‖1 ≤ ‖a‖1 +
√
k − 1‖

(
bTC−1D

)T ‖2

= ‖a‖1 +
√
k − 1

∥∥bTC−1D
∥∥

2
.

The last equation follows from Proposition 2.6. Therefore for all k ≤ n− 1,

‖u‖1

‖A‖∞
≤

‖a‖1 +
√
k − 1

∥∥bTC−1D
∥∥

2

‖A‖∞

≤ 1 +

√
k − 1

∥∥bTC−1D
∥∥

2

‖A‖∞
(by Proposition 2.7),

≤ 1 +

√
k − 1

∥∥bTC−1D
∥∥

2

‖(An,:)T ‖1
(also by Proposition 2.7).

We now observe that for fixed b and C, (bTC−1)D is a Gaussian random row vector
of variance ‖bTC−1‖2

2σ
2 centered at (bTC−1)D̄, where D̄ is the center of D. We

have ‖D̄‖2 ≤ ‖Ā‖2 ≤ 1, by the assumptions of the theorem; so,∥∥bTC−1D̄
∥∥

2
≤

∥∥bTC−1
∥∥

2

∥∥D̄
∥∥

2
≤

∥∥bTC−1
∥∥

2
.

Thus, if we let tT = (bTC−1D)/‖bTC−1‖2, then for every fixed b and C, t is a
Gaussian random column vector in R

n−k+1 of variance σ2 centered at a vector of
2-norm at most 1. We also have

Pr
b,C,D

[∥∥bTC−1D
∥∥

2
≥ x

]
= Pr

b,C,t

[∥∥bTC−1
∥∥

2
‖t‖2 ≥ x

]
.(4.5)

It follows from Lemma 4.2 that

Pr
b,C

[∥∥bTC−1
∥∥

2
≥ x

]
≤

√
2

π

√
σ2(k − 1) + 1

xσ
.

Hence, we may apply Corollary C.5 to show

Pr
b,C,t

[∥∥bTC−1
∥∥

2
‖t‖2 ≥ x

]
≤

√
2

π

√
σ2(k − 1) + 1

√
σ2(n− k + 1) + 1

xσ

≤
√

2

π

(
1 + nσ2

2

)

xσ
.(4.6)

Note that An,: is a Gaussian perturbation of variance σ2 of a row vector in R
n.

As An,: is independent of b, C, and D, we can apply (4.5), (4.6), and Lemma C.4 to
show

Pr

[√
k − 1

∥∥bTC−1D
∥∥

2

‖(An,:)T ‖1
≥ x

]
≤

√
2

π

√
k − 1

(
1 + nσ2

2

)

xσ
E

[
1

‖(An,:)T ‖1

]

≤
√

2

π

√
k − 1

(
1 + nσ2

2

)

xσ

2

nσ

by Lemma A.4.
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Applying a union bound over the choices for k, we obtain

Pr [ρU (A) > 1 + x ] ≤

⎛
⎝

n−1∑
k=2

√
2

π

√
k − 1

(
1 + nσ2

2

)

xσ

2

nσ

⎞
⎠ +

√
2

π

n

xσ

≤
√

2

π

1

x

(
2

3

√
n

(
2

σ2
+ n

)
+

n

σ

)

=

√
2

π

1

x

(
2

3
n3/2 +

n

σ
+

4

3

√
n

σ2

)
,

where the second inequality follows from

n−2∑
k=1

√
k ≤ 2

3
n3/2.

4.2. Growth in L. Let L be the lower-triangular part of the LU-factorization
of A. We have

L(k+1):n,k = A
(k−1)
(k+1):n,k

/
A

(k−1)
k,k ,

where we let A(k) denote the matrix remaining after the first k columns have been
eliminated. So, A(0) = A.

Recall ρL(A) = ‖L‖∞, which is equal to the maximum absolute row sum of L
(Proposition 2.7). We will show that it is unlikely that

∥∥L(k+1):n,k

∥∥
∞ is large by

proving that it is unlikely that
∥∥A

(k−1)
(k+1):n,k

∥∥
∞ is large while

∣∣A(k−1)
k,k

∣∣ is small.

Theorem 4.4 (ρL(A)). Let Ā be an n× n matrix for which
∥∥Ā

∥∥
2
≤ 1, and let

A be a Gaussian perturbation of Ā of variance σ2 ≤ 1. If n ≥ 2, then,

Pr [ρL(A) > x ] ≤
√

2

π

n2

x

(√
2

σ
+
√

2 lnn +
1√

2π lnn

)
.

Proof. For each k between 1 and n− 1, we have

L(k+1):n,k =
A

(k−1)
(k+1):n,k

A
(k−1)
k,k

=
A(k+1):n,k − A(k+1):n,1:(k−1)A

−1
1:(k−1),1:(k−1)A1:(k−1),k

Ak,k − Ak,1:(k−1)A
−1
1:(k−1),1:(k−1)A1:(k−1),k

=
A(k+1):n,k − A(k+1):n,1:(k−1)v

Ak,k − Ak,1:(k−1)v
,

where we let v = A−1
1:(k−1),1:(k−1)A1:(k−1),k. Since ‖Ā‖2 ≤ 1, and all the terms

A(k+1):n,k, A(k+1):n,1:(k−1), Ak,k, Ak,1:(k−1), and v are independent, we can apply
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Lemma 4.5 to show that

Pr
[∥∥L(k+1):n,k

∥∥
∞ > x

]

≤
√

2

π

1

x

(√
2

σ
+

√
2 ln(max(n− k, 2)) +

1√
2π ln(max(n− k, 2))

)

≤
√

2

π

1

x

(√
2

σ
+
√

2 lnn +
1√

2π lnn

)
,

where the last inequality follows the facts that
√

2z + 1√
2πz

is an increasing function

when z ≥ π−1/3, and ln 2 ≥ π−1/3.
The theorem now follows by applying a union bound over the n choices for k and

observing that ‖L‖∞ is at most n times the largest entry in L.
Lemma 4.5 (vector ratio). Let d and n be positive integers. Let a, b, x, and Y

be Gaussian perturbations of ā ∈ R
1, b̄ ∈ R

d, x̄ ∈ R
n, and Ȳ ∈ R

n×d, respectively,
of variance σ2, such that |ā| ≤ 1,

∥∥b̄
∥∥

2
≤ 1, ‖x̄‖2 ≤ 1, and

∥∥Ȳ
∥∥

2
≤ 1. Let v be an

arbitrary vector in R
d. If a, b, x, and Y are independent and σ2 ≤ 1, then

Pr

[
‖x + Y v‖∞
|a + bTv| > x

]
≤

√
2

π

1

x

(√
2

σ
+

√
2 ln max(n, 2) +

1√
2π ln max(n, 2)

)
,

Proof. We begin by observing that a + bTv and each component of x + Y v is a
Gaussian random variable of variance σ2(1+ ‖v‖2

2) whose mean has absolute value at
most 1 + ‖v‖2, and that all these variables are independent. By Lemma A.3,

Ex,Y [‖x + Y v‖∞] ≤ 1 + ‖v‖2

+

(
σ

√
(1 + ‖v‖2

2)

)(√
2 ln max(n, 2) +

1√
2π ln max(n, 2)

)
.

On the other hand, Lemma A.2 implies

Pr
a,b

[
1

|a + bTv| > x

]
≤

√
2

π

1

xσ
√

1 + ‖v‖2
2

.(4.7)

Thus, we can apply Corollary C.4 to show

Pr

[
‖x + Y v‖∞
|a + bTv| > x

]

≤
√

2

π

1 + ‖v‖2 +
(
σ
√

1 + ‖v‖2
2

)(√
2 ln max(n, 2) + 1√

2π ln max(n,2)

)

xσ
√

1 + ‖v‖2
2

=

√
2

π

1

x

⎛
⎜⎝ 1 + ‖v‖2

σ
√

1 + ‖v‖2
2

+

(
σ
√

1 + ‖v‖2
2

)(√
2 ln max(n, 2) + 1√

2π ln max(n,2)

)

σ
√

1 + ‖v‖2
2

⎞
⎟⎠

≤
√

2

π

1

x

(√
2

σ
+

√
2 ln max(n, 2) +

1√
2π ln max(n, 2)

)
,

where the last inequality follows from (1 + z)2 ≤ 2(1 + z2) for all z ≥ 0.
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5. Smoothed analysis of Gaussian elimination. We now combine the results
from the previous sections to bound the smoothed precision needed in the application
of Gaussian elimination without pivoting to obtain solutions to linear systems accurate
to b bits.

Theorem 5.1 (smoothed precision of Gaussian elimination). For n > e4, let Ā
be an n×n matrix for which ‖Ā‖2 ≤ 1, and let A be a Gaussian perturbation of Ā of
variance σ2 ≤ 1/4. Then, the expected number of bits of precision necessary to solve
Ax = b to b bits of accuracy using Gaussian elimination without pivoting is at most

b +
11

2
log2 n + 3 log2

(
1

σ

)
+ log2(1 + 2

√
nσ) +

1

2
log2 log2 n + 6.83.

Proof. By Wilkinson’s theorem, we need the machine precision, εmach, to satisfy

5 · 2bnρL(A)ρU (A)κ(A)εmach ≤ 1 =⇒ 2.33 + b + log2 n + log2(ρL(A))

+ max(0, log2(ρU (A))) + log2(κ(A)) ≤ log2(1/εmach).

We will apply Lemma C.6 to bound these log terms. Theorem 4.1 tells us that

Pr [ρU (A) > 1 + x ] ≤ 1√
2π

n(n + 1)

xσ
.

To put this inequality into a form to which Lemma C.6 may be applied, we set

y = x

(
1 +

√
2πσ

n(n + 1)

)
,

to obtain

Pr [ρU (A) > y ] ≤
(

1√
2π

n(n + 1)

σ
+ 1

)
1

y
.

By Lemma C.6,

E [max(0, log2 ρU (A))] ≤ log2

(
1√
2π

n(n + 1)

σ
+ 1

)
+ log2 e

≤ log2

(
n(n + 1) + σ

√
2π

)
+ log2

(
1

σ

)
+ log2

(
e√
2π

)

≤ log2

(
1.02n2

)
+ log2

(
1

σ

)
+ log2

(
e√
2π

)

≤ 2 log2 n + log2

(
1

σ

)
+ 0.15,

where in the second-to-last inequality, we used the assumptions n ≥ e4 and σ ≤ 1/2.
In the last inequality, we numerically computed log2(1.02e/

√
2π) < 0.15.
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Theorem 4.4 and Lemma C.6 imply

E [log2 ρL(A)]

≤ log2

(√
2

π
n2

(√
2

σ
+
√

2 lnn +
1√

2π lnn

))
+ log2 e

≤ 2 log2 n + log2

(
1

σ
+
√

lnn

(
1 +

1

2
√
π lnn

))
+ log2

(
2e√
π

)

= 2 log2 n + log2

(
1

σ

)
+ log2

√
lnn

+ log2

(
1√
lnn

+ σ

(
1 +

1

2
√
π lnn

))
+ log2

(
2e√
π

)

using σ ≤ 1
2 and n > e4,

≤ 2 log2 n + log2

(
1

σ

)
+

1

2
log2 log2 n + log2

(
1 +

1

16
√
π

)
+ log2

(
2e√
π

)

≤ 2 log2 n + log2

(
1

σ

)
+

1

2
log2 log2 n + 1.67,

as log2(1 + 1/16
√
π) + log2(2e/

√
π) < 1.67. Theorem 3.3 and Lemma C.6, along with

the observation that log2(2.35e) < 2.68, imply

E
[
log2

∥∥A−1
∥∥

2

]
≤ 1

2
log2 n + log2

(
1

σ

)
+ 2.68.

Finally,

E [log2(‖A‖2)] ≤ log2(1 + 2
√
nσ)

follows from the well-known facts that the expectation of
∥∥A − Ā

∥∥
2

is at most 2
√
nσ

(c.f., [Seg00]) and that E [log2(X)] ≤ log2 E [X] for every positive random variable X.
Thus, the expected number of digits of precision needed is at most

b +
11

2
log2 n + 3 log2

(
1

σ

)
+ log2(1 + 2

√
nσ) +

1

2
log2 log2 n + 6.83.

The following conjecture would further improve the coefficient of log(1/σ).
Conjecture 2. Let Ā be an n× n matrix for which

∥∥Ā
∥∥

2
≤ 1, and let A be a

Gaussian perturbation of Ā of variance σ2 ≤ 1. Then

Pr [ρL(A)ρU (A)κ(A) > x ] ≤ nc1 logc2(x)

xσ
,

for some constants c1 and c2.

6. Zero-preserving perturbations of symmetric matrices with diago-
nals. Many matrices that occur in practice are symmetric and sparse. Moreover,
many matrix algorithms take advantage of this structure. Thus, it is natural to study
the smoothed analysis of algorithms under perturbations that respect symmetry and
nonzero structure. In this section, we study the condition numbers and growth factors
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of Gaussian elimination without pivoting of symmetric matrices under perturbations
that only alter their diagonal and nonzero entries.

Definition 6.1 (Zero-preserving perturbations). Let T̄ be a matrix. We define
the zero-preserving perturbation of T̄ of variance σ2 to be the matrix T obtained
by adding independent Gaussian random variables of mean 0 and variance σ2 to the
nonzero entries of T̄ .

Throughout this section, when we express a symmetric matrix A as T +D +T T ,
we mean that T is lower-triangular with zeros on the diagonal and D is a diagonal
matrix. By making a zero-preserving perturbation to T̄ , we preserve the symmetry
of the matrix. The main results of this section are that the smoothed condition
number and growth factors of symmetric matrices under zero-preserving perturbations
to T and diagonal perturbations to D have distributions similar to those proved in
sections 3 and 4 for dense matrices under dense perturbations.

6.1. Bounding the condition number. We begin by recalling that the singu-
lar values and vectors of symmetric matrices are the eigenvalues and eigenvectors.

Lemma 6.2. Let Ā = T̄ + D̄ + T̄ T be an arbitrary n × n symmetric matrix.
Let T be a zero-preserving perturbation of T̄ of variance σ2, let GD be a diagonal
matrix of independent Gaussian random variables of variance σ2 and mean 0 that are
independent of T , and let D = D̄ + GD. Then, for A = T + D + T T ,

Pr
[∥∥A−1

∥∥
2
≥ x

]
≤

√
2

π

n3/2

xσ
.

Proof. By Proposition 2.1,

Pr
T ,GD

[∥∥(T + D + T T )−1
∥∥

2
≥ x

]
≤ max

T
Pr
GD

[∥∥((T + D̄ + T T ) + GD)−1
∥∥

2
≥ x

]
.

The proof now follows from Lemma 6.3, taking T +D̄+T T as the base matrix.
Lemma 6.3. Let Ā be an arbitrary n×n symmetric matrix, let GD be a diagonal

matrix of independent Gaussian random variables of variance σ2 and mean 0, and let
A = Ā + GD. Then,

Pr
[∥∥A−1

∥∥
2
≥ x

]
≤

√
2

π

n3/2

xσ
.

Proof. Let x1, . . . , xn be the diagonal entries of GD, and let

g =
1

n

n∑
i=1

xi, and yi = xi − g.

Then,

Pr
y1,...,yn,g

[∥∥(Ā + GD)−1
∥∥

2
≥ x

]
= Pr

y1,...,yn,g

[∥∥(Ā + diag(y1, . . . , yn)+ gI)−1
∥∥

2
≥ x

]

≤ max
y1,...,yn

Pr
g

[∥∥(Ā + diag(y1, . . . , yn)+ gI)−1
∥∥

2
≥ x

]
,

where the last inequality follows from Proposition 2.1. The proof now follows from
Proposition 6.4 and Lemma 6.5.
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Proposition 6.4. Let X1, . . . , Xn be independent Gaussian random variables of
variance σ2 with means a1, . . . , an, respectively. Let

G =
1

n

n∑
i=1

Xi, and Yi = Xi −G.

Then, G is a Gaussian random variable of variance σ2/n with mean (1/n)
∑

ai,
independent of Y1, . . . , Yn.

Lemma 6.5. Let Ā be an arbitrary n × n symmetric matrix, and let G be a
Gaussian random variable of mean 0 and variance σ2/n. Let A = Ā + GI. Then,

Pr
A

[∥∥A−1
∥∥

2
≥ x

]
≤

√
2

π

n3/2

xσ
.

Proof. Let λ1, . . . , λn be the eigenvalues of Ā. Then,

∥∥(Ā + GI)−1
∥∥−1

2
= min

i
|λi + G| .

Thus,

Pr
A

[∥∥A−1
∥∥

2
≥ x

]
= Pr

G

[
min
i

|λi −G| < 1

x

]
≤

∑
i

Pr
G

[
|λi −G| < 1

x

]

≤
∑
i

√
2

π

√
n

xσ
≤

√
2

π

n3/2

xσ
,

where the second-to-last inequality follows from Lemma A.2 for R
1.

As in section 3, we can now prove the following theorem.
Theorem 6.6 (condition number of symmetric matrices). Let Ā = T̄ + D̄ +

T̄ T be an arbitrary n × n symmetric matrix satisfying
∥∥Ā

∥∥
2
≤

√
n. Let σ2 ≤ 1,

let T be a zero-preserving perturbation of T̄ of variance σ2, let GD be a diagonal
matrix of independent Gaussian random variables of variance σ2 and mean 0 that are
independent of T , and let D = D̄ + GD. Then, for A = T + D + T T ,

Pr [κ(A) ≥ x ] ≤ 6

√
2

π

n7/2

xσ
(1 +

√
2 ln(x)/9n).

Proof. As in the proof of Theorem 3.1, we can apply the techniques used in the
proof of [DS01, Theorem II.7], to show

Pr
[∥∥Ā − A

∥∥
2
≥ 2

√
n + k

]
< e−k2/2.

The rest of the proof follows the outline of the proof of Theorem 3.1, using Lemma 6.2
instead of Theorem 3.3.

6.2. Bounding entries in U . In this section, we will prove the following
theorem.

Theorem 6.7 (ρU (A) of symmetric matrices). Let Ā = T̄ + D̄ + T̄ T be an
arbitrary n × n symmetric matrix satisfying

∥∥Ā
∥∥

2
≤ 1. Let σ2 ≤ 1, let T be a
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zero-preserving perturbation of T̄ of variance σ2, let GD be a diagonal matrix of in-
dependent Gaussian random variables of variance σ2 and mean 0 that are independent
of T , and let D = D̄ + GD. Then, for A = T + D + T T ,

Pr [ρU (A) > 1 + x ] ≤ 2

7

√
2

π

n3

xσ
.

Proof. We proceed as in the proof of Theorem 4.1. For k between 2 and n, we
define u, a, b, and C as in the proof of Theorem 4.1. By (4.2)

‖u‖1

‖A‖∞
≤ 1 +

∥∥(CT )−1b
∥∥

1
≤ 1 +

√
k − 1

∥∥bTC−1
∥∥

2
≤ 1 +

√
k − 1 ‖b‖2

∥∥C−1
∥∥

2
.

Hence

Pr

[
‖u‖1

‖A‖∞
> 1 + x

]
≤ Pr

[
‖b‖2

∥∥C−1
∥∥

2
>

x√
k − 1

]

≤ E [‖b‖2]

√
2

π

(k − 1)2

xσ
, by Lemmas 6.2 and C.4,

≤
√

1 + jσ2

√
2

π

(k − 1)2

xσ
,

where j is the number of nonzeros in b,

≤
√

2

π

√
k(k − 1)2

xσ
.

Applying a union bound over k,

Pr [ρU (A) > x ] ≤
√

2

π

1

xσ

n∑
k=2

√
k(k − 1)2 ≤ 2

7

√
2

π

n7/2

xσ
.

6.3. Bounding entries in L. As in section 4.2, we derive a bound on the growth

factor of L. As before, we will show that it is unlikely that A
(k−1)
j,k is large while

A
(k−1)
k,k is small. However, our techniques must differ from those used in section 4.2,

as the proof in that section made critical use of the independence of Ak,1:(k−1) and
A1:(k−1),k.

Theorem 6.8 (ρL(A) of symmetric matrices). Let σ2 ≤ 1 and n ≥ 2. Let
Ā = T̄ + D̄ + T̄ T be an arbitrary n× n symmetric matrix satisfying

∥∥Ā
∥∥

2
≤ 1. Let

T be a zero-preserving perturbation of T̄ of variance σ2, let GD be a diagonal matrix
of independent Gaussian random variables of variance σ2 ≤ 1 and mean 0 that are
independent of T , and let D = D̄ + GD. Let A = T + D + T T . Then

∀x ≥
√

2

π

1

σ2
, Pr [ρL(A) > x ] ≤ 3.2n4

xσ2
ln3/2

(
e

√
π

2
xσ2

)
.

Proof. Using Lemma 6.9, we obtain for all k

Pr [∃j > k : |Lj,k| > x ] ≤ Pr
[∥∥L(k+1):n,k

∥∥
2
> x

]
≤ 3.2n2

xσ2
ln3/2

(
e

√
π

2
xσ2

)
.
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Applying a union bound over the choices for k, we then have

Pr [∃j, k : |Lj,k| > x ] ≤ 3.2n3

xσ2
ln3/2

(
e

√
π

2
xσ2

)
.

The result now follows from the fact that ‖L‖∞ is at most n times the largest entry
in L.

Lemma 6.9. Under the conditions of Theorem 6.8

∀x ≥
√

2

π

1

σ2
, Pr

[∥∥L(k+1):n,k

∥∥
2
> x

]
≤ 3.2n2

xσ2
ln3/2

(
e

√
π

2
xσ2

)
.

Proof. We recall that

Lk+1:n,k =
Ak+1:n,k − Ak+1:n,1:k−1A

−1
1:k−1,1:k−1A1:k−1,k

Ak,k − Ak,1:k−1A
−1
1:k−1,1:k−1A1:k−1,k

.

Because of the symmetry of A, Ak,1:k−1 is the same as A1:k−1,k, so we can no longer
use the proof technique that worked in section 4.2. Instead, we will bound the tails of
the numerator and denominator separately, exploiting the fact that only the denomi-
nator depends upon Ak,k.

Consider the numerator first. Setting v = A−1
1:k−1,1:k−1A1:k−1,k, the numerator

can be written Ak+1:n,1:k

(−v
1

)
. We will now prove that for all x ≥ 1/σ,

Pr
Ak+1:n,1:k

A1:k−1,1:k

[∥∥∥∥Ak+1:n,1:k

(
−v

1

)∥∥∥∥
∞

> x

]
≤

√
2

π

(
2n2(1 + σ

√
2 ln(xσ)) + n

xσ

)
.(6.1)

Let

c =
1

1 + σ
√

2 ln(xσ)
,(6.2)

which implies 1−c
cσ =

√
2 ln(xσ). It suffices to prove (6.1) for all x for which the

right-hand side is less than 1. Given that x ≥ 1/σ, it suffices to consider x for which
cx ≥ 2 and xσ ≥ 2.

We use the parameter c to divide the probability as follows:

Pr
Ak+1:n,1:k

A1:k−1,1:k

[∥∥∥∥Ak+1:n,1:k

(
−v

1

)∥∥∥∥
∞

> x

]
≤ Pr

A1:(k−1),1:k

[∥∥∥∥
(
−v

1

)∥∥∥∥
2

> cx

]
(6.3)

+ Pr
Ak+1:n,1:k

[∥∥∥∥Ak+1:n,1:k

(
−v

1

)∥∥∥∥
∞

>
1

c

∥∥∥∥
(
−v

1

)∥∥∥∥
2

∣∣∣∣
∥∥∥∥
(
−v

1

)∥∥∥∥
2

≤ cx

]
.(6.4)

To evaluate (6.4), we note that once v is fixed, each component of Ak+1:n,1:k

(−v
1

)

is a Gaussian random variable of variance
∥∥(−v

1

)∥∥2

2
σ2 and mean at most∥∥Āk+1:n,1:k

(−v
1

)∥∥
2
≤

∥∥(−v
1

)∥∥
2
. So,

∥∥∥∥Ak+1:n,1:k

(
−v

1

)∥∥∥∥
∞

>
1

c

∥∥∥∥
(
−v

1

)∥∥∥∥
2
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implies one of the Gaussian random variables differs from its mean by more than
(1/c− 1)/σ times it standard deviation, and we can therefore apply Lemma A.1 and
a union bound to derive

(6.4) ≤
√

2

π

ne−
1
2 (

1−c
cσ )

2

1−c
cσ

=

√
2

π

n

xσ
√

2 ln(xσ)
.

To bound (6.3), we note that Lemma 6.2 and Corollary C.5 imply

Pr
A1:(k−1),1:k

[∥∥∥A−1
1:k−1,1:k−1A1:k−1,k

∥∥∥
2
> y

]
≤

√
2

π

n2

yσ
,

and so

Pr
A1:(k−1),1:k

[∥∥∥∥
(
−v

1

)∥∥∥∥
2

> cx

]
≤ Pr

A1:(k−1),1:k

[∥∥∥A−1
1:k−1,1:k−1A1:k−1,k

∥∥∥
2
> cx− 1

]

≤
√

2

π

n2

(cx− 1)σ

=

√
2

π

n2

(cxσ(1 − 1/cx))

=

√
2

π

n2(1 + σ
√

2 ln(xσ))

xσ (1 − 1/cx)

≤
√

2

π

2n2(1 + σ
√

2 ln(xσ))

xσ
, by cx ≥ 2.

So,

Pr
Ak+1:n,1:k

A1:k−1,1:k

[∥∥∥∥Ak+1:n,1:k

(
−v

1

)∥∥∥∥
∞

> x

]
(6.5)

≤
√

2

π

(
n

xσ
√

2 ln(xσ)
+

2n2(1 + σ
√

2 ln(xσ))

xσ

)

≤
√

2

π

(
2n2(1 + σ

√
2 ln(xσ)) + n

xσ

)
,

by the assumption xσ ≥ 2, which proves (6.1).

As for the denominator, we note that Ak,k is independent of all other terms, and
hence

Pr
[∣∣∣Ak,k − Ak,1:k−1A

−1
1:k−1,1:k−1A1:k−1,k

∣∣∣ < 1/x
]
≤

√
2

π

1

xσ
,(6.6)
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by Lemma A.2. Applying Corollary C.3 with

α =

√
2

π
(2n2 + n), β =

4n2σ√
π

, γ =

√
2

π

to combine (6.5) with (6.6), we derive the bound

2

πxσ2
(2n2 + n + ((2 + 4

√
2σ/3)n2 + n) ln3/2(

√
π/2xσ2))

≤ 2n2

πxσ2
(3 + 4

√
2σ/3)(ln3/2(

√
π/2xσ2) + 1)

≤ 3.2n2

xσ2
ln3/2(e

√
π/2xσ2),

as σ ≤ 1.

7. Conclusions and open problems.

7.1. Generality of results. In this paper, we have presented bounds on the
smoothed values of the condition number and growth factors assuming the input
matrix is subjected to a slight Gaussian perturbation. We would like to point out
here that our results can be extended to some other families of perturbations.

With the exception of the proof of Theorem 3.3, the only properties of Gaussian
random vectors that we used in sections 3 and 4 are:

1. There is a constant c for which the probability that a Gaussian random vector
has distance less than ε to a hyperplane is at most cε, and

2. It is exponentially unlikely that a Gaussian random vector lies far from its
mean.

Moreover, a result similar to Theorem 3.3 but with an extra factor of d could be
proved using just fact 1.

In fact, results of a character similar to ours would still hold if the second condition
were reduced to a polynomial probability. Many other families of perturbations share
these properties. For example, similar results would hold if we let A = Ā + U ,
where U is a matrix of variables independently uniformly chosen in [−σ, σ], or if A =
Ā + S, where the columns of S are chosen uniformly among those vectors of norm at
most σ.

7.2. Counter-examples. The results of sections 3 and 4 do not extend to zero-
preserving perturbations for nonsymmetric matrices. For example, the following ma-
trix remains ill-conditioned under zero-preserving perturbations:

1 −2 0 0 0
0 1 −2 0 0
0 0 1 −2 0
0 0 0 1 −2
0 0 0 0 1

.

A symmetric matrix that remains ill-conditioned under zero-preserving perturbations
that do not alter the diagonal can be obtained by locating the above matrix in the
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upper-right quadrant, and its transpose in the lower-left quadrant:

0 0 0 0 0 1 −2 0 0 0
0 0 0 0 0 0 1 −2 0 0
0 0 0 0 0 0 0 1 −2 0
0 0 0 0 0 0 0 0 1 −2
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
−2 1 0 0 0 0 0 0 0 0
0 −2 1 0 0 0 0 0 0 0
0 0 −2 1 0 0 0 0 0 0
0 0 0 −2 1 0 0 0 0 0

.

The following matrix maintains large growth factor under zero-preserving pertur-
bations, regardless of whether partial pivoting or no pivoting is used:

1.1 0 0 0 0 1
−1 1.1 0 0 0 1
−1 −1 1.1 0 0 1
−1 −1 −1 1.1 0 1
−1 −1 −1 −1 1.1 1
−1 −1 −1 −1 −1 1

.

These examples can be easily normalized to so that their 2-norms are equal to 1.

7.3. Open problems. Questions that naturally follow from this work are:

• What is the probability that the perturbation of an arbitrary matrix has large
growth factors under Gaussian elimination with partial pivoting?

• What is the probability that the perturbation of an arbitrary matrix has large
growth factors under Gaussian elimination with complete pivoting?

• Can zero-preserving perturbations of symmetric matrices have large growth
factors under partial pivoting or under complete pivoting?

• Can zero-preserving perturbations of arbitrary matrices have large growth
factors under complete pivoting?

For the first question, we point out that experimental data of Trefethen and Bau
[TB97, p. 168] suggest that the probability that the perturbation of an arbitrary
matrix has large growth factor under partial pivoting may be exponentially smaller
than without pivoting. This leads us to the following conjecture.

Conjecture 3. Let Ā be an n× n matrix for which
∥∥Ā

∥∥
2
≤ 1, and let A be a

Gaussian perturbation of Ā of variance σ2 ≤ 1. Let U be the upper-triangular matrix
obtained from the LU-factorization of A with partial pivoting. There exist absolute
constants k1, k2, and α for which

Pr [‖U‖max/‖A‖max > x + 1 ] ≤ nk1e−αxk2σ.

Finally, we ask whether similar analyses can be performed for other algorithms
of numerical analysis. One might start by extending Smale’s program by analyzing
the smoothed values of other condition numbers.
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7.4. Recent progress. Since the announcement of our result, Wschebor [Wsc04]
improved the smoothed bound on the condition number.

Theorem 7.1 (Wschebor). Let Ā be an n× n matrix and let A be a Gaussian
perturbation of Ā of variance σ2 ≤ 1. Then,

Pr [κ(A) ≥ x ] ≤ n

x

⎛
⎝ 1

4
√

2πn
+ 7

(
5 +

4
∥∥Ā

∥∥2

2
(1 + log n)

σ2n

)1/2
⎞
⎠.

When
∥∥Ā

∥∥
2
≤

√
n, his result implies

Pr [κ(A) ≥ x ] ≤ O

(
n log n

xσ

)
,

we conjecture the following stronger statement is true.
Conjecture 4. Let Ā be an n× n matrix satisfying

∥∥Ā
∥∥

2
≤

√
n, and let A be

a Gaussian perturbation of Ā of variance σ2 ≤ 1. Then,

Pr [κ(A) ≥ x ] ≤ O

(
n

xσ

)
.

Appendix A. Gaussian random variables.
Lemma A.1. Let X be a univariate Gaussian random variable with mean 0 and

standard deviation 1. Then for all k ≥ 1,

Pr [X ≥ k ] ≤ 1√
2π

e−
1
2k

2

k
.

Proof. We have

Pr [X ≥ k ] =
1√
2π

∫ ∞

k

e−
1
2x

2

dx

putting t = 1
2x

2,

=
1√
2π

∫ ∞

1
2k

2

e−t

√
2t

dt

≤ 1√
2π

∫ ∞

1
2k

2

e−t

k
dt

=
1√
2π

e−
1
2k

2

k
.

Lemma A.2. Let x be a d-dimensional Gaussian random vector of variance σ2,
let t be a unit vector, and let λ be a real. Then,

Pr
[∣∣tTx − λ

∣∣ ≤ ε
]
≤

√
2

π

ε

σ
.
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Lemma A.3. Let g1, . . . , gn be Gaussian random variables of mean 0 and variance
1. Then,

E[max
i

|gi|] ≤
√

2 ln(max(n, 2)) +
1√

2π ln(max(n, 2))
.

Proof. For any a ≥ 1,

E[max
i

|gi|] =

∫ ∞

t=0

Pr
[
max

i
|gi| ≥ t

]
dt

≤
∫ a

t=0

1 dt +

∫ ∞

a

nPr [|g1| ≥ t ] dt

≤ a +

∫ ∞

a

n
2√
2π

e−
1
2 t

2

t
dt (applying Lemma A.1)

= a +
2n√
2π

∫ ∞

a

e−
1
2 t

2

t2
d

(
1

2
t2
)

≤ a +
2n√
2π

1

a2

∫ ∞

a

e−
1
2 t

2

d

(
1

2
t2
)

= a +
2n√
2π

1

a2
e−

1
2a

2

.

Setting a =
√

2 ln(max(n, 2)), which is greater than 1 for all n ≥ 1, we obtain the
following upper bound on the expectation:

√
2 ln(max(n, 2)) +

2n√
2π

1

2 ln(max(n, 2))

1

max(n, 2)
≤

√
2 ln(max(n, 2))

+
1√

2π ln(max(n, 2))
.

Lemma A.4 (expectation of reciprocal of the 1-norm of a Gaussian vector). Let
ā be an arbitrary column vector in R

n for n ≥ 2. Let a be a Gaussian perturbation
of ā of variance σ2. Then

E

[
1

‖a‖1

]
≤ 2

nσ
.

Proof. Let a = (a1, . . . , an). It is clear that the expectation of 1/ ‖a‖1 is maxi-
mized if ā = 0, so we will make this assumption. Without loss of generality, we also
assume σ2 = 1. For general σ, we can simply scale the bound by the factor 1/σ.

Recall that the Laplace transform of a positive random variable X is defined by

L[X](t) = EX [e−tX ]

and the expectation of the reciprocal of a random variable is simply the integral of
its Laplace transform.
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Let X be the absolute value of a standard normal random variable. The Laplace
transform of X is given by

L[X](t) =

√
2

π

∫ ∞

0

e−txe−
1
2x

2

dx

=

√
2

π
e

1
2 t

2

∫ ∞

0

e−
1
2 (x+t)2 dx

=

√
2

π
e

1
2 t

2

∫ ∞

t

e−
1
2x

2

dx

= e
1
2 t

2

erfc

(
t√
2

)
.

Taking second derivatives and applying the inequality (c.f., [AS64, 26.2.13])

1√
2π

∫ ∞

t

e−
1
2x

2

dx ≥ e−
1
2x

2

√
2π

1

x + 1/x
,

we find that e
1
2 t

2

erfc( t√
2
) is convex.

We now set a constant c = 2.4 and set α to satisfy

1 −
√

c/π

α
= e

1
2 (c/π) erfc

(√
c/π√
2

)
.

Numerically, we find that α ≈ 1.9857 < 2.

As e
1
2 t

2

erfc( t√
2
) is convex, we have the upper bound

e
1
2 t

2

erfc

(
t√
2

)
≤ 1 − t

α
, for 0 ≤ t ≤

√
c/π.

For t >
√
c/π, we apply the upper bound

e
1
2 t

2

erfc

(
t√
2

)
≤

√
2

π

1

t
,

which follows from Lemma A.1.
We now have

E

[
1

‖a‖1

]
=

∫ ∞

0

(
e

1
2 t

2

erfc(t/
√

2)
)n

dt

≤
∫ √

c/π

0

(
1 − t

α

)n

dt +

∫ ∞

√
c/π

(√
2

π

1

t

)n

dt

≤ α

n + 1
+

√
2

π

(2/c)(n−1)/2

n− 1

<
2

n + 1
+

√
2

π

(2/c)(n−1)/2

n− 1

≤ 2

n− 1
,
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for n ≥ 2. To verify this last equality, one can multiply through by (n + 1)(n− 1) to
obtain

√
2

π
(n + 1)(2/c)(n−1)/2 ≤ 4,

which one can verify by taking the derivative of the left-hand side to find the point
where it is maximized, n = (2 + ln(5/6))/ ln(6/5).

Appendix B. Random point on a sphere.
Lemma B.1. Let d ≥ 2 and let (u1, . . . , ud) be a unit vector chosen uniformly at

random in R
d. Then, for c ≤ 1,

Pr

[
|u1| ≥

√
c

d

]
≥ Pr

[
|G| ≥

√
c
]
,

where G is a Gaussian random variable of variance 1 and mean 0.
Proof. We may obtain a random unit vector by choosing d independent Gaussian

random variables of variance 1 and mean 0, x1, . . . , xd, and setting

ui =
xi√

x2
1 + · · · + x2

d

.

We have

Pr
[
u2

1 ≥ c

d

]
= Pr

[
x2

1

x2
1 + · · · + x2

d

≥ c

d

]

= Pr

[
(d− 1)x2

1

x2
2 + · · · + x2

d

≥ (d− 1)c

d− c

]

≥ Pr

[
(d− 1)x2

1

x2
2 + · · · + x2

d

≥ c

]
, since c ≤ 1.

We now note that

td
def
=

√
(d− 1)x1√

x2
2 + · · · + x2

d

is a random variable distributed according to the t-distribution with d− 1 degrees of
freedom. The lemma now follows from the fact (cf., [JKB95, Chapter 28, section 2]
or [AS64, 26.7.5]) that, for c > 0,

Pr
[
td >

√
c
]
≥ Pr

[
G >

√
c
]
,

and that the distributions of td and G are symmetric about the origin.

Appendix C. Combination lemmas.
Lemma C.1. Let A and B be two positive random variables. Assume

1. Pr [A ≥ x ] ≤ f(x) and
2. Pr [B ≥ x|A ] ≤ g(x),

where g is monotonically decreasing and limx→∞ g(x) = 0. Then,

Pr [AB ≥ x ] ≤
∫ ∞

0

f

(
x

t

)
(−g′(t)) dt.
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Proof. Let μA denote the probability measure associated with A. We have

Pr [AB ≥ x ] =

∫ ∞

0

Pr
B

[B ≥ x/s|A ] dμA(s)

≤
∫ ∞

0

g

(
x

s

)
dμA(s),

integrating by parts,

=

∫ ∞

0

Pr [A ≥ s ]
d

ds
g

(
x

s

)
ds

≤
∫ ∞

0

f(s)
d

ds
g

(
x

s

)
ds,

setting t = x/s

=

∫ ∞

0

f

(
x

t

)
(−g′(t)) dt.

Corollary C.2 (linear-linear). Let A and B be two positive random variables.
Assume

1. Pr [A ≥ x ] ≤ α
x and

2. Pr [B ≥ x|A ] ≤ β
x

for some α, β > 0. Then,

Pr [AB ≥ x ] ≤ αβ

x

(
1 + max

(
0, ln

(
x

αβ

)))
.

Proof. As the probability of an event can be at most 1,

Pr [A ≥ x ] ≤ min

(
α

x
, 1

)
def
= f(x), and

Pr [B ≥ x ] ≤ min

(
β

x
, 1

)
def
= g(x).

Applying Lemma C.1 while observing
• g′(t) = 0 for t ∈ [0, β] and
• f(x/t) = 1 for t ≥ x/α,

we obtain

Pr [AB ≥ x ] ≤
∫ β

0

αt

x
· 0 dt + max

(
0,

∫ x/α

β

αt

x

β

t2
dt

)
+

∫ ∞

x/α

β

t2
dt

= max

(
0,

αβ

x

∫ x/α

β

dt

t

)
+

αβ

x

=
αβ

x

(
1 + max

(
0, ln

(
x

αβ

)))
,

where the max appears in case x/α < β.
Corollary C.3. Let A and B be two positive random variables. If
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1. ∀x ≥ 1/σ, Pr [A ≥ x ] ≤ min
(
1, α+β

√
ln xσ

σx

)
and

2. Pr [B ≥ x|A ] ≤ γ
xσ

for some α ≥ 1 and β, γ, σ > 0, then

∀x ≥ γ/σ2, Pr [AB ≥ x ] ≤ αγ

xσ2

(
1 +

(
2β

3α
+ 1

)
ln3/2

(
xσ2

γ

))
.

Proof. Define f and g by

f(x)
def
=

{
1 for x ≤ α

σ
α+β

√
ln xσ

xσ for x > α
σ

g(x)
def
=

{
1 for x ≤ γ

σ
γ
xσ for x > γ

σ .

Applying Lemma C.1 while observing
• g′(t) = 0 for t ∈

[
0, γ

σ

]
, and

• f(x/t) = 1 for t ≥ xσ/α,
we obtain

Pr [AB ≥ x ] ≤
∫ xσ/α

γ/σ

α + β
√

ln(xσ/t)

xσ/t

γ

t2σ
dt +

∫ ∞

xσ/α

γ

σt2
dt

=

∫ xσ/α

γ/σ

α + β
√

ln(xσ/t)

xσ2

γ

t
dt +

αγ

xσ2

(substituting s =
√

ln(xσ/t), t = xσe−s2 , which is defined as x ≥ γ/σ2,)

=

∫ √
lnα

√
ln(xσ2/γ)

α + βs

xσ2

γ

xσe−s2
xσ(−2se−s2) ds +

αγ

xσ2

=
γ

xσ2

∫ √
ln(xσ2/γ)

√
lnα

2s(α + βs) ds +
αγ

xσ2

=
αγ

xσ2

(
1 + ln

(
xσ2

αγ

)
+

2β

3α

(
ln3/2

(
xσ2

γ

)
− ln3/2 α

))

≤ αγ

xσ2

(
1 +

(
2β

3α
+ 1

)
ln3/2

(
xσ2

γ

))
,

as α ≥ 1.
Lemma C.4 (linear-bounded expectation). Let A, B, and C be positive random

variables such that

Pr [A ≥ x ] ≤ α

x
,

for some α > 0, and

∀A, Pr [B ≥ x|A ] ≤ Pr [C ≥ x ].

Then,

Pr [AB ≥ x ] ≤ α

x
E [C].
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Proof. Let g(x) be the distribution function of C. By Lemma C.1, we have

Pr [AB ≥ x ] ≤
∫ ∞

0

(
αt

x

)
(−(1 − g)′(t)) dt

=
α

x

∫ ∞

0

t(g′(t)) dt

=
α

x
E [C] .

Corollary C.5 (linear-chi). Let A be a positive random variable such that

Pr [A ≥ x ] ≤ α

x
.

for some α > 0. Let b be a d-dimensional Gaussian random vector (possibly depending
upon A) of variance at most σ2 centered at a vector of norm at most t, and let
B = ‖b‖2. Then,

Pr [AB ≥ x ] ≤ α
√
σ2d + t2

x
.

Proof. As E [B] ≤
√

E [B2], and it is known [KJ82, p. 277] that the expected

value of B2—the noncentral χ2-distribution with noncentrality parameter
∥∥b̄

∥∥2

2
—is

σ2d +
∥∥b̄

∥∥2

2
, the corollary follows from Lemma C.4.

Lemma C.6 (linear to log). Let A be a positive random variable. If there exists
an A0 ≥ 1 and an α ≥ 1 such that for all x ≥ A0,

Pr
A

[A ≥ x ] ≤ α

x
.

Then

EA [max(0, lnA)] ≤ ln max(A0, α) + 1.

Proof.

EA [max(0, lnA)] =

∫ ∞

x=0

Pr
A

[max(0, lnA) ≥ x ] dx

≤
∫ ln max(A0,α)

x=0

1 dx +

∫ ∞

x=ln max(A0,α)

Pr
A

[lnA ≥ x ] dx

≤
∫ ln max(A0,α)

x=0

dx +

∫ ∞

x=ln max(A0,α)

αe−xdx

≤ ln max(A0, α) + 1.
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FAST METHODS FOR ESTIMATING THE DISTANCE TO
UNCONTROLLABILITY∗

M. GU† , E. MENGI‡ , M. L. OVERTON‡ , J. XIA† , AND J. ZHU†

Abstract. The distance to uncontrollability for a linear control system is the distance (in the
2-norm) to the nearest uncontrollable system. We present an algorithm based on methods of Gu and
Burke–Lewis–Overton that estimates the distance to uncontrollability to any prescribed accuracy.
The new method requires O(n4) operations on average, which is an improvement over previous
methods which have complexity O(n6), where n is the order of the system. Numerical experiments
indicate that the new method is reliable in practice.

Key words. distance to uncontrollability, complex controllability radius, trisection, real eigen-
value extraction, shifted inverse iteration, shift-and-invert Arnoldi, Sylvester equation, Kronecker
product
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1. Introduction. Given A ∈ C
n×n, B ∈ C

n×m, the linear control system

ẋ = Ax + Bu(1.1)

is controllable if for every pair of states x0, xf ∈ C
n there exists a continuous control

function u(t) to steer the initial state x0 to the final state xf within finite time.
Equivalently, according to a well-known result by Kalman [8], the system (1.1) is
controllable if the matrix [A− λI B] has full row rank for all λ ∈ C.

To measure the conditioning of (1.1), the distance to uncontrollability was intro-
duced in [12] as

τ(A,B) = min{‖ΔA ΔB‖ : (A + ΔA,B + ΔB) is uncontrollable},(1.2)

which was later shown to be equivalent to [4, 5]

τ(A,B) = min
λ∈C

σn([A− λI B]),(1.3)

where ‖ · ‖ denotes the 2-norm or Frobenius norm1 and σn([A− λI B]) denotes the
nth largest singular value of the n × (n + m) matrix [A − λI B]. This is a global
nonsmooth optimization problem in two real variables α and β, the real and imaginary
parts of λ. But note that σn([A − λI B]) is not convex and may have many local
minima, so standard optimization methods, which are guaranteed only to converge to
a local minimum, will not yield reliable results in general.
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Gu [6] proposed a bisection method which can correctly estimate τ(A,B) within a
factor of 2 in time polynomial in n. Throughout the paper, when we refer to operation
counts we assume that the computation of the eigenvalues of a matrix or pencil is an
atomic operation whose cost is cubic in the dimension. Burke, Lewis, and Overton
[3] suggested a trisection variant to retrieve the distance to uncontrollability to any
desired accuracy. The methods in these two papers are based on a simultaneous
comparison of two estimates δ1 > δ2 with τ(A,B). More precisely, Gu derived a
scheme that returns one of the inequalities

τ(A,B) ≤ δ1(1.4)

and

τ(A,B) > δ2.(1.5)

Even if both of the inequalities are satisfied, Gu’s scheme returns information about
only one of the inequalities. Gu’s method depends on the extraction of the real
eigenvalues of a pencil of size 2n2 × 2n2 and the imaginary eigenvalues of matrices of
size 2n×2n. Computationally the verification scheme is dominated by the extraction
of the real eigenvalues of the generalized problem of size 2n2 × 2n2, which requires
O(n6) operations if the standard QZ algorithm is used.

In this paper we present an alternative verification scheme for comparisons (1.4)
and (1.5). In the new verification scheme we still need to find real eigenvalues of
2n2×2n2 matrices, so there is no asymptotic gain over Gu’s verification scheme when
we use the QR algorithm. Nevertheless, we show that the inverse of these 2n2 × 2n2

matrices shifted by a real number times the identity can be multiplied onto a vector
efficiently by solving a Sylvester equation of size 2n with a cost of O(n3). Therefore,
given a real number as the shift, by applying shifted inverse iteration or a shift-and-
invert preconditioned Arnoldi method, the closest eigenvalue to the real number can
be obtained by performing O(n3) operations. Motivated by the fact that we need
only real eigenvalues, we provide two alternative ways to scan the real axis to find
the desired eigenvalues. Both of the approaches require an upper bound on the norm
of the input matrix (of size 2n2 × 2n2) as a parameter. For one of the approaches,
which is based on a “divide and conquer” idea, choosing this parameter arbitrarily
large does not affect the efficiency of the algorithm much. The efficiency of the other
approach, which we name “adaptive progress,” depends not only on this parameter
significantly but also on another parameter that bounds the distance between the
closest pair of eigenvalues from below. For the divide and conquer approach, we
prove that extracting all of the real eigenvalues requires O(n4) operations on average
and O(n5) operations in the worst case. For the adaptive progress approach such
neat results are not immediate because of the dependence of the performance of the
algorithm on the parameters. In practice we observe that the divide and conquer
approach is the more efficient and more reliable method.

In section 2 we will review the trisection method for estimating τ(A,B) and Gu’s
scheme for verifying which one of (1.4) and (1.5) holds. In section 3 we present
our modified eigenvalue problem for the same purpose and fast methods based on
the shifted inverse iteration or shift-and-invert Arnoldi for solving it. Specifically,
to extract all of the real eigenvalues, we discuss two search strategies: an adaptive
progress approach and a divide and conquer approach. The effectiveness and reliability
of the methods are demonstrated by the numerical examples in section 4.
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2. Trisection and Gu’s verification scheme.

2.1. Bisection and trisection. The problem of computing the distance to un-
controllability is equivalent to the minimization of σn([A − λI B]) over the entire
complex plane. Gu [6] proposed the first polynomial-time estimation scheme. Burke,
Lewis, and Overton [3] later suggested a trisection version to retrieve the distance to
uncontrollability to an arbitrary accuracy. Given two real numbers δ1 > δ2, at each
iteration both of the algorithms alter an upper bound or a lower bound depending on
which of the inequalities (1.4) and (1.5) holds. This test is based on the following the-
orem [6], which is a consequence of the fact that singular values are well-conditioned
(in the absolute sense).

Theorem 2.1 (see Gu [6]). Assume that δ > τ(A,B). Given an η ∈ [0, 2(δ −
τ(A,B))], there exist at least two pairs of real numbers α and β such that

δ ∈ σ ([A− (α + βi)I,B]) and δ ∈ σ ([A− (α + η + βi)I,B]) ,(2.1)

where σ(·) denotes the set of singular values of its argument.
We shall describe two alternative ways of verifying the existence of a pair α and β

satisfying (2.1) for a given δ and η in subsections 2.2 and 3.1. Suppose we set δ1 = δ
and δ2 = δ−η/2. The theorem above implies that when no pair satisfying (2.1) exists
the inequality η > 2(δ − τ(A,B)) is satisfied, so condition (1.5) holds. On the other
hand, when a pair exists, then by definition (1.3) we can conclude (1.4).

Gu’s bisection algorithm (Algorithm 1) keeps only an upper bound on the distance
to uncontrollability. It refines the upper bound until condition (1.5) is satisfied. Notice
that in Algorithm 1, δ = η = δ1. At termination the distance to uncontrollability lies
within factor of 2 of δ1, with δ1/2 < τ(A,B) ≤ 2δ1.

Algorithm 1 Gu’s bisection estimation algorithm

Call: δ1 ← Bisection(A,B).
Input: A ∈ C

n×n and B ∈ C
n×m with m ≤ n.

Output: A scalar δ1 satisfying δ1/2 < τ(A,B) ≤ 2δ1.

1. Initialize the estimate as δ1 ← σn([A B])/2.
repeat
δ2 ← δ1

2 .
Apply Gu’s test.
if (1.4) is verified then
δ1 ← δ2.
done ← FALSE.

else
% Otherwise (1.5) is verified.
done ← TRUE.

end if
until done = TRUE

2. Return δ1.

To obtain the distance to uncontrollability with better accuracy, Burke, Lewis,
and Overton [3] proposed a trisection variant. The trisection algorithm (Algorithm 2)
bounds τ(A,B) by an interval [l, u] and reduces the length of this interval by a factor
of 2

3 at each iteration. Thus it can compute τ(A,B) to any desired accuracy in O(n6)
operations which is the cost of Gu’s test, as described next.
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Algorithm 2 Trisection variant of Algorithm 1

Call: [l, u] ← Trisection(A,B,ε).
Input: A ∈ C

n×n, B ∈ C
n×m with m ≤ n, and a tolerance ε > 0.

Output: Scalars l and u satisfying l < τ(A,B) ≤ u and u− l < ε.

1. Initialize the lower bound as l ← 0 and the upper bound as u ← σn([A B]).
repeat
δ1 ← l + 2

3 (u− l)

δ2 ← l + 1
3 (u− l)

Apply Gu’s test.
if (1.4) is verified then
u ← δ1.

else
% Otherwise (1.5) is verified.
l ← δ2.

end if
until u− l < ε

2. Return l and u.

2.2. Gu’s verification scheme. By means of Gu’s test we can numerically
verify whether a real pair of solutions to (2.1) exists. Equation (2.1) in Theorem 2.1
implies that there exist nonzero vectors

(
x
y

)
, z,

(
x
ŷ

)
, and ẑ such that

(A− (α + βi)I B )

(
x
y

)
= δz,

(
A∗ − (α− βi)I

B∗

)
z = δ

(
x
y

)
,(2.2a)

(A− (α + η + βi)I B )

(
x̂
ŷ

)
= δẑ,

(
A∗ − (α + η − βi)I

B∗

)
ẑ = δ

(
x̂
ŷ

)
.(2.2b)

These equations can be rewritten as
⎛
⎝

−δI A− αI B
A∗ − αI −δI 0

B∗ 0 −δI

⎞
⎠

⎛
⎝

z
x
y

⎞
⎠ = βi

⎛
⎝

0 I 0
−I 0 0
0 0 0

⎞
⎠

⎛
⎝

z
x
y

⎞
⎠(2.3a)

and

⎛
⎝

−δI A− (α + η)I B
A∗ − (α + η)I −δI 0

B∗ 0 −δI

⎞
⎠

⎛
⎝

ẑ
x̂
ŷ

⎞
⎠ = βi

⎛
⎝

0 I 0
−I 0 0
0 0 0

⎞
⎠

⎛
⎝

ẑ
x̂
ŷ

⎞
⎠.

(2.3b)

Furthermore using the QR factorization
(

B
−δI

)
=

(
Q11 Q12

Q21 Q22

)(
R
0

)
(2.4)

these problems can be reduced to standard eigenvalue problems of size 2n× 2n, i.e.,
the eigenvalues of the pencils in (2.3a) and in (2.3b) are the same as the eigenvalues
of the matrices

(
A− αI BQ22 − δQ12

δQ−1
12 −Q−1

12 (A∗ − αI)Q12

)
(2.5a)
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and
(
A− (α + η)I BQ22 − δQ12

δQ−1
12 −Q−1

12 (A∗ − (α + η)I)Q12

)
,(2.5b)

respectively. In order for (2.1) to have at least one real solution (α, β), these two
matrices must share a common pure imaginary eigenvalue βi. This requires a 2n2×2n2

generalized eigenvalue problem to have a real eigenvalue α (see [6]). For a given δ and
η, we check whether the latter generalized eigenvalue problem has any real eigenvalue
α. If it does, then we check the existence of a real eigenvalue α for which the matrices
(2.5a) and (2.5b) share a common pure imaginary eigenvalue βi. There exists a pair
of α and β satisfying (2.1) if and only if this process succeeds.

3. Modified fast verification scheme. It turns out that Gu’s verification
scheme can be simplified. In this modified scheme the 2n2 × 2n2 generalized eigen-
value problems whose real eigenvalues are sought in Gu’s scheme are replaced by
2n2 × 2n2 standard eigenvalue problems, and the 2n× 2n standard eigenvalue prob-
lems (2.5a) and (2.5b) whose imaginary eigenvalues are sought are replaced by new
2n × 2n standard eigenvalue problems that do not require the computation of QR
factorizations.

The simplification of the problem of size 2n2 × 2n2 is significant, as the inverse of
the new matrix of size 2n2×2n2 (whose real eigenvalues are sought) times a vector can
be computed in a cheap manner by solving a Sylvester equation of size 2n×2n with a
cost of O(n3). As a consequence the closest eigenvalue to a given complex point can be
computed efficiently by applying shifted inverse iteration or shift-and-invert Arnoldi.
We discuss how this idea can be extended to extract all of the real eigenvalues with
an average cost of O(n4) and a worst case cost of O(n5), reducing the running time
of each iteration of the bisection or the trisection algorithm asymptotically.

3.1. New generalized eigenvalue problem. According to (2.2a)

y =
1

δ
B∗z

and the two equations in (2.2a) can be rewritten as

(
B̂ A− αI

A∗ − αI −δI

)(
z
x

)
= βi

(
I

−I

)(
z
x

)
,

where B̂ = BB∗

δ − δI. That is

H(α)

(
z
x

)
=

(
−(A∗ − αI) δI

B̂ A− αI

)(
z
x

)
= βi

(
z
x

)
.(3.1a)

Similarly

H(α + η)

(
ẑ
x̂

)
=

(
−(A∗ − (α + η)I) δI

B̂ A− (α + η)I

)(
ẑ
x̂

)
= βi

(
ẑ
x̂

)
.(3.1b)

Both of the eigenvalue problems above are Hamiltonian, i.e., JH(α) and JH(α + η)
are Hermitian where

J =

(
0 I
−I 0

)
(3.2)
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with n×n blocks. The Hamiltonian property implies that the matrices H(α+ η) and
−H(α+ η)∗ have the same set of eigenvalues. For H(α) and H(α+ η) or equivalently
H(α) and −H(α + η)∗ to share a common pure eigenvalue βi, the following matrix
equation

(
−(A∗ − αI) δI

B̂ A− αI

)
X + X

(
−(A∗ − (α + η)I) δI

B̂ A− (α + η)I

)∗

= 0(3.3)

or equivalently

(
−A∗ δI

B̂ A

)
X + X

(
−(A− ηI) B̂

δI A∗ − ηI

)
= α

((
−I 0
0 I

)
X + X

(
−I 0
0 I

))(3.4)

must have a nonzero solution X ∈ C
2n×2n. Partition X =

(X11 X12

X21 X22

)
, and let

vec(X) denote the vector formed by stacking the column vectors of X. We will use
the following properties of Kronecker products:

vec(AX) = (I ⊗A)vec(X), vec(XA) = (AT ⊗ I)vec(X).

Now we can rewrite (3.4) as

⎛
⎜⎜⎝
−A∗

1 −AT
2 δI δI 0

BT
2 −A∗

1 + Ā2 0 δI
B1 0 A1 −AT

2 δI
0 B1 BT

2 A1 + Ā2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

vec(X11)
vec(X12)
vec(X21)
vec(X22)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
−2αvec(X11)

0
0

2αvec(X22)

⎞
⎟⎟⎠,

(3.5)

where A1 = I ⊗A, A2 = (A− ηI) ⊗ I, B1 = I ⊗ B̂, B2 = B̂ ⊗ I, and Ā2 denotes the
matrix obtained by taking the complex conjugate of A2 entrywise.

The (1, 2), (2, 1) entries of both sides of (3.4) lead to

(
BT

2 δI −A∗
1 + Ā2 0

B1 δI 0 A1 −AT
2

)
⎛
⎜⎜⎝

vec(X11)
vec(X22)
vec(X12)
vec(X21)

⎞
⎟⎟⎠ = 0.

We then have

(
vec(X12)
vec(X21)

)
= −

(
−A∗

1 + Ā2 0
0 A1 −AT

2

)−1 (
BT

2 δI
B1 δI

)(
vec(X11)
vec(X22)

)
(3.6)

under the assumption that A does not have two eigenvalues that differ by η, in which
case the matrix A1−AT

2 is invertible and therefore the inverted matrix in (3.6) exists.
This assumption is generically satisfied in practice (numerical troubles that occur
when η is small are discussed in section 5). On the other hand the (1, 1), (2, 2) entries
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of both sides of (3.4) give

(
−A∗

1 −AT
2 0 δI δI

0 A1 + Ā2 B1 BT
2

)
⎛
⎜⎜⎝

vec(X11)
vec(X22)
vec(X12)
vec(X21)

⎞
⎟⎟⎠

= 2α

(
−I 0 0 0
0 I 0 0

)
⎛
⎜⎜⎝

vec(X11)
vec(X22)
vec(X12)
vec(X21)

⎞
⎟⎟⎠,

which can be simplified with (3.6) to

[(
−A∗

1 −AT
2 0

0 A1 + Ā2

)
−
(

δI δI
B1 BT

2

)(
−A∗

1 + Ā2 0
0 A1 −AT

2

)−1 (
BT

2 δI
B1 δI

)]

(
vec(X11)
vec(X22)

)
= 2α

(
−I 0
0 I

)(
vec(X11)
vec(X22)

)
,

i.e.,

Av = αv,(3.7)

where

A =
1

2

[(
A∗

1 + AT
2 0

0 A1 + Ā2

)
−
(
−δI −δI
B1 BT

2

)(
−A∗

1 + Ā2 0
0 A1 −AT

2

)−1(
BT

2 δI
B1 δI

)]
.

(3.8)

For the verification of a pair α and β satisfying (2.1), we first solve the eigenvalue
problem (3.7). If there exists a real eigenvalue α of this problem such that the matri-
ces H(α) and H(α + η) share a common imaginary eigenvalue, then the verification
succeeds.

3.2. Inverse iteration. The eigenvalue problem in (3.7) is a simplified version
of the generalized eigenvalue problem in [6]. This is a problem of finding the real eigen-
values of a nonsymmetric matrix. The implementation2 of the trisection algorithm
of [3] uses the Matlab function eig to compute the eigenvalues of that generalized
eigenvalue problem with a cost of O(n6) and therefore does not exploit the fact that
we need only the real eigenvalues of the generalized problem. In section 3.3 we discuss
two strategies to extract the real eigenvalues of a given matrix X that is preferable to
eig when the closest eigenvalue of X to a given point can be obtained efficiently.

In this section we show how one can compute the closest eigenvalue of A to a given
point in the complex plane in O(n3) time. This is due to the fact that given a shift ν

and a vector u ∈ C
2n2

, the multiplication (A − νI)−1u can be performed by solving
a Sylvester equation of size 2n× 2n which is derived next. Therefore, shifted inverse
iteration or shift-and-invert Arnoldi can locate the closest eigenvalue efficiently.

2http://www.cs.nyu.edu/faculty/overton/software/uncontrol/.
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3.2.1. Computing A−1u. We first derive the Sylvester equation whose solution
yields v = A−1u, where u =

(
u1

u2

)
, v =

(
v1

v2

)
, and u1, u2, v1, v2 ∈ C

n2

. We can also
write

A
(
v1

v2

)
=

(
u1

u2

)
.(3.9)

Let

w =

(
w1

w2

)
=

(
−A∗

1 + Ā2 0
0 A1 −AT

2

)−1 (
BT

2 δI
B1 δI

)(
v1

v2

)
.(3.10)

Then (3.9) can be rewritten as
(
A∗

1 + AT
2 0

0 A1 + Ā2

)(
v1

v2

)
−
(
−δI −δI
B1 BT

2

)(
w1

w2

)
= 2

(
u1

u2

)
.(3.11)

Equations (3.10) and (3.11) can then be combined into one linear system
⎛
⎜⎜⎝
A∗

1 + AT
2 δI δI 0

BT
2 A∗

1 − Ā2 0 δI
B1 0 −A1 + AT

2 δI
0 −B1 −BT

2 A1 + Ā2

⎞
⎟⎟⎠

⎛
⎜⎜⎝
v1

w1

w2

v2

⎞
⎟⎟⎠ = 2

⎛
⎜⎜⎝
u1

0
0
u2

⎞
⎟⎟⎠,(3.12)

which is analogous to (3.5). By introducing vector forms

u =

(
vec(U1)
vec(U2)

)
, v =

(
vec(V1)
vec(V2)

)
, w =

(
vec(W1)
vec(W2)

)
,

we get a matrix equation similar to (3.4),
(
A∗ δI

B̂ −A

)
Z + Z

(
A− ηI B̂

δI −A∗ + ηI

)
= 2

(
U1 0
0 −U2

)
,(3.13)

where

Z =

(
V1 W1

W2 V2

)
.(3.14)

Equation (3.13) is a 2n × 2n Sylvester equation. By using a Sylvester equation
solver (such as the lapack routine dtrsyl [1]) we can solve for Z at O(n3) cost and
thus obtain v = A−1u.

3.2.2. Computing (A− νI)−1u. The derivation of the Sylvester equation for
the multiplication A−1u easily extends to the multiplication (A− νI)−1u for a given
shift ν. We alternatively rewrite the multiplication as

(A− νI)

(
v1

v2

)
=

(
u1

u2

)
(3.15)

and introduce w =
(
w1

w2

)
as in the previous section. We end up with

⎛
⎜⎜⎝
A∗

1 + AT
2 − 2νI δI δI 0

BT
2 A∗

1 − Ā2 0 δI
B1 0 −A1 + AT

2 δI
0 −B1 −BT

2 A1 + Ā2 − 2νI

⎞
⎟⎟⎠

⎛
⎜⎜⎝
v1

w1

w2

v2

⎞
⎟⎟⎠ = 2

⎛
⎜⎜⎝
u1

0
0
u2

⎞
⎟⎟⎠,

(3.16)
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which is analogous to (3.12). In terms of a matrix equation, we obtain

(
A∗ − νI δI

B̂ −A + νI

)
Z + Z

(
A− (η + ν)I B̂

δI −A∗ + (η + ν)I

)
= 2

(
U1 0
0 −U2

)
,

(3.17)

where Z is as defined in (3.14). Equation (3.17) is identical to (3.13) except that A
is replaced by A− νI in (3.13) and thus can be solved at O(n3) cost.

3.3. Real eigenvalue searching strategies. In this section we seek the real
eigenvalues of a given matrix X ∈ C

q×q. The iterative methods here are preferable
to the standard ways of computing eigenvalues such as the QR algorithm when (X −
νI)−1u for a given shift ν ∈ R and a given vector u ∈ C

q is efficiently computable. In
particular, as discussed in the previous section, this is the case for A.

Throughout this section we will assume the existence of a reliable implementation
of the shifted inverse iteration or a shift-and-invert Arnoldi method that returns the
closest eigenvalue to a given shift accurately. In practice we make use of the Matlab

function eigs (based on ARPACK [9, 10]). Additionally, we assume that an upper
bound, D, on the norm of X is available and therefore we know that all of the real
eigenvalues lie in the interval [−D,D]. A straightforward approach would be to par-
tition the interval [−D,D] into equal subintervals and find the closest eigenvalue to
the midpoint of each interval. This approach must work as long as the subintervals
are chosen small enough. Nevertheless, partitioning [−D,D] into very fine subinter-
vals is not desirable, since this will require an excessive number of closest eigenvalue
computations. Next we present two viable approaches that are both reliable and
efficient.

3.3.1. Adaptive progress. The first approach we present here is rather brute-
force. In addition to the existence of an upper bound D on the norm of X , we assume
that a positive number

d ≤ min
λi,λj :distinct eigenvalues

|λi − λj |(3.18)

is known a priori. We start from the right endpoint D as our initial shift. At each
iteration we compute the closest eigenvalue to the current shift and decrement the
current shift by an amount depending on the distance from the computed eigenvalue
to the shift. We keep decrementing the shift until we reach the left endpoint.

The way the shift ν is updated depends on the closest eigenvalue λ that is found.
If λ is real and already discovered, then λ must be larger than ν. In this case there
is no real eigenvalue in the interval (ν − (λ − ν), ν]. Additionally there is no real
eigenvalue in the interval (λ − d, λ]. The corresponding update rule in Algorithm 3
combines these two conditions. When λ is real and not discovered, the shift ν is λ−d.
Finally when the closest eigenvalue is not real, the new shift is set to the leftmost of
the intersection points of two circles with the real line. One of the circles is centered
at ν and has radius |λ− ν|. The second circle is centered at λ and has radius d.

In Figure 3.1 the progress of Algorithm 3 on an example is shown. The algorithm
iterates 10 times to investigate the part of the real axis where the eigenvalues are
known to lie. In particular notice that the algorithm locates the same eigenvalue near
the real axis at the second, third, and fourth iterations and another on the real axis
at the fifth, sixth, and seventh iterations. Locating the same eigenvalue a few times
is a deficiency of this algorithm.
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Fig. 3.1. The first eight iterations (top leftmost is the first iteration; iteration numbers increase
from left to right and top to bottom) of the adaptive progress algorithm on an example are displayed.
Black dots denote the eigenvalues. Squares mark the location of the shift ν. The closest eigenvalue
to ν is denoted by λ. The part of the real axis already investigated is marked by a thicker line.
Iterations 2, 3, 4 locate the same eigenvalue close to the real axis and iterations 5, 6, 7 locate the
same real eigenvalue repeatedly. Little progress is achieved in moving the shift toward the left during
these iterations. When an undiscovered real eigenvalue is located, the next shift is obtained by
subtracting d, a lower bound on the distance of the closest two eigenvalues, from the real eigenvalue.
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Algorithm 3 Adaptive progress real eigenvalue search algorithm

Call: Λ ← Adaptive Progress(X ,D,d).
Input: X ∈ C

q×q, D, an upper bound on the norm of X , and d, a lower
bound for the distance between the closest two eigenvalues of
X .

Output: Λ ∈ R
l with l ≤ q containing all of the real eigenvalues of X

in the interval [−D,D].

1. Initially set the shift ν ← D and the vector of real eigenvalues Λ ← [ ].
while ν ≥ −D do

Compute the closest eigenvalue λ to the shift ν.
if λ is real then

if λ ∈ Λ then
% λ is real and already discovered.
ν ← ν − max(|λ− ν|, d− |λ− ν|).

else
% λ is real but not discovered yet.
Add λ to Λ.
ν ← λ− d.

end if
else

% Otherwise λ is not purely real. Choose the leftmost
% intersection point of the circle centered at ν and with
% radius |ν − λ| and the circle centered at λ and with
% radius d with the real line as the new shift.
if d ≥ Im λ then

% Both of the circles intersect the real line.
ν ← min(Re λ−

√
d2 − Im λ2, ν − |ν − λ|).

else
% Only the circle centered at ν intersects the real line.
ν ← ν − |ν − λ|.

end if
end if

end while
2. Return the real eigenvalue list Λ.

From the description of the algorithm it is not clear whether it terminates. The
next theorem shows that the adaptive progress algorithm indeed terminates.

Theorem 3.1. Let the shift of Algorithm 3 at a given iteration be ν. The next
shift will be no larger than ν− d

2 . Thus the number of closest eigenvalue computations

is O(Dd ).

Proof. Clearly when the closest eigenvalue λ is real, the shift is decremented by
at least d/2. Therefore let us focus on the case when the eigenvalue λ is not real.

We will find a lower bound for the progress h such that the next shift is ν − h.
When only the circle centered at ν intersects the real line (i.e., the imaginary part of
λ is greater than d), it is apparent from Figure 3.2c that the distance |λ−ν| is greater
than or equal to d. Since the next shift is set to the intersection point ν − |λ− ν|, we
have h = |λ−ν| ≥ d. When both of the circles intersect the real line, as in Figure 3.2a
and Figure 3.2b, the progress h is the maximum of the lengths of the line segment
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λ

β

d
|λ − ν|

νν − |λ − ν|

a)
λ

d

β

|λ − ν|

ν

ν − |λ − ν|

b)
λ

d |λ − ν|

ν|λ − ν|ν − |λ − ν|

c)

Fig. 3.2. Three possibilities for the adaptive progress algorithm when the closest eigenvalue λ
to the shift ν is not real. The circular arcs are arcs of the circle centered at ν with radius |λ−ν| and
the circle centered at λ with radius d. The point β is the intersection point of the second circle with
the real line. a) Both of the circles intersect the real line, and the circle centered at λ intersects the
real line further to the left. b) Both of the circles intersect the real line, and the circle centered at
ν intersects the real line further to the left. c) Only the circle centered at ν intersects the real line.

from ν to λ and the line segment from ν to β. In both cases, since in the triangle
with vertices ν, β and λ, the length of the third edge from β to λ is d, the triangular
inequality yields

max(|ν − λ|, |ν − β|) ≥ d

2
.

As the length of the interval to be searched is 2D, the maximum number of closest
eigenvalue computations is bounded by 4D

d .
We point out a few disadvantages of the adaptive progress approach. The most

obvious is the need for a lower bound on the distance between the closest two eigen-
values of X . For reliability, one needs to set d small. The consequence of choosing d
small, however, is too many closest eigenvalue computations. A second disadvantage
of the adaptive progress approach is that once it detects a new real eigenvalue, it will
typically continue to converge to the same eigenvalue with the next few shifts that
are close to the eigenvalue. Finally, when an upper bound on ‖X‖ is not available,
in a robust implementation D must be chosen large, and clearly this degrades the
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performance of the algorithm.

3.3.2. Divide and conquer. As an alternative to the adaptive progress ap-
proach it is possible to apply a divide and conquer algorithm. Unlike the adaptive
progress approach, the divide and conquer algorithm does not require the knowledge
of a lower bound on the distance between the closest two eigenvalues of X . In addition
it chooses shifts that are away from the computed eigenvalues in order to avoid the
discovery of the same eigenvalue too many times (to be precise, each eigenvalue can be
discovered at most three times). Even though an upper bound D on the norm of X is
required and may not be available in general, in practice we can choose D very large
so that the interval [−D,D] contains all of the real eigenvalues and, as we discuss,
this affects the number of closest eigenvalue computations insignificantly. The factor
most affecting the efficiency of the algorithm is the eigenvalue distribution.

Algorithm 4 Divide and conquer real eigenvalue search algorithm

Call: Λ ← Divide And Conquer(X ,L,U).
Input: X ∈ C

q×q, a lower bound L for the smallest real eigenvalue
desired and an upper bound U for the largest real eigenvalue
desired.

Output: Λ ∈ R
l with l ≤ q containing all of the real eigenvalues of X

in the interval [L,U ].

1. Set the shift ν ← (U+L)
2 .

2. Compute the eigenvalue λ closest to the shift ν.
if U − L < 2|λ− ν| then

% Base case: there is no real eigenvalue in the interval [L,U ].
Return [ ].

else
% Recursive case: Search the left and right intervals.
ΛL ← Divide And Conquer(X ,L,ν − |λ− ν|)
ΛR ← Divide And Conquer(X ,ν + |λ− ν|,U)
% Combine all of the real eigenvalues.
if λ is real then

Return λ ∪ ΛL ∪ ΛR.
else

Return ΛL ∪ ΛR.
end if

end if

In this approach, given an interval [L,U ] we compute the eigenvalue of X closest
to the midpoint of the interval ν = U+L

2 . If the modulus of the difference between
the computed eigenvalue λ and the midpoint ν is greater than half of the length
of the interval, then we terminate. Otherwise we apply the same procedure to the
subintervals [L, ν − |λ − ν|] and [ν + |λ − ν|, U ]. Initially we apply the algorithm to
the whole interval [−D,D].

Figure 3.3 illustrates the first six iterations of the divide and conquer algorithm
on the same example used in Figure 3.1. The divide and conquer algorithm completes
the investigation of the real interval where the real eigenvalues reside after iterating
7 times as opposed to the 10 iterations required by the adaptive progress algorithm.

For reliability the parameter D must be chosen large. Suppose all the eigenvalues
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are contained in the disk of radius D′ with D′ 
 D. To discover that there is no real
eigenvalue in the interval [D′, D], at most two extra closest eigenvalue computations
are required. If the first shift tried in the interval [D′, D] is closer to D′ than D, then
the distance from the closest eigenvalue to this shift may be less than half the length
of the interval [D′, D], so a second closest eigenvalue computation may be needed.
Otherwise the interval [D′, D] will be investigated in one iteration. Similar remarks
hold for the interval [−D,−D′]. However, the larger choices of D may slightly increase
or decrease the number of shifts required to investigate [−D′, D′]. The important
point is that regardless of how large D is compared to the radius of the smallest disk
containing the eigenvalues, the cost is limited to approximately four extra iterations.

Next we show that the number of closest eigenvalue computations cannot exceed
2q + 1 (recall that X ∈ C

q×q).
Theorem 3.2 (worst case for Algorithm 4). The number of closest eigenvalue

computations made by Algorithm 3.2 is no more than 2q + 1.
Proof. We can represent the progress of the algorithm by a full binary tree,

i.e., a tree with each node having either two children or no children. Each node of
the tree corresponds to an interval. The root of the tree corresponds to the whole
interval [−D,D]. At each iteration of the algorithm the interval under consideration
is either completely investigated or replaced by two disjoint subintervals that need to
be investigated. In the first case, the node corresponding to the current interval is a
leaf. In the second case, the node has two children, one for each of the subintervals.

We claim that the number of leaves in this tree cannot exceed q+1. The intervals
corresponding to the leaves are disjoint. Each such interval has a closest left interval
(except the leftmost interval) and a closest right interval (except the rightmost inter-
val) represented by two of the leaves in the tree. Each interval is separated from the
closest one on the left by the part of a disk on the real axis in which an eigenvalue
lies, and similarly for the closest interval on the right. Since the matrix X has q eigen-
values, there can be at most q separating disks and therefore at most q + 1 disjoint
intervals represented by the leaves of the tree. A full binary tree with q+1 leaves has
q internal nodes. Therefore, the total number of the nodes in the tree, which is the
same as the number of closest eigenvalue computations, cannot exceed 2q + 1.

The upper bound 2q + 1 on the worst case performance of the algorithm is tight,
as illustrated by the following example. Consider a matrix with the real eigenvalues
2j−1−1
2j−1 , j = 1, . . . , q, and suppose we search over the interval [−1, 1]. Clearly, the

algorithm discovers each eigenvalue twice except the largest one, which it discovers
three times (assuming that when there are two eigenvalues equally close to a midpoint,
the algorithm locates the eigenvalue on the right). Therefore, the total number of
closest eigenvalue computations is 2q + 1.

Next we aim to show that the average case performance of the algorithm is much
better than the worst case. First we note the following elementary result that is an
immediate consequence of the fact that the square-root function is strictly concave.

Lemma 3.3. Given l positive distinct integers k1, k2, . . . , kl and l real numbers
p1, p2, . . . , pl ∈ (0, 1) such that

∑l
j=1 pj = 1, the inequality

√√√√
l∑

j=1

pjkj >

l∑
j=1

pj
√
kj(3.19)

holds.
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Fig. 3.3. First six iterations of the divide and conquer algorithm on the same example used in
Figure 3.1.

In the average case analysis we let the eigenvalues of X , say ξ1, ξ2, . . . , ξq, vary. We
assume that the eigenvalues are independently selected from a uniform distribution
inside the circle centered at the origin with radius μ. We use Algorithm 4 to compute
the real eigenvalues lying inside the circle of radius D = 1 ≤ μ (the value of the radius
D is irrelevant for the average case analysis as discussed below; we choose D = 1 for
simplicity). In Table 3.1 the random variables and the probability density functions
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Table 3.1

Notation for Theorem 3.4.

X : Number of iterations performed by Algorithm 4.
N : Number of eigenvalues lying inside the unit circle.
H : Modulus of the eigenvalue closest to the origin.
Xl : Number of iterations performed by Algorithm 4 on the left in-

terval [−1,−H].
Xr : Number of iterations performed by Algorithm 4 on the right

interval [H, 1].
Nl : Number of eigenvalues lying inside the left circle centered at

−(1 + H)/2 with radius (1 −H)/2.
h(H|N = j) : The probability density function of the variable H given there

are j eigenvalues inside the unit circle.
gl(Nl|N = j,H = β) : The probability density function of the variable Nl given there

are j eigenvalues inside the unit circle and the smallest of the
moduli of the eigenvalues is β.

referenced by the proof of the next theorem are summarized.
The quantity we are interested in is E(X|N = j), the expected number of iter-

ations required by Algorithm 4 given that there are j eigenvalues inside the unit circle.

We list a few observations.
• The eigenvalues ω1, ω2, . . . , ωj contained in the circle of radius D = 1 are uni-

formly distributed and mutually independent: This is a simple consequence
of the assumption that the eigenvalues are selected from the uniform distri-
bution mutually independently. Let the eigenvalues inside the unit circle be
ξi1 , ξi2 , . . . , ξij with i1 < i2 < · · · < ij . We associate ωk with the location of
the kth smallest indexed eigenvalue inside the unit circle, i.e., ωk = ξik . Let
C1 denote the unit circle. The variable ωk is uniformly distributed because

p(ωk|j of ξ1, . . . , ξq ∈ C1)

=
∑

i1,...,ij

p(ξi1 , . . . , ξij ∈ C1|j of ξ1, . . . , ξq ∈ C1)p(ωk|ξi1 , . . . , ξij ∈ C1)

=
∑

i1,...,ij

(
q
j

)−1

p(ωk|ξik ∈ C1)

=
∑

i1,...,ij

(
q
j

)−1
1

π
=

1

π
.

Above the summation is over the subsets of ξ1, ξ2, . . . , ξq consisting of j ele-
ments. Similarly we can show that for k �= l,

p(ωk, ωl|j of ξ1, . . . , ξq ∈ C1) =
1

π2
.

Therefore the variables ω1, ω2, . . . , ωj are mutually independent.
• The eigenvalues φ1, φ2, . . . , φj−1 inside the unit circle but outside the circle

of radius H are uniformly distributed and mutually independent: Suppose
ωi1 , ωi2 , . . . , ωij−1 with i1 < i2 < · · · < ij−1 are the eigenvalues inside the
desired area. When we map ωik to φk, the argument above applies to prove
the uniformity and mutual independence of the variables φ1, φ2, . . . , φj−1.
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• Given c eigenvalues ϑ1, ϑ2, . . . , ϑc inside the left circle with radius 1−H
2 cen-

tered at (−(1+H)
2 , 0), each eigenvalue is uniformly distributed and mutually

independent: This again follows from the arguments above by mapping φik

to ϑk, where φi1 , φi2 , . . . , φic are the eigenvalues inside the desired region with
i1 < i2 < · · · < ic.

• Assuming the number of eigenvalues contained in the circle of radius D is
fixed, the expected number of iterations by the algorithm does not depend on
the radius D: Consider the variables ω̂1 denoting the locations of the j eigen-
values all inside the circle of radius D1, and ω̂2 = D2ω̂1

D1
denoting the locations

of the j eigenvalues inside the circle of radius D2. Let us denote the num-
ber of iterations by Algorithm 4 with input ω̂1 over the interval [−D1, D1] by
X1(ω̂1) and the number of iterations with input ω̂2 over the interval [−D2, D2]
by X2(ω̂2). It immediately follows that X1(ω̂1) = X1(

D1ω̂2

D2
) = X2(ω̂2). By

exploiting this equality we can deduce E(X1|N1 = j) = E(X2|N2 = j),

E(X1|N1 = j) =

∫
CD1

X1(ω̂1)p(ω̂1) dω̂1

=

(
1

πD2
1

)j ∫
CD1

X1(ω̂1) dω̂1

=

(
1

πD2
1

)j ∫
CD2

X1

(
D1ω̂2

D2

)
D2j

1

D2j
2

dω̂2

=

∫
CD2

X2(ω̂2)p(ω̂2) dω̂2

= E(X2|N2 = j),

where N1 and N2 are the number of eigenvalues inside the circle of radius
CD1 of radius D1 and the circle of radius CD2 of radius D2, respectively.
Note that the eigenvalues inside both the circle CD1 and the circle CD2 are
uniformly distributed and independent, as we discussed above.

By combining these remarks we conclude the equality E(X|N = j) = E(Xl|Nl =
j), since the eigenvalues are uniformly distributed and independent inside the circles,
and the sizes of the circles do not affect the expected number of iterations given that
there are j eigenvalues inside the circles.

The next theorem establishes a recurrence equation for E(X|N = j) in terms of
E(X|N = k), k = 0 . . . j − 1. Using the recurrence equation we will show E(X|N =
j) = O(

√
j) by induction. For convenience let us use the shorthand notation Ej(X)

for E(X|N = j).
Theorem 3.4. Suppose the eigenvalues of the input matrices of size q are chosen

from a uniform distribution independently inside the circle of radius μ and Algorithm 4
is run over the interval [−1, 1]. The quantity Ej(X) can be characterized by the
recurrence equation

E0(X) = 1(3.20)

and for all 0 < j < q

Ej(X) = 2Fj−1(X) + 1,(3.21)
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where Fj−1(X) is a linear combination of the expectations E0(X), . . . , Ej−1(X),

Fj−1(X) =

∫ 1

0

(
j−1∑
k=0

Ek(X)gl(Nl = k|N = j,H = β)

)
h(H = β|N = j) dβ.(3.22)

Proof. Equation (3.20) is trivial; when there is no eigenvalue inside the unit
circle, the algorithm will converge to an eigenvalue on or outside the unit circle and
terminate.

For j > 0 at the first iteration of the algorithm, we compute the closest eigenvalue
to the midpoint and repeat the same procedure with the left interval and with the
right interval, so the equality

X = Xl + Xr + 1

and therefore the equality

Ej(X) = E(Xl|N = j) + E(Xr|N = j) + 1(3.23)

follow. Clearly the number of iterations on the left and right intervals depend on the
modulus of the computed eigenvalue. By the definition of conditional expectations,
we deduce

E(Xl|N = j) =

∫ 1

0

E(Xl|N = j,H = β)h(H = β|N = j) dβ(3.24)

and similarly

E(Xr|N = j) =

∫ 1

0

E(Xr|N = j,H = β)h(H = β|N = j) dβ.(3.25)

Now we focus on the procedures applied on the left and right intervals. Let the
modulus of the eigenvalue computed at the first iteration be β. There may be up
to j − 1 eigenvalues inside the circle centered at the midpoint of the left interval
[−1,−β] and with radius 1−β

2 . The expected number of iterations on the left interval

is independent of the radius 1−β
2 and the number of eigenvalues lying outside this

circle. Therefore given the number of eigenvalues inside this circle, by the definition
of conditional expectations, the equality

E(Xl|N = j,H = β) =

j−1∑
k=0

E(Xl|Nl = k,N = j,H = β)gl(Nl = k|N = j,H = β)

=

j−1∑
k=0

E(Xl|Nl = k)gl(Nl = k|N = j,H = β)

=

j−1∑
k=0

Ek(X)gl(Nl = k|N = j,H = β)

(3.26)

is satisfied. A similar argument applies to the right interval to show the analogous
equality

E(Xr|N = j,H = β) =

j−1∑
k=0

Ek(X)gl(Nl = k|N = j,H = β).(3.27)
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By substituting (3.26) into (3.24), (3.27) into (3.25), and combining these with (3.23),
we deduce the result.

Corollary 3.5 (average case for Algorithm 4). Suppose the eigenvalues of the
matrices input to Algorithm 4 are selected uniformly and independently inside the
circle of radius μ. The expectation Ej(X) is bounded above by c

√
j + f − 1 for all

c ≥
√

12 and f ∈ [4/c2, 1/3].
Proof. The proof is by induction. In the base case, when there is no eigenvalue

inside the unit circle, the algorithm iterates only once, i.e., E0(X) = 1 ≤ c
√
f − 1.

Assume for all k < j, that the claim Ek(X) ≤ c
√
k + f − 1 holds. We need

to show the inequality Ej(X) ≤ c
√
j + f − 1 is satisfied under this assumption. By

definition (3.22) in Theorem 3.4 we have

Fj−1(X) ≤
∫ 1

0

(
j−1∑
k=0

(c
√
k + f − 1)gl(Nl = k|N = j,H = β)

)
h(H = β|N = j) dβ.

(3.28)

As we argued before, the uniformity and independence of each of the j−1 eigenvalues
inside the unit circle but outside the circle of radius H = β is preserved. In other
words gl(Nl|N = j,H = β) is a binomial density function, and we can explicitly write
gl(Nl = k|N = j,H = β), the probability that there are k eigenvalues inside the left
circle given that there are j − 1 eigenvalues contained in the unit circle and outside
the circle of radius β, as

gl(Nl = k|N = j,H = β) =

(
j − 1
k

)(
1 − β

4(1 + β)

)k (
1 − 1 − β

4(1 + β)

)j−1−k

.

Now the expected value of the binomial distribution above is (j − 1) 1−β
4(1+β) . From

Lemma 3.3, we deduce

√
j + f

2
≥

√
j − 1 + 4f

2

≥

√
(1 − β)(j − 1)

4(1 + β)
+ f

=

√√√√
j−1∑
k=0

(k + f)gl(Nl = k|N = j,H = β)

>

j−1∑
k=0

√
k + f gl(Nl = k|N = j,H = β).

Substituting the upper bound
√
j+f
2 for

∑j−1
k=0

√
k + f gl(Nl = k|N = j,H = β) in

(3.28) yields

Fj−1(X) ≤
∫ 1

0

(
c
√
j + f

2
− 1

)
h(H = β|N = j) dβ =

c
√
j + f

2
− 1.(3.29)

Now it follows from (3.21) that

Ej(X) ≤ c
√
j + f − 1(3.30)
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as desired.

Recall that we intend to apply the divide and conquer approach to A which has
size 2n2×2n2. Assume that the conditions of Corollary 3.5 hold for the eigenvalues of
A and the circle of radius D contains all of the eigenvalues. Suppose also that for any
shift ν, convergence of the shifted inverse iteration or shift-and-invert Arnoldi method
to the closest eigenvalue requires the matrix vector multiplication (A − νI)−1u for
various u only a constant number of times. Then the average running time of each
trisection step is O(n4), since finding the closest eigenvalue takes O(n3) time (which is
the cost of solving a Sylvester equation of size 2n a constant number of times) and we
compute the closest eigenvalue O(n) times at each trisection step on average. Because
of the special structure of the Kronecker product matrix A, even if the input matrices
have eigenvalues uniformly distributed and mutually independent, the eigenvalues of
A may not have this property. However, the numerical examples in the next section
suggest that the number of closest eigenvalue computations as a function of the size of
the Kronecker product matrices is still bounded by O(

√
q). According to Theorem 3.2,

in the worst case scenario, each trisection step requires O(n5) operations, which is an
improvement over computing all of the eigenvalues of A.

4. Numerical experiments. We first compare the accuracy of the new algo-
rithm with the divide and conquer approach, and Gu’s algorithm in [6] on a variety
of examples. Second, we discuss why in general we prefer the divide and conquer
approach over the adaptive progress approach. In our final example we aim to show
the asymptotic running time difference between the new method and Gu’s method.
All the tests are run using Matlab 6.5 under Linux on a PC.

4.1. Accuracy of the new algorithm and the old algorithm. We present
results comparing the accuracy of the new method using the divide and conquer ap-
proach with Gu’s method in [6]. In exact arithmetic both the method in [6] and the
new method using the divide and conquer approach must return the same interval,
since they perform the same verification by means of different but equivalent eigen-
value problems. Our data set consists of pairs (A,B), where A is provided by the
software package EigTool [13] and B has entries selected independently from the nor-
mal distribution with zero mean and variance one. The data set is available on the
web.3 In all of the tests the initial interval is set [0, σn([A B])] and the trisection
step is repeated until an interval (l, u] with u− l ≤ 10−4 is obtained.

When the second and third columns in Table 4.1 are considered, on most of the
examples the methods return the same interval with the exception of the companion,
Demmel, Godunov, and gallery5 examples. The common property of these matrices
is that they have extremely ill-conditioned eigenvalues. As we discuss in section 5,
when the matrix A has an ill-conditioned eigenvalue, the new method is not expected
to produce accurate small intervals containing the distance to uncontrollability. One
false conclusion that one may draw from Table 4.1 is that Gu’s method is always
more accurate than the new method. Indeed for the Basor–Morrison, Grcar, or Lan-
dau examples with n = 5 (for which the eigenvalues are fairly well conditioned) the
new method generates more accurate results than Gu’s method when one seeks in-
tervals of length around 10−6. In terms of accuracy these two methods have different
weaknesses.

3http://www.cs.nyu.edu/∼mengi/robust stability/data dist uncont.mat.
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Table 4.1

For pairs (A,B) with A chosen from EigTool as listed above in the leftmost column and B
normally distributed, intervals (l, u] that are supposed to contain the distance to uncontrollability of
the system (A,B) are computed with u − l ≤ 10−4 by both of the methods. The size of the system
(n,m) is provided next to the name of the matrix A in the leftmost column. In the fourth column
the norm of A computed by Matlab at the last trisection step is given. In the rightmost column the
norm of A is approximated using (5.1).

Example New method Gu’s method ‖A‖ ≈ ‖A‖
Airy(5,2) (0.03759,0.03767] (0.03759,0.03767] 8 × 107 7 × 108

Airy(10,4) (0.16337,0.16345] (0.16337,0.16345] 4 × 107 6 × 108

Basor–Morrison(5,2) (0.68923,0.68929] (0.68923,0.68929] 2 × 106 2 × 107

Basor–Morrison(10,4) (0.60974,0.60980] (0.60974,0.60980] 2 × 107 5 × 108

Chebyshev(5,2) (0.75026,0.75034] (0.75026,0.75034] 3 × 107 5 × 108

Chebyshev(10,4) (0.82703,0.82711] (0.82703,0.82711] 6 × 1010 3 × 1012

Companion(5,2) (0.42431,0.42438] (0.42431,0.42438] 2 × 108 4 × 109

Companion(10,4) (0.46630,0.46637] (0.46610,0.46616] 5 × 1013 5 × 1018

Convection diffusion(5,2) (0.69829,0.69836] (0.69829,0.69836] 7 × 105 1 × 107

Convection diffusion(10,4) (1.48577,1.48586] (1.48577,1.48586] 9 × 106 1 × 108

Davies(5,2) (0.23170,0.23176] (0.23170,0.23176] 2 × 106 2 × 107

Davies(10,4) (0.70003,0.70012] (0.70003,0.70012] 1 × 106 1 × 107

Demmel(5,2) (0.09090,0.09097] (0.09049,0.09056] 8 × 1049 Inf

Demmel(10,4) (0.12049,0.12057] (0.11998,0.12006] 9 × 1080 Inf

Frank(5,2) (0.45907,0.45916] (0.45907,0.45916] 1 × 107 7 × 108

Frank(10,4) (0.67405,0.67414] (0.67405,0.67414] 3 × 1016 2 × 1018

Gallery5(5,2) (0.17468,0.17474] (0.02585,0.02592] 1 × 1016 1 × 1029

Gauss–Seidel(5,2) (0.06279,0.06288] (0.06279,0.06288] 2 × 1020 Inf

Gauss–Seidel(10,4) (0.05060,0.05067] (0.05060,0.05067] 1 × 1030 3 × 1040

Godunov(7,3) (1.23802,1.23810] (1.23764,1.23773] 1 × 1014 8 × 1031

Grcar(5,2) (0.49571,0.49579] (0.49571,0.49579] 2 × 105 3 × 106

Grcar(10,4) (0.44178,0.44185] (0.44178,0.44185] 4 × 107 6 × 108

Hatano(5,2) (0.39570,0.39578] (0.39570,0.39578] 4 × 106 2 × 107

Hatano(10,4) (0.23297,0.23304] (0.23297,0.23304] 4 × 108 1 × 1010

Kahan(5,2) (0.18594,0.18601] (0.18594,0.18601] 8 × 108 2 × 1010

Kahan(10,4) (0.05587,0.05594] (0.05587,0.05594] 8 × 1013 7 × 1014

Landau(5,2) (0.41766,0.41773] (0.41766,0.41773] 1 × 105 1 × 106

Landau(10,4) (0.28166,0.28174] (0.28166,0.28174] 1 × 107 3 × 108

Markov chain(6,2) (0.04348,0.04358] (0.04348,0.04358] 3 × 107 5 × 108

Markov chain(10,4) (0.07684,0.07693] (0.07684,0.07693] 8 × 108 6 × 1010

Orr–Sommerfield(5,2) (0.04789,0.04796] (0.04789,0.04796] 1 × 109 8 × 109

Orr–Sommerfield(10,4) (0.07836,0.07843] (0.07836,0.07843] 2 × 1010 2 × 1012

Skew–Laplacian(8,3) (0.01001,0.01011] (0.01001,0.01011] 3 × 1010 4 × 1013

Supg(4,2) (0.06546,0.06554] (0.06546,0.06554] 7 × 108 4 × 109

Supg(9,4) (0.03627,0.03634] (0.03627,0.03634] 2 × 1013 1 × 1014

Transient(5,2) (0.11027,0.11036] (0.11027,0.11036] 3 × 107 4 × 108

Transient(10,4) (0.13724,0.13731] (0.13724,0.13731] 6 × 108 6 × 109

Twisted(5,2) (0.14929,0.14936] (0.14929,0.14936] 2 × 107 1 × 108

Twisted(10,4) (0.77178,0.77185] (0.77178,0.77185] 1 × 107 2 × 108
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Table 4.2

A comparison of the real eigenvalue extraction techniques when the matrix A has eigenvalues
squeezed in a small real interval.

Method d Computed interval No. of calls to eigs

Adaptive progress 10−1 (0.00702,0.00711] 19

Adaptive progress 10−2 (0.00474,0.00483] 35

Adaptive progress 10−3 (0.00476,0.00484] 81
Divide and conquer - (0.00476,0.00484] 13

Gu’s algorithm - (0.00476,0.00484] -

Table 4.3

A comparison of the real eigenvalue extraction techniques for an uncontrollable pair.

Method d Computed interval No. of calls to eigs
Adaptive progress 1 (0.13538,0.13546] 17
Adaptive progress 0.5 (0.00025,0.00033] 19
Adaptive progress 0.1 (0.00000,0.00008] 50

Divide and conquer - (0.00000,0.00008] 12
Gu’s algorithm - (0.00000,0.00008] -

4.2. Comparison of the real eigenvalue extraction techniques. When
the Kronecker product matrix A has too many eigenvalues close to the real axis, the
adaptive progress method is not the ideal real eigenvalue extraction technique. A
remedy for the efficiency problems in this case is choosing d large, which may cause
accuracy problems. Suppose we choose A = Q diag(v) Q∗, where

v = [−1 − 0.99 − 0.98 − 0.97 − 0.96]

and Q is a unitary matrix whose columns form an orthonormal basis for the column
space of a normally distributed matrix. The matrix B is chosen from a normal distri-
bution. The eigenvalue pattern of A is also reflected in A, as it also has eigenvalues
tightly squeezed around −1. Among the values listed in Table 4.2, d = 10−3 is the
one for which the adaptive progress approach returns the correct interval. But the
average number of calls to eigs for d = 10−3 by the adaptive progress approach is
more than six times the number of calls made by the divide and conquer approach.

In a second example we choose the pair

A =

⎛
⎝

1 1 0
0 0.95 1
0 0 0.9

⎞
⎠, B =

⎛
⎝

0
0.1
0

⎞
⎠,

which is uncontrollable since rank([A − 0.9I B]) = 2. In Table 4.3 we see that the
adaptive progress approach with d = 0.1 yields the correct interval. Nevertheless the
number of calls to eigs is once again excessive compared to the number of calls by
the divide and conquer approach.

These examples illustrate that there may not exist a d value such that the adaptive
progress returns an accurate result with fewer calls to eigs than the number of calls
required by the divide and conquer approach.

4.3. Running times of the new algorithm on large matrices. To observe
the running time differences between Gu’s method and the new method with the divide
and conquer approach, we run the algorithms on pairs (A,B) of various size, where A
is a Kahan matrix available through EigTool and B is a normally distributed matrix.
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Table 4.4

Running times of Gu’s method/new method in seconds and the average number of calls to eigs
by the new method for Kahan-random matrix pairs of various size.

Size (n,m) tcpu (Gu’s method) tcpu (new method) No. of calls to eigs
(10,6) 47 171 34
(20,12) 3207 881 63
(30,18) 46875 3003 78
(40,24) 263370 7891 92

1 1.5 2 2.5 3 3.5 4
10

1

10
2

10
3

10
4

10
5

10
6

Gu’s method
           
New method with   
divide and conquer

Fig. 4.1. Running times of the methods on Kahan-random matrix pairs are displayed as func-
tions of the size of the matrix in logarithmic scale.

We normalized the pairs (by dividing them by σn([A B])) so that the same number of
trisection steps are required. For (n,m) = (40, 24) we didn’t run Gu’s method, since
it takes an excessive amount of time. Instead we extrapolated its running time. For
all other sizes both methods return the same interval of length approximately 10−4.
In Table 4.4 the running times of both the algorithms and the average number of calls
to eigs made by the divide and conquer approach are provided for various sizes. For
small pairs Gu’s method is faster. However, for matrices of size 20 and larger the new
method is more efficient and the difference in the running times increases drastically
as a function of n. In the third column the average number of calls to eigs is shown
and apparently varies linearly with n. Figure 4.1 displays plots of the running times
as functions of n using a log scale. The asymptotic difference in the running times
agrees with the plots.

5. Concluding remarks. Based on the results in the previous section, among
all the methods discussed, the most reliable and efficient appears to be the new veri-
fication scheme with the divide and conquer approach to extract the real eigenvalues.
The divide and conquer approach requires only an upper bound on the norm of A. In
practice this parameter may be set arbitrarily large and the efficiency of the algorithm
is affected insignificantly. Alternatively the upper bound on ‖A‖ in [11], or when A
has simple eigenvalues, the formula (5.1) discussed below can be used.

Improvements to the divide and conquer approach still seem possible. As the
upper and lower bound become closer, the Kronecker product matrices A in two
successive iterations differ only slightly. Therefore it is desirable to benefit from the
eigenvalues computed in the previous iteration in the selection of the shifts. We
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address further details of the new algorithm below.

5.1. Sylvester equation solvers. The Sylvester equations needed to perform
the multiplication (A−νI)−1u are not sparse in general. We solve them by first reduc-
ing the coefficient matrices on the left-hand side of (3.17) to upper quasi-triangular
forms (block upper triangular matrices with 1 × 1 and 2 × 2 blocks on the diagonal).
Then the algorithm of Bartels and Stewart can be applied [2]. In our implementation
we used the lapack routine dtrsyl [1], which is similar to the method of Bartels and
Stewart, but rather than computing the solution column by column it generates the
solution row by row, bottom to top. A more efficient alternative may be the recursive
algorithm of Jonsson and K̊agström [7].

5.2. Difficulties in computing to a high precision. Gu’s method in [6]
suffers from the fact that the matrix Q12 in (2.4) becomes highly ill-conditioned
as δ → 0 and is not invertible at the limit. This is an issue if the input pair is
uncontrollable or nearly uncontrollable.

For the new method instability is caused by small η. The accuracy of the algo-
rithm depends on the ability to extract the real eigenvalues of A successfully. (The
imaginary eigenvalues of H(α) can be obtained reliably by using a Hamiltonian eigen-
value solver.) A computed eigenvalue of A differs from the exact one by a quantity
with modulus on the order of ‖A‖εmach/|w∗z|, where w and z are the corresponding
unit left and right eigenvectors, respectively. In general the more dominant factor in
the formation of this numerical error is the norm ‖A‖ rather than the absolute con-
dition number of the eigenvalue (appearing in the denominator), since the inverted
matrix in the definition of A is the inverse of a matrix that is nearly singular for small
η, and therefore the norm of A is big. There is another numerical trouble caused by
big ‖A‖. We cannot expect to solve the linear system (A − νI)x = u accurately for
A with large norm. This obviously has an effect on the convergence of shifted inverse
iteration and shift-and-invert preconditioned Arnoldi especially considering the fact
that the shift ν is not close to an eigenvalue in general. (Because of this, computing
the eigenvalues of A using the QR algorithm may be superior to computing them
using shifted inverse iteration or shift-and-invert preconditioned Arnoldi, as indeed
we observed in practice.) In our experience eigs has convergence problems typically
when the norm of A reaches the order of 1010. Smaller η contributes to the increase
in the norm of A; however, it is not the only factor. Indeed for certain pairs (A,B)
the norm ‖A‖ is large even when η is not small. Under the assumption that A is
diagonalizable, an upper bound on ‖A‖ is derived in [11]. Specifically when A has
simple eigenvalues, the upper bound on ‖A‖ in [11] simplifies to

2‖A‖ +
(2‖BB∗/δ − δI‖ + δ)2

η infdet(A−λI)=0 |y∗λxλ|2
(5.1)

with xλ and yλ denoting the unit right and unit left eigenvectors, respectively, cor-
responding to λ. Notice that the upper bound given by (5.1) can be efficiently com-
puted in O(n3) time, and therefore in an implementation it can be used to estimate
the length of the smallest interval containing the distance to uncontrollability that
can possibly be computed accurately. Surprisingly the norm of A heavily depends on
the worst conditioned eigenvalue of A, but it has little to do with the norm of A. For
instance, when A is normal and ‖B‖ is not very large, we expect that ‖A‖ exceeds
1010 only when η is smaller than 10−10 unless the pair (A,B) is nearly uncontrollable.
This in turn means we can reliably compute an interval of length 10−10 containing
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the distance to uncontrollability. On the other hand when A is far from being normal
or the pair (A,B) is close to being uncontrollable and a small interval is required, the
new method performs poorly. The accuracy of the intervals generated on various ex-
amples in Table 4.1 in the second column is also justified by (5.1). All of the examples
for which the method performs poorly are highly nonnormal. In the fourth column in
Table 4.1 the norms of A computed by calling Matlab’s norm at the last trisection
step (approximately when η is the difference between the upper and lower bounds of
the interval in the second column and δ is the upper bound of the interval) are listed.
In the rightmost column the upper bounds on the norm of A using (5.1) are provided.
For most of the pairs in Table 4.1 the upper bound on ‖A‖ in the rightmost column
is tight.

5.3. Alternative eigenvalue problem. To see whether there exists an α such
that H(α) and H(α + η) share an eigenvalue, we extract the real eigenvalues of A.
Alternatively we can solve the generalized eigenvalue problem

P − λM =

⎛
⎜⎜⎝

−A∗
1 −AT

2 δI δI 0
BT

2 −A∗
1 + Ā2 0 δI

B1 0 A1 −AT
2 δI

0 B1 BT
2 A1 + Ā2

⎞
⎟⎟⎠− λ

⎛
⎜⎜⎝

−I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 I

⎞
⎟⎟⎠.

(5.2)

The real eigenvalue extraction techniques are applicable to this problem as well, since
the scalar λ is an eigenvalue of the pencil above if and only if 1

λ−ν is an eigenvalue of

the matrix (P −νM)−1M . The multiplication x = (P −νM)−1My can be performed
efficiently by solving the linear system (P − νM)x = My. When we write this linear
system in matrix form, we obtain the Sylvester equation (3.3) but with α replaced by
ν and with the matrix

(
−Y11 0

0 Y22

)

replacing 0 on the right-hand side, where y = [vec(Y11) y12 y21 vec(Y22)]
T with

equal sized block components. Notice that the fact that the eigenvalue problem (5.2)
is of double size compared to the eigenvalue problem Ax = λx is not an efficiency
concern. We still solve Sylvester equations of the same size. The real issue is that
these two eigenvalue problems have different conditioning. Theoretically either of
them can be better conditioned than the other in certain situations. In practice we
retrieved more accurate results with the eigenvalue problem Ax = λx most of the
time, even though there are also examples on which the algorithm using (5.2) yields
more accurate results.

6. Software. By combining the new verification scheme and BFGS, it is possible
to come up with a more efficient and accurate algorithm. A local minimum of the
function σn([A − λI B]) can be found in a cheap manner by means of the BFGS
optimization algorithm. Notice that the cost of this local optimization step is O(1),
since we are searching over two unknowns, namely, the real and the imaginary parts
of λ. Using the new verification scheme we can check whether the local minimum is
indeed a global minimum as described in [3, Algorithm 5.3]. If the local minimum
is not a global minimum, the new verification scheme also provides us with a point
λ′, where the value of the function σn([A − λI B]) is less than the local minimum.
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Therefore we can repeat the application of BFGS followed by the new scheme until
we verify that the local minimum is a global minimum.

An efficient implementation of the new method is freely available.4 In this im-
plementation, by setting an input parameter appropriately, one can either run the
trisection method or the hybrid method just described. Typically, the new scheme is
faster than the previous implementation of the trisection method of [3] for matrices
of size larger than 20.
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Abstract. Stable versions of Newton’s iteration for computing the principal matrix pth root
A1/p of an n × n matrix A are provided. In the case in which X0 is the identity matrix, it is
proved that the method converges for any matrix A having eigenvalues with modulus less than 1
and with positive real parts. Based on these results we provide a general algorithm for computing
the principal pth root of any matrix A having no nonpositive real eigenvalues. The algorithm has
quadratic convergence, is stable in a neighborhood of the solution, and has a cost of O(n3 log p)
operations per step. Numerical experiments and comparisons are performed.
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1. Introduction. A useful tool for solving nonlinear equations is the Newton
method,

xk+1 = xk − f(xk)

f ′(xk)

for an initial value x0. For the algebraic equation xp − a = 0, a ∈ C, it turns into

(1.1) xk+1 =
(p− 1)xk + ax1−p

k

p
.

As pointed out by Cayley in 1879 [4], the study of the convergence of this iteration
is very hard for p > 2. In fact the set of initial values such that the iteration (1.1)
converges to a specific root is a beautiful but complicated set, and its boundary is the
so-called Julia set of the iteration.

For A ∈ C
n×n, one can consider the matrix iteration

(1.2) Xk+1 =
(p− 1)Xk + AX1−p

k

p

for solving the matrix equation

(1.3) Xp −A = 0.

One of the most interesting solutions of (1.3) is the principal pth root A1/p of A whose
eigenvalues lie in the sector

(1.4) Sp = {z ∈ C\{0} , −π/p < arg z < π/p}.
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If A has no nonpositive real eigenvalues, then there exists a unique principal pth root.
Here and hereafter we refer to (1.2) as the simplified Newton iteration.

The main applications of the matrix pth root are for the computation of the
logarithm of a matrix and the sector function; for other applications, see [7, 11].

Convergence and stability properties of (1.2) are important issues which play a
fundamental role in the design of an algorithm for the matrix pth root. Hoskins and
Walton [12] and Smith [18] take as initial value the matrix A. Unfortunately, as
discussed in [18], this choice leads to a convergence region not nice enough to design
a simple global convergent method.

Concerning stability, Higham [8] and Smith [18] have shown that the simplified
Newton iteration is unstable. That is, a small perturbation Δ in Xk, say the one
generated by roundoff, may lead to divergence of the sequence obtained by replacing
Xk by Xk + Δ. Thus divergence may occur even though the computation of Xk is
performed with a numerically stable algorithm. This makes the iteration of almost
no practical use.

In this paper we present a suitable modification of the simplified Newton iteration
which guarantees stability. Moreover we prove that, choosing X0 = I, convergence
occurs for any A having eigenvalues in the set D = {z ∈ C : |z| = 1, Re z > 0}. This
restriction can be relaxed by means of a suitable scaling, and we provide an algorithm
which converges for any A for which A1/p is defined. The iteration that we obtain
in this way has quadratic convergence and a cost per step of O(n3 log p) arithmetic
operations (ops).

Regarding available algorithms, an efficient numerical method for the principal
pth root uses the Schur form and was originally proposed by Björck and Hammarling
[3] for the square root, then extended by Higham [9] who suggested using the real
Schur form for real matrices, and generalized by Smith [18] to the matrix pth root.
This method, implemented in the MATLAB toolbox [10], is numerically stable and
requires O(n3p) ops [11]. The p factor in the operation count is a drawback for large
p, and it is desirable to have methods whose cost grows more slowly with p. An
interesting analysis of computing the principal matrix pth root has been performed in
[2], where the problem is investigated in terms of structured matrix computations and
where the Newton iteration for the equation Xp−A−1 is proposed. Other methods can
be designed based on the identities A1/p = exp( 1

p logA), where the functions log(·)
and exp(·) are the matrix generalizations of the customary log and exp functions,
respectively [16].

The paper is organized in the following way. In section 2 we show that for X0 = I,
Newton’s iteration converges for any matrix A with eigenvalues in D. In section 3
we discuss instability issues and propose new variants of (1.2) which, while keeping
the same cost of O(n3 log p) ops, are proved to be stable in a neighborhood of the
solution. In section 4 we describe our general algorithm and discuss some related
computational issues. Finally in section 5 we present some numerical experiments
and compare our method with the Schur method and with the method based on
logarithm and exponential. These results confirm the numerical stability and the
overall good performance of the new algorithms.

In the rest of the paper we use the notation π/2p instead of π/(2p) for the sake
of readability.

Remark 1. It was observed in [12, 18] that if A has no nonpositive real eigenvalues
and if X0 commutes with A, then the iterates generated by (1.2) coincide with the
ones generated by the Newton method in the Banach algebra of the matrices n × n



ON THE NEWTON METHOD FOR THE MATRIX pTH ROOT 505

for the equation F (X) = Xp −A = 0; that is

(1.5) Xk+1 = Xk − F ′−1
Xk

(F (Xk)) ,

provided that the Xk are well defined. The symbol F ′
Xk

here denotes the Fréchet
derivative computed at the point Xk. Unfortunately, even if the Fréchet derivative
is nonsingular in a neighborhood of A1/p, for some choice of A and X0 the Newton
method (1.5) may break down while the simplified one (1.2) still can be applied. See,
for instance, [11].

For this reason we will not consider the general theory of the Newton method in
Banach algebras, but only the theory of rational iterations. In fact, this approach is
easily generalizable to root-finding algorithms different from the Newton method.

2. Convergence. For p > 2 rational iterations such as (1.1) have a complicated
behavior [14], and it is very difficult to describe the set of initial values for which the
iteration converges to a root. The matrix case has a similar behavior; indeed it can
be reduced to the scalar one.

Our goal is to determine the set of A ∈ C
n×n for which Newton’s iteration con-

verges to A1/p for an initial value X0. The usual choice X0 = A [12, 18] gives a
complicated convergence region; here we show that with X0 = I the convergence
region is more suitable for designing a globally convergent algorithm.

First, we consider A diagonalizable, i.e., A = M−1DM with D diagonal and M
nonsingular. The general case has similar behavior and will be discussed later. Since
X0 = I, all the iterates are diagonalizable and we may define Dk = MXkM

−1 so that
(1.2) becomes

(2.1) Dk+1 =
(p− 1)Dk + DD1−p

k

p
,

which involves only diagonal matrices, and is essentially n uncoupled scalar iterations
of the type

(2.2)

⎧⎨
⎩

xk+1 =
(p− 1)xk + λx1−p

k

p
,

x0 = 1,

with λ being an eigenvalue of A.
Thus our main problem is to determine the set Bp of λ such that the iteration

(2.2) with x0 = 1 is well defined and converges to the principal pth root λ1/p, i.e., a
pth root of λ whose argument lies in the sector Sp of (1.4).

For any diagonalizable matrix A having eigenvalues in Bp, the Newton iteration,
with X0 = I, converges to A1/p. It is not surprising that the sets Bp, for p > 2, are
bounded by fractals similar to the Julia set of Newton’s iteration.

Some of these sets are sketched in Figure 2.1, in which we made a grid of 400×400
points corresponding to a discretization Q̂ of the square

Q = {z ∈ C,−3 ≤ Re z ≤ 3,−3 ≤ Im z ≤ 3}

and computed some steps of the Newton sequence (2.2) for λ ∈ Q̂. We plotted in
light gray the points λ for which the sequence xk converges to the principal pth root
of λ, and in dark gray the others.
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Fig. 2.1. A sketch of the region of convergence for p = 3, 5, 10, 100 and the set D of (2.3). In
light gray the points for which iteration (2.2) converges to their principal pth root.

It is easy to show, by means of standard arguments on the real Newton method,
that the positive real axis belongs to Bp for every p.

The following theorem synthesizes our main convergence result.

Theorem 2.1. The set Bp contains the set

(2.3) D = {z ∈ C ,Re z > 0, |z| ≤ 1}

for every p > 1.

Consequently if A has its eigenvalues in the set D, then the iteration (1.2), with
initial value X0 = I, is well defined and converges to A1/p.

For a general matrix A with no nonpositive real eigenvalues, the normalized matrix
square root B = A1/2/‖A1/2‖, where ‖ · ‖ is a generic matrix operator norm, has
eigenvalues in the set D. In fact for the spectral radius of B one has ρ(B) ≤ ‖B‖ = 1
and since the spectrum of A1/2 belongs to the right half-plane, the spectrum of B
belongs to the set D. Thus the Newton method applied to the matrix equation
Xp − B = 0, starting with X0 = I, converges to B1/p. Moreover, it is possible to
recover A1/p = (B1/p)2.

To prove Theorem 2.1, we use the following property.

Proposition 2.2. Let λ be a complex number with no nonpositive real part.
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Fig. 2.2. For p = 5 the set D of Theorem 2.1 (left) and the set D5 of Theorem 2.3 (right).

Then the sequence (2.2) converges to λ1/p if and only if the sequence

(2.4)

⎧⎨
⎩

zk+1 =
(p− 1)zk + z1−p

k

p
,

z0 = λ−1/p

converges to 1.
Proof. The proof follows from the equation zk = xkλ

−1/p, which can be proved
by induction.

Observe that (2.4) is the Newton method applied to the equation xp − 1 = 0. A
similar trick was used in [2]. The above property provides a connection between the
set Bp and the basin of attraction of the root x = 1, which we denote by Ap(1). In
fact, a complex number a �= 0 belongs to Bp if and only if a−1/p belongs to Ap(1)∩Sp.

In this way, we can restate Theorem 2.1 in the following form.
Theorem 2.3. The set Ap(1) contains the set Dp = {z ∈ S2p , |z| ≥ 1} for every

p > 1, where Sp is defined in (1.4).
A graphical example of the swap between the two theorems is given in Figure 2.2.

2.1. Proof of Theorem 2.3. Define

(2.5) Np(z) =
(p− 1)zp + 1

pzp−1

for the Newton step and denote by N
(k)
p the k-fold composition N ◦ N ◦ · · · ◦ N .

Observe also that the function Np(z) is well defined in Dp.
The proof can be divided into two stages. First, we show that Theorem 2.3 holds

if two inequalities are satisfied. Second, we show the validity of such inequalities.
We consider three sets depending on the positive values ξp and Rp (see Figure

2.3):
1. a disk Ep = {z ∈ C, |z − 1| < Rp} of center 1 and radius Rp;
2. a mincing knife, Fp = {z ∈ C, 1 ≤ |z| < ξp, | arg(z)| ≤ π/2p};
3. a blunt wedge, Gp = {z ∈ C, |z| ≥ ξp, | arg(z)| ≤ π/2p}.

We provide an algebraic equation with real solution sp = 1 − Rp and such that
the disk Ep is contained in Ap(1); then we provide a second algebraic equation with

real solution ξp and such that each point of the set Gp is transformed by N
(k)
p into a

point in Fp for some k ≥ 1. Finally we show that given a point z in Fp, the supremum
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Fig. 2.3. The three sets used in the proof of Theorem 2.3 for the case p = 5: the circle of radius
1 − s5, the mincing knife (dash contour), and the blunt wedge (dash-dot contour).

of the distance of Np(z) from 1 is reached in the corners of the mincing knife. So, in
order to prove that the points in Fp are transformed into points in Ep, it is enough to
compute |Np(z)−1| in the corners of Fp and prove that these values are less than Rp.
These are the desired inequalities. In fact, by verifying such inequalities for a specific
value of p, one can easily verify that Dp ⊂ Fp ∪Gp is a subset of Ap(1), which is the
statement of Theorem 2.3.

We start by giving a way to find a disk centered at the point z = 1, such that
Newton’s iteration converges if x0 is in this disk.

Lemma 2.4. The equation

(2.6) (2p− 1)sp − 2psp−1 + 1 = 0

has a unique real solution sp in the open interval (0, 1) and for every z such that
|z − 1| < Rp = 1 − sp and z �= 1, it holds that |Np(z) − 1| < |z − 1|.

Proof. Let us start from inequality |Np(z) − 1| < |z − 1|, namely

(2.7)

∣∣∣∣
(p− 1)zp − pzp−1 + 1

pzp−1

∣∣∣∣ < |z − 1|.

The polynomial φp(z) = (p − 1)zp − pzp−1 + 1 can be factorized as φp(z) = ((p −
1)zp−2 + · · · + 3z2 + 2z + 1)(z − 1)2, and the inequality (2.7) becomes

(2.8)
|(p− 1)zp−2 + · · · + 3z2 + 2z + 1||z − 1|

|pzp−1| < 1, z �= 1.

Now,

|(p− 1)zp−2 + · · · + 2z + 1||z − 1|
|pzp−1| ≤ 1

p

(
p− 1

|z| + · · · + 2

|z|p−2
+

1

|z|p−1

)
|z − 1|.

If |z − 1| < 1 − s, then |z|n > sn for every n and the inequality (2.7) holds if

(2.9)
1

p

(
p− 1

s
+ · · · + 2

sp−2
+

1

sp−1

)
(1 − s) − 1 ≤ 0.
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Multiplying both sides of the above inequality by psp−1(1− s), with 0 < s < 1, yields
φp(s) − psp−1(1 − s) ≤ 0, that is,

(2.10) (2p− 1)sp − 2psp−1 + 1 ≤ 0.

It is not difficult to show that the function fp(s) = (2p − 1)sp − 2psp−1 + 1 has the
following properties: fp(0) > 0, fp(1) = 0, f ′

p(1) > 0, and fp has only a relative
minimum in the interval (0, 1). All these facts guarantee that the equation fp(s) = 0
has a unique solution sp in the interval (0, 1) and that the inequality (2.10) holds for
every sp ≤ s ≤ 1.

To conclude, we recall that |z − 1| < 1 − s, and so for 0 < |z − 1| < Rp = 1 − sp,
it holds that |Np(z)− 1| < |z− 1|, which was what we wanted to show. Moreover, we
have a constructive way to find Rp by solving the polynomial equation of (2.10) in
the interval (0, 1).

This lemma guarantees that for each positive real value R < Rp the closed disk of
center 1 and radius R belongs to Ap(1). Moreover, it holds that |Np(sp)−1| = |sp−1|
and then Lemma 2.4 is not true for any value R > Rp.

In order to prove that the set Dp is a subset of Ap(1), we split Dp into two subsets.
The former is sent by Np into the disk of convergence found above, and the latter
is sent into the former after some iterations. First, we give a technical lemma that
states that any point of a blunt wedge is transformed by Np into a point of the wedge.
This will be used to show that a point of modulus greater than 1 gets closer to 1,
after some iterations, but still remains in the sector.

Lemma 2.5. If |z| > 1 and z ∈ S2p, then |Np(z)| < |z| and |arg(Np(z))| ≤
|arg(z)|.

Proof. For the first statement, it is easy to show that |z| > 1 yields

|Np(z)| =

∣∣∣∣
(p− 1)

p
z +

1

pzp−1

∣∣∣∣ ≤
(p− 1)

p
|z| + 1

p|z|p−1
<

(p− 1)

p
|z| + 1

p
< |z|.

For the second statement, let z = reiθ with r > 1 and 0 < |θ| < π/2p; more-
over, let N(z) = r1e

iθ1 . Our goal is to prove that |θ1| ≤ |θ|, which is equivalent to
| tan θ1| ≤ | tan θ|. From the definition of Np it can be shown that

tan θ1 =
rp(p− 1) sin θ − sin((p− 1)θ)

rp(p− 1) cos θ + cos ((p− 1)θ)

so that inequality | tan θ1| ≤ | tan θ|, for θ > 0, becomes

(2.11) − sin θ

cos θ
≤ rp(p− 1) sin θ − sin((p− 1)θ)

rp(p− 1) cos θ + cos((p− 1)θ)
≤ sin θ

cos θ
.

By means of trigonometric identities, the second inequality of (2.11) is equivalent to
sin(pθ) ≥ 0, which is true because 0 < θ < π/2p.

The first inequality (2.11) is equivalent to

r ≥ p

√
sin((p− 2)θ)

(p− 1) sin(2θ)
,

which is true in the region we have considered, where r > 1, and

sin((p− 2)θ)

(p− 1) sin(2θ)
< 1.
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The case θ < 0 is analogous by symmetry, and the case θ = 0 is trivial.
Even if a point of the sector having modulus greater than a real number R > 1 is

transformed by the Newton step Np into another point in the sector, we need to cut
the wedge enough so that each point of the blunt wedge is transformed by Np into
a point of modulus greater than 1. In the next lemma, we find a real value ξp that
satisfies this condition and is the least in modulus.

Lemma 2.6. The equation

(2.12) (p− 1)2s2p − p2s2p−2 + 1 = 0

has a unique real solution 1 < ξp < 2. For every z ∈ S2p such that |z| > ξp, it holds
that |N(z)| > 1.

Proof. Let R ≥ 1 and let us consider the set K = {z ∈ C, |z| ≥ R, |arg(z)| ≤
π/2p}. The minimum of |Np(z)| on the set K is attained at the point z0 = Reiπ/2p.
In order to prove this, let z = reiθ and consider |Np(z)| as a function of θ. We have

fr(θ) = |Np(z)| =

∣∣∣∣
(p− 1)zp + 1

pzp−1

∣∣∣∣ =
1

prp−1
|(p− 1)rpeipθ + 1|.

Observe that fr(θ) is minimum for θ = π/2p. Moreover, since

g(r) = |Np(re
iπ/2p)|2 =

(p− 1)2r2p + 1

(prp−1)2

is increasing for r > 1, we deduce that the minimum of |Np(z)| is attained at the
corners of K and in particular at the point z0. Now, in order to prove that |Np(z)| ≥ 1,
we solve the equation |Np(se

iπ/2p)| = 1, that is,

√
(p− 1)2s2p + 1

psp−1
= 1,

which yields (2.12). Now, it is not difficult to show that the function gp(s) =
(p− 1)2s2p − p2s2p−2 + 1 in (2.12) has the following properties: gp(1) < 0, g′p(1) < 0,
gp(2) > 0, and gp has only a critical point (a minimum) in the interval (1, 2). All
these facts guarantee that (2.12) has a unique solution ξp in the interval (1, 2). There-
fore, if |z| ≥ ξp, it holds that |Np(z)| ≥ |Np(ξpe

iπ/2p)| = 1 and this completes the
proof.

From Lemmas 2.5 and 2.6 we can conclude that a point of the set Dp having
modulus greater than ξp is sent, after some iterations, into a point of Dp having
modulus less than ξp.

Now, if the mincing knife

(2.13) Fp,R = {z ∈ C, 1 ≤ |z| ≤ R, |argz| ≤ π/2p},

with R = ξp, is sent into the ball |Np(z) − 1| < Rp, then the theorem is true.
In the next lemma, we show that the maximum of the function |Np(z)−1| on the

mincing knife is attained at one of the corners and so it is enough to check if these
four points are sent into the ball of convergence (for the symmetry of the problem we
need to check only two of them).

Lemma 2.7. Given a real number R > 1, the function f(z) = |Np(z)− 1| defined
on the set F = Fp,R of (2.13) takes its maximum at one of the corners of F .
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Proof. Let z = reiθ be a point of F . Observing that N(z) = N(z), it is enough
to consider the case θ ≥ 0.

We show that, restricted to the circle of radius r ≥ 1, the function f is nonde-
creasing with respect to θ (nonnegative), and hence the maximum lies on the segment
corresponding to θ = π/2p, 1 ≤ r ≤ R. Then, we show that the function is convex
in this segment and then takes its maximum at one of the two vertices, which are the
top corners.

To simplify the problem, consider the function

f̂(r, θ) = p2|Np(z) − 1|2 − p2

= (p− 1)2r2 +
1

r2p−2
+

2(p− 1)

rp−2
cos(pθ) − 2(p2 − p)r cos(θ) − 2p

rp−1
cos((p− 1)θ),

which has the same point of maximum of |Np(z) − 1| and is simpler.

First, consider the restriction of f̂ to an arc relative to a fixed value of r and
study the behavior with respect to θ.

Define gr(θ) = f̂(r, θ). We prove that gr(θ) is nondecreasing by showing that its
derivative,

g′r(θ) =
2p(p− 1)

rp−1
(sin((p− 1)θ) − r sin(pθ) + rp sin(θ)) ,

is nonnegative for 0 ≤ θ ≤ π/2p. From the sine addition formula, one has

(2.14) sin((p− 1)θ) − r sin(pθ) + rp sin(θ)

= sin((p− 1)θ)(1 − r cos(θ)) + r sin(θ)(− cos((p− 1)θ) + rp−1) ≥ 0,

and the last inequality follows from

r cos(θ) − 1

r(rp−1 − cos((p− 1)θ))
≤ r − 1

r(rp−1 − 1)
≤ 1

r
∑p−2

k=0 r
k
≤ 1

p− 1
≤ sin(θ)

sin((p− 1)θ))
,

where we used the fact that r ≥ 1 and that the inequality sin(nθ) ≤ n sin(θ) holds for
any positive integer n and 0 ≤ θ ≤ π/2p.

The inequality (2.14) implies that gr(θ) is nondecreasing for any r ≥ 1, and

then the maximum of f̂ (and of f) is assumed on the segment of F corresponding to
θ = π/2p.

Consider the function ϕ(r) = f(r, π/2p) on the interval [1, R]. We claim that
ϕ(r) is a convex function, namely ϕ′′(r) ≥ 0. Since cos(p π

2p ) = 0 and cos((p−1) π
2p ) =

sin(π/2p), it holds that

ϕ(r) = (p− 1)2r2 +
1

r2p−2
− 2p

rp−1
sin(π/2p) − 2p(p− 1)r cos(π/2p).

For its second derivative it holds that

ϕ′′(r) = 2(p− 1)2 +
2(p− 1)(2p− 1)

r2p
− 2p2(p− 1)

rp+1
sin(π/2p)

≥ 2(p− 1)2 +
2(p− 1)(2p− 1)

r2p
− 2(p− 1)(2p− 1)

rp+1
= h̃(r).

The inequality follows from p2 sin(π/2p) ≤ (2p− 1) for p ≥ 2.
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Now, h̃(r) is positive, and in fact can be rewritten as

2(p− 1)

r2p

(
rp−1(rp+1(p− 1) − 2p + 1) + 2p− 1

)
≥ 2(p− 1)

r2p

(
rp+1(p− 1)

)
≥ 0,

since rp−1 ≥ 1. The positivity of h̃ implies that the second derivative of ϕ(r) is positive
as well; then the function ϕ(r) is convex so that, restricted to any [a, b] ⊂ [1,+∞), it
takes its maximum at one of the edges a or b, and the proof is completed.

Finally we have a procedure to prove that for a value p > 1, Theorem 2.3 is true.
• Compute an approximation of Rp and ξp by means of some zero-finder method.
• Check if |Np(ξpe

iπ/2p) − 1| < Rp and |Np(e
iπ/2p) − 1| < Rp.

To conclude, it is enough to prove that the two inequalities are true for every
p ≥ 3 (the case p = 2 is relatively easy and was treated in [8]). We find an explicit
expression for a sequence bp ≤ Rp and a sequence ap ≥ ξp, and then we prove that

|Np(e
iπ/2p) − 1| < bp, |Np(ape

iπ/2p) − 1| < bp.

This is enough; in fact by Lemma 2.7 applied to the set Fp,ap , it holds that

|Np(ξpe
iπ/2p) − 1| ≤ |Np(ape

iπ/2p) − 1| < bp ≤ Rp.

We start with a lemma that gives explicitly values for ap and bp.
Lemma 2.8. The equation e−α(1+2α)−1 = 0 has a unique positive solution α0,

and it holds that

ξp ≤ ap =
p

p− 1
, Rp ≥ bp =

α

p

for every 0 < α ≤ α0.
Proof. ξp is the solution greater than 1 of gp(s) = 0, where gp = (p − 1)2s2p −

p2s2p−2 + 1 = s2p−2((p − 1)2s2 − p2) + 1. Now, gp(
p

p−1 ) = 1 > 0 and from the
arguments in the proof of Lemma 2.6, it follows that ap > ξp.

Concerning Rp, let us consider the polynomial fp = (2p− 1)sp − 2psp−1 + 1. The
number sp = 1 −Rp is the solution of the equation fp = 0 and 0 < sp < 1. From the
proof of Lemma 2.4, proving that fp(1 − bp) < 0 means that 1 − bp ≥ sp and then
bp ≤ Rp.

To find a lower bound to Rp of the type α/p, let us consider a generic 0 < α < 3
that yields

fp

(
1 − α

p

)
=

(
p− α

p

)p−1 (
α− (2α + 1)p

p

)
+ 1.

In order to have fp(1 − α/p) < 0, it is enough to prove that for every p > 2 the
sequence

dp =

(
p− α

p

)p−1 (
(2α + 1)p− α

p

)

is greater than 1. This sequence is decreasing for α > 0, as we will prove in Lemma
2.9, and its limit is e−α(1 + 2α). Therefore, fp(1 − α/p) > 1 if e−α(1 + 2α) > 1 and
this holds for each 0 < α ≤ α0, where α0 is the solution in (0, 3) of the equation
e−α(1 + 2α) = 1. It is easy to prove that this solution exists and is unique and that
α0 > 1.256.
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Lemma 2.9. The sequence dp of Lemma 2.8 is decreasing.
Proof. It is sufficient to prove that the function

f(x) =

(
x− α

x

)x−1 (
(2α + 1)x− α

x

)

is decreasing for x ≥ 3. For this purpose we prove that f ′(x) is negative. We have
f ′(x) = g(x)h(x) with h(x) trivially positive and

g(x) = log

(
x− α

x

)
+

(x− 1)α

x(x− α)
+

α

x((2α + 1)x− α)

is negative; in fact it is increasing and its limit to infinity is 0. To prove that g(x) is
increasing, it is enough to show that its derivative is positive, which holds by a direct
inspection.

Now we can finally complete the proof of our main theorem by means of the
following lemma.

Lemma 2.10. The two points of the corners of Fp,ap are sent by the Newton
iteration Np into points in the ball of center 1 and radius bp, i.e.,

∣∣∣Np(e
iπ/2p) − 1

∣∣∣ < α0

p
,

∣∣∣∣Np

(
p

p− 1
eiπ/2p

)
− 1

∣∣∣∣ <
α0

p
.

Proof. For the point z = eiπ/2p we have

|Np(z) − 1|2 =
1

p2

(
2p2 − 2p− 2 − 2p(p− 1) cos

(
π

2p

)
− 2p sin

(
π

2p

))
.

Since p > 2 and cos(x) ≥ 1 − x2/2 and sin(x) ≥ x− x3/6 for 0 < x < π/2,

p2|Np(z) − 1|2 ≤ 2p2 − 2p + 2 − (2p2 − 2p)

(
1 − π2

8p2

)
− 2p

(
π

2p
− π3

48p3

)

= 2 +
π2

4
− π +

(
π3

24p2
− π2

4p

)
≤ 2 +

π2

4
− π +

π3

24 · 9 < 1.47 < 1.57 < α2
0 = p2bp,

which is what we wanted to prove.
For the point z = ape

iπ/2p, setting γp = (p−1
p )p−1 = a1−p

p , one has

|Np(z) − 1|2 =
1

p2

(
2p2 + γ2

p − 2p2 cos

(
π

2p

)
− 2pγp sin

(
π

2p

))
.

It is possible to prove as in Lemma 2.9 that γp is a decreasing sequence that tends to
1/e; thus it holds that 1/e = γ∞ ≤ γp ≤ γ3 = 4/9.

Finally we have

p2|Np(z) − 1|2 ≤ 2p2 + γ2
3 − 2p2

(
1 − π2

8p2

)
− 2pγ∞

(
π

2p
− π3

48p3

)

=

(
4

9

)2

+
π2

4
− π

e
+

π3

24 · 9e
< 1.563 < 1.57 < α2

0 = p2bp.

This completes the proof.
A consequence of this proof is the applicability of the scalar Newton method

because the sequence zk of (2.4) never reaches zero in Dp, and so the sequence (2.2)
never reaches zero in D.
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2.2. Matrix convergence. We have shown that if the matrix A is diagonaliz-
able, then the iteration can be reduced to uncoupled scalar iterations, one for each
of the eigenvalues. In the general case, by means of the Jordan canonical form of A,
we may restrict our attention to the case where A ∈ C

n×n is a Jordan block, J(λ, n),
and λ belongs to the region D defined in (2.3).

In this case, define the functions gk(λ) as the kth iterate xk of the sequence
(2.2) and fk(z0) as the kth iterate zk of (2.4) and let φ(λ) = λ−1/p be defined on
the set C\(−∞, 0]. From Proposition 2.2 it follows that for any z ∈ C\(−∞, 0],
gk(z) = (fk ◦ φ)(z)z1/p. Observe that for the matrix iteration (1.2) with initial value
X0 = I, it holds that Xk = gk(J). We aim to prove that gk(J) converges to J1/p and
that the convergence is quadratic.

Let us recall that a function applied to a Jordan block is defined as [16, p. 311]

f(J) =

⎡
⎢⎢⎢⎢⎣

f(λ) f ′(λ) . . . f(n−1)(λ)
(n−1)!

. . .
. . .

...
f(λ) f ′(λ)

0 f(λ)

⎤
⎥⎥⎥⎥⎦
.

Then to prove Jordan block convergence from scalar convergence it is sufficient to
prove that

g
(n)
k (λ)

n!
−→ 1

n!

dn

dzn
z1/p

∣∣∣∣
z=λ

, n = 1, 2, 3, . . . .

We prove this fact in two steps. First, we show that the sequence gk(z) converges
uniformly on any compact subset of an open neighborhood of any point z belonging
to the set D of (2.3). Then, we show that the derivatives of gk evaluated at λ converge
to the derivative of the pth root function evaluated at λ and that the convergence of
gk(J) to J1/p is dominated by a quadratically convergent sequence.

We use the notation ‖f(x)‖K = supK |f(x)|.
Lemma 2.11. The sequence gk(z) converges uniformly to z1/p in any compact

subset of the set G = {z ∈ C ,Re z > 0, |z| < 1 + ε} for some ε > 0.
Proof. By the proof of Theorem 2.3, the set {z ∈ C, |z| ≥ 1, | arg z| ≤ π/2p} is

a subset of the immediate basin of attraction F for the fixed point 1 of the rational
iteration fk, which is open; thus the compact arc {|z| = 1, | arg z| ≤ π/2} admits
a finite open covering belonging to F and then there exists δ such that Gp = {z ∈
C, |z| > 1 − δ, | arg z| < π/2} is a subset of F and, from the properties of the Fatou
set [14, 1], the set {fk} is a normal family on Gp, and, by an easy argument it can be
shown that the sequence fk converges uniformly to 1 for any compact subset of Gp

(see [1, Thm. 6.3.1]).

Now, consider a compact set K̃ ⊂ G = {z ∈ C ,Re z > 0, |z| < (1 − δ)−p},
since φ(z) = z−1/p is a continuous map from the set G to the set Gp, φ(K̃) = K is
a compact subset of Gp, and, from what we said above, ‖fk(z) − 1‖K → 0. If we set
‖z1/p‖

K̃
= M , then

‖gk(z)− z1/p‖
K̃

= ‖z1/p((fk ◦φ)(z)−1)‖
K̃

≤ M‖(fk ◦φ)(z)−1‖
K̃

= M‖fk(z)−1‖K ,

and, since the last term tends to zero, the proof is thus achieved by choosing ε =
(1 − δ)−p − 1.
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To conclude, consider a compact neighborhood K ⊂ D of λ and a circle γ of
radius R, centered in λ and fully contained in K. The Cauchy formula yields
∣∣∣∣∣
g
(k)
n (λ)

k!
− 1

k!

dk

dzk
z1/p

∣∣∣∣
z=λ

∣∣∣∣∣ =

∣∣∣∣
1

2πi

∮
γ

gn(z) − z1/p

(z − λ)k+1
dz

∣∣∣∣ ≤
1

Rk
‖gn(z) − z1/p‖K → 0,

and then gn(J) converges to J1/p. Moreover, ‖gn(J)−J1/p‖∞ ≤ α‖fn(z)−1‖φ(K) for
some constant α, and the sequence fn(z) converges to 1 in any compact subset of Dp

and the convergence is quadratic (since it converges uniformly and in a neighborhood
of 1, it converges quadratically).

This approach can be generalized without any effort to any rational iteration
applied to a matrix.

3. Stable variants of the Newton method. Two stable iterations for the
matrix square root, that is, the Denman and Beavers iteration [6, 8]

(3.1)

⎧⎨
⎩

X0 = A, Y0 = I,

Xk+1 =
1

2
(Xk + Y −1

k ), Yk+1 =
1

2
(Yk + X−1

k ), k = 0, 1, . . . ,

and the Meini iteration [17]

(3.2)

{
Y0 = I −A, Z0 = 2(I + A),
Yk+1 = −YkZ

−1
k Yk, Zk+1 = Zk − 2YkZ

−1
k Yk, k = 0, 1, . . . ,

are variants of the Newton iteration. In particular the latter can be rewritten as an
iteration for the increment [13]

(3.3)

⎧⎪⎨
⎪⎩

X0 = A, H0 =
1

2
(I −A),

Xk+1 = Xk + Hk, Hk+1 = −1

2
HkX

−1
k+1Hk.

In fact, the instability of the simplified Newton iterations Xk+1 = (Xk+AX−1
k )/2

and Xk+1 = (Xk + X−1
k A)/2, shown by Higham [8], is mainly due to the pre- or post-

multiplication of X−1
k by A. On the other hand, since Xk commutes with A (see [13]),

the iteration can be rewritten as

(3.4) Xk+1 =
Xk + A1/2X−1

k A1/2

2

and also is stable in this new form, as one can see by a particular case of the analysis
made in section 3.1. Obviously (3.4) is useless since it involves the square root
of A, but it helps us to stabilize the iteration by introducing the variable Yk =
A−1/2XkA

−1/2 = A−1Xk = XkA
−1. The resulting iteration is that of Denman and

Beavers; we refer the reader to [13] for more details on this subject.
Repeating these arguments for the pth root, one has the simplified Newton iter-

ation Xk+1 = 1
p

(
(p− 1)Xk + AX1−p

k

)
or Xk+1 = 1

p

(
(p− 1)Xk + X1−p

k A
)
, which are

unstable as shown in [18]. We show in section 3.1 that, since the instability is due to
the one-sided multiplication by A, the modified equation

(3.5) Xk+1 =
(p− 1)Xk + (A1/pX−1)p−1A1/p

p
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provides in principle an iteration with optimal stability.
Now, with the square root in mind, we introduce the auxiliary variable Nk =

AX−p
k . It can be shown by induction that with the initial values X0 = I and N0 = A,

each of Xk, Nk, and A commutes with the others. This provides the following variant
of the simplified Newton iteration:

(3.6)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X0 = I, N0 = A,

Xk+1 = Xk

(
(p− 1)I + Nk

p

)
,

Nk+1 =

(
(p− 1)I + Nk

p

)−p

Nk.

Observe that the matrix A does not explicitly appear in the iteration. We denote
with the acronym HWA (handled without A) iterations having this feature. Observe
that, while Xk converges to A1/p, the sequence Nk converges to the identity matrix.

On the other hand, one can introduce the increment

(3.7) Hk =
AX1−p

k −Xk

p
= −X1−p

k

p
(Xp

k −A) ,

where Xp
k −A is the residual at the step k. Note that Hk commutes with A and Xk.

From (3.7) we obtain A = (Xk + pHk)X
p−1
k , which allows us to write

Hk+1 = −
X1−p

k+1

p

(
Xp

k+1 −A
)

= −
X1−p

k+1

p

(
Xp

k+1 − (Xk + pHk)X
p−1
k

)
.

Now, because Xk+1 = Xk + Hk we obtain

(3.8) Hk+1 = −
X1−p

k+1

p

(
Xp

k+1 − (pXk+1 − (p− 1)Xk)X
p−1
k

)

= −
Xk+1X

−p
k+1

p

(
Xp

k+1 − pXk+1X
p−1
k + (p− 1)Xp

k

)

= −Xk+1

p

(
I − pX1−p

k+1X
p−1
k + (p− 1)Xp

kX
−p
k+1

)
.

Setting Fk = XkX
−1
k+1 we can write an iteration for the increment of the Newton

iteration

(3.9)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X0 = I, H0 =
(A− I)

p
,

Xk+1 = Xk + Hk, Fk = XkX
−1
k+1,

Hk+1 = −Xk+1

(
I − F p

k

p
+ F p−1

k (Fk − I)

)
,

where the expression for Hk+1 has been written in a form that reduces the phe-
nomenon of numerical cancellation.

Unfortunately, the iteration (3.9) does not reduce to (3.3) in the case of the square
root. A nicer form that generalizes (3.3) is
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(3.10)⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X0 = I, H0 =
(A− I)

p
,

Xk+1 = Xk + Hk, Fk = XkX
−1
k+1

Hk+1 = −1

p
Hk(X

−1
k+1I + 2X−1

k+1Fk + 3X−1
k+1F

2
k + · · · + (p− 1)X−1

k+1F
p−2
k )Hk.

We call it incremental Newton (IN). Even if the form (3.10) is more symmetric than
(3.9), its computational cost is higher; in fact the computation of Hk+1 in the iteration
(3.10) can be performed in O(n3p) ops, and in the iteration (3.9), it can be performed
in O(n3 log p) ops.

3.1. Stability analysis. In accordance with [5] we define an iteration Xk+1 =
f(Xk) to be stable in a neighborhood of a solution X = f(X) if the error matrices
Ek = Xk −X satisfy

Ek+1 = L(Ek) + O(‖Ek‖2),

where L is a linear operator that has bounded powers; that is, there exists a constant
c > 0 such that for all n > 0 and arbitrary E of unit norm, Ln(E) < c. This means
that a small perturbation introduced in a certain step will not be amplified in the
subsequent iterations.

Note that this definition of stability is an asymptotic property and is different from
the usual concept of numerical stability, which concerns the global error propagation,
aiming to bound the minimum relative error over the computed iterates.

First, we show that the iteration (3.5) has optimal stability ; i.e., the operator L
coincides with the null operator. Then we show that the iterations (3.6) and (3.9) are
stable.

With Ek = Xk −A1/p, we have

(3.11) Ek+1 = Xk+1 −A1/p =
p− 1

p
Xk +

A1/pX−1
k · · ·A1/pX−1

k A1/p

p
−A1/p.

Now

X−1
k = (A1/p + Ek)

−1 = A−1/p −A−1/pEkA
−1/p + O(‖Ek‖2).

From this relation we obtain that

(3.12) A1/pX−1
k · · ·A1/pX−1

k A1/p = A1/p − (p− 1)Ek + O(‖Ek‖2).

Finally combining (3.11) and (3.12) yields

(3.13) Ek+1 =
p− 1

p
(A1/p+Ek)+

A1/p − (p− 1)Ek

p
−A1/p+O(‖Ek‖2) = O(‖Ek‖2),

which means that this iteration is stable, and the most stable possible according to
our definition because L = 0.

Now we consider the iteration (3.6) and introduce the error matrices Ek = Xk −
A1/p and Fk = Nk − I. For the sake of simplicity, we perform a first order error
analysis; that is, we omit all the terms that are quadratic in the errors. Equality up
to second order terms is denoted with the symbol

.
=.
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From Nk = I + Fk, one has

(3.14)

(
(p− 1)I + Nk

p

)−p
.
=

(
I +

Fk

p

)−p
.
= I − Fk,

and the relation for the errors becomes

(3.15)

[
Ek+1

Fk+1

]
.
=

[
I 1

pA
1/p

0 0

] [
Ek

Fk

]
= L

[
Ek

Fk

]
.

The coefficient matrix L is idempotent (L2 = L) and hence has bounded powers.
Thus the iteration is stable.

For the iteration (3.9) define the error matrices Mk = Xk −A1/p and Hk; then

(3.16) Mk+1 = Xk+1 −A1/p = Xk −A1/p + Hk = Mk + Hk.

For Hk+1 the relation is a bit more complicated.
Using (3.16) we can write

X−1
k+1 = (A1/p + Mk + Hk)

−1 .
= A−1/p −A−1/pMkA

−1/p −A−1/pHkA
−1/p

and

Fk = XkX
−1
k+1 = (A1/p + Mk)X

−1
k+1

.
= I −HkA

−1/p.

The latter equation enables us to write

(3.17) (XkX
−1
k+1)

q .
= (I −HkA

−1/p)q
.
= I − qHkA

−1/p.

Finally we have

Hk+1 = −Xk+1

(
I − F p

k

p
+ F p−1

k (Fk − I)

)

.
= −Xk+1

(
I − I + pHkA

−1/p

p
+ (I − (p− 1)HkA

−1/p)HkA
−1/p

)
.
= 0.

In conclusion it holds that

(3.18)

[
Mk+1

Hk+1

]
.
=

[
I I
0 0

] [
Mk

Hk

]
= L

[
Mk

Hk

]
.

Since the matrix L is idempotent, then also this iteration is stable. A similar result
holds for the iteration (3.10). Observe also that, unlike in the iteration (3.6), the
norm of L is independent of A.

Remark 2. The iteration analyzed in [2],

(3.19) Xk+1 =
1

p

(
(p + 1)Xk −Xp+1

k A
)
, X0 = I,

is obtained by applying Newton’s iteration to the equation X−p − A = 0, which has
the same convergence as the scalar iteration xk+1 =

(
(p+1)xk−xp+1

k λi

)
/p for x0 = 1,

applied to any eigenvalue λi of the matrix A.
Like any polynomial iteration of degree greater than 2, this one has the point x =

∞ as (super)attractive fixed point [1], and so the basins for the roots are considerably
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smaller than the ones for the Newton iteration for xp − a = 0. However, in [2] it is
proved that the basin of attraction to 1 contains a disk of center 1 and radius 1. In the
same paper, it is shown that the iteration (3.19) is unstable for general matrices. The
instability of this iteration can be easily removed by applying the arguments of this
section. In fact after simple manipulations we deduce the mathematically equivalent
iteration

(3.20)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X0 = I, N0 = A,

Xk+1 = Xk

(
(p + 1)I −Nk

p

)
,

Nk+1 =

(
(p + 1)I −Nk

p

)p

Nk,

which is proved to be stable near the solution. One can see the similarity to the HWA

method.
The iteration (3.20) was already found by Lakić [15] as the first case of a family

of stable iterative methods for computing the inverse pth root.

4. The algorithm. Here we present our algorithm for computing the principal
pth root of a matrix having no nonpositive real eigenvalues. For p = 2 one can use
the existing algorithms [6, 17, 13], so we assume that we can perform the square root.

Algorithm 1 (iteration for the principal pth root of a matrix A).

• Input: a matrix A, an integer p > 2, and an algorithm for computing the
square root.

• Compute B, the principal square root of A.
• Set C = B/‖B‖ for a suitable norm. The eigenvalues of C belong to the set
D of (2.3)

• By means of iteration (3.6) or (3.9)
– If p is even, compute S = C2/p, the (p/2)th root of C, and set X =

S‖B‖2/p.
– If p is odd, compute S = C1/p, the pth root of C, and set X =(

S‖B‖1/p
)2

.
Observe that both iterations (3.6) and (3.9) can be performed in O(n3 log p) ops

per step, by means of the binary powering technique, much less than the cost of Schur
method which is O(n3p) ops. However, for small values of p, the total number of ops
needed by Algorithm 1 might be larger than the number of ops needed by the Schur
method.

For computing the square root, one can use the algorithm (3.3), possibly with a
suitable scaling if needed, or the Schur method; this does not affect the asymptotic
order of complexity with respect to p. In our numerical experiments, we have observed
that the choice of the square root algorithm used in preprocessing the matrix is crucial
for the accuracy of the computed solution. Using the Schur method for computing the
preliminary square root and then the iteration (3.6) gives good results comparable to
the ones obtained with the algorithm proposed by Smith [18]. In certain cases, it is
more convenient to use an iterative method such as (3.3), to compute the preliminary
square root.

More details can be given about the operation count and the number of steps
needed for the numerical convergence; in fact, two matrix multiplications, one inver-
sion, and a matrix exponentiation to the power p are sufficient to carry out one step of
the HWA iteration. For computing the power Xp, with X being a matrix, one can use
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the binary powering technique with a cost varying from log2 p� to 2log2 p� matrix
multiplications. The total cost of one step is then bounded by (3 + 2log2 p�)n3 ops.
For the IN iteration, the cost is (p+ 2)n3 ops per step, and for the iteration (3.9) the
cost is (5 + 2log2(p− 1)�)n3 ops per step.

As shown in section 2, the numerical convergence depends only on the localization
of the eigenvalues. The closer they are to the boundary of the basin of convergence, the
greater is the number of steps needed. For matrices of the form C = A1/2/‖A1/2‖,
having eigenvalues in the set D of (2.3), the slow convergence occurs when some
eigenvalue is near 0, namely, when the matrix A is ill-conditioned. For instance, if A is
a symmetric positive definite matrix and we use the 2-norm, it is easy to show that the
smallest eigenvalue of C is

√
1/μ2(A), where μ2(A) = ‖A‖2‖A−1‖2 is the condition

number of A. Being C diagonalizable by a unitary transform, the convergence of
the matrix iteration is the same as the convergence of its smallest eigenvalue. To
get an estimation of the number of steps needed by the Newton method applied to
a symmetric matrix, it is enough to compute the number of steps needed by the
sequence (1.1) with a =

√
1/μ2(A) to converge.

Even though the number of steps is a growing function of p, it seems bounded
from above by a constant.

Finally, it is important to point out that the algorithm we proposed works only
to find the principal pth root. It is not clear if it can be used to compute any primary
pth root, in particular, roots having eigenvalues in different sectors. One important
advantage of the Schur method is that it can be used to compute any primary pth
root, not just A1/p.

5. Numerical experiments. We have performed several experiments in
MATLAB 7. We have compared our algorithms with the simplified Newton (SN)
method (1.2), with the Schur method implemented in the function rootm of the Ma-
trix Computation Toolbox [10], and with the method based on the formula A1/p =
exp( 1

p log(A)), using the functions logm and expm of MATLAB (this method was

suggested by an anonymous referee).
For computing the square root of a matrix, we used the function sqrtm of MAT-

LAB, which is based on the Schur form of A, or the iteration (3.3), and if a scaling
is needed in (3.3) we used the one proposed in [13]. These algorithms have the same
asymptotic cost of O(n3).

To compute the power to −p in the iteration (3.6), first we compute the pth power
of the matrix with the binary powering technique and then we invert the matrix. We
stop the iterations when the residuals begin to grow or become NaN.

Test 1. To illustrate the instability near the solution of the SN method (1.2) and
the stability of the proposed variants, we consider the simple 3 × 3 matrix

A =

⎡
⎣

1 1/2 0
1/2 1 1/2
0 1/2 1

⎤
⎦

and compute the fourth root of the matrix A4. In Figure 5.1 we have compared the
relative residual defined as R(X) = ‖Xp − A‖F /‖A‖F for the three methods: SN

of equation (1.2), Newton in the version (HWA) provided by equation (3.6), and IN

of equation (3.10). We denote by ‖A‖F the Frobenius norm of the matrix A, i.e.,
‖A‖F = (

∑n
i,j=1 a

2
ij)

1/2. As one can see, for some steps the three methods give the
same residual; in fact they are analytically equivalent, but the SN method has some
instability problems even after a few steps. Our methods show good stability.
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Fig. 5.1. Comparison of the simplified Newton (SN) method, the iteration handled without A
(HWA), and incremental Newton (IN).

Test 2. We consider some ill-conditioned matrices to compare the behavior
of Algorithm 1 with the one based on the Schur form of A and with the formula
A1/p = exp( 1

p log(A)). We also illustrate that the choice of the algorithm used for
computing the preliminary square root on Algorithm 1 is very important for the
numerical accuracy of the computed solution.

We compute pth root with four methods:
• Compute the square root with the function sqrtm in MATLAB and then the

iteration (3.6) to compute the pth root (sqrtm+HWA).
• Compute the square root by means of the IN iteration (3.3) and then the

iteration (3.6) to compute the pth root (IN+HWA).
• Compute the pth root with the algorithm based on the Schur form (Smith).
• Compute A1/p = exp( 1

p log(A)) (explog).
The first class of matrices we considered is the class of Hilbert matrices Hij =

1/(i + j) that is a traditional example of an ill-conditioned matrix. We denote by
hilb(n) the n-dimensional Hilbert matrix. The second class is the prolate matrix,
which is a symmetric ill-conditioned Toeplitz matrix whose entries are defined by the
formula Aii = 1/2, Aij = sin(π(j− i)/2)/(π(j− i)). We denote by prolate(n) the n-
dimensional prolate matrix. The third class is the Frank matrix, an upper Hessenberg
matrix with real, positive eigenvalues occurring in reciprocal pairs, half of which are
ill-conditioned. We denote by frank(n) the n-dimensional Frank matrix. The fourth
class is the companion matrix of the polynomial xn − 10−12, whose roots are the nth
root of 10−12. We denote by compan(n) the n-dimensional companion matrix.

In Table 5.1 we report the relative residuals and the number of iterations (for
HWA iteration) in computing the 59th root for some of these matrices. As one can see,
our algorithm, if provided with a Schur implementation for the preliminary square
root, is competitive with the Smith method and provides the same results, in terms
of accuracy, if tested with these ill-conditioned matrices. The explog algorithm gives
good results, but a bit worse than our algorithm in the hardest examples.

A purely iterative algorithm (the second column) suffers from very bad condi-
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Table 5.1

Comparison of methods for computing the 59th root of some test matrix.

Example sqrtm+HWA IN+HWA Smith explog

hilb(5) 6.6 · 10−15 11 4.4 · 10−15 11 3.1 · 10−14 8.5 · 10−15

hilb(10) 1.7 · 10−14 20 1.6 · 10−14 21 2.2 · 10−14 2.7 · 10−14

prolate(10) 1.6 · 10−14 14 2.1 · 10−14 12 3.3 · 10−14 2.2 · 10−14

prolate(20) 3.1 · 10−14 20 4.3 · 10−14 22 3.4 · 10−14 4.8 · 10−14

frank(10) 2.0 · 10−11 15 7.4 · 10−10 15 3.5 · 10−10 4.5 · 10−9

frank(14) 3.5 · 10−5 22 2.6 · 10−2 24 9.8 · 10−4 8.4 · 10−2

compan(5) 1.7 · 10−3 26 8.3 · 10−8 27 5.0 · 10−2 1.5 · 10−1

compan(15) 1.4 · 100 31 8.8 · 10−6 30 4.2 · 101 6.0 · 100

tioning of the matrix, but it is faster and in certain cases, like the examples of the
companion matrix, gives better results.

Note that when using the procedure described in section 4 for the Hilbert and
prolate matrices, which are symmetric, one has a predicted number of steps that
almost coincides with that of the examples.

Scaling the iteration for the preliminary square root was not necessary in these
examples, but it is worth remarking that sometimes it is important to use a scaling
technique in order to avoid poor results.
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MIQR: A MULTILEVEL INCOMPLETE QR PRECONDITIONER
FOR LARGE SPARSE LEAST-SQUARES PROBLEMS∗
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Abstract. This paper describes a multilevel incomplete QR factorization for solving large sparse
least-squares problems. The algorithm builds the factorization by exploiting structural orthogonality
in general sparse matrices. At any given step, the algorithm finds an independent set of columns, i.e.,
a set of columns that have orthogonal patterns. The other columns are then block orthogonalized
against columns of the independent set, and the process is repeated recursively for a certain number
of levels on these remaining columns. The final level matrix is processed with a standard QR or
incomplete QR factorization. Dropping strategies are employed throughout the levels in order to
maintain a good level of sparsity. A few improvements to this basic scheme are explored. Among
these is the relaxation of the requirement of independent sets of columns. Numerical tests are
proposed which compare this scheme with the standard incomplete QR preconditioner, the robust
incomplete factorization preconditioner, and the algebraic recursive multilevel solver (on normal
equations).

Key words. multilevel incomplete QR factorization, CGLS, QR factorization, orthogonal fac-
torization, incomplete QR, preconditioning, iterative methods, large least-squares problems, normal
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1. Introduction. This paper considers iterative solution methods for linear
least-squares problems of the form

min
x

‖b−Ax‖2,(1.1)

where A ∈ R
m×n (m ≥ n) is a large sparse matrix with full rank. Problems of this

type arise in many scientific and engineering applications including data analysis,
computational fluid dynamics, simulation, signal processing, and control problems, to
name just a few. As engineers and scientists are benefiting from increased availability
of data as well as computational resources, these problems are inevitably becoming
harder to solve due to their size as well as their ill-conditioning. For example, the
papers [4, 34] mention a problem of this type which arises from an animal breeding
study with 60 million unknowns. In the very different area of three-dimensional com-
puter graphics, one encounters certain least-squares problems which have complexity
proportional to the number of geometry primitives [23], which, in desirable models,
should include millions of polygons. Problems from such applications are usually very
sparse and can be solved iteratively or by sparse orthogonal factorizations. Itera-
tive solution methods may have an advantage over direct methods, depending on the
underlying sparsity pattern.

However, if iterative methods are to be used, then preconditioning is essential.
Although it is known that iterative solution algorithms are not effective without pre-
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conditioning, there has been little effort made in developing preconditioners for least-
squares problems in recent years. This is in contrast with the solution of standard
(square) linear systems, where enormous progress has been made in designing both
general purpose preconditioners and specialized preconditioners that are tailored to
specific applications. Part of the difficulty stems from the fact that many methods
solve the system (1.1) by implicitly solving the normal equations

ATAx = AT b,(1.2)

whose solution is the same as that of (1.1). The condition number of the coefficient
matrix of the normal equations system (1.2) is the square of that of the original matrix
A. As a result, the normal equations will tend to be very ill-conditioned. In this
situation preconditioning is critical for robustness. However, severe ill-conditioning of
the matrix will also tend to make it difficult to obtain a good preconditioner.

Though it is possible to solve the least-squares problem (1.1) by solving normal
equations (1.2), forming the system of normal equations explicitly and then solving
it is not a recommended approach in general as this suffers from various numerical
difficulties; see [6, 15] for details. For small dense problems, the best overall solution
method is to use a good orthogonal factorization algorithm such as the Householder
QR; see, e.g., [15]. If A = QR is the “thin” QR factorization of A [15], then the
solution of (1.1) can be obtained by solving Rx = QT b for x. For a comprehensive
survey of direct methods, see [6].

Alternatively, iterative methods such as LSQR [28] and SOR [27] have been ad-
vocated for solving least-squares problems of the type (1.1) when A is large. A
well-known approach is one that is based on solving the normal equations by the con-
jugate gradient (CG) method. The resulting algorithm is sometimes termed CGNR
[31] and sometimes CGLS [6]. The latter acronym is adopted here. This paper only
considers CGLS as the accelerator and focuses on developing effective precondition-
ers. Since we refer to preconditioned CGLS throughout the paper, we now give a brief
description of the algorithm, assuming that a preconditioner M for ATA is available.
Recall that a preconditioner is a certain matrix M which approximates the original
coefficient matrix (in this case ATA) such that it is inexpensive to solve an arbitrary
linear system Mx = b.

Algorithm 1.1. Left-preconditioned CGLS
1. Compute r0 := b−Ax0, r̃0 := AT r0, z0 := M−1r̃0, p0 := z0.
2. For i = 0, . . . , until convergence Do:
3. wi := Api.
4. αi := (zi, r̃i)/‖wi‖2

2.
5. xi+1 := xi + αipi.
6. ri+1 := ri − αiwi.
7. r̃i+1 := AT ri+1.
8. zi+1 := M−1r̃i+1.
9. βi := (zi+1, r̃i+1)/(zi, r̃i).
10. pi+1 := zi+1 + βipi.
11.EndDo
Many variants of the above algorithm exist. In particular, when M is available in

the form of a product M = LLT , where L is lower triangular, then the preconditioning
operation can be split into two parts and a split-preconditioned CGLS option can be
derived. A right-preconditioned option can be developed as well. We consider only
the left-preconditioned variant in this paper.
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Developing preconditioners for the normal equations, or for problem (1.1), can
be approached in a number of ways. A naive approach would be to form the squared
matrix ATA and try to find an incomplete Cholesky factorization of this matrix. The
fact that this matrix is symmetric positive definite does not make it easy to find a
preconditioner for it. Indeed, most of the theory for preconditioning techniques relies
on some form of diagonal dominance. In addition, forming the normal equations
suffers from other disadvantages, some of which are the same as those mentioned
above for the dense case; in particular there is some loss of information when forming
ATA [6]. Moreover, ATA can be much denser than the original matrix. In fact one
dense row of A will make the entire ATA matrix dense.

Another approach, one that is taken here, is to try to compute an approximate
orthogonal factorization of A. This approach is not new, as will be seen in section 2
which discusses related work. If A ≈ QR, then ATA ≈ RTR and this matrix can be
used as a preconditioner M . Notice that this approach ignores the factor Q which
is not used. In this paper we exploit multilevel ideas similar to those defined for the
algebraic recursive multilevel solver (ARMS) in [33, 25]. The idea of multilevel incom-
plete QR (MIQR) factorization can be easily described with the help of recursion. It
is important to observe at the outset that when A is sparse, then many of its columns
will be orthogonal because of their structure. These are called structurally orthogo-
nal columns. It is therefore possible to find a large set S of structurally orthogonal
columns. This set is called an independent set of columns. Independent sets are the
main ingredient used in ARMS [33, 25]. Once the first independent set S is obtained,
we can block orthogonalize the remaining columns against the columns in S. Since
the matrix of the remaining columns will still be sparse in general, it is natural to
think of recursively repeating the process until a small number of columns are left
which can be orthogonalized with standard methods. The end result is a QR factor-
ization of a column-permuted A. With this simple strategy MIQR gradually reduces
a large sparse least-squares system into one with a significantly smaller size. It is
worth pointing out that although we focus on overdetermined systems (m > n), the
techniques described are applicable to square matrices (m = n) and underdetermined
matrices (m < n) as well.

Recent developments in the solution of standard linear systems have shown that
multilevel preconditioners have excellent scalability and robustness properties; see,
e.g., [33, 9, 31, 1, 2, 3]. However, it appears that when it comes to the solution of
large general sparse least-squares problems, similar multilevel methods have not been
considered so far, in spite of an increasing demand for solving such problems.

The remainder of this paper is organized as follows. After a short section on
related work (section 2), we discuss in section 3 the issue of finding independent
sets of columns, as this is an important ingredient used in MIQR. Then, a detailed
description of MIQR is presented in section 4 followed by strategies to improve the
performance of MIQR as well as other implementation details. Numerical results are
reported in section 5, and the paper ends with concluding remarks in section 6.

2. Related work. Several general-purpose preconditioners based on techniques
such as SSOR, incomplete orthogonal factorization, and incomplete Cholesky factor-
ization have been proposed and analyzed in the literature.

In 1979, Björck introduced a preconditioner based on the SSOR method [5]. In
the proposed method, ATA is written as ATA = L + D + LT , where L is lower
triangular. The normal equations are then preconditioned by

M = ω(2 − ω)(D + ωL)D(D + ωLT ).
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To avoid forming ATA explicitly, row (or column) projection methods have also been
exploited and applied to normal equations [10]. In these methods, only a row or a
column of A is needed at any given relaxation step. Block versions of these methods
have also been studied [7, 20].

In a 1984 pioneering article, Jennings and Ajiz proposed preconditioners based
on incomplete versions of Givens rotations and the Gram–Schmidt process [18]. Since
then, several other preconditioners based on incomplete orthogonal factorizations have
been studied [30, 35, 29]. If A = QR is the exact thin QR factorization of A, where
R is an n × n upper triangular matrix and Q is an m × n orthogonal matrix, then
ATA = RTR, and it is usually inexpensive to solve the equation RTRx = y. The
incomplete version of the QR factorization (IQR) can be used as a preconditioner for
(1.2). Unlike the matrix Q produced by incomplete Givens rotations, which is always
orthogonal, the factor Q produced by the incomplete Gram–Schmidt process is not
necessarily orthogonal. Nonetheless, the incomplete Gram–Schmidt-based precondi-
tioners are robust and can avoid breakdown when A has full rank. In this approach,
dropping strategies can be employed in Q as well as R to reduce intermediate storage
requirements. Let PQ and PR be zero patterns chosen for matrices Q and R, respec-
tively. The incomplete QR factorization based on the Gram–Schmidt process can be
described by the following modification of the incomplete LQ (ILQ) algorithm given
in [30]. Note that in practice PQ and PR are normally determined dynamically based
on the magnitude of the elements generated.

Algorithm 2.1. Incomplete QR factorization (IQR)

1. For j = 1, . . . , n Do:
2. Compute rij := (aj , qi) for i = 1, 2, . . . , j − 1.
3. Replace rij by zero if (i, j) ∈ PR.

4. Compute qj := aj −
∑j−1

i=1 rijqi.
5. Replace qij by zero if (i, j) ∈ PQ, i = 1, 2, . . . ,m.
6. Compute rjj := ‖qj‖2.
7. If rjj == 0, then stop; Else compute qj := qj/rjj.
8. EndDo

In the above algorithm, the step represented by line 2 computes the inner products
of the jth column of A with all previous columns of Q. Most of these inner products
are equal to zero because of sparsity. Therefore, it is important to ensure that only
the nonzero inner products are calculated for efficiency. The strategy proposed in [30]
calculates these inner products as a linear combination of sparse vectors. Specifically,
let rj = [r1j , r2j , . . . , rj−1,j ]

T and Qj−1 = [q1, q2, . . . , qj−1]; then rj = QT
j−1aj is a

sparse matrix by sparse vector product. This product can be computed as a linear
combination of the rows in Qj−1; i.e., only the rows corresponding to the nonzero
elements in aj are linearly combined. Since the matrix Q is normally stored column-
wise, a linked list pointing to the elements in each row of Q needs to be dynamically
maintained. This strategy is also utilized in the implementation of the proposed
MIQR algorithm.

Preconditioners based on the incomplete modified Gram–Schmidt process have
also been developed. The Cholesky incomplete modified Gram–Schmidt (CIMGS)
algorithm of Wang, Gallivan, and Bramley is an incomplete orthogonal factorization
preconditioner based on the modified Gram–Schmidt process [35]. The paper explores
rigorous strategies for defining incomplete Cholesky factorizations, based on the rela-
tion between the Cholesky factorization of ATA and the QR factorization of A. Other
authors studied direct ways to obtain the Cholesky factorization [19, 6]. This type
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of approach obtains the incomplete Cholesky factorization of C = ATA, where C
may or may not be formed explicitly. As an alternative, Benzi and Tůma proposed a
robust incomplete factorization (RIF) preconditioner which computes an incomplete
LDLT factorization of ATA without explicitly forming it [4]. Their approach utilizes
a conjugate Gram–Schmidt process to calculate the factorization ZTCZ = D, where
Z is unit upper triangular and D is diagonal. Using the fact that ZT = L−1, they
showed that Lji = (zTj Czi)/(z

T
j Czj). Therefore, the L factor of C can be obtained as

a side product of the conjugate orthogonalization process without any extra cost. In
section 5 a few comparisons are made between this approach and the MIQR technique
proposed in this paper.

There were also a number of attempts to precondition positive definite matrices
which may be far from diagonally dominant. In a 1980 paper, Manteuffel [26] sug-
gested shifting a positive definite matrix to get an incomplete Cholesky factorization.
This work was pursued more recently in [32], where other diagonal shifting techniques
were studied for both incomplete orthogonal factorizations and incomplete Cholesky
factorizations.

The idea of utilizing independent sets of columns (rows) in the context of least-
squares, or more precisely for normal equations, is not new; see, e.g., [20, 21]. The
main goal of these two papers was to exploit independent sets to improve parallelism.
Independent sets of columns will be the main ingredient in obtaining an MIQR factor-
ization. In terms of parallel algorithms, Elmroth and Gustavson developed recursive
parallel QR factorizations that can be used in direct solvers for dense normal equations
[12, 13].

3. Independent sets of columns. The MIQR algorithm proposed in this pa-
per exploits successive independent sets of columns. This section discusses column
independent set orderings.

Given a matrix A = [a1, a2, . . . , an], where a1, a2, . . . , an are column vectors, a
subset {aj1 , aj2 , . . . , ajs} is called an independent set of columns of A if columns l and
k of A are structurally orthogonal for any l, k ∈ {j1, j2, . . . , js} and l �= k. Figure
3.1(a) shows an example of such an independent set of five columns (marked as open
circles). The issue of finding independent sets of columns is not new and has been
discussed in depth in the literature in different contexts; see, e.g., [11, 22, 24, 31] or
[14] for a more comprehensive review. Here, we formalize the problem into that of
finding an independent set in a graph.

3.1. Finding independent sets of columns. Two columns ai and aj of A
will be said to be adjacent if their patterns overlap. This means that if âk is the
column vector obtained from ak by replacing all its nonzero entries by ones, then ai
and aj are adjacent if and only if âTi âj �= 0. The opposite of adjacent is structurally
orthogonal : two columns ai and aj are structurally orthogonal if âTi âj = 0.

Let Â be the pattern matrix obtained from A by replacing all its nonzero entries
by ones. Then, the column intersection graph (CIG) (see [11]) of A is the graph with
n vertices representing the n columns of A, and with edges defined by the nonzero
pattern of ÂT Â. This means that there is an edge between vertex i and j if and only
if âi and âj are adjacent.

Note that an edge from vertex i to vertex j is defined if cos θij �= 0, where θij is
the angle between vectors âi and âj . Define the following matrices:

B =

[
â1

‖â1‖
,

â2

‖â2‖
, . . . ,

ân
‖ân‖

]
and C = BTB.(3.1)
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Fig. 3.1. (a) An independent set of five columns (open circles) in a 25 × 12 matrix. (b) The
independent set of columns are permuted to the first five columns of the matrix.

Since the generic entry cij of C can be written as cij ≡ cos θij , the graph CIG(A) is
nothing but the adjacency graph of C. Therefore, the problem is to find a maximal
independent set of a graph. Let E be the set of all edges in CIG(A) and let V be
the set of its vertices. Recall that an independent set S is a subset of the vertex set
V such that

if x ∈ S, then [(x, y) ∈ E or (y, x) ∈ E] ⇒ y /∈ S;

i.e., any vertex in S is not allowed to be adjacent with any other vertex in S either
by incoming or outgoing edges. An independent set S is maximal if

S′ ⊇ S is an independent set ⇒ S′ = S.

Note that the maximal independent set is not necessarily the independent set with
maximum cardinality. In fact, to find the latter is NP hard. In the following, the term
independent set will always mean a maximal independent set. The following greedy
algorithm (see, e.g., [31]) can be used to find an independent set S. In the algorithm,
U is the set of all unmarked vertices, which initially includes all the vertices.

Algorithm 3.1. Independent set ordering
1. Let S := φ and U := {1, 2, . . . , n}. j := 1.
2. Do While U �= φ and j ≤ maxSteps:
3. Let k := next unmarked vertex in U .
4. S := S ∪ {k}. Mark and remove k from U .
5. Mark all vertices adjacent to k and remove them from U .
6. j := j + 1.
7. EndDo
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Let |S| be the size of S. Assume that the maximum degree of all vertices in S is
dS . According to Algorithm 3.1, the total number of marked vertices is n − |S|. At
the same time, whenever a vertex is added to S, at most dS vertices will be marked,
which means the total number of vertices marked is at most dS |S|. Therefore, we
have n− |S| ≤ dS |S| and as a result

|S| ≥ n

1 + dS
.(3.2)

This suggests that we may obtain S with a larger number of vertices by first visiting
the vertices with smaller degrees [31].

Algorithm 3.2. Independent set ordering with increasing degree traversal
1. Find an ordering i1, i2, . . . , in of the vertices by increasing degree.
2. Let S := φ and U := {i1, i2, . . . , in}. j := 1.
3. While U �= φ and j ≤ maxSteps:
4. Let ik := next unmarked vertex in U .
5. S := S ∪ {ik}. Mark and remove ik from U .
6. Mark all ik’s adjacent vertices and remove them from U .
7. j := j + 1.
8. EndDo
Algorithm 3.2 first sorts the vertices in increasing degree order and then applies

the greedy algorithm. In general, Algorithm 3.2 will find a larger independent set at
the cost of an initial sorting of the vertices. Algorithm 3.2 is used in the implemen-
tation of MIQR.

3.2. Estimates for the size of the independent set. The lower bound of the
independent set size given by (3.2) is a rough one. The goal of this section is to find a
more accurate estimate of the size of the independent set using a simple probabilistic
model.

Consider an m × n sparse matrix A with Nnz nonzero entries and assume that
these nonzero entries are randomly distributed. In particular each column will have
on average the same number of nonzero entries, which is ν ≡ Nnz/n. Under this
assumption, Algorithms 3.1 and 3.2 would be equivalent and therefore, we can restrict
our study to Algorithm 3.1. We denote by μ the average number of nonzero entries
per row; thus μ ≡ Nnz/m.

For any column vector a of A, we first calculate the expected number of column
vectors that are not structurally orthogonal to a. If a has only one nonzero element,
then there are on average n− 1− (μ− 1) = n− μ possible columns among n− 1 that
will be orthogonal to a; thus the probability that any given column is orthogonal to
a is (n− μ)/(n− 1). Since a has ν nonzero elements on average, the probability that
any given column is orthogonal to a is

p =

(
n− μ

n− 1

)ν

.(3.3)

As a result the probability that any given column is not orthogonal to a is 1 − p.
Thus, the expected number of column vectors that are not structurally orthogonal to
a is

η = (n− 1) ×
(

1 −
(
n− μ

n− 1

)ν)
.(3.4)
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Note that η is simply the average degree of a node in CIG(A) in the very first step
of Algorithm 3.1, since it represents the average number of columns that are not
orthogonal to a given column of A.

Consider now an arbitrary step j of Algorithm 3.1. We will call Nj the number
of columns left to be considered, i.e., the number of unmarked columns in U at the
end of step j of Algorithm 3.1.

Lemma 3.1. Let Nj be the expected number of unmarked columns at the end of
the jth step of Algorithm 3.1, with N0 = n. Then Nj satisfies the following recurrence
relation:

Nj =

((
1 − ν

m

) Nj−1

Nj−1 − 1

)ν

(Nj−1 − 1).(3.5)

Proof. We begin by observing that if we consider the matrix consisting of the
unmarked columns of A at any given step, then its average number of nonzero entries
per column remains unchanged and equal to ν. In contrast, the removal of one column
will change μ. If μj is the average number of nonzero entries per row for the matrix
of unmarked columns, then

μj =
ν

m
×Nj .(3.6)

Assume that the independent set obtained is S = {i1, i2, . . . , is}, where i1 is the first
vertex added into S, i2 is the second vertex added into S, and so on. When ij is added,
the estimated number of vertices that are newly marked in line 5 in Algorithm 3.1 is
simply the expected number of columns that are not orthogonal to a given column
for the matrix of unmarked columns. This is simply the expression (3.4) in the very
first step, i.e., when j = 1. For a general step it will be the same expression with n
replaced by Nj and μ by μj . Note that ij itself is also marked. The new number of
unmarked columns is therefore

Nj = Nj−1 − 1 − (Nj−1 − 1) ×
(

1 −
(
Nj−1 − μj−1

Nj−1 − 1

)ν)

= (Nj−1 − 1)

(
Nj−1 − μj−1

Nj−1 − 1

)ν

.

We now introduce nj ≡ Nj −1 to simplify notation. The above equalities become

nj =

(
nj−1 + 1 − μj−1

nj−1

)ν

nj−1 − 1 =

(
1 − μj−1 − 1

nj−1

)ν

nj−1 − 1.

Substituting μj−1 given by (3.6) gives

nj =

(
1 −

(nj−1+1)ν
m − 1

nj−1

)ν

nj−1 − 1 =

(
1 − ν

m
+

1 − ν
m

nj−1

)ν

nj−1 − 1

=

((
1 − ν

m

)(
1 +

1

nj−1

))ν

nj−1 − 1,

which is the expression to be proved when Nj = nj + 1 is substituted.
The lemma should be interpreted in a probabilistic sense: Given a large number

of matrices, with the same size (n and m) and the same ν, on average the number
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of unmarked columns at the jth step is given by the number resulting from solving
the recurrence equation (3.5). The actual number may, of course, be larger or smaller
than the Nj given by the lemma.

It is important to note that (3.5) is an exact equality. However, it does not seem
possible to obtain a simple closed form expression for Nj . One would be tempted to
make the approximation 1/Nj ≈ 0 but this is not valid since toward the end Nj will
become small. On the other hand, one can find rough bounds for Nj and substitute
them above.

Thus, since Nj ≤ N for all j we have

Nj ≥
[(

1 − ν

m

) n

n− 1

]ν
(Nj−1 − 1).

Define

α ≡
[(

1 − ν

m

) n

n− 1

]ν
and γ ≡ α

1 − α
.

Clearly, we have α ≤ (n/(n − 1))ν . For large n and m, α will typically be smaller
than 1 for a sparse matrix. For example, noting that α = [(1 − ν/m)(1 + 1/(n− 1)]

ν
,

we have

1

n− 1
≤ ν

m
→ α ≤

(
1 −

( ν

m

)2
)ν

< 1.

As can be easily seen, the assumption 1/(n− 1) ≤ ν/m is equivalent to μ ≥ 1 + ν/m,
which is generally verified because ν  m. We will make the assumption that α < 1.
This condition is equivalent to

(
1 − ν

m

) n

n− 1
< 1 ↔

(
1 − ν

m

)
< 1 − 1

n
↔ νn

m
> 1 ↔ μ > 1.

Then, we have Nj ≥ αNj−1 − α and since −α = αγ − γ this becomes (Nj + γ) ≥
α(Nj−1 + γ). Using this it is possible to estimate the total number of steps which
will result in the algorithm, which will be the size of S, since each step will add one
more member to S. Let s be the last step of the algorithm and note that we have
Ns ≤ Ns−1 ≤ · · · ≤ N0 = n. Then the above inequality will yield

(Ns + γ) ≥ α(Ns−1 + γ) ≥ · · · ≥ αs(N0 + γ) → (Ns + γ) ≥ αs(N0 + γ).

The step s at which the algorithm is stopped corresponds to a final size of Ns = 1.
This means that

αs ≤ 1 + γ

n + γ
=

1

(1 − α)(n + α/(1 − α))
=

1

(1 − α)n + α
.

Taking logarithms and recalling that α < 1 yields

s ≥ smin ≡ log [α + (1 − α)n]

− logα
.(3.7)

The accuracy of the estimates derived above will be tested in section 5. It will
be verified in the experiments that the lower bound (3.7) is not sharp. In fact the
experiments indicate, with good consistency, that it is better to use 2smin as an
estimate of the actual size of S. On the other hand, the estimate given by the direct
application of the formula (3.5) can be quite accurate in spite of the simplicity of the
underlying model.
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4. Multilevel incomplete QR (MIQR) factorizations. This section presents
the MIQR preconditioning method for solving sparse least-squares systems. It begins
with a discussion of the complete version of the multilevel QR factorization (section
4.1). Then, strategies are proposed to approximate the factorization for precondition-
ing purposes (section 4.2).

4.1. Multilevel QR factorization (MQR). When the matrix A in (1.1) is
sparse, it will most likely have an independent set of columns aj1 , aj2 , . . . , ajs . Let PT

1

be the permutation matrix which permutes aj1 , aj2 , . . . , ajs into the first s columns.
Then we have

APT
1 = [A(1), A(2)],(4.1)

where A(1) = [aj1 , aj2 , . . . , ajs ] is an m× s matrix and A(2) is an m× (n− s) matrix.
Figure 3.1(b) shows an example of such an ordering. Without loss of generality and for
simplicity, we still use [a1, a2, . . . , as] and [as+1, as+2, . . . , an] to denote the columns
of A(1) and A(2), respectively.

Since the columns in A(1) are orthogonal to each other, (A(1))TA(1) is a diagonal
matrix. Then A(1) can be trivially factored as A(1) = Q1D1 with

Q1 =

[
a1

‖a1‖2
,

a2

‖a2‖2
, . . . ,

as
‖as‖2

]
and D1 = diag(‖a1‖2, ‖a2‖2, . . . , ‖as‖2).

Now let

F1 = QT
1 A

(2),
A1 = A(2) −Q1F1.

Then (4.1) can be rewritten as

APT
1 = [A(1), A(2)] = [Q1, A1]

[
D1 F1

0 I

]
.(4.2)

This is a block version of the Gram–Schmidt process, and we have

QT
1 A1 = 0,(4.3)

because QT
1 A1 = QT

1 (A(2) −Q1F1) = QT
1 A

(2) − F1 = 0.
In the simplest one-level method, we apply a standard QR factorization to the

reduced m× (n− s) system A1:

A1P̃
T
2 = Q2R̃2,

where P̃T
2 is an (n − s) × (n − s) permutation matrix (P̃T

2 is the identity matrix

when pivoting is not used), Q2 is an m × (n − s) orthogonal matrix, and R̃2 is an
(n− s) × (n− s) upper triangular matrix. Equation (4.2) can then be rewritten as

A = [Q1, Q2]

[
I 0

0 R̃2

] [
I 0

0 P̃2

] [
D1 F1

0 I

]
P1(4.4)

or

A = QR2P2R1P1 = QR̂(4.5)
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if we use the following notations:

Q = [Q1, Q2], R1 =

[
D1 F1

0 I

]
, R2 =

[
I 0

0 R̃2

]
, P2 =

[
I 0

0 P̃2

]
,

and R̂ = R2P2R1P1.

If A has full rank, then R̃2 is nonsingular. It is easy to show that Q is orthogonal
because

QT
1 Q2 = QT

1 (A1P̃
T
2 R̃−1

2 ) = (QT
1 A1)P̃

T
2 R̃−1

2 = 0.

As is the case in similar situations related to Gram–Schmidt with pivoting, the
final result is equivalent to applying the standard Gram–Schmidt process to a matrix
obtained from A by permuting its columns. Indeed, starting with (4.4), we have

APT
1 = [Q1, Q2]

[
I 0

0 R̃2

] [
I 0

0 P̃2

] [
D1 F1

0 I

]

= [Q1, Q2]

[
I 0

0 R̃2

] [
D1 F1

0 P̃2

]

= [Q1, Q2]

[
I 0

0 R̃2

] [
D1 F1P̃

T
2

0 I

]
P2,

which yields the following QR factorization of a column-permuted A:

APT
1 PT

2 = [Q1, Q2]

[
D1 F1P̃

T
2

0 R̃2

]
.(4.6)

Since A is sparse, F1 and A1 are usually sparse as well. Sparsity can also be
improved by relaxing the orthogonality and applying dropping strategies in the in-
complete version, as will be discussed in section 4.2. Moreover, because A1 is likely
to still be large, the above reduction process can be applied to A1 recursively instead
of obtaining its QR factorization with a standard algorithm. The recursion continues
until the reduced matrix is small enough or the matrix cannot be further reduced.

Let A0 ≡ A. Then, generally, the factorization at levels i = 1, 2, . . . , p can be
recursively defined as follows:

Ai−1P̃
T
i = [A

(1)
i−1, A

(2)
i−1] = [Qi, Ai]

[
Di Fi

0 I

]
,(4.7)

where A
(1)
i−1 has si columns and, similarly to the one-level case, P̃T

i is the column
permutation which orders the set of independent columns first. Let

Di = diag
(
‖A(1)

i−1ej‖2

)
j=1,...,si

,(4.8)

Qi = A
(1)
i−1D

−1
i ,(4.9)

Fi = QT
i A

(2)
i−1,(4.10)

Ai = A
(2)
i−1 −QiFi.(4.11)
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We will also define as before

Pi =

[
I 0

0 P̃i

]
,

where the identity block completes the matrix P̃i into an n× n matrix.
The MQR algorithm can be simply defined as follows.
Algorithm 4.1. MQR
0. A0 ≡ A.
1. For i = 1, . . . , p Do:

2. Compute permutation P̃i and apply it to Ai−1: Ai−1P̃
T
i = [A

(1)
i−1, A

(2)
i−1].

3. Compute Qi, Di, Fi = QT
i A

(2)
i−1, and Ai = A

(2)
i−1 −QiFi.

4. EndDo

5. ApP̃
T
p+1 = Qp+1R̃p+1 (standard QR with/without pivoting).

We can now establish a result which generalizes the relation (4.6).
Lemma 4.1. At the ith step of the MQR procedure, the following relation holds:

APT
1 . . . PT

i = [Q1, . . . , Qi | Ai]

[
R11 R12

0 I

]
,(4.12)

where R11 is a (square) upper triangular matrix with a size equal to the column size
of [Q1, . . . , Qi].

Proof. The proof is by induction on i. We begin by pointing out that P̃1 ≡ P1.
Since A0 ≡ A, (4.7) shows that the result is trivially true for i = 1. We now assume
that (4.12) is true for i and will show that it is true for i+1. From (4.7) we can write

Ai = [Qi+1, Ai+1]

[
Di+1 Fi+1

0 I

]
P̃i+1

which, when substituted in (4.12) yields

[Q1, . . . , Qi, Ai]

[
R11 R12

0 I

]

=

[
Q1, . . . , Qi, [Qi+1, Ai+1]

[
Di+1 Fi+1

0 I

]
P̃i+1

] [
R11 R12

0 I

]

= [Q1, . . . , Qi, [Qi+1, Ai+1]]

⎡
⎣
R11 R12

0

[
Di+1 Fi+1

0 I

]
P̃i+1

⎤
⎦

= [Q1, . . . , Qi, Qi+1, Ai+1]

⎡
⎣
R11 R12P̃

T
i+1

0

[
Di+1 Fi+1

0 I

]
⎤
⎦
[

I 0

0P̃i+1

]
.

This shows that

APT
1 · · ·PT

i PT
i+1 = [Q1, . . . , Qi, Qi+1 | Ai+1]

⎡
⎣
R11 R12P̃

T
i+1

0

[
Di+1 Fi+1

0 I

]
⎤
⎦ ,

which is the desired result for level i + 1.
If the procedure stops at the pth level, then Ap is the final reduced system and

we factor it as

ApP̃
T
p+1 = Qp+1R̃p+1.
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Fig. 4.1. The MQR structure for matrix WELL1850 (1,850 × 712, nnz = 8,758).

Note that P̃T
p+1 is the identity matrix when pivoting is not used. Then, the above

lemma shows that

APT
1 · · ·PT

p PT
p+1 = [Q1, . . . , Qp, Qp+1]

[
R11 R12P̃

T
p+1

0 R̃p+1

]
.(4.13)

This yields a permuted QR factorization, since it is easily shown that the columns of
[Q1, Q2, . . . , Qp+1] are orthonormal.

Lemma 4.2. Let A be of full rank, and define PT = PT
1 PT

2 · · ·PT
p+1 and Q =

[Q1, . . . , Qp, Qp+1]. Then Q is unitary and the MQR procedure computes a permuted
QR factorization of A; i.e., we have

APT = QR,(4.14)

where R is an upper triangular matrix.
Proof. Part of the result is established in (4.13). The only situation when the

algorithm will break down is when a diagonal entry in Di is zero or when the last
factorization fails. This is impossible when A is of full rank. It remains only to show
that the matrix [Q1, . . . , Qp, Qp+1] in (4.13) is indeed unitary. Within the same block
Qi the columns are orthogonal structurally and are normalized. So QT

i Qi = I. For
j > i we have QT

i Qj = 0. Indeed, the columns of Qj are linear combinations of
columns of Ai because j > i. However, by construction Ai is orthogonal to Qi so we
have QT

i Qj = 0.

An illustration of the sizes and the positions of D1, F1, . . . , Dp, Fp, and R̃p+1 can
be visualized in Figure 4.1(a), where a four-level QR factorization process (p = 4) has
been applied to matrix WELL1850. (Some information on this matrix can be found
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in section 5.) Figure 4.1(b) shows the corresponding matrix Q = [Q1, . . . , Qp, Qp+1].
Note that in order to obtain a better quality picture, the Q and R factors are scaled
differently in the figure (the column/row size of R is the same as the column size of
Q).

Another formulation of the factorization, which will be used later, is to write

A = QR̂,(4.15)

where R̂ = Rp+1Pp+1RpPp · · ·R1P1 ∈ R
n×n and Q = [Q1, . . . , Qp, Qp+1] ∈ R

m×n.
Under similar notations as the one-level process, Ri has the form

Ri =

⎡
⎣

I 0 0
0 Di Fi

0 0 I

⎤
⎦ , i = 1, 2, . . . , p, and Rp+1 =

[
I 0

0 R̃p+1

]
.

4.2. Multilevel incomplete QR factorization. If the MQR factorization is
complete, we have

ATA = R̂T R̂.

Since R̂ is a product of permutation matrices and upper triangular matrices, it is
normally inexpensive to solve the equation (R̂T R̂)x = y. Therefore, an approximation

M ≈ R̂T R̂, obtained through an incomplete multilevel QR factorization process,
can be used as a preconditioner for solving (1.2). In the following, a few strategies
are considered for developing practical variants of the exact MQR algorithm just
described. These will lead to the MIQR preconditioner.

4.2.1. Relaxed independent set of columns. At each level of MQR, we
would like to find a larger independent set of columns so that the reduced matrix is
smaller. However, there are cases when an independent set with a large size does not
even exist. For example, in an extreme case where all entries in one row of a matrix
are nonzero, any two column vectors of the matrix are adjacent to each other; i.e., an
edge exists between any two vertices in CIG(A). In this case, the largest independent
set will consist of only one vertex.

For the purpose of preconditioning, the orthogonality requirement can be some-
what relaxed since only an approximation of the factorization is needed. Therefore,
in order to obtain a larger independent set, as well as to reduce fill-in, we will treat
two column vectors as being “orthogonal” whenever the acute angle between them is
“close” to a right angle. Specifically, for a given small value τθ > 0, an edge from
vertex i to vertex j is considered to belong to CIG(A) if | cos θij | ≥ τθ. This replaces
the original condition that cos θij �= 0. The scalar τθ is termed the angle threshold.
We denote the CIG obtained under the angle threshold τθ by CIG(A, τθ).

Let C(τθ) be the matrix obtained by replacing all elements less than τθ in abso-
lute value in the matrix C defined by (3.1) with 0. Clearly, the graph CIG(A, τθ) is
the adjacency graph of the matrix C(τθ). Recall that the entries in C (and C(τθ))
are cosines of columns of B, which represent the patterns of the columns of A. Al-
ternatively, the cosines can be calculated using the real values in A instead. To do
so, B = [ a1

‖a1‖ ,
a2

‖a2‖ , . . . ,
an

‖an‖ ] is used to calculate C instead of B given by (3.1).

In our implementation the cosines were evaluated using the real values in A. Once
CIG(A, τθ) is obtained, Algorithm 3.1 or 3.2 can be applied to CIG(A, τθ) to find
an independent set. The independent set found in this way is in general significantly
larger than that found by applying the same algorithm on CIG(A). The effectiveness
of this relaxed independent set ordering strategy is illustrated in section 5.
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4.2.2. Dropping strategies. The multilevel process yields denser and denser
intermediate matrices Fi in general. To ensure a moderate memory usage, we usually
drop small terms from Fi. Since a relaxed orthogonality strategy is employed (see
previous section), this same strategy is applied when computing the matrix Fi. Recall

that Fi = QT
i A

(2)
i−1, where Qi includes normalized columns in the independent set

S found at level i, and A
(2)
i−1 includes all remaining columns which are not in S.

Therefore, any element in Fi is an inner product between a column vector in S and
another column vector not in S. For a given angle threshold τθ, the element is
replaced by 0 if the cosine of the angle between these two column vectors is less than

τθ in absolute value. Assume that Fi = {fuv}, Qi = [q1, q2, . . . , qs], and A
(2)
i−1 =

[a1, a2, . . . , at]. Then fuv = qTu av = ‖av‖2 cos θuv, where θuv is the angle between qu
and av. Thus, fuv is dropped if |fuv| < τθ‖av‖2.

The final reduced matrix is normally much denser than the original matrix A.
If it is small enough (e.g., around 100 columns), a standard QR factorization can be
applied. Note that this matrix can now be treated as dense in order to take advantage
of effective block computations. Otherwise, an incomplete QR factorization is applied.
In this paper, we aim to compare MIQR with the IQR preconditioner outlined in
Algorithm 2.1. Therefore, we use the same IQR algorithm on the reduced matrix to
ensure that the implementations are as close as possible. In the implementation of
IQR, fill-ins are dropped dynamically when the columns of Q and R are being formed
based on the magnitude of the columns generated.

4.2.3. MIQR. With the relaxed independent sets of columns and dropping
strategies described above, the MIQR algorithm can be described as follows.

Algorithm 4.2. Multilevel incomplete QR factorization with angle threshold
(MIQR(τθ))

1. k := 0; A(0) = A; p = maxlev.
2. While k < p Do:
3. Construct column intersection graph under angle threshold τθ: CIG(Ak, τθ).

4. Find an independent set permutation P̃k+1 for CIG(Ak, τθ).

5. Apply permutation [A
(1)
k , A

(2)
k ] = AkP̃

T
k+1.

6. Let Dk+1 := diag(||a(k)
1 ||, . . . , ||a(k)

s ||), where A
(1)
k = [a

(k)
1 , . . . , a

(k)
s ].

7. Let Qk+1 := A
(1)
k D−1

k+1 and Fk+1 := QT
k+1A

(2)
k .

8. Apply a dropping strategy to Fk+1.

9. Ak+1 := A
(2)
k −Qk+1Fk+1.

10. Apply a dropping strategy to Ak+1.
11. k := k + 1.
12. EndDo

13. Apply IQR (or QR) on Ap: ApP̃
T
p+1 ≈ Qp+1R̃p+1.

Some implementation details are now discussed. Theoretically, we can continue
the multilevel incomplete QR factorization process until the reduced matrix is very
small or the system cannot be further reduced. Practically, the overhead of the multi-
level process increases substantially as more levels are taken. At the same time, since
the multilevel process yields denser and denser matrices, the number of independent
columns available becomes much smaller. Therefore, it is best to stop the multilevel
process when a certain number of levels (maxlev in Algorithm 4.2) is reached or the
size of the reduced problem is not significant (e.g., less than 30% of the previous
problem size).
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Fig. 4.2. The MIQR structure for matrix WELL1850 (1,850 × 712, nnz = 8,758).

Recall that at each level CIG(A, τθ) is the adjacency graph of C(τθ) which is
available from the matrix C = BTB; see (3.1). However, the matrix C need not
be calculated explicitly. Since we determine the degrees of the vertices one by one,
only a single row of C is needed at any given time. In other words, to determine the
degree of vertex i, only the ith row of C needs to be calculated. This row contains
the inner products between the ith column of B and all other columns. As indicated
in [30] (see also section 2), these inner products can be efficiently calculated as a
linear combination of the rows of B. For this reason, although a reduced matrix is
naturally formed and stored columnwise during the MQR factorization process, we
maintain an index array for easily accessing its elements rowwise. Furthermore, since
C is symmetric, only its upper part (i.e., the inner products between the ith column
of B and columns from i + 1 to n) needs to be calculated.

As is standard practice, the permutation matrices P̃k are not formed explicitly.
Instead, a permutation array perm(k) is employed to hold the new ordering of the
columns at each level, along with the inverse permutation array iperm(k). With
this strategy, the columns of matrix Ak are kept in their original ordering and the
permutation step (line 5 in Algorithm 4.2) can be avoided. To construct an MIQR

preconditioner, the matrix array {D1, F1, D2, F2, . . . , Dp, Fp, R̃p+1} and the permu-
tation arrays perm(k) and iperm(k) are stored. Similarly to Figure 4.1, this matrix
array can be organized in an n×n matrix as illustrated in Figure 4.2, where τθ = 0.1
is used and IQR is applied to the final reduced matrix. Moreover, since the matrices
Qk are not needed for the preconditioning purpose, they are discarded at the end of
the kth level recursion, respectively.

Other than the dropping strategies discussed in section 4.2.2, an optional dropping
rule may be applied to Ak+1 as well (see line 10 of Algorithm 4.2). This is used mainly
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as a means of preventing Ak+1 from becoming too dense. For example, when needed,
any nonzero entry in Ak+1 whose absolute value is less than a threshold τ times a
certain norm of the column under consideration will be dropped. However, dropping
in Ak+1 should be applied sparingly as we observed in our experiments that this
can negatively impact the robustness of the resulting preconditioner. Using a small
value of the threshold value τ is recommended if dropping is to be done on Ak+1, as
dropping very small terms is less harmful. For the test problems used in this paper,
all the intermediate matrices generated at line 10 in Algorithm 4.2 were reasonably
sparse. Therefore, for the sake of maintaining robustness, no dropping was applied to
Ak+1 in the tests reported in section 5, (i.e., we use τ = 0).

As mentioned before, the matrix R̂ defined as in (4.15) is a product of permutation
matrices and upper triangular matrices. To precondition the normal equations, we
need to solve the systems R̂x = y and R̂Tx = y. Let sk(k = 1, 2, . . . , p) be the size
of the independent set of columns at level k. Define r1 = 1 and rk = rk−1 + sk−1 for

k = 2, . . . , p + 1. Algorithms 4.3 and 4.4 are used to solve the systems R̂x = y and
R̂Tx = y, respectively.

Algorithm 4.3. Solving R̂x = y

1. x(1 : n) := y(1 : n).
2. For k = 1 : p Do:
3. Apply permutation perm(k) to x(rk : n).
4. x(rk : rk+1 − 1) := D−1

k x(rk : rk+1 − 1).
5. x(rk+1 : n) := x(rk+1 : n) − FT

k x(rk : rk+1 − 1).
6. EndDo

7. Solve R̃p+1z = x(rp+1 : n) for z.
8. x(rp+1 : n) := z.

Algorithm 4.4. Solving R̂Tx = y

1. x(1 : n) := y(1 : n).

2. Solve R̃p+1z = y(rp+1 : n) for z.
3. x(rp+1 : n) := z.
4. For k = p : −1 : 1 Do:
5. x(rk : rk+1 − 1) := D−1

k [x(rk : rk+1 − 1) − Fkx(rk+1 : n)].
6. Apply permutation iperm(k) to x(rk : n).
7. EndDo

4.3. Analysis. In this section we will analyze the errors generated by the MIQR
factorization that are due to dropping small terms. Two questions are important to
consider. The first is, How far does the result deviate from satisfying the relation
APT = QR? The second is, How much does Q deviate from orthogonality in the
presence of dropping?

The basic step of MIQR can be described by approximate versions of the relations
(4.7)–(4.11). Specifically, the equations that define Fi and Ai will change while Qi,
Di can be assumed to be exact:

Di = diag
(
‖A(1)

i−1ej‖2

)
j=1,...,si

,(4.16)

Qi = A
(1)
i−1D

−1
i ,(4.17)

F̃i = QT
i A

(2)
i−1 + EF,i,(4.18)

Ãi = A
(2)
i−1 −QiF̃i + Ei.(4.19)
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The term Ei comes from dropping entries when forming the block Ai while the term
EF,i comes from dropping when forming the matrix Fi; see Algorithm 4.2. Then
assuming Ai−1 is exact, the relation (4.7) becomes

Ai−1P̃
T
i = [A

(1)
i−1, A

(2)
i−1] = [Qi, Ãi]

[
Di F̃i

0 I

]
+ [0, Ei].(4.20)

Note the remarkable absence of EF,i from the error in (4.20). The error is imbedded in

F̃i. Before continuing, we can further note that if there is no dropping when building
Ai, then Ei ≡ 0 and the relation (4.7) becomes exact. This means that in the end
we would expect to have the relation APT = QR exactly satisfied, but Q is not
necessarily unitary. Now we consider the general case and will attempt to analyze
the difference between APT and QR. This case is important to consider because
Algorithm 4.14 may include dropping in Ak+1 after it is constructed; see line 10 of
the algorithm. (Although we did not apply this dropping in our tests reported in this
paper, it helps to keep Ak+1 sparse in general.)

Consider the result of Lemma (4.1) which would be desirable to generalize. In
the following we attempt to extend the argument used in the proof of Lemma 4.1.
We write the above relation for level i + 1 as

Ãi =
[
Qi+1, Ãi+1

] [
Di+1 F̃i+1

0 I

]

︸ ︷︷ ︸
Zi+1

P̃i+1 + [0, Ei+1]︸ ︷︷ ︸
Gi+1

P̃i+1.

Substituting in (4.12) (where Ai is replaced by the computed Ãi at the ith step) yields

[
Q1, . . . , Qi, Ãi

] [
R11 R12

0 I

]

=
[
Q1, . . . , Qi | [Qi+1, Ãi+1]Zi+1P̃i+1 + Gi+1P̃i+1

] [ R11 R12

0 I

]

=
[
Q1, . . . , Qi | [Qi+1, Ãi+1]

] [ R11 R12

0 Zi+1P̃i+1

]
+ [0, Gi+1P̃i+1]

=
[
Q1, . . . , Qi, Qi+1, Ãi+1

] [
R11 R12P̃

T
i+1

0 Zi+1

] [
I 0

0 P̃i+1

]

+ [0, Gi+1]

[
I 0

0 P̃i+1

]
.

In what follows we will denote by Ri the matrix [R11 R12

0 I
] at step i. So the above

relation translates into
[
Q1, . . . , Qi, Ãi

]
Ri =

[
Q1, . . . , Qi, Qi+1, Ãi+1

]
Ri+1Pi+1 + [0, Gi+1]Pi+1.(4.21)

The left-hand side of the above relation is equal to APT
1 · · ·PT

i +Ei, where Ei denotes
the total error made at step i of the factorization. Using a similar notation for the
first term of the right-hand side will transform (4.21) into

APT
1 · · ·PT

i + Ei = (APT
1 · · ·PiP

T
i+1 + Ei+1)Pi+1 + [0, Gi+1]Pi+1.(4.22)
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This means that Ei = Ei+1Pi+1 + [0, Gi+1]Pi+1, and it establishes the remarkably
simple recurrence relation for the total error

Ei+1 = EiPT
i+1 − [0, Ei+1],(4.23)

where the zero block in the right-hand side has the same number of columns as
[Q1, Q2, . . . , Qi]. In particular we have

‖Ep+1‖ ≤
p+1∑
i=1

‖Ei+1‖.

However, this inequality does not say everything about the errors. For example, it is
clear that the last columns (after permutation) will undergo more perturbations than
the first ones and they will therefore be less accurate. This is understandable since,
for example, the columns of the first level are not perturbed by the other columns.

Consider now the accuracy of the process with respect to orthogonality. For
simplicity, we will consider only the situation where there is no dropping in forming
Ãi; i.e., the case where Ei = 0. Furthermore, we assume that each Qi, considered
individually, is exactly orthonormal; i.e., QT

i Qi = I. In particular this means that τθ
should be equal to zero. In this case, it is easy to see from (4.23) that the relation
APT = QR is exactly satisfied. However, dropping entries in Fi will cause loss of
orthogonality.

Consider only one step of the process. From (4.17), (4.18), and (4.19) (with
Ei = 0) we obtain

QT
i Ãi = QT

i (A
(2)
i−1 −QiF̃i) = QT

i A
(2)
i−1 − (QT

i A
(2)
i−1 + EF,i) = −EF,i.

Next we wish to establish a relation between this term and QT
i Q. Specifically, because

of the recursive nature of the algorithm, at step i we have a relation similar to that
given by Lemma 4.2. A little additional notation is needed. Let Qi = [Qi, . . . , Qp+1]
and PT

i = PT
i · · ·PT

p+1. Then,

ÃiPi = QiRi,

where Ri is an upper triangular matrix. Multiplying to the left by QT
i yields

QT
i ÃiPi = QT

i QiRi

so that

−EF,iPiR−1
i = QT

i [Qi, . . . , Qp+1].

The above relation shows in a simple way how the error made at step i will
propagate to the matrices QT

i Qj for j > i. The result involves the inverse of an
unknown triangular matrix. The matrix Ri establishes the relation between the Qj ’s

and the matrix Ãi. For example, for i = 1 we would get all the matrices QT
1 Qj for

j > 1 in terms of EF,1, the error related to dropping in the F matrix in the first step.
An interesting and important question which we do not address in this paper

is the issue of effective dropping. In the papers [8, 9], an idea was considered for
dropping in such a way that the preconditioned matrix is close to the identity. This
is in contrast with other methods which try to make the preconditioner close to A.
Though this idea involves the inverse of the preconditioner, heuristics can be used to
provide quite effective methods. In the context of IQR, this may be doable but it will
undoubtedly be more complex.
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Table 5.1

Information on the test problems: Size = m × n; nnz = the number of nonzeros; μ = the
average number of nonzeros per row; ν = the average number of nonzeros per column.

Matrix m n nnz μ ν Source
ILLC1850 1,850 712 8,758 4.73 12.30 Surveying
WELL1850 1,850 712 8,758 4.73 12.30 Surveying
MESHPAR1 31,258 15,994 187,498 6.00 11.72 3D mesh parameterization
MESHPAR2 75,650 38,384 453,846 6.00 11.82 3D mesh parameterization
SMALL2 6,280 3,976 25,530 4.07 6.42 Animal breeding
MEDIUM2 18,794 12,238 75,039 3.99 6.13 Animal breeding
LARGE 28,254 17,264 75,018 2.66 4.35 Animal breeding
LARGE2 56,508 34,528 225,054 3.98 6.52 Animal breeding
VERYL 174,193 105,882 463,303 2.66 4.38 Animal breeding
VERYL2 348,386 211,764 1,389,909 3.99 6.56 Animal breeding

Table 5.2

Independent set sizes: Comparison of the lower bounds (3.7), the estimated numbers (3.5), the
actual sizes, and the rough lower bounds (3.2).

Matrix New low. s Est. val. s Real val. s Old low. s
ILLC1850 59 196 220 16
WELL1850 59 196 237 16
MESHPAR1 1,116 3,594 2,191 269
MESHPAR2 2,660 8,613 5,090 639
SMALL2 612 1,438 1,171 193
MEDIUM2 1,976 4,544 3,297 633
LARGE 5,048 9,648 9,690 2108
LARGE2 5,359 12,681 9,957 1,690
VERYL 30,788 59,020 60,454 12,815
VERYL2 32,661 77,552 61,638 10,269

5. Numerical results. In this section, we test the performance of the MIQR
method on ten least-squares problems from real applications. Table 5.1 provides some
basic information about the test matrices. In the table, m is the number of rows, n is
the number of columns, nnz is the total number of nonzeros, μ is the average number
of nonzeros per row, and ν is the average number of nonzeros per column. Matri-
ces ILLC1850 and WELL1850 are available from the Matrix Market.1 The next two
matrices are from a three-dimensional mesh parameterization problem.2 These ma-
trices are generated using the method of least-squares conformal maps as described
in [23]. The last six matrices (SMALL2, MEDIUM2, LARGE, LARGE2, VERYL,
VERYL2) arise in animal breeding studies [16, 17] and can be downloaded from
ftp://ftp.cerfacs.fr/pub/algo/matrices/animal. The matrices SMALL2, MEDIUM2,
LARGE2, and VERYL2 are generated from the code conv2.f while LARGE and
VERYL are generated using conv.f. Both conv.f and conv2.f are included in the
package available from the website.3

We first test the accuracy of the estimate on the number of independent sets of
columns as described in section 3.2. Table 5.2 shows the lower bounds (in field “New
low. s”) estimated by (3.7) and the values estimated by solving (3.5) numerically (in

1http://math.nist.gov/MatrixMarket/.
2This problem was provided to us by Minh Nguyen from the Graphics group at the University

of Minnesota, Department of Computer Science and Engineering.
3The difference between conv.f and conv2.f is explained in READ ME as follows: “The code

conv.f constructs problems where only the single trait ‘weight increase’ is considered. The code
conv2.f deals with both traits. The matrices constructed using conv.f are smaller than those
constructed using conv2.f.” For more details see the references cited above.
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Table 5.3

Numbers of independent columns found using different angle tolerances for the first two levels.

Matrix Level τθ = 0.00 τθ = 0.05 τθ = 0.10 τθ = 0.15 τθ = 0.20
ILLC1850 1 220 327 338 343 350

2 130 146 152 159 170
WELL1850 1 237 346 372 395 432

2 122 101 115 119 134
MESHPAR1 1 2,191 6,151 6,594 6,471 6,681

2 2,191 2,483 3,397 4,213 5,411
MESHPAR2 1 5,090 15,685 16,829 15,818 15,655

2 5,090 5,506 7,973 9,823 13,918
SMALL2 1 1,171 1,623 1,995 2,793 2,884

2 1,147 1,022 1,087 683 684
MEDIUM2 1 3,297 4,836 6,154 8,092 8,308

2 3,110 3,274 2,941 2,273 2,340
LARGE 1 9,690 10,280 10,222 10,545 12,554

2 3,794 4,113 4,563 4,509 3,320
LARGE2 1 9,957 14,681 18,523 24,994 25,724

2 9,312 9,891 8,552 6,038 6,131
VERYL 1 60,454 61,032 64,107 66,579 77,343

2 22,095 23,495 25,781 25,000 20,203
VERYL2 1 61,638 89,500 114,752 153,992 157,109

2 57,924 58,804 51,687 36,741 37,615

field “Est. val. s”) for the ten matrices. These lower bounds and estimated values are
compared with the real values calculated by Algorithm 3.2 (in field “Real val. s”). For
reference, we also calculate the rough lower bounds estimated by (3.2) (in field “Old
low. s”), where the average degree η (3.4) is used as the value of dS . It is clear that
the values calculated using (3.7) provide much closer lower bounds. Recall that (3.5)
and (3.7) are derived under the assumption that the nonzero elements of a matrix
are randomly distributed. In spite of this assumption, the estimated values can still
provide good approximations for the matrices from real applications.

Table 5.3 presents the results of finding the independent columns using different
angle tolerances τθ as described in section 4.2.1. In the table, τθ = 0.00, 0.05, 0.10, 0.15
and 0.20 (corresponding to angles 90◦, 87.13◦, 84.26◦, 81.37◦, and 78.46◦, respectively)
are tested. Algorithm 3.2 is used for all tests. For each τθ, we list the number
of independent columns found in the first two levels. From the table, as expected,
the number of independent columns found in each level is significantly increased as
the angle tolerance increases. As an example, for matrix VERYL2, without relaxing
the criterion of finding independent columns (i.e., τθ = 0.00), only 61,638 and 57,924
independent columns are found in the first two levels of reduction respectively; i.e., the
problem size reduced after the first two levels is 119,562. With the angle tolerances, the
problem sizes reduced after the first two levels increase to 148,304, 166,439, 190,733,
and 194,724, respectively, for τθ = 0.05, 0.10, 0.15, and 0.20.

Next, we test MIQR on the ten least-squares problems and compare the results
with IQR (Algorithm 2.1), RIF [4] preconditioners, and ARMS (on the normal equa-
tions). MIQR, IQR, and ARMS were coded in C. RIF provided by Benzi and Tůma
was in FORTRAN90.4 All codes were compiled in 64-bit mode with the -O2 opti-

4The RIF package (rifsrnri.tar.gz) is also available at http://www.cs.cas.cz/˜tuma/sparslab.html.
We only changed the two drop tolerances in the rifsrnri source code, one for the SAINV process (to
approximate A−1b) and the other for the postfiltration of RIF, to achieve the desired fill-in factors
for comparison purposes in our tests. All other parameters in the code were left unchanged.
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Table 5.4

Performance of MIQR under different angle tolerances (τθ = 0.000 and τθ = 0.015).

Matrix τθ Levels Res.# Fill-in Pre.T ITS Its.T Tot.T
0.00 2 360 0.668 0.04 290 0.35 0.39

ILLC1850 0.10 4 77 0.328 0.04 172 0.18 0.22
0.20 4 34 0.219 0.02 183 0.17 0.19
0.00 2 353 0.482 0.04 85 0.10 0.14

WELL1850 0.10 5 60 0.322 0.06 68 0.06 0.12
0.20 5 10 0.224 0.02 133 0.12 0.14
0.00 2 11,612 0.763 7.25 460 14.27 21.52

MESHPAR1 0.04 2 7,536 0.567 5.52 405 10.81 16.33
0.08 2 6,424 0.513 4.60 530 13.59 18.19
0.00 3 25,458 1.097 34.89 731 71.13 106.02

MESHPAR2 0.05 3 12,672 0.650 22.02 800 60.84 82.86
0.10 3 8,938 0.495 13.00 1,357 91.39 104.39
0.00 3 1,299 1.073 0.21 247 1.19 1.40

SMALL2 0.10 3 506 0.530 0.15 241 0.93 1.08
0.20 3 132 0.334 0.08 284 0.89 0.97
0.00 3 4,724 1.299 0.88 223 3.89 4.77

MEDIUM2 0.10 3 1,756 0.628 0.55 235 3.03 3.58
0.25 3 254 0.304 0.16 407 4.09 4.25
0.00 3 2,134 1.247 0.72 44 0.86 1.58

LARGE 0.05 3 1,446 1.014 0.52 69 1.21 1.73
0.10 4 594 0.867 2.22 128 2.12 4.34
0.00 3 12,087 1.234 3.13 361 20.62 23.75

LARGE2 0.10 3 3,769 0.515 2.25 442 18.29 20.54
0.20 3 292 0.251 0.37 461 15.47 15.84
0.00 4 8,176 1.120 6.88 118 17.11 23.99

VERYL 0.18 4 613 0.512 2.19 221 25.59 27.78
0.20 4 259 0.447 1.56 196 21.51 23.07
0.00 1 150,126 1.430 40.66 916 401.60 442.26

VERYL2 0.10 4 11,586 0.502 26.50 497 157.71 184.21
0.25 3 1,522 0.256 3.22 737 186.02 189.24

mization option. All experiments were performed on an IBM SP machine, which has
four 222MHz processors sharing 16GB memory. Note that we did not take advantage
of parallelism in our tests; i.e., only one of the four processors was used. The right-
hand sides available from the original data were used. This is in contrast to [4] where
artificial right-hand sides were employed. Algorithm 1.1 with a zero initial guess was
used to solve all the problems. The iterations were stopped when

‖AT b−ATAx(k)‖2 < 10−8‖AT b−ATAx(0)‖2

or the maximum iteration count of 2,000 was reached. To better compare the pre-
conditioners, we use an indicator called a fill-in factor to indicate the memory us-
age for each method. The fill-in factor is defined as the ratio between the memory
used in a preconditioner and the memory used in the original matrix. The memory
used in MIQR is represented by the total number of nonzero entries in matrices D1,
F1, . . . , Dp, Fp, R̃p+1 as shown in Figure 4.2. We wish to compare the preconditioners
under similar fill-in factors.

In Table 5.4, we test MIQR on the ten matrices under different angle tolerances
τθ. In the table, “Levels” is the number of levels used, “Res.#” is the number of
columns of the final reduced matrix, “Fill-in” is the fill-in factor, “Pre.T” is the
preconditioning time in seconds, “ITS” is the number of iterations for CGLS to reach
convergence, “Its.T” is the iteration time in seconds, and “Tot.T” is the total time in
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Fig. 5.1. MIQR performance on matrix MEDIUM2: (a) Fill-in factor versus angle tolerance.
(b) Total number of iterations versus angle tolerance. (c) Preconditioning time, iteration time, and
total time versus angle tolerance. (d) Total Time versus fill-in factor.

seconds. According to the table, and as expected, the size of the final reduced system
decreases as the angle tolerance increases. For example, after the same number of
reduction levels, the reduced system sizes for matrix MEDIUM2 are 4,724, 1,756, and
254 under angle tolerances 0.00, 0.10, and 0.25, respectively. As a result, the memory
usage of MIQR decreases correspondingly. It is also apparent that allowing more
fill-ins for the MIQR preconditioner does not necessarily provide faster convergence
rates. For matrix ILLC1850, as an example, it takes CGLS 290 iterations to converge
under a fill-in factor of 0.668 when τθ = 0.00. However, it takes only 172 iterations
under a smaller fill-in factor of 0.328 when τθ = 0.10. This is because the accuracy of
the MIQR preconditioner is determined not only by the fill-ins allowed but by many
other factors. For example, it is not known how dropping affects the orthogonality of
the underlying Q factor. Recall that ATA−M is not as important as I −M−1ATA
when it comes to analyzing convergence. From the table, we also observe that only
one level is applied to VERYL2 when τθ = 0.0. In this case, it is due to the fact
that the reduced size in the first level (61,638 according to Table 5.3) is only a small
portion of the original problem size (211,764), which is less than the threshold we set
to stop the multilevel process (see section 4.2.3).

We further examine the relationships among the angle tolerance, the fill-in factor,
the number of iterations, and the execution times for matrix MEDIUM2 in Figure
5.1. Figure 5.1(a) shows the fill-in factors of the MIQR preconditioner as a function
of the angle tolerance τθ. Figure 5.1(b) shows the number of iterations required
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Table 5.5

A comparison of MIQR, IQR, and RIF.

Matrix Method Fill-in Pre.T ITS Its.T Tot.T
MIQR 0.328 0.04 172 0.18 0.22

ILLC1850 IQR 0.332 0.02 1,512 1.45 1.47
RIF 0.332 0.19 406 0.28 0.47
MIQR 0.322 0.06 68 0.06 0.12

WELL1850 IQR 0.333 0.01 439 0.43 0.44
RIF 0.324 0.21 90 0.07 0.28
MIQR 0.567 5.52 405 10.81 16.33

MESHPAR1 IQR 0.582 2.06 666 17.31 19.37
RIF 0.586 3.23 700 12.44 15.67
MIQR 0.650 22.02 800 60.84 82.86

MESHPAR2 IQR 0.650 5.36 1,462 96.27 101.63
RIF 0.642 12.30 1,567 74.14 86.44
MIQR 0.334 0.08 284 0.89 0.97

SMALL2 IQR 0.330 0.03 621 2.30 2.33
RIF 0.321 6.13 285 0.75 6.88
MIQR 0.304 0.16 407 4.09 4.25

MEDIUM2 IQR 0.334 0.08 1,315 15.93 16.01
RIF 0.326 22.49 526 4.50 26.99
MIQR 1.014 0.53 69 1.23 1.76

LARGE IQR 1.013 0.43 157 3.02 3.45
RIF 1.014 2.44 59 0.76 3.20
MIQR 0.251 0.37 461 15.47 15.84

LARGE2 IQR 0.319 0.22 - - -
RIF 0.266 88.86 634 17.27 106.13
MIQR 0.512 2.19 221 25.59 27.78

VERYL IQR 0.515 0.70 997 117.28 117.98
RIF 0.538 4.44 188 15.56 20.00
MIQR 0.256 3.22 737 186.02 189.24

VERYL2 IQR 1.090 7.38 - - -
RIF 0.288 1,306.88 1,220 226.70 1,533.58

for CGLS to converge as a function of the angle tolerance τθ. Figure 5.1(c) shows
the preconditioning time, the iteration time, and the total time as a function of the
angle tolerance τθ. Finally, Figure 5.1(d) shows the total time used to solve problem
MEDIUM2 as a function of the fill-in factor of the MIQR preconditioner.

Table 5.5 compares MIQR with IQR and RIF. The symbol “-” in the table in-
dicates that convergence was not obtained in 2,000 iterations. Note that matrices
ILLC1850, WELL1850, LARGE, and VERYL have also been tested in [4] but with
using artificial right-hand sides. In order to obtain comparable runs, we have put
much effort into adjusting parameters in order to obtain similar fill factors for the
same matrix. One should view the comparisons in this section with the following in-
terpretation: How do the techniques compare for the same matrix if roughly the same
fill-in is allowed for each method? Recall that MIQR implicitly uses a reordering of
the columns and this is in fact the essence of the method. The other methods tested
do not use any reordering of the columns. The superior performance of MIQR clearly
shows that reordering can be vital. This observation is in agreement with [29], where
it is shown that an IQR preconditioner can be made much more effective by applying
a permutation prior to computing it. The table indicates that the set-up times for
MIQR are slightly higher than those of IQR under similar memory usage, but that
both its robustness and total execution times are significantly better. For matrices
LARGE2 and VERYL2, IQR failed to converge in 2,000 iterations, even when much
more fill-in was allowed. We also observe that MIQR had better overall performances
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Table 5.6

A comparison of nnz(A) and nnz(ATA).

Matrix nnz(A) nnz(ATA)
ILLC1850 8,758 9,126
WELL1850 8,758 9,126
MESHPAR1 187,498 220,916
MESHPAR2 453,846 532,816
SMALL2 25,530 58,848
MEDIUM2 75,039 177,066
LARGE 75,018 128,798
LARGE2 225,054 524,036
VERYL 463,303 782,772
VERYL2 1,389,909 3,184,684

Table 5.7

A comparison of MIQR and ARMS (on the normal equations).

Matrix Method Levels Fill-in Pre.T ITS Its.T Tot.T
ILLC1850 MIQR 4 0.328 0.04 172 0.18 0.22

ARMS 3 1.329 0.05 94 0.20 0.25
WELL1850 MIQR 5 0.322 0.06 68 0.06 0.12

ARMS 3 1.120 0.05 70 0.14 0.19
MESHPAR1 MIQR 2 0.567 5.52 405 10.81 16.33

ARMS 2 1.401 2.78 - - -
MESHPAR2 MIQR 3 0.650 22.02 800 60.84 82.86

ARMS 3 1.262 6.97 - - -
SMALL2 MIQR 3 0.334 0.08 284 0.89 0.97

ARMS 3 1.216 0.32 261 3.92 4.24
MEDIUM2 MIQR 3 0.304 0.16 407 4.09 4.25

ARMS 4 1.281 1.20 182 9.20 10.40
LARGE MIQR 3 1.014 0.53 69 1.23 1.76

ARMS 3 1.010 1.66 427 24.90 26.56
LARGE2 MIQR 3 0.251 0.37 461 15.47 15.84

ARMS 3 1.356 5.30 - - -
VERYL MIQR 4 0.512 2.19 221 25.59 27.78

ARMS 4 1.025 37.10 55 21.80 58.90
VERYL2 MIQR 3 0.256 3.22 737 186.02 189.24

ARMS 4 1.200 73.20 - - -

than RIF in general. For most matrices, MIQR required fewer iterations to con-
verge than RIF. This is especially true for matrices MESHPAR1, MESHPAR2, and
VERYL2, for which MIQR required significantly fewer iterations under similar mem-
ory costs. We caution, however, that comparisons are always difficult with iterative
methods because of the large number of parameters that can be adjusted.

Finally, we compared MIQR with ARMS applied to the corresponding normal
equations. The results are shown in Table 5.7. The symbol “-” in the table indicates
failure to converge in 2,000 iterations or less. GMRES(100) was used as the accelerator
for ARMS. In contrast to MIQR, the fill-in factors for ARMS are calculated based
on the number of nonzeros of the normal equations (see Table 5.6). This makes it
less relevant to compare the MIQR and ARMS-GMRES techniques from the point of
view of memory usage (fill factors have a different meaning). Therefore, we choose the
best results (in terms of overall time and memory usage) for ARMS in our tests. The
results in Table 5.7 clearly show that solving the least-squares problems with MIQR
is more effective than solving the corresponding normal equations by ARMS.
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6. Conclusion. We have presented a preconditioning technique for solving large
sparse least-squares systems that is based on a MIQR factorization. The algorithm
exploits a divide-and-conquer strategy which takes advantage of structurally orthog-
onal columns. This allows us to gradually reduce a large problem to a significantly
smaller one with little computational effort. The algorithm first finds an independent
set of columns, which are structurally orthogonal. The remaining columns are then
orthogonalized against this first set of columns, and the resulting set is orthogonalized
recursively. In order to increase the size of the independent sets of columns, we pro-
posed a strategy which consists of relaxing the orthogonality requirement. Numerical
results have shown that this strategy is quite effective in finding independent column
sets with large cardinality. The MIQR preconditioner has been tested and compared
with a standard IQR factorization and with the RIF. The numerical tests show that
MIQR is robust and efficient. We have not implemented a parallel version of the
algorithm. However, the method has been designed with parallelism in mind and a
parallel implementation should scale well.

In section 5, we have observed that the performances of MIQR may be very
different when the angle tolerance varies. It remains to investigate a systematic way
of selecting a good angle tolerance for a given problem. As mentioned in section 4.2.2,
the current dropping strategies at all levels use simple techniques which tend to yield
a factorization that is accurate, i.e., such that APT −QR is small. As is the case for
ILU factorizations, this is not necessarily a good strategy [8]. It may be possible to
adapt Bollhöfer’s work [8] to this context and develop more sophisticated dropping
strategies which will in all likelihood improve the robustness of the scheme. Finally, as
a further improvement, we would like to investigate more sophisticated IQR methods
for the final reduced matrix, including using some effective reordering techniques as
discussed in [29].
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Abstract. An important problem in Web search is determining the importance of each page.
After introducing the main characteristics of this problem, we will see that, from the mathematical
point of view, it could be solved by computing the left principal eigenvector (the PageRank vector) of
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1. Introduction. An important problem in Web search is classifying the pages
according to their importance. In section 2, we formulate and discuss this problem in
mathematical terms and explain how a rank is assigned to each page for creating the
so-called PageRank vector. Various expressions of this vector are given in section 3.
Since the PageRank vector is the dominant eigenvector of a stochastic and irreducible
matrix, it can be computed by the power method, whose iterates are analyzed in
section 4. The results of these two sections will justify the choices made for approxi-
mating of the PageRank vector and for accelerating the power method. Section 5 is
devoted to the construction of Padé-style rational approximations of the PageRank
vector. In section 6, we first present some general ideas on the acceleration of vector
sequences by extrapolation. Procedures based on vector least squares extrapolation
are discussed. Then, using this framework, we consider several algorithms which were
recently proposed for accelerating the convergence of the power method [31]. Their
effectiveness is theoretically justified. One of them is connected to Krylov subspace
methods, and to the method of moments of Vorobyev [50, 8]. The application of
the various ε-algorithms and of the E-algorithm to the PageRank problem is studied,
and convergence acceleration results are proved. Finally, other possible acceleration
techniques are considered.
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Let us also mention that other classes of acceleration techniques, such as aggre-
gation/disaggregation [30, 35, 25], lumping [37], adaptive methods [29], and the par-
allel computation of the PageRank vector [22, 32] are not discussed herein.

2. The problem. A query to a Web search engine often produces a very long
list of answers because of the enormous number of pages (over 8 billion in Google’s
database). To help the surfer, these pages have to be listed starting from the most
relevant ones. Google uses several metrics and strategies for solving this ranking
problem.

The importance of a page is called its PageRank, and the PageRank algorithm
[18, 41] is reportedly one of the main ingredients of Google’s link analysis. A page is
considered to be important if many other important pages are pointing to it. So, the
importance of a page is determined by the importance of the other pages. This means
that the row vector rT of all PageRanks is only defined implicitly as the solution of a
fixed-point problem, as we will see now.

Let deg(i) ≥ 1 be the outdegree (that is, the number of pages it points to) of
the page i. Let P = (pij) be the matrix which describes the transitions between the
pages i and j, where pij = 1/deg(i), pij = 0 if there is no outlink from page i to page
j, and pii = 0.

The PageRank vector rT satisfies rT = rTP , that is, r = PT r, and it can be
computed recursively by the standard power method

r(n+1) = PT r(n), n = 0, 1, . . . ,

assuming that r is present in the spectral decomposition of r(0). Unfortunately, this
iterative procedure has convergence problems. It can cycle, or the limit can depend
on the starting vector r(0) [33].

To avoid these drawbacks, the original PageRank algorithm was revised.
First, since some pages have no outlink (dangling pages), P is not stochastic (some

of its rows are zero). Different strategies were proposed to remedy this problem,

but the most used one is to replace P by another matrix P̃ as follows. Let w =
(w1, . . . , wp)

T ∈ R
p be a probability vector, that is, such that w ≥ 0 and eTw = 1

with e = (1, . . . , 1)T , and p is the total number of pages. Let d = (di) ∈ R
p be the

vector with di = 1 if deg(i) = 0, and 0 otherwise. We set

P̃ = P + dwT .

The effect of the additional matrix dwT is to modify the probabilities so that a
surfer visiting a page without outlinks jumps to another page with the probability
distribution defined by w. This matrix P̃ is stochastic, and thus it has 1 as its
dominant eigenvalue, with e as its corresponding right eigenvector. So I − P̃ is
singular.

Another problem arises since P̃ is reducible. In that case, P̃ can have several
eigenvalues on the unit circle, thus causing convergence problems to the power method.
Moreover, P̃ can have several left eigenvectors corresponding to its dominant eigen-
value 1 (see [3, 47, 49] for a general discussion, and [17] or [44] for the particular case

of the PageRank problem). Then P̃ itself is finally replaced by the matrix

Pc = cP̃ + (1 − c)E, E = evT ,

with c ∈ [0, 1] and v a probability vector. It corresponds to adding to all pages a
new set of outgoing transitions with small probabilities. The probability distribution
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given by the vector v can differ from a uniformly distributed vector, and the resultant
PageRank can be biased to give preference to certain kinds of pages. For that reason,
vT is called the personalization vector. The matrix Pc is nonnegative, stochastic,
and now irreducible since v is a positive vector. It has only one eigenvalue on the
unit circle. This eigenvalue is equal to 1, and e is its corresponding right eigenvector
[3, 40, 47, 49]. Indeed

Pce = cP̃e + (1 − c)evTe = ce + (1 − c)e = e.

Thus, the matrix I − Pc is singular. The power iterations for the matrix PT
c now

converge to a unique vector rc (obviously, depending on c), which is chosen as the
PageRank vector. Let us mention that P is extremely sparse, while Pc is completely
dense. However, the power method could be implemented only with sparse matrix-
vector multiplications, and without even storing Pc as described in section 4. As will
be seen below, the vector rc can also be computed as the solution of a system of linear
equations.

The PageRank problem is closely related to Markov chains [34]. For properties of
stochastic matrices, we refer the interested reader to [40] and [47]. For nonnegative
matrices, see [3] and [49].

We are finally faced with the following mathematical problem. We set Ac = PT
c .

The p × p matrix Ac has eigenvalues |cλ̃p| ≤ · · · ≤ |cλ̃2| < λ̃1 = 1, where the λ̃i

are the eigenvalues of P̃ , and we have to compute rc, its unique right eigenvector
corresponding to the eigenvalue λ̃1 = 1 [20, 34]. For that purpose, we can use the
power method, which consists in the iterations

r(n+1)
c = Acr

(n)
c , n = 0, 1, . . . ,(1)

with r
(0)
c given.

The vector r
(0)
c is the probability distribution over the surfer’s location at step time

0, and r
(n)
c is its probability distribution at time n. The unique stationary distribution

vector of the Markov chain characterized by Ac is the limit of the sequence (r
(n)
c ),

which always exists since Ac is primitive and irreducible, and it is independent of r
(0)
c .

This limit is the right eigenvector rc of the matrix Ac corresponding to its dominant
eigenvalue 1, and it is exactly the vector that we would like to compute [40, p. 691].

The sequence (r
(n)
c ) given by (1) always converges to rc, but if c � 1, the con-

vergence is slow since the power method converges as cn (see [34], and Property 12
below). So, a balance has to be found between a small value of c, which insures a fast

convergence of (r
(n)
c ), but to a vector rc which is not close to the real PageRank vector

r̃ = limc→1 rc, and a value of c close to 1, which leads to a better approximation rc
of r̃, but with a slow convergence. Originally, Google chose c = 0.85, which insures a
good rate of convergence [18].

However, computing a PageRank vector can take several days, and so convergence
acceleration is essential, in particular, for providing continuous updates to ranking.
Moreover, some recent approaches require the computation of several PageRank vec-
tors corresponding to different personalization vectors. Recently, several methods for
accelerating the computation of the PageRank vector by the power method were pro-
posed [31, 29]. In this paper we will provide a theoretical justification of the methods
of [31], and we will put them on a firm theoretical basis. Other convergence accelera-
tion procedures will also be proposed and discussed. In order to be able to prove that
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these algorithms accelerate the convergence of the power method, they have to be
strongly supported by theoretical results. This is what will be achieved in this paper.
It is not our purpose here to test these algorithms numerically, nor to compare them
with other possible procedures for obtaining the PageRank vector.

For a detailed exposition of the PageRank problem, see [34] and [36]. Other
reviews are [26] and [2].

3. The PageRank vector. Since Pc is stochastic and irreducible, rc is the
unique right eigenvector of Ac = PT

c corresponding to the simple eigenvalue 1, that
is, Acrc = rc. By the Perron–Frobenius theorem (see, for example, [49, p. 35]), rc ≥ 0.
It is normalized so that eT rc = 1, and, thus, it is a probability vector.

In this section, we will study the properties of this vector, and, in particular, we
will give implicit and explicit expressions for it. Then we will discuss its computation
by the power method. This discussion will lead us, in the next two sections, to various
procedures for its approximation, and to processes for accelerating the convergence of
the power method.

3.1. Implicit expressions for the PageRank vector. Let us give implicit
expressions for rc.

Setting Ã = P̃T , we have

Acrc = cÃrc + (1 − c)veT rc

= cÃrc + (1 − c)v

= rc.

Thus, (I − cÃ)rc = (1 − c)v, that is, we have the following.
Property 1.

rc = (1 − c)(I − cÃ)−1v

= v + c(Ã− I)(I − cÃ)−1v.

The second expression is deduced from the first one by noticing that (I−cÃ)−1 =

I + cÃ(I − cÃ)−1.
Following Property 1, rc can be obtained as the solution of the dense system

of linear equations (I − cÃ)rc = (1 − c)v. Replacing Ac by its expression leads to

(I − cPT − cwdT )rc = (1 − c)v. But eTwdT = eT Ã− eTPT . Thus, since eTw = 1

and eT = eT Ã, we have dT = eT − eTPT , and, when w = v, we finally obtain the
sparse system (I − cPT )rc = γv, where γ = ‖rc‖1 − c‖PT rc‖1 [22]. A particular
choice of γ only results in a rescaling of the solution of this system, and it can always
be chosen so that rc is a probability vector. Various iterative methods for the solution
of this system are discussed in many papers, including [1, 4, 19].

From Property 1, we immediately obtain the following.
Property 2.

rc = (1 − c)

∞∑
i=0

ciÃiv

= v + c(Ã− I)

∞∑
i=0

ciÃiv.

These results were proved in [5]. These series are convergent since ρ(Ã) = 1 and
0 ≤ c < 1. Since rc can be expressed as a power series, it will allow us to construct
rational approximations of it; see section 5.
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Remark 1. It is easy to check from the result of Property 2 that eT rc = 1. Indeed
eT Ãi = eT , and thus

eT rc = (1 − c)

∞∑
i=0

cieT Ãiv = (1 − c)

∞∑
i=0

cieTv = (1 − c)

∞∑
i=0

ci,

since eTv = 1. But
∑∞

i=0 c
i = (1 − c)−1, which shows the result.

3.2. Explicit expressions for the PageRank vector. Let us now give explicit
forms for rc. We will first express it as a rational function, and then propose a
polynomial form.

3.2.1. Rational expressions. We assume that P̃ is diagonalizable. Thus, P̃ =
XDX−1, where D = diag(1, λ̃2, . . . , λ̃p), and where X = [e,x2, . . . ,xp] is the matrix

whose columns are the right eigenvectors of P̃ . Also, let Y = [r̃,y2, . . . ,yp] be the

matrix whose columns are the right eigenvectors of P̃T , that is, Ã. We have X−T = Y
and

(I − cÃ)−1 = X−T (I − cD)−1XT .

But

(I − cD)−1 =

⎛
⎜⎜⎜⎝

(1 − c)−1

(1 − cλ̃2)
−1

. . .

(1 − cλ̃p)
−1

⎞
⎟⎟⎟⎠ , XTv =

⎛
⎜⎜⎜⎝

1
xT

2 v
...

xT
p v

⎞
⎟⎟⎟⎠ ,

and it follows that

u = (I − cD)−1XTv =

⎛
⎜⎜⎜⎝

1/(1 − c)

xT
2 v/(1 − cλ̃2)

...

xT
p v/(1 − cλ̃p)

⎞
⎟⎟⎟⎠ .

So, we finally obtain rc = (1 − c)X−Tu = (1 − c)Y u. This result was given in [44],

where a similar proof when P̃ is not diagonalizable could also be found, thus leading
to the following result.

Property 3. If P̃ is diagonalizable,

rc = r̃ + (1 − c)

p∑
i=2

αi

1 − cλ̃i

yi,

with αi = xT
i v.

In the general case

rc = r̃ +

p∑
i=2

wi(c)yi,

with

w2(c) = (1 − c)α2/(1 − cλ̃2),

wi(c) = [(1 − c)αi + cβiwi−1(c)]/(1 − cλ̃i), i = 3, . . . , p,

and βi equal to 0 or 1.
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It follows from this result that since rc is a rational function without poles at
c = 1, there exists a unique vector which is the limit, when c tends to 1, of rc. This
vector is only one of the nonnegative normalized dominant left eigenvectors of P̃ , and
it will be chosen as the real PageRank vector. This vector depends on v, a natural
property since P̃ depends on the personalization vector, and also on the multiplicity
of the eigenvalue 1 as explained in [17]. Let us mention that, as proved in [20, 34],

the eigenvalues of the matrix Pc are cλ̃i for i ≥ 2; see also [24], where it is stated that

λ̃2 = 1 in the special case of the Google matrix.
Let us now give another expression for rc. It comes from the well-known expres-

sion for the resolvent of a matrix (see, for example, [9, pp. 19–20]). We have

(I − cÃ)−1 =
1

det(I − cÃ)
(I + cB1 + · · · + cp−1Bp−1),

where the matrices Bi are given by the Le Verrier–Faddeev–Souriau algorithm

B1 = Ã + γ1I, γ1 = −tr(Ã),

Bi = ÃBi−1 + γiI, γi = −1

i
tr(ÃBi−1), i = 2, . . . , p,

where “tr” designates the trace of a matrix. Moreover

det(I − cÃ) = 1 + γ1c + · · · + γpc
p,

Bp = 0,

Ã−1 = −(1/γp)Bp−1.

Thus, it follows from Property 1 that

rc =
1 − c

1 + γ1c + · · · + γpcp
(I + cB1 + · · · + cp−1Bp−1)v.

This result shows that rc is a rational function with a vector numerator of degree
p at most, and a scalar denominator of degree p, while in Property 3 both degrees
were at most p− 1. Let us conciliate these two results.

Since Ã has an eigenvalue equal to 1, then 1 + γ1 + · · · + γp = 0, and it follows
that

1 + γ1c + · · · + γpc
p = −γ1 − · · · − γp + γ1c + · · · + γpc

p

= γ1(c− 1) + γ2(c
2 − 1) + · · · + γp(c

p − 1).

Thus, after cancellation of c− 1 in the numerator and in the denominator, we obtain
the following.

Property 4.

rc = − (I + cB1 + · · · + cp−1Bp−1)v

γ1 + γ2(1 + c) · · · + γp(1 + · · · + cp−1)
.

Remark 2. In this expression of rc, the denominator can also be written as
β0 + · · · + βp−1c

p−1 with βi = γi+1 + · · · + γp for i = 0, . . . , p− 1.
Notice that if the minimal polynomial of Ac for the vector v has degree m < p,

then cancellation occurs between the scalar denominator polynomial and the matrix
numerator polynomial, thus reducing rc to a rational function of type (m− 1,m− 1)
[21, pp. 87–94].

Since, by Properties 3 and 4, rc is a rational function in the variable c, it is
justifiable to approximate it by a rational function with lower degrees, as proposed in
section 5.
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3.2.2. Polynomial form. We will now give a polynomial expression for rc. Let
Πm(λ) = a0 + a1λ + · · · + amλm be the minimal polynomial of Ac for the vector v
with m ≤ p. Since Ac has a unique eigenvalue equal to 1, Πm can be written as
Πm(λ) = (λ− 1)Qm−1(λ). So

Πm(Ac)v = (Ac − I)Qm−1(Ac)v = AcQm−1(Ac)v −Qm−1(Ac)v = 0.

Thus, Qm−1(Ac)v is the eigenvector of Ac corresponding to the eigenvalue 1, that is,
we have the following.

Property 5.

rc = Qm−1(Ac)v.

If we set Qm−1(λ) = b0 + · · · + bm−1λ
m−1, then bi = −(a0 + · · · + ai) = ai+1 +

· · · + am for i = 0, . . . ,m− 1 (compare with Remark 2).
Property 5, shows that approximating Qm−1 in some sense will lead to approxi-

mations of the vector rc. Such procedures will be described in section 6.

4. Computation of the PageRank vector. The PageRank vector rc can be

computed by the power method starting from any nonzero vector such that eT r
(0)
c = 1.

We will start it from v, a choice justified by Property 5, and by Property 7 given below:

r(0)
c = v,

r(n+1)
c = Acr

(n)
c , n = 0, 1, . . . .

Obviously, for all n, r
(n)
c ≥ 0. Moreover, eT r

(0)
c = 1. So, by induction, eT r

(n+1)
c =

eTAcr
(n)
c = (Pce)T r

(n)
c = eT r

(n)
c . Thus, we have the following.

Property 6.

r(n)
c = An

c v ≥ 0, and ‖r(n)
c ‖1 = eT r(n)

c = 1, n = 0, 1, . . . .

Substituting Ac by its expression, an iterate of the power method can be written
as

r(n+1)
c = cPT r(n)

c + c(dT r(n)
c )w + (1 − c)v.

So, an iteration costs only one matrix–vector product by the very sparse matrix PT .
Moreover, neither Ac nor Ã has to be stored. In addition, the vector d can be
eliminated, thus making the power method easy and cheap to implement. Since, as
seen above, dT = eT − eTPT , then, for any vector x, it holds, after replacing Ac, Ã,
and dT by their expressions, that

Acx = cPTx + (c‖x‖1 − ‖cPTx‖1)w + (1 − c)‖x‖1v.

If w = v, the formula given in [31, Alg. 1] for computing such matrix–vector products

is recovered. In the particular case of the power method, x = r
(n)
c , ‖r(n)

c ‖1 = 1, and
the above formula simplifies to

r(n+1)
c = Acr

(n)
c = cPT r(n)

c + (c− ‖cPT r(n)
c ‖1)w + (1 − c)v.

Only one vector has to be stored by iteration. See [34] for details about the operational
count.
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As will be seen in Property 14, it follows from Property 6 that the vectors r
(n)
c −rc

satisfy a difference equation, a result that will be used for proving that the ε-algorithms
accelerate the convergence of the power method (see section 6.3).

As proved in [5], an important property is that the vectors r
(n)
c computed by the

power method are the partial sums of the second series for rc given in Property 2.
Let us give a simpler proof of this result.

Property 7.

r(n)
c = (1 − c)

n−1∑
i=0

ciÃiv + cnÃnv, n ≥ 0,

= v + c(Ã− I)

n−1∑
i=0

ciÃiv.

Proof. Let us prove the second identity. For n = 0, the sum is zero and the result
is true. For n = 1, we have

r(1)
c = cÃr(0)

c + (1 − c)veT r(0)
c = v + (Ã− I)cv.

Assuming that the result holds for n, we have

r(n+1)
c = [cÃ + (1 − c)veT ]r(n)

c

= cÃr(n)
c + (1 − c)v by Property 6

= cÃv + c2Ã(Ã− I)

n−1∑
i=0

ciÃiv + (1 − c)v

= cÃv + c(Ã− I)

n∑
i=1

ciÃiv + (1 − c)v

= v + c(Ã− I)
n∑

i=0

ciÃiv.

The first result can be easily obtained from the second one.
Since the power method furnishes the partial sums of the power series for rc, its

iterates will be directly used for constructing Padé-type approximants of this vector;
see section 5.

Property 8 immediately follows from Property 7.
Property 8.

r(0)
c = v,

r(n+1)
c = r(n)

c + cn+1(Ã− I)Ãnv, n = 0, 1, . . . .

Moreover, the following holds.
Property 9.

(Ã− I)Ãnv =
1

cn+1
(r(n+1)

c − r(n)
c ), n = 0, 1, . . . .

This property, proved in [5], shows that it is possible to apply the power method
simultaneously for several values of c with only a small additional cost. Indeed, by
Property 9, one only has to compute the vectors (Ã − I)Ãnv once, and then use
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Property 8 for computing the partial sums r
(n)

c̃
of the series r

c̃
for a different value c̃

of c. So, we have

r
(0)

c̃
= v,

r
(n+1)

c̃
= r

(n)

c̃
+ c̃n+1 1

cn+1
(r(n+1)

c − r(n)
c ), n = 0, 1, . . . .

Since I + cÃ + · · · + cn−1Ãn−1 = (I − cÃ)−1(I − cnÃn), the results of Property
7 can also be written as follows for comparison with Property 1.

Property 10.

r(n)
c = (1 − c)(I − cÃ)−1(I − cnÃn)v + cnÃnv

= v + c(Ã− I)(I − cÃ)−1(I − cnÃn)v.

Let us now give expressions for the error. From Properties 1, 6, and 10, it is easy
to prove the following.

Property 11.

rc − r(n)
c = An

c (rc − v)

= cnÃn(rc − v)

= (I − cÃ)−1(r(n+1)
c − r(n)

c ).

Since Ã is a column stochastic matrix ‖Ã‖1 = 1, and since, in our case, it is also

reducible, then |λ̃2| = 1, and we obtain the following.
Property 12.

‖rc − r(n)
c ‖1 ≤ cn ‖rc − v‖1

≤ 1

1 − c
‖r(n+1)

c − r(n)
c ‖1.

Let us note that 1/(1 − c) is the 1-norm of the matrix (I − cÃ)−1 and that the
condition number of the PageRank problem is (1 + c)/(1 − c) [28].

Let us now explain how rational and polynomial approximations of rc could be
obtained from the iterates of the power method. In both cases, increasing the degree
of the approximation produces a sequence of approximations of rc of increasing order
which, under certain assumptions, converge to rc faster than the iterates of the power
method.

5. Padé approximation of the PageRank vector. As proved in Properties
3 and 4, rc is a vector rational function of type (p−1, p−1) (or (m−1,m−1), where
m is the degree of the minimal polynomial of Ac for the vector v) in the variable c,
that is, a rational function with a numerator of degree p − 1 (or m − 1) with vector
coefficients, and a common scalar denominator of degree p− 1 (or m− 1). Moreover,
by Property 2, the vector Taylor series expansion of rc is known. So, the partial sums
of this series could be used for constructing rational approximations of rc of type
(k − 1, k − 1) with k < p (or k < m). The coefficients of these rational functions
will be chosen so that their power series expansion agrees with that of rc as far as
possible. Such types of rational functions are called Padé approximants.

The first possibility is to construct the scalar Padé approximants [k − 1/k − 1]
separately for each component of rc. In that case, each component will be matched up
to the term of degree 2k−2 inclusively. However, each scalar Padé approximant could
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have a different denominator for each component. For more on Padé approximation,
see [6, 9].

A solution that seems preferable is to use vector Padé approximants since the
components of rc are rational functions with a common denominator, which is ex-
actly the characterizing property of vector Padé approximants. These approximants,
introduced by Van Iseghem [48], are defined as follows.

Let f be a vector formal power series

f(ξ) =

∞∑
i=0

σiξ
i, σi ∈ R

p.(2)

We look for a vector rational function whose series expansion in ascending powers of ξ
agrees with f as far as possible. By vector rational function, we mean a function with
vector coefficients in the numerator and with a scalar denominator. More precisely,
we look for a0, . . . ,ak−1 ∈ R

p, and b0, . . . , bk−1 ∈ R, with k ≤ p (or k ≤ m), such that

(b0 + · · · + bk−1ξ
k−1)(σ0 + σ1ξ + · · · ) − (a0 + · · · + ak−1ξ

k−1) = O(ξs),(3)

with s, the order of approximation, as high as possible. If s = k, this vector rational
function is called a Padé-type approximant of f , while it is called a Padé approximant
if s = 2k − 1.

Identifying to zero the vector coefficients of the terms of degree 0 to k − 1 in the
left-hand side of (3), we obtain

a0 = b0σ0,
a1 = b0σ1 + b1σ0,

...
ak−1 = b0σk−1 + · · · + bk−1σ0.

(4)

For any choice of the coefficients bi of the denominator with b0 �= 0, the rational
function (a0 + · · · + ak−1ξ

k−1)/(b0 + · · · + bk−1ξ
k−1) obtained by this procedure is a

vector Padé-type approximant, and it is denoted by (k − 1/k − 1)f (ξ). Its order of
approximation is s = k, that is, (k − 1/k − 1)f (ξ) − f(ξ) = O(ξk). The computation
of the approximant (k − 1/k − 1)f needs the knowledge of σ0, . . . ,σk−1. Thus, in
practice, only small values of k could be used depending on the number of vectors one
could store.

Let us now try to improve the order of approximation, that is, to construct vector
Padé approximants. However, as we will see now, this order could not be improved
simultaneously for all components of the approximants since k has to be smaller than
p. Indeed, for eliminating the term of degree k in (3), it is necessary and sufficient that
0 = b0σk + · · ·+ bk−1σ1. Since a rational function is defined apart from a multiplying
factor, we can set b0 = 1, and we get

b1σk−1 + · · · + bk−1σ1 = −σk.

This is a system of p equations with k − 1 ≤ p unknowns. It has to be solved in the
least squares sense. Setting C = [σ1, . . . ,σk−1] ∈ R

p×(k−1) and b = (bk−1, . . . , b1)
T ,

this system can be rewritten as Cb = −σk. Let C† be a left inverse of C, that is, a
(k − 1) × p matrix such that C†C = I ∈ R

(k−1)×(k−1). Thus, b = −C†σk. Once the
bi’s have been obtained, the ai’s can be directly computed by the relations (4). The
matrix C† has the form C† = (ZTC)−1ZT , where Z = [z1, . . . , zk−1] ∈ R

p×(k−1) is
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any matrix such that ZTC ∈ R
(k−1)×(k−1) is nonsingular. The rational approximant

constructed in that way is called a vector Padé approximant of f , although its order of
approximation s is only equal to k, and it is denoted by [k− 1/k− 1]f (ξ). The reason
for this abuse of language is that we now have zTi [k−1/k−1]f (ξ)−zTi f(ξ) = O(ξ2k−1)
for i = 1, . . . , k−1. Obviously, since a left inverse is not unique, different vector Padé
approximants could be constructed. Of course, the simplest choice is Z = C. In that
case, C† is the pseudoinverse of C, and the corresponding Padé approximants can be
computed by the Recursive Projection Algorithm (RPA) [13, sect. 4.4].

Another way of proceeding for obtaining the coefficients bi is to consider the k−1
scalar equations

b1(z,σk−1) + · · · + bk−1(z,σ1) = −(z,σk),

...

b1(z,σ2k−3) + · · · + bk−1(z,σk−1) = −(z,σ2k−2),

where z is any vector such that the matrix of this system is nonsingular. For these
approximants, we again have [k− 1/k− 1]f (ξ)− f(ξ) = O(ξk), but now zT [k− 1/k−
1]f (ξ) − zT f(ξ) = O(ξ2k−1). These approximants are more costly than the previous
ones since more iterates of the power method are needed. They can be recursively
computed by applying the topological ε-algorithm [6] to the iterates of the power
method.

Intermediate strategies between using one vector equation and k− 1 vectors zi or
using k − 1 vector equations and only one vector z could also be employed as those
described in [11]. Other sequence transformations of the same type are given in [15].

By Property 2, rc is also the product of the vector v by a matrix power series.
Thus, rc can be approximated by matrix Padé approximants. However, this solution
involves high-dimensional matrix inversion, which is not possible in our case.

Let us now apply these general procedures for constructing Padé-type and Padé
approximants of rc. The second series of Property 2 for rc corresponds to f with
ξ = c, σ0 = v, and σi = (Ã− I)Ãi−1v for i ≥ 1. Following Property 9, these vector

coefficients are obtained directly from the power method since σi = (r
(i+1)
c −r

(i)
c )/ci+1.

The vector Padé-type approximants satisfy the same property as rc and the iterates
of the power method, namely, we have the following.

Property 13.

eT (k − 1/k − 1)f (c) = 1 ∀c ∈ [0, 1],

(k − 1/k − 1)f (c) ≥ 0 ∀c ∈ [0, δ], δ ∈ [0, 1].

Proof. We have eTσ0 = 1, and eTσi = 0 for i ≥ 1. Thus, multiplying the
relations (4) by eT gives eTai = bi for i = 0, . . . , k − 1, which shows the first result.

Since (k − 1/k − 1)f (c) approximates rc near zero, and for all c ∈ [0, 1), rc ≥ 0,
then ∃δ ∈ [0, 1] such that (k− 1/k− 1)f (c) ≥ 0 for c ∈ [0, δ]. Let us mention that the
value of δ is unknown but that is should be 1.

Let us also mention that the value of c in Padé-style approximants can be complex.

6. Acceleration of the power method. Let us begin by recalling some general
issues about sequence transformations for accelerating the convergence.

Let (x(n)) be a sequence converging to a limit x. The idea behind a convergence
acceleration method is extrapolation. It is assumed that the sequence (x(n)) behaves
in a certain way or, in other terms, as a certain function of n depending on some
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unknown parameters including its limit x. These parameters (and so also the limit
x) are determined by interpolation starting from an index n, and then the function is
extrapolated at infinity. If the sequence (x(n)) behaves exactly as the extrapolation
function, then the estimated limit obtained by the extrapolation process gives its
exact limit x. If (x(n)) does not behave exactly as the extrapolation function, then
the estimated limit given by the extrapolation process is only an approximation of
x, denoted by y(n) since it depends on n. So, an extrapolation process transforms
the sequence (x(n)) into a new sequence (y(n)) which, under certain assumptions
(that is, if the extrapolation function closely follows the exact behavior of (x(n))),
converges to x faster than (x(n)), that is, limn→∞ ‖y(n) − x‖/‖x(n) − x‖ = 0. A
sequence transformation for accelerating the convergence can always be considered as
an extrapolation procedure, and conversely an extrapolation procedure always leads
to an acceleration method for some classes of sequences. A sequence transformation
does not modify the sequence to accelerate, and the way it is generated is taken into
account only for obtaining acceleration results.

The set KT of sequences such that, for all n, y(n) = x is called the kernel of the
transformation T : (x(n)) 
−→ (y(n)). So, when a sequence belongs to the kernel of a
transformation, its limit is exactly obtained. An important conjecture about sequence
transformations is that, if a sequence is close, in a sense to be specified, to the kernel
of a transformation, then its convergence will be accelerated by this transformation.
Many numerical results point out that this conjecture is true. However, theoretical
results in this direction are very partial, and no general ones exist.

Thus, for constructing an efficient acceleration process for a given sequence, one
must first study its behavior with respect to n, and then construct an extrapolation
process based on an extrapolation function as close as possible (in some sense) to the
exact one. This extrapolation function will define the kernel of the transformation.

On sequence transformations for accelerating the convergence by extrapolation,
and, in particular, for the ε-algorithm and the other algorithms that will be used
below, see [13].

For defining such an acceleration process for the iterates of the power method for
the computation of the PageRank vector, we use the idea behind Krylov’s method.
As proved in Property 5, rc = Qm−1(Ac)v, where Πm(λ) = (λ − 1)Qm−1(λ) is the
minimal polynomial of Ac for the vector v. We also have

rc = An
c rc = An

cQm−1(Ac)v = Qm−1(Ac)A
n
c v = Qm−1(Ac)r

(n)
c .(5)

Thus, replacing, in this relation, Qm−1 by an approximating polynomial Qk−1 of
degree k − 1 ≤ m− 1 leads to polynomial approximations of rc of the form

r(k,n)
c = Qk−1(Ac)r

(n)
c .(6)

As will be seen below, the polynomials Qk−1 will be constructed from the vectors r
(i)
c

for i ≥ n. Under certain assumptions, the new sequences (r
(k,n)
c ) will converge to rc

faster than the sequence (r
(n+k)
c ) produced by the power method, that is, such that

the sequence (‖r(k,n)
c − rc‖/‖r(n)

c − rc‖) tends to zero, for k fixed and n tending to
infinity. When n is fixed and k increases, then for k = m, the degree of the minimal
polynomial of Ac for the vector v, the exact result rc is obtained. Obviously, since m
is very large this is not a procedure that could be used in practice. However, when k

grows, the (r
(k,n)
c )’s become more accurate approximations of rc since we are getting

closer to the kernel of the transformation as explained above.
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Another procedure, called cycling, consists of computing r
(k,0)
c as above, and then

starting again the iterations (1) of the power method from r
(0)
c = r

(k,0)
c . This was the

strategy used in [31].
In both cases, it must be noted that the higher k, the greater the number of

vectors r
(i)
c obtained by the power method to store, thus limiting the value of k to

be used in practice. This value depends on the numbers of vectors one could store.
This is an important point to take into consideration since, if many vectors have to
be stored for accelerating the power method, one might as well use a more powerful
eigenvalue algorithm, like the restarted Arnoldi’s method [23]. Even if the PageRank
vector is computed only for a subset of the pages, again Arnoldi’s method may be
more interesting than the accelerated power method. This is a remark to take into
account when considering convergence acceleration procedures.

In section 6.1, we will explain in a different way, simplifying, unifying, and gen-
eralizing the Quadratic Extrapolation presented in [31]. This generalization will be
related to Krylov subspace methods, and some properties will be given. Then, in
section 6.2, this generalization will also be included in the framework of the method
of moments, where a polynomial Pk approximating the minimal polynomial Πm will
be constructed. In section 6.3, we will discuss the various ε-algorithms and recover
the Aitken Extrapolation, as well as the Epsilon Extrapolation given in [31]. These
algorithms are generalizations of the well-known Aitken’s Δ2 process. The section
closes by reviewing some other possible acceleration methods.

6.1. Vector least squares extrapolation. Let us give a first procedure for
computing the coefficients of the polynomial Pk which approximates the minimal
polynomial Πm. We set Pk(λ) = a0 + · · · + akλ

k, where the ai’s depend on k and
another index denoted by n, as we will see, and Pk(1) = a0+ · · ·+ak = 0. Considering
the iterates of the power method, we set

Rn = [r(n)
c , . . . , r(n+k−1)

c ].

Since, for all n, r
(n)
c = An

c v, it holds that

An
cPk(Ac)v = Pk(Ac)r

(n)
c = a0r

(n)
c + · · · + akr

(n+k)
c � 0.(7)

Since the coefficients ai are defined apart from a multiplying factor, and since Pk has
exact degree k, we can assume that ak = 1 without restricting the generality. Thus,
(7) can be rewritten as

Rna � −r(n+k)
c ,

with a = (a0, . . . , ak−1)
T . Solving this system in the least squares sense gives

a = −(RT
nRn)−1RT

n r(n+k)
c .(8)

Let us remark, in connection with [31], that (RT
nRn)−1RT

n is the pseudoinverse of Rn.
By taking into account that Pk(1) = 0, the computation can be simplified as in

[31]. We have a0 = −a1 − · · · − ak−1 − 1. Replacing a0 by this expression in (7) gives

R′
na

′ = −(r(n+k)
c − r(n)

c )(9)

with R′
n = [r

(n+1)
c − r

(n)
c , . . . , r

(n+k−1)
c − r

(n)
c ] and a′ = (a1, . . . , ak−1)

T . This system

is then solved in the least squares sense, that is, a′ = −(R
′T
n R′

n)−1R
′T
n (r

(n+k)
c − r

(n)
c ).
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Remark 3. Instead of formula (8), any other left inverse of Rn could be used,
thus leading to

a = −(ZT
nRn)−1ZT

n r(n+k)
c ,

where Zn = [zn, . . . , zn+k−1] is a p × k matrix such that ZT
nRn is nonsingular. The

system (9) can be solved in a similar way.

We now have to compute r
(k,n)
c by (6). We set

Qk−1(λ) = b0 + b1λ + · · · + bk−1λ
k−1.

Since Pk(λ) = (λ− 1)Qk−1(λ), it follows that

bi = −(a0 + · · · + ai) = ai+1 + · · · + ak, i = 0, . . . , k − 1.(10)

Note that since a0+· · ·+ak = 0 and ak = 1, we also have b0 = −a0 and bk−1 = ak = 1.

Let b = (b0, . . . , bk−1)
T . Thus, r

(k,n)
c = Rnb. Denoting by L the k×k lower triangular

matrix whose elements are equal to 1, then, from (10), b = −La, and it follows that

r(k,n)
c = Rnb = −RnLa = RnL(RT

nRn)−1RT
n r

(n+k)
c .

We also have Acr
(k,n)
c = Rn+1b.

Thus, from what precedes, we obtain

r(k,n)
c = Qk−1(Ac)r

(n)
c = b0r

(n)
c + b1r

(n+1)
c + · · · + bk−1r

(n+k−1)
c .(11)

Since r
(n+i)
c = Ai

cr
(n)
c , this relation shows that r

(k,n)
c ∈ Kk(Ac, r

(n)
c ), the Krylov

subspace of dimension k spanned by the vectors r
(n)
c , . . . , Ak−1

c r
(n)
c . More precisely,

since bk−1 = 1, r
(k,n)
c ∈ r

(n+k−1)
c + Kk−1(Ac, r

(n)
c ). Moreover, the vector

e(k,n) = Pk(Ac)r
(n)
c = (Ac − I)Qk−1(Ac)r

(n)
c = Acr

(k,n)
c − r(k,n)

c

belongs to Kk+1(Ac, r
(n)
c ), more precisely, since bk−1 = 1, e(k,n) ∈ r

(n+k)
c +Kk(Ac, r

(n)
c ).

From (11), we also see that e(k,n) = ΔRnb ∈ Kk(Ac,Δr
(n)
c ); more precisely, it be-

longs to Δr
(n+k−1)
c + Kk−1(Ac,Δr

(n)
c ) (Δ is the usual forward difference operator).

Since r
(k,n)
c approximates the eigenvector rc of Ac, the vector e(k,n) plays the role of

a residual. We have

RT
ne(k,n) = RT

nRna + RT
n r(n+k)

c

= −RT
nRn(RT

nRn)−1RT
n r(n+k)

c + RT
n r(n+k)

c

= 0.

Thus, e(k,n) is orthogonal to the columns of Rn, and we have the following.
Theorem 1.

r(k,n)
c ∈ r(n+k−1)

c + Kk−1(Ac, r
(n)
c ),

Acr
(k,n)
c − r(k,n)

c ⊥ Kk(Ac, r
(n)
c ).

This result shows that vector least squares extrapolation can be considered as a
Krylov subspace method for computing rc.
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Moreover, since Kk(Ac, r
(n)
c ) ⊆ Kk+1(Ac, r

(n)
c ), we have the following.

Corollary 1.

‖e(k+1,n)‖ ≤ ‖e(k,n)‖.

Obviously, when k = m, e(m,n) = 0.

Writing down the conditions of Theorem 1, we immediately obtain several deter-
minantal expressions. Such expressions have no direct practical use, but they could be
of interest in proving theoretical results about our vector least squares extrapolation,

and in obtaining recursive algorithms for the computation of the vectors r
(k,n)
c .

Corollary 2.

e(k,n) = (−1)k−1

∣∣∣∣∣∣∣∣∣∣

r
(n)
c · · · r

(n+k)
c

(r
(n)
c , r

(n)
c ) · · · (r

(n)
c , r

(n+k)
c )

...
...

(r
(n+k−1)
c , r

(n)
c ) · · · (r

(n+k−1)
c , r

(n+k)
c )

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

(r
(n)
c , r

(n)
c ) · · · (r

(n)
c , r

(n+k−1)
c )

...
...

(r
(n+k−1)
c , r

(n)
c ) · · · (r

(n+k−1)
c , r

(n+k−1)
c )

∣∣∣∣∣∣∣∣

.

The determinant in the numerator denotes the vector obtained by expanding it
with respect to its first row by the classical rules for expanding a determinant.

Let D
(n)
k be the determinant in the denominator of e(k,n). Comparing this result

with (11) shows, since r
(n+i)
c = Ai

cr
(n)
c , that we have the following.

Corollary 3. It holds that e(k,n) = Q̃k−1(Ac)r
(n)
c /D

(n)
k , with

Q̃k−1(λ) = (−1)k−1

∣∣∣∣∣∣∣∣∣

1 · · · λk

(r
(n)
c , r

(n)
c ) · · · (r

(n)
c , r

(n+k)
c )

...
...

(r
(n+k−1)
c , r

(n)
c ) · · · (r

(n+k−1)
c , r

(n+k)
c )

∣∣∣∣∣∣∣∣∣
.

Note that the polynomial Q̃k−1(λ)/D
(n)
k is monic. Moreover, the ratio of de-

terminants given in Corollary 2 shows that e(k,n) can also be expressed as a Schur
complement (see [9, p. 150] or [52]), thus leading to the following.

Corollary 4.

e(k,n) = r(n+k)
c −Rn

⎛
⎜⎜⎝

(r
(n)
c , r

(n)
c ) · · · (r

(n)
c , r

(n+k−1)
c )

...
...

(r
(n+k−1)
c , r

(n)
c ) · · · (r

(n+k−1)
c , r

(n+k−1)
c )

⎞
⎟⎟⎠

−1⎛
⎜⎜⎝

(r
(n)
c , r

(n+k)
c )

...

(r
(n+k−1)
c , r

(n+k)
c )

⎞
⎟⎟⎠.

Let us now express the vectors r
(k,n)
c as a ratio of determinants. We have the

following theorem.
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Theorem 2.

r(k,n)
c = (−1)k−1

∣∣∣∣∣∣∣∣∣∣

r
(n)
c · · · r

(n+k−1)
c

(Δr
(n)
c ,Δr

(n)
c ) · · · (Δr

(n)
c ,Δr

(n+k−1)
c )

...
...

(Δr
(n+k−2)
c ,Δr

(n)
c ) · · · (Δr

(n+k−2)
c ,Δr

(n+k−1)
c )

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

(Δr
(n)
c ,Δr

(n)
c ) · · · (Δr

(n)
c ,Δr

(n+k−2)
c )

...
...

(Δr
(n+k−2)
c ,Δr

(n)
c ) · · · (Δr

(n+k−2)
c ,Δr

(n+k−2)
c )

∣∣∣∣∣∣∣∣

.

Proof. We have e(k,n) = ΔRnb. Taking into account that bk−1 = 1, this relation

can also be written as e(k,n) = ΔR̃nb̃ + Δr
(n+k−1)
c , with R̃n = [r

(n)
c , . . . , r

(n+k−2)
c ]

and b̃ = (b0, . . . , bk−2)
T . Solving, as above, the system e(k,n) = 0 in the least squares

sense gives b̃ = −(ΔR̃T
nΔR̃n)−1ΔR̃T

nΔr
(n+k−1)
c . Thus, since r

(k,n)
c = R̃nb̃+r

(n+k−1)
c ,

we get

r(k,n)
c = r(n+k−1)

c − R̃n(ΔR̃T
nΔR̃n)−1ΔR̃T

nΔr(n+k−1)
c .

This relation shows that r
(k,n)
c is a Schur complement, and the result follows from

Schur’s determinantal formula.
Since Acr

(k,n)
c = Rn+1b, we immediately have the following.

Corollary 5. e(k,n) is given by a formula similar to the formula of Theorem

2 after replacing the first row of the numerator by Δr
(n)
c , . . . ,Δr

(n+k−1)
c . Moreover

(Δr
(n+i)
c , e(k,n)) = 0 for i = 0, . . . , k − 2, that is, ΔR̃T

ne(k,n) = 0.

Note that Rn = [R̃n, r
(n+k−1)
c ], and b = (b̃T , bk−1)

T . Polynomial expressions for

r
(k,n)
c and e(k,n) similar to that of Corollary 3 can easily be deduced from Theorem

2 and Corollary 5. The preceding results can be easily modified if Rn is replaced by
Zn.

Thus, in this section, we have generalized to an arbitrary value of k the Quadratic
Extrapolation presented in [31] which corresponds to k = 3. Moreover, it has been
related to Krylov subspace methods.

In practice, the value of k is limited by the dimension p of the problem and by

the number of vectors to store for computing the vector r
(k,n)
c . For k = 2, we obtain

the new vector sequence transformation

r(2,n)
c = (Ac − αnI)r

(n)
c = r(n+1)

c − αnr
(n)
c with αn =

(Δr
(n)
c ,Δr

(n+1)
c )

(Δr
(n)
c ,Δr

(n)
c )

.

This relation corresponds to the ratio of determinants given in Theorem 2.
These vector least squares extrapolation procedures follow an idea similar to that

used in the least squares extrapolation discussed in [13, sect. 3.10] for scalar sequences
and in the vector transformations proposed in [15].

6.2. The method of moments. The generalization of the Quadratic Extrap-
olation [31] discussed in the previous section could be interpreted as a special case of
the method of moments of Vorobyev [50, pp. 14–16] (see also [8, pp. 154–157]). Thus,
we will have a different point of view on this generalization, which is always helpful
for obtaining theoretical results, such as acceleration properties.
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Let u0, . . . ,uk be linearly independent vectors in R
p and z0, . . . , zk−1 also, where

k + 1 ≤ p. The method of moments consists of constructing the linear mapping Ak

on Ek = span(u0, . . . ,uk−1) such that

u1 = Aku0,
u2 = Aku1 = A2

ku0,
. . . . . . . . . . . . . . . . . .

uk−1 = Akuk−2 = Ak−1
k u0,

Pkuk = Akuk−1 = Ak
ku0,

where Pk is the projection on Ek orthogonal to Fk = span(z0, . . . , zk−1).
These relations completely determine the mapping Ak. Indeed, for any u ∈ Ek,

there exist numbers b0, . . . , bk−1 such that

u = b0u0 + · · · + bk−1uk−1.(12)

Thus,

Aku = b0Aku0 + · · · + bk−2Akuk−2 + bk−1Akuk−1(13)

= b0u1 + · · · + bk−2uk−1 + bk−1Pkuk ∈ Ek.

Since Pkuk ∈ Ek, there exist numbers a0, . . . , ak−1 such that

Pkuk = −a0u0 − · · · − ak−1uk−1,(14)

that is,

a0u0 + · · · + ak−1uk−1 + Pkuk = (a0 + a1Ak + · · · + ak−1A
k−1
k + Ak

k)u0 = 0.

But

(zi,uk − Pkuk) = 0 for i = 0, . . . , k − 1,

that is, for i = 0, . . . , k − 1,

a0(zi,u0) + · · · + ak−1(zi,uk−1) + (zi,uk) = 0.

Solving this system gives the ai’s and, thus, Ak is completely determined.
Now, if we set

Pk(ξ) = a0 + · · · + ak−1ξ
k−1 + ξk,

then

Pk(Ak)u0 = 0,

which shows that Pk is an annihilating polynomial of Ak for the vector u0.
We will be looking for the eigenvectors of Ak belonging to Ek. Let u ∈ Ek. From

(13) and (14), we have

Aku = b0u1 + · · · + bk−2uk−1 + bk−1(−a0u0 − · · · − ak−1uk−1)

= −a0bk−1u0 + (b0 − a1bk−1)u1 + · · · + (bk−2 − ak−1bk−1)uk−1.(15)
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If λ is an eigenvalue of Ak and u is the corresponding eigenvector, then

Aku = λ(b0u0 + · · · + bk−1uk−1),

and, since u0, . . . ,uk−1 are linearly independent in Ek, we see from (15) that we must
have

−a0bk−1 = b0λ,

bi − ai+1bk−1 = bi+1λ, i = 0, . . . , k − 2,(16)

that is, in matrix form,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ 0 · · · · · · 0 −a0

1 −λ
. . . 0 −a1

0 1
. . .

. . .
...

...
...

. . .
. . . −λ 0 −ak−3

...
. . . 1 −λ −ak−2

0 · · · · · · 0 1 −ak−1 − λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0

b1
...

bk−3

bk−2

bk−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

Since this system has a nonzero solution, its determinant must be zero, that is,

Pk(λ) = 0.

Moreover, we must have bk−1 �= 0, since otherwise all the bi’s would be zero. Since
an eigenvector is defined up to a multiplying factor, then bk−1 can be arbitrarily set
to 1 and, from (16), we have

bi = ai+1 + bi+1λ, i = k − 2, . . . , 0.

We see that, for λ = 1, these relations are the same as (10).
As seen above, for u as in (12), Aku is given by (15), and the transformation map-

ping the coordinates b0, . . . , bk−1 of u in the basis formed by the elements u0, . . . ,uk−1

into the coordinates of Aku in the same basis is given by the matrix Ãk of the system

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · 0 −a0

1
. . .

... −a1

0
. . .

. . .
...

...
...

. . .
. . . 0 −ak−2

0 · · · 0 1 −ak−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

b0

b1
...

bk−2

bk−1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−a0bk−1

b0 − bk−1a1

...

bk−3 − bk−2ak−2

bk−2 − bk−1ak−1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Thus, the polynomial Pk is the characteristic polynomial of the k × k matrix Ãk

which represents the mapping Ak in Ek. Consequently, Ãk is regular if and only if
a0 �= 0, and the rank of Ak is equal to the rank of Ãk.

In the particular case where ui = Ai
cu0, i = 0, 1, . . . , which is the case we treated,

it is possible to obtain an expression for Ak. Let u be as in (12). Then

Acu = b0Acu0 + · · · + bk−2Acuk−2 + bk−1Acuk−1

= b0Acu0 + · · · + bk−2A
k−1
c u0 + bk−1A

k
cu0

= b0Aku0 + · · · + bk−2A
k−1
k u0 + bk−1A

k
cu0,
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and it follows that

PkAcu = b0Aku0 + · · · + bk−2A
k−1
k u0 + bk−1Pkuk

= b0Aku0 + · · · + bk−2A
k−1
k u0 + bk−1A

k
ku0

= Ak(b0u0 + · · · + bk−1uk−1) = Aku,

which shows that Ak = PkAc on Ek. Since, if u ∈ Ek, Pku ∈ Ek, then the domain of
Ak can be extended to the whole space R

p by setting

Ak = PkAcPk.

Now let u ∈ R
p. Setting Uk = [u0, . . . ,uk−1], Zk = [z0, . . . , zk−1], and a =

(a0, . . . , ak−1)
T , the conditions (Pku − u, zi) = 0 for i = 0, . . . , k − 1 can be written

as ZT
k Uka = −ZT

k u and it follows that Pku = −Uka = Uk(Z
T
k Uk)

−1ZT
k u, which gives

Pk = Uk(Z
T
k Uk)

−1ZT
k .

It must be noted that Ak is not an injection since Pk is not.

6.3. The ε-algorithms. The ε-algorithms are sequence transformations which
map a given sequence into new ones which, under certain assumptions, converge faster
to the same limit. Let us now discuss the various ε-algorithms for vector sequences.

As above, let (x(n)) be a vector sequence converging to x. The vector ε-algorithm
consists in the recursive rule

ε
(n)
−1 = 0,

ε
(n)
0 = x(n),

ε
(n)
j+1 = ε

(n+1)
j−1 +

[
ε
(n+1)
j − ε

(n)
j

]−1

for j = 0, 1, . . . and n = 0, 1, . . . , where the inverse of a vector y is defined by
y−1 = y/(y,y). The vectors with an odd lower index are intermediate computations
without any interesting meaning, while those with an even lower index approximate
x. These rules are also valid for the scalar ε-algorithm (in which case the ε’s are not

in bold in what follows) with ε
(n)
0 = (x(n))i, the ith component of x(n). The rules of

the topological ε-algorithm are slightly different, and can be found, for example, in

[13, sect. 4.2]. The computation of ε
(n)
2k needs the knowledge of x(n), . . . ,x(n+2k) and

the storage of 2k + 1 vectors, thus restricting k to small values in our case.
The kernels of the scalar ε-algorithm (applied separately on each components), of

the vector ε-algorithm, and of the topological ε-algorithm contain the set of sequences
satisfying the characteristic relation

b0(x
(n) − x) + · · · + bk−1(x

(n+k−1) − x) = 0, n = 0, 1, . . . ,(17)

where the bi’s are any numbers satisfying b0bk−1 �= 0. Thus, if one of these ε-
algorithms is applied to a sequence (x(n)) satisfying (17), then, by construction,

ε
(n)
2k−2 = x for n = 0, 1, . . . .

Let us now study our particular case. From (5), we have rc = Qm−1(Ac)r
(n)
c .

Moreover, since rc = Ai
crc for all i,

∑m−1
i=0 birc =

∑m−1
i=0 biA

i
crc = Qm−1(Ac)rc = rc,

assuming that
∑m−1

i=0 bi = 1, which does not restrict the generality. Thus, subtracting
the second relation from the first one, we get the following.
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Property 14.

Qm−1(Ac)(r
(n)
c − rc) = b0(r

(n)
c − rc) + · · ·+ bm−1(r

(n+m−1)
c − rc) = 0, n = 0, 1, . . . .

Thus, applying one of the ε-algorithms to the vector sequence (r
(n)
c ) gives ε

(n)
2m−2 =

rc for n = 0, 1, . . . and produces approximations ε
(n)
2k−2 of rc for k < m. Since, by the

theory of the ε-algorithms, there exist numbers b′0, . . . , b
′
k−1 such that

b′0(r
(i)
c − ε

(n)
2k−2) + · · · + b′k−1(r

(i+k−1)
c − ε

(n)
2k−2) = 0, i = 0, 1, . . . ,

then

ε
(n)
2k−2 = Qk−1(Ac)r

(n)
c , n = 0, 1, . . . ,

with Qk−1(λ) = b′0 + · · ·+ b′k−1λ
k−1. These vectors ε

(n)
2k−2 are rational approximations

of rc in the Padé style. In the case of the topological ε-algorithm, it is well known
that the vectors it computes can be represented as a ratio of determinants, and we
have (see, for example, [13, p. 221]) the following.

Theorem 3. For the topological ε-algorithm, ε
(n)
2k−2 = Q̃k−1(Ac)r

(n)
c /Q̃k−1(1),

with

Q̃k−1(λ) =

∣∣∣∣∣∣∣∣∣

1 · · · λk

(y,Δr
(n)
c ) · · · (y,Δr

(n+k−1)
c )

...
...

(y,Δr
(n+k−2)
c ) · · · (y,Δr

(n+2k−3)
c )

∣∣∣∣∣∣∣∣∣
,

where y is such that Q̃k−1(1) �= 0.

Let us now analyze the behavior of the vectors ε
(n)
2k−2 when k is fixed and n tends

to infinity. The relation of Property 14 shows that the vectors r
(n)
c − rc satisfy a

linear homogeneous difference equation of order m− 1 with constant coefficients. In
the particular case where the zeros cλ̃2, . . . , cλ̃m of Qm−1 (which are the eigenvalues
of Ac) are real and simple, and all the eigenvectors of Ac are present in the spectral
decomposition of v, the solution of this difference equation is

r(n)
c = rc +

m∑
i=2

(cλ̃i)
nvi, n = 0, 1, . . . ,(18)

where the vectors vi ∈ R
p depend on the eigenvectors of Ac. The solution of the

relation of Property 14 was studied in its full generality in [12] (see also [13, Thm.
2.18]), but it will not be reproduced here for length reasons. Let us mention only that

if an eigenvalue λ̃i has multiplicity ki, then vi is replaced in (18) by a polynomial of
degree ki − 1 with vector coefficients.

Using (18), we have the following convergence and acceleration results which
support, in particular, the numerical results given in [31] for k = 1. They follow
directly from the acceleration theorems proved by Wynn [51] for the scalar ε-algorithm
and by Matos for the vector ε-algorithm [39]

Theorem 4. If Ac is diagonalizable, and if all the eigenvectors of Ac are present
in the spectral decomposition of v, then, for 1 ≤ k ≤ m− 1,

‖ε(n)
2k − rc‖2 = O((cλ̃k+2)

n),

lim
n→∞

‖ε(n)
2k − rc‖2

‖ε(n)
2k−2 − rc‖2

= 0.
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If some of the eigenvalues of Ac are multiple, they have to be counted according
to their multiplicity, and the polynomial factors in the solution of the relation of
Property 14 come into the discussion. However, the theory and the results remain
essentially the same (in particular Theorem 4), but they become more complicated to
write down (see, for example, Theorem 5 of [39]). These results are also valid for the
topological ε-algorithm.

Other approximations of the Padé style are the vectors E
(n)
k−1 computed by the

scalar E-algorithm (applied componentwise) or the vector E-algorithm [7] (see also
[13, pp. 55–72, 228–232]). Applying the convergence and acceleration results proved
in [7, 45, 38], conclusions similar to those of Theorem 4 can be obtained. Let us also
mention that the ε-algorithm and E-algorithm are related to Schur complements [52,
pp. 233–238].

For the scalar ε-algorithm, when k = 2, the well-known Aitken’s Δ2 process is
recovered. The kernel of Aitken’s process is the set of scalar sequences (x(n)) satisfying

b0(x
(n) − x) + b1(x

(n+1) − x) = 0, n = 0, 1, . . . ,

with b0 + b1 �= 0, or, equivalently,

x(n) = x + αμn, n = 0, 1, . . . ,

with μ �= 1. Note that the form of the first relation is the same as (17) when k = 2.
Aitken’s Δ2 process can be written in different ways. For example, we have the

three following equivalent formulae:

ε
(n)
2 = x(n) − (x(n+1) − x(n))2

x(n+2) − 2x(n+1) + x(n)
(19)

= x(n+1) − (x(n+2) − x(n+1))(x(n+1) − x(n))

x(n+2) − 2x(n+1) + x(n)
(20)

= x(n+2) − (x(n+2) − x(n+1))2

x(n+2) − 2x(n+1) + x(n)
.(21)

If each component of the vectors r
(n)
c successively plays the role of x(n), then (19) is ex-

actly the Aitken Extrapolation given by formula (15) of [31], while (20) corresponds to
the Epsilon Extrapolation of [31]. Another implementation of the same extrapolation
method can be obtained by using (21). However, let us mention that, although these
are completely equivalent from the mathematical point of view, the numerical stability
of these formulae can be quite different. It is well known that Aitken’s process acceler-
ates the convergence of sequences such that ∃δ �= 1, limn→∞(x(n+1)−x)/(x(n)−x) = δ,

which, by Property 11, is exactly our case with δ = cλ̃2. Thus, the effectiveness of the
methods proposed in [31] is justified by the preceding discussion and by Theorem 4.

Each of the scalars ε
(n)
2 produced by Aitken’s process applied separately on each

component has a different denominator. On the contrary, using the vector or the

topological ε-algorithm for transforming the vectors r
(n)
c will lead to vectors ε

(n)
2 with

the same denominator for each component, and thus will be more similar to the exact
form of rc.

Let us recall that the ε-algorithms are related to various Padé-style approximants
[6, 9]. If the scalar ε-algorithm is applied to the partial sums of a formal power
series f with scalar coefficients, then the quantities ε

(n)
2k it computes are the Padé

approximants [n+k/k]f of f . Reciprocally, the quantities ε
(n)
2k given by this algorithm
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with ε
(n)
0 = x(n) are the [n+k/k]f Padé approximants of the series f(ξ) = x(0)+(x(1)−

x(0))ξ+(x(2)−x(1))ξ2+ · · · . In particular, the ε
(n)
2 ’s computed by Aitken’s process are

identical to its Padé approximants [n/1]f (1). Thus, applying the scalar ε-algorithm
separately on each component of a series with vector coefficients, as in [31], produces
Padé approximants with, in general, a different denominator for each component,
while, in our case, all denominators should be identical by Properties 3 and 4. On the
contrary, the vector and the topological ε-algorithms provide rational approximations
of the series (2), but with the same denominator for all components. Thus, they seem
to be better adapted to the acceleration of the power method. Moreover, it would
also be interesting to consider the approximants [k − 1/k − 1] for increasing values
of k instead of the approximants [n/1]. It is possible to use the vector E-algorithm,
which also leads to rational vector approximations of rc with a unique denominator
for all components, and allows more flexibility by an arbitrary choice of auxiliary
vector sequences; see [13, sect. 4.3].

6.4. Other algorithms. Of course, the acceleration procedures studied above
are not the only possible ones. Among them, there exist several other acceleration
methods whose kernel is the set of sequences satisfying (17), where the vectors x(n)

are those obtained by the power method, and x is the vector rc we are looking for. In
this section, we will briefly review some of them, since they probably are those having
the best acceleration properties, as explained at the beginning of section 6.

The relation of Property 14 can also be written as

r(n)
c = r(k,n)

c + α0Δr(n)
c + · · · + αk−2Δr(n+k−2)

c , n = 0, 1, . . . ,

that is,

r(n)
c = r(k,n)

c + ΔR̃nα,(22)

with α = (α0, . . . , αk−2)
T and R̃n = [r

(n)
c , . . . , r

(n+k−2)
c ], as in section 6.1.

There are several ways to compute this vector α. One of them leads to a sequence
transformation named the multilevel vector theta-type (VTT) defined in [14] by

r(k,n)
c = r(n)

c − ΔR̃n(ZT
n Δ2R̃n)−1ZT

n Δ2r(n)
c , n = 0, 1, . . . , k > 2,

where Zn ∈ R
p×(k−1).

The multilevel biorthogonal vector theta-type (BVTT) transformation is a partic-
ular case of the VTT, with the same kernel [14].

A general methodology, based on various strategies, for constructing sequence
transformations whose kernel contains sequences of the form (22) is described in [10].
These transformations can be implemented either by one of the ε-algorithms given in
the preceding section, by the RPA [13, sect. 4.4], or by the Sβ-algorithm [27]. The
case where the matrix to be inverted is singular is treated similarly in [15] by using
pseudoinverses and pseudo-Schur complements, whose properties are studied in [43].
Another vector sequence transformation related to the method of moments is the
modified minimal polynomial extrapolation (MMPE) of Pugachev [42]. Application
of other vector extrapolation methods, such as the RRE and the MPE, to PageR-
ank computations are discussed in [46], but numerical experiments have yet to be
carried out.
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7. Conclusions. In this paper, we analyzed the PageRank problem and its so-
lution by the power method. Several procedures for accelerating the convergence
of its iterates were proposed, and some theoretical results were given. However, no
results for comparing these algorithms exist so far. When the parameter k in these
acceleration methods increases, in general their efficiency increases, but the number of
vectors to store also increases, thus putting a restriction on their practical use due to
the huge dimension of the problem. Moreover, the behaviors of these algorithms are
quite similar, and the choice between them is, more or less, a matter of taste. Thus,
extensive numerical experiments have to be carried out, and perhaps they could help
in making this choice.

Let us mention another problem related to PageRank computations. When c
approaches 1 (which corresponds to the real PageRank vector), Property 12 shows
that the speed of convergence of the power method reduces, and, moreover, the matrix
Ac becomes more and more ill conditioned (as proved in [28], its condition number
behaves as (1 − c)−1), the conditioning of the eigenproblem becomes poor, and rc
cannot be computed accurately. So, to avoid these drawbacks, rc can be computed
for several values of c far away from 1 by any procedure, and then these vectors can be
extrapolated at the point c = 1 (or at any other point). In order for an extrapolation
procedure to work well, the extrapolating function has to mimic as closely as possible
the behavior of rc with respect to the parameter c. Extrapolation algorithms based
on the analysis of this dependence, given in [44], are described in [17]; see [16] for
more developments.
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STABLE FACTORIZATIONS OF SYMMETRIC TRIDIAGONAL AND
TRIADIC MATRICES∗
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Abstract. We call a matrix triadic if it has no more than two nonzero off-diagonal elements
in any column. A symmetric tridiagonal matrix is a special case. In this paper we consider LXLT

factorizations of symmetric triadic matrices, where L is unit lower triangular and X is diagonal,
block diagonal with 1 × 1 and 2 × 2 blocks, or the identity with L lower triangular. We prove that
with diagonal pivoting, the LXLT factorization of a symmetric triadic matrix is sparse, study some
pivoting algorithms, discuss their growth factor and performance, analyze their stability, and develop
perturbation bounds. These factorizations are useful in computing inertia, in solving linear systems
of equations, and in determining modified Newton search directions.

Key words. matrix factorizations, tridiagonal matrices, pivoting, Cholesky decomposition
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1. Introduction. A symmetric matrix A ∈ Rn×n can be factored in the form
LXLT in several ways:

1. LLT factorization with L lower triangular and X the identity.
2. LDLT factorization with L unit lower triangular and X diagonal.
3. LBLT factorization with L unit lower triangular and X block diagonal with

block order 1 or 2.
These LXLT factorizations can be used to solve linear systems [1, 3, 4, 6], to determine
a downhill search direction in modified Newton methods [10, 11], and to compute the
inertia of a matrix [4].

Not all symmetric matrices have LDLT factorizations. We allow diagonal pivoting
and factor PAPT , where P is a permutation matrix. With diagonal pivoting, we
can ensure the existence of an LBLT factorization of any symmetric matrix and
the existence of an LDLT factorization if A is positive semidefinite or diagonally
dominant. Diagonal pivoting is also used to improve numerical stability of the LBLT

factorization when A is indefinite [1, 3, 4, 6]. Interchanging rows and columns can
ruin the sparsity of LXLT factorizations of band matrices, so for tridiagonal matrices,
attempts have been made to develop stable algorithms that do not require interchanges
[3, 5, 14].

In this paper, we study the sparsity and stability of LXLT factorizations for a
class of symmetric matrices called triadic. A matrix A is triadic if the number of
nonzero off-diagonal elements in each column is bounded by 2. Tridiagonal matrices
are a special case of these, but other matrices, such as block diagonal matrices with
full 3 × 3 blocks, and matrices that are tridiagonal except for entries in each corner,
are also triadic. These latter matrices arise in the solution of differential equations
with periodic boundary conditions.
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In section 2 we show that LXLT factorizations of a symmetric triadic matrix
using diagonal pivoting remain sparse. Section 3 reviews various diagonal pivoting
strategies for symmetric matrices, and they are applied to triadic matrices in section 4.
In section 5 the perturbation analysis of these factorizations is discussed. Section 6
gives conclusions. A rounding error analysis for these factorizations is given in [8],
which also includes analysis when A is rank-deficient.

One application of LXLT factorizations of triadic matrices is in modified Cholesky
algorithms to safeguard the Newton method. Modified Cholesky algorithms replace
the Hessian matrix A by A+E, for a suitably chosen perturbation matrix E, in order
to ensure that we are factoring a positive definite matrix and therefore computing a
downhill search direction. In a subsequent paper, we will discuss the usefulness of
triadic matrices in such algorithms [9].

2. Diagonal pivoting in LXLT factorization preserves triadic structure.
In this section, we show that diagonal pivoting preserves sparsity in the LXLT factor-
izations of symmetric triadic matrices. This is a consequence of the property that for
any permutation matrix P , PAPT is symmetric triadic if and only if A is symmetric
triadic.

First we consider the sparsity of LDLT (and thus LLT ) factorizations. The
following lemma on the structure of the Schur complements leads to the desired result.
We define ek to be the column vector that is zero except for a 1 in its kth position.

Lemma 2.1. Let A =
[
a11 cT1
c1 A22

]
be a symmetric triadic matrix with a11 �= 0. Then

the Schur complement Ā = A22 − c1c
T
1 /a11 is symmetric triadic.

Proof. Since A is triadic, c1 has at most two nonzero elements. We denote them
by ci1 = ξ and cj1 = η. The matrix A22 is also triadic and its ith and jth rows have
at most one off-diagonal element each. Moreover,

c1c
T
1 = ξ2eie

T
i + ξη(eie

T
j + eje

T
i ) + η2eje

T
j

has at most four nonzero elements. Two of these are on the diagonal, and the others
are in positions (i, j) and (j, i). Thus the sum of A22 and −c1c

T
1 /a11 is triadic.

Theorem 2.2. In the LDLT factorization of a symmetric triadic matrix, L is
triadic.

Proof. The proof is by finite induction. At the kth step, assume that the remaining
(n− k + 1) × (n− k + 1) matrix Ā is symmetric triadic. Then the next column of L
is computed as c1/a11, where

Ā =

[
a11 cT1
c1 A22

]
=

[
1 0

c1/a11 I

] [
a11 0

0 Ã

] [
1 cT1 /a11

0 I

]
,

and Ã = A22 − c1c
T
1 /a11 is the Schur complement of Ā. Notice that c1 has at most

two elements. By Lemma 2.1, the matrix Ã, which becomes Ā for the next iteration,
is triadic, so we can continue the induction.

Now we establish the same result for the LBLT factorization. The algorithm for
LBLT factorization is the same as for LDLT factorization with diagonal pivoting,
except when all diagonal elements of the Schur complement are zeros. In such a case,
we diagonally pivot some nonzero off-diagonal element in the lower triangular part
to be at the second row and first column in the Schur complement and pivot with
respect to the 2× 2 block. This decomposition can be used to control element growth
for numerical stability, even if we find a nonzero diagonal element [1, 3, 4, 6].
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Lemma 2.3. Let A =
[
A11 AT

21

A21 A22

]
be a symmetric triadic matrix, where A11 =[

σ1 a
a σ2

]
, a �= 0, and det(A11) �= 0. Then the Schur complement Ā = A22−A21A

−1
11 A

T
21

with respect to the 2 × 2 pivot A11 is symmetric triadic.
Proof. Since det(A11) �= 0, A−1

11 = 1
det(A11)

[
σ2 −a
−a σ1

]
. Since A has at most two

nonzero off-diagonal elements in each column and A11 already has one nonzero off-
diagonal element in each column, A21 has at most one nonzero element in each column,
so we denote it as A21 =

[
ξei ηej

]
. Then

A21A
−1
11 A

T
21 =

1

det(A11)

[
ξei ηej

] [ σ2 −a
−a σ1

] [
ξeTi
ηeTj

]

=
1

det(A11)
(σ2ξ

2eie
T
i − aξηeje

T
i + σ1η

2eje
T
j − aξηeie

T
j ).

Thus the only two off-diagonal elements of this matrix are in positions (i, j) and (j, i).
Since A is triadic, A22 has at most one nonzero element in each of ith and jth rows,
so the sum of A22 and A21A

−1
11 A

T
21 is triadic.

Theorem 2.4. In the LBLT factorization of a symmetric triadic matrix, L is
triadic.

Proof. Again the proof is by finite induction. At the kth step, assume that the
remaining matrix Ā is triadic. If the next pivot is 1 × 1, then Lemma 2.1 and the
argument in the proof of Theorem 2.2 show that the next column of L is triadic, as is
the new remaining matrix. If the next pivot is 2× 2, then the factorization produces

Ā =

[
A11 AT

21

A21 A22

]
=

[
I2 0

A21A
−1
11 Ik−2

] [
A11 0

0 Ã

] [
I2 A−T

11 AT
21

0 Ik−2

]
.

The off-diagonal part of the two new columns of L is

A21A
−1
11 =

1

det(A11)

[
ξei ηej

] [ σ2 −a
−a σ1

]

=
1

det(A11)

[
σ2ξei − aηej −aξei + σ1ηej

]
,

which is also triadic, and Lemma 2.3 shows that Ã is triadic, so the induction can be
continued.

Combining these results with the fact that the triadic property of a matrix is
preserved under symmetric permutation, we see that the number of nonzero elements
is O(n) in all of these factorizations if diagonal pivoting is used. More precisely, by
Lemmas 2.1 and 2.3, at most n− 2 off-diagonal fill entries can occur.

Theorem 2.5. If we factor a symmetric triadic matrix using any LXLT factor-
ization with diagonal pivoting, then L is triadic.

Although the columns of L are sparse, the number of nonzero elements in each
row of L is bounded only by n; if A is tridiagonal, for example, and

Z̃ =

⎡
⎢⎢⎢⎢⎣

0 1

1
. . .

. . .
. . .

1 0

⎤
⎥⎥⎥⎥⎦

is the circular shift-down matrix, then the last row of L in the factorization Z̃TAZ̃ =
LDLT is generally full.
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3. Diagonal pivoting strategies for symmetric indefinite matrices. If
the symmetric matrix A ∈ Rn×n is positive semidefinite [7], [15, section 10.3] or
diagonally dominant [7], [13, section 9.5] (i.e., |aii| ≥

∑
j �=i |aij | for i = 1, . . . , n), then

the largest magnitude element will appear on the diagonal. Each Schur complement
inherits the property of positive semidefiniteness or diagonal dominance. Therefore,
in either case, the elements of L in the LDLT factorization are bounded in magnitude
by 1 with pivoting. With or without pivoting, the growth factor for D is ρ(A) = 1 if
A is symmetric positive semidefinite, and ρ(A) ≤ 2 if A is diagonally dominant, where
ρ(A) is the ratio of the largest magnitude element in the Schur complements to the
largest magnitude element in A.

We would like to compute factorizations of symmetric indefinite matrices that
also give bounds on the elements of L and B. In order to do this, it is necessary to
pivot. There are three kinds of pivoting strategies in the literature: Bunch–Parlett [6]
(complete pivoting); fast Bunch–Parlett and bounded Bunch–Kaufman [1] (rook piv-
oting); and Bunch–Kaufman [4] (partial pivoting). For full matrices, complete piv-
oting requires O(n3) comparisons, partial pivoting requires O(n2), and the cost of
rook pivoting varies between O(n2) and O(n3). Therefore, it is important to uncover
the advantages of the more expensive strategies. We consider each strategy in turn,
applying each to the current Schur complement matrix A, noting that each depends
on a preset constant 0 < α < 1.

3.1. Complete pivoting. Bunch and Parlett [6] devised the pivoting strategy
presented in Algorithm 1.

Algorithm 1 Bunch–Parlett pivot selection.

Let akk be the largest magnitude diagonal element.
Let aij (i < j) be the largest magnitude off-diagonal element.
if |akk| ≥ α|aij | then

Use akk as a 1 × 1 pivot.
else

Use
[ aii aij
aji ajj

]
as a 2 × 2 block pivot.

end if

The process continues until akk = aij = 0 or the factorization completes. The
resulting pivot satisfies the following strong condition:

1. If a 1 × 1 pivot akk is chosen, then |akk| ≥ α|apk| for p �= k.
2. If a 2× 2 block pivot

[ aii aij
aji ajj

]
is chosen, then each of the 1× 1 pivots aii and

ajj satisfy |aii| < α|aij | and |ajj | < α|aij |, and aij is the element of maximum
magnitude in both column i and column j.

For any algorithm satisfying the strong condition, the elements in L are bounded
and the element growth in B during the factorization is well controlled, as we will
show in section 3.5.

3.2. Rook pivoting. The cost for finding a pivot satisfying the strong condition
can be reduced by the iterative process in Algorithm 2.

If the initial pivot index i = 1, this is called a bounded Bunch–Kaufman pivot
selection, while if aii is the maximal magnitude diagonal element, it is called a fast
Bunch–Parlett pivot selection [1]. Note that for a fast Bunch–Parlett selection, we do
not need to test whether ajj is a 1×1 pivot, because if the initial maximum magnitude
diagonal element aii failed to be a pivot at the beginning, |ajj | is at most |aii|, and
|aij | is increasing in the loop.
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Algorithm 2 Pivot selection by rook pivoting, given an initial pivot index i.

Find the index j �= i such that |aji| = maxp�=i |api|.
if |aii| ≥ α|aji| then

Use aii as a 1 × 1 pivot.
else

Find the index k �= j such that |akj | = maxp�=j |apj |.
repeat

if |ajj | ≥ α|akj | then
Use ajj as a 1 × 1 pivot.

else if |aij | = |akj | then
Use

[ aii aij
aji ajj

]
as a 2 × 2 pivot.

else
Set i := j and j := k.
Find index k �= j such that |akj | = maxp�=j |apj |.

end if
until a pivot is chosen.

end if

3.3. Partial pivoting. Bunch and Kaufman [4] devised the efficient pivoting
strategy shown in Algorithm 3.

Algorithm 3 Bunch–Kaufman pivot selection, given an initial pivot index i.

Find the index j �= i such that |aji| = maxp�=i |api| =: λ.
if |aii| ≥ αλ then

Use aii as a 1 × 1 pivot.
else

Compute σ := maxp�=j |apj | ≥ λ.
if |aii|σ ≥ αλ2 then

Use aii as a 1 × 1 pivot.
else if |ajj | ≥ ασ then

Use ajj as a 1 × 1 pivot.
else

Use
[ aii aij
aji ajj

]
as a 2 × 2 pivot.

end if
end if

Bunch–Kaufman pivoting does not guarantee the strong condition, but satisfies
the following weak condition:

1. If a 1 × 1 pivot akk is chosen, then
• |akk|maxp�=q{|apq| : (aqk �= 0 or q = k)} ≥ αmaxp�=k |apk|2.

2. If a 2 × 2 block pivot
[ aii aij
aji ajj

]
is chosen, then

• |aii| < αλ,
• |aii|σ < αλ2,
• |ajj | < ασ,

where λ = maxk �=i |aki| and σ = maxk �=j |akj |.
We compare the weak condition with the strong condition. For 1 × 1 pivots,

max{|apq| : p �= q and (aqk �= 0 or q = k)} ≥ maxp�=k |apk| so the strong condition
guarantees the weak condition. For 2 × 2 block pivots, the weak condition meets the
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strong condition if σ = λ. We conclude that the strong condition implies the weak
condition.

The natural choice of the initial pivot index i in Algorithm 3 is i = 1, which
achieves the least cost to satisfy the weak condition [4].

Ashcraft, Grimes, and Lewis [1] argued that a bounded L can improve stability.
We can improve the probability that the Bunch–Kaufman algorithm has a bounded
L by choosing the largest magnitude diagonal entry as the search starting point at

each pivot step [4]. The additional number of comparisons is n2

2 + O(n), so the total
comparison count remains O(n2). By making this change, we usually find a 1×1 pivot
at the very first test at each step of pivot selection. The strong condition usually holds,
but it is not guaranteed, as shown in the following example [13]:

A =

⎡
⎢⎣

ε2 ε ε

ε 0 1

ε 1 0

⎤
⎥⎦ =

⎡
⎢⎣

1
1
ε 1
1
ε 0 1

⎤
⎥⎦

⎡
⎢⎣

ε2

−1

−1

⎤
⎥⎦

⎡
⎢⎣

1 1
ε

1
ε

1 0

1

⎤
⎥⎦ = LBLT ,

where L is unbounded as ε → 0.

3.4. The weak condition controls the growth factor. In summary, the
Bunch–Parlett, fast Bunch–Parlett, and bounded Bunch–Kaufman pivoting strategies
satisfy the strong condition, whereas the Bunch–Kaufman pivoting strategy and that
of Ashcraft et al. satisfy the weak condition. The weak condition controls element
growth during the factorization, as shown by an argument similar to those in [1, 4, 6,
13], [15, Chapter 11]. The growth factor in factoring A ∈ Rn×n is defined by

ρ(A) =
maxi,j,k |a(k)

ij |
maxi,j |aij |

,(3.1)

where aij and a
(k)
ij are the (i, j) entries of A and of the kth Schur complement, re-

spectively, and ‖ · ‖M is the maximum magnitude element in the given matrix.

When a 1 × 1 pivot is chosen, we have

maxp�=k |apk|2
|akk|

≤ 1

α
max{|apq| : p �= q and (aqk �= 0 or q = k)}(3.2)

≤ 1

α
max
p�=q

|apq|.

Therefore, the element growth is bounded by 1 + 1
α .

If a 2 × 2 block pivot is chosen, the weak condition guarantees |aiiajj | < α2λ2.
Then

∣∣∣∣det

([
aii aij
aji ajj

])∣∣∣∣ = |a 2
ij − aiiajj | > (1 − α2)λ2.(3.3)

Since 0 < α < 1,

∣∣∣∣∣
[

aii aij
aji ajj

]−1
∣∣∣∣∣ <

1

(1 − α2)λ2

[
|ajj | λ
λ |aii|

]
.
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Therefore, the increase of each element in magnitude for the 2×2 block decomposition
is bounded by

1

(1 − α2)λ2

[
λ σ

] [ |ajj | λ
λ |aii|

] [
λ
σ

]
=

1

(1 − α2)λ2
(λ2(|ajj | + σ) + (λ2 + σ|aii|)σ)

<
1

(1 − α2)λ2
(λ2(ασ + σ) + (λ2 + αλ2)σ)

=
2(1 + α)σ

1 − α2
=

2σ

1 − α
,(3.4)

and the element growth for the 2 × 2 block decomposition is bounded by 1 + 2
1−α .

Therefore, element growth is bounded by

g = max

{
1 +

1

α
,

√
1 +

2

1 − α

}
.

The minimum of g is 1+
√

17
2 ≈ 2.562, which is attained when α = 1+

√
17

8 ≈ 0.640.
Thus

ρ(A) ≤ gn−1.(3.5)

The attainability of the last inequality is a research problem [15, Problem 11.10].
With complete pivoting (the Bunch–Parlett pivoting strategy), we can bound the

growth factor of A ∈ Rn×n as

ρ(A) ≤ 3nf(n), where f(n) =

(
n∏

k=2

k1/(k−1)

)1/2

≤ 1.8n(lnn)/4

with the pivoting argument α = 1+
√

17
8 . This was shown by Bunch [2] with an analysis

similar to Wilkinson’s for Gaussian elimination with complete pivoting [16].
We note that the bounds on element increases in (3.2) and (3.4) are in terms of

off-diagonal elements. Therefore, the growth factor ρ̄(A) for off-diagonal elements is
bounded by gn−2, i.e.,

ρ̄(A) =
maxi �=j,k |a(k)

ij |
maxi �=j |aij |

≤ gn−2 (n > 1).(3.6)

This is attainable, for example, with α = 1+
√

17
8 and

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−α 1 1 · · · 1
1 −αg − 1

α 1 · · · 1

1 1 −αg2 − g
α − 1

α

. . .
...

...
...

. . .
. . . 1

1 1 · · · 1 −αgn−1 − gn−2

α − gn−3

α − · · · − 1
α

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The weak condition is stronger than necessary to bound the growth factor; we
need only

|akk|max
p�=q

|apq| ≥ αmax
p�=k

|apk|2
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for 1 × 1 pivots, but our version of the weak condition is useful for the triadic case
considered in section 4.2.

In practice, the average growth factors for both tridiagonal and full matrices are
far from this bound. Figure 3.1 shows the maximum growth factor of 20,000 random

symmetric n × n matrices for each n = 1, . . . , 100 with α = 1+
√

17
8 ≈ 0.640. In our

experiments, all matrix elements are drawn independently from a uniform distribution
on [−1, 1]; results for a normal distribution are similar. Although α ≈ 0.640 minimizes
the a priori bound on the growth factor, our experiments show that the best α to
minimize the average growth factor with Bunch–Kaufman pivoting is usually between
0.74 and 0.78, as shown in Figure 3.2, where 20,000 random matrices are generated
for each matrix size and each α.

3.5. The strong condition bounds elements in L. The weak condition does
not bound L for general matrices. For example [13], [15, section 11.1.2],

A =

⎡
⎣

0 ε
ε 0 1

1 1

⎤
⎦ =

⎡
⎣

1
0 1
1
ε 0 1

⎤
⎦
⎡
⎣

0 ε
ε 0

1

⎤
⎦
⎡
⎣

1 0 1
ε

1 0
1

⎤
⎦ = LBLT ,

when the Bunch–Kaufman pivoting strategy is applied. As ε → 0, L is unbounded.
In contrast, the strong condition does ensure a bound on elements in L. When

a 1 × 1 pivot is chosen, then the magnitude of elements in the pivot column of L is
bounded by 1

α . If a 2×2 block pivot is chosen, the strong condition implies λ = σ and
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Table 3.1

The element growth bound g and the bound γ for L (when complete or rook pivoting is used)
with two optimal choices of α.

α γ g

Minimize g 1+
√

17
8

≈ 0.640 7+
√

17
4

≈ 2.781 1+
√

17
2

≈ 2.562

Minimize γ 1
2

2 3

therefore the two columns of L corresponding to this 2× 2 block pivot have elements
bounded by

1

(1 − α2)λ2

[
λ σ

] [ |ajj | λ
λ |aii|

]
<

1

(1 − α2)λ2

[
λ λ

] [ αλ λ
λ αλ

]

=
1 + α

1 − α2

[
1 1

]
=

1

1 − α

[
1 1

]
.

Therefore, the elements in L are bounded in magnitude by

γ = max

{
1

α
,

1

1 − α

}
.

3.6. The growth factor and element bounds. We summarize the results
on element growth in the following theorem, which extends some previous results to
general α.

Theorem 3.1. For LBLT factorization of a symmetric matrix A ∈ Rn×n, if the
weak condition holds, then the growth factor ρ(A) defined in (3.1) is bounded by

ρ(A) ≤ gn−1,

where

g = max

{
1 +

1

α
,

√
1 +

2

1 − α

}
,

where α is the parameter in the factorization algorithm. If the strong condition holds,
then the elements in L are bounded in magnitude by

γ = max

{
1

α
,

1

1 − α

}
.

As shown above, α = 1+
√

17
8 minimizes g, the element growth bound. But α = 0.5

minimizes the bound γ on the elements of L. The consequences of each of these choices
are summarized in Table 3.1.

4. Diagonal pivoting strategies for triadic symmetric matrices. In sec-
tion 2, we showed that sparsity is preserved in the LXLT factorization of a symmetric
triadic matrix with any diagonal pivoting strategy. In this section, we study a pivoting
strategy particular to symmetric tridiagonal matrices [3] and also apply the pivoting
strategies from the previous section to triadic matrices.
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Algorithm 4 Bunch’s pivot selection.

α =
√

5−1
2 ≈ 0.618

if |a11|σ ≥ α|a21| 2 then
Use a11 as a 1 × 1 pivot.

else
Use [ a11 a12

a21 a22
] as a 2 × 2 block pivot.

end if

4.1. Pivoting strategies specific to symmetric tridiagonal matrices. One
pivoting strategy has been proposed for LBLT factorizations of irreducible tridiagonal
matrices. Consider the variant proposed by Higham [14] of the algorithm of Bunch [3]
represented in Algorithm 4, with parameter σ = maxi,j |aij |. The algorithm’s great
advantage is that there are no interchanges of rows and columns, yet the growth factor
is bounded by

ρ(A) = max

{
1 +

1

α
,

1

1 − α

}
,

whose minimum is achieved by choosing α =
√

5−1
2 . This method is excellent for

applications relying on B (e.g., computing inertia), but there is no element bound on
L, illustrated, for example, as ε → 0 and

A =

[
ε2 ε
ε 1

]
=

[
1
1
ε 1

] [
ε2

0

] [
1 1

ε
1

]
.

A similar example is given in [14]. Therefore, this algorithm is not well suited to
computing Newton-like directions or solving tridiagonal systems of equations with
corner elements. Nevertheless, Higham showed that it is a stable method for solving
linear symmetric tridiagonal systems [14].

Note that Algorithm 4 requires computing the maximum magnitude element σ
of the original matrix in advance. Recently Bunch and Marcia [5] developed another
LBLT factorization algorithm for symmetric tridiagonal matrices that does not need
the whole matrix a priori and requires no interchanges of rows and columns. It is
favored in some applications.

4.2. Pivoting strategies from those for dense matrices. All the pivoting
strategies from section 3 can be applied to a symmetric triadic matrix A ∈ Rn×n. The
growth factor is constrained because of the triadic structure, and we obtain a sharper
result for ρ(A) than that of Theorem 3.1, although the bound γ on the elements of L
remains the same.

Theorem 4.1. For LBLT factorization of a symmetric triadic A ∈ Rn×n, con-
sider the growth factor ρ(A), defined in (3.1). If the weak condition holds,

ρ(A) ≤
{

4g(g(n−3)/2−1)
g−1 + 2(g(n−1)/2 + g(n+1)/2) + 1 if n odd,

4g(g(n−2)/2−1)
g−1 + 2gn/2 + 1 if n even.

That is, ρ(A) = O(gn/2). If the strong condition holds,

ρ(A) ≤ 2ng�lg(n−1)� ≤ 2n(n− 1)lg g = O(n1+lg g),
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where n > 1 and g = max{ 1
α ,

1
1−α2 }.

The proof of this theorem is given in the appendix.

If we choose α =
√

5−1
2 to minimize g, then lg g ≈ 0.694, and therefore the

bound for the strong condition is subquadratic. Even linear growth is rare, but it
is possible; for example, if we take the circulant matrix A with second row equal to
[1,−2, 1, 0, . . . , 0] and change its (1, 1) element to −1, then ρ(A) = n/2 + O(1).

For the weak condition, exponential growth is achievable; define the n×n matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a −1 0 1 0 0 0
−1 −a 0 0 0 0 1
0 0 −a −1 0 1 0
1 0 −1 (g − 1)a 0 0 0

0 0 0 0 −a −1
. . .

0 0 1 0 −1 (g − 1)a 0
. . .

. . .
...

. . .
. . .

. . . 0

0 1 0 0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,(4.1)

|a| < α =
√

5−1
2 and n odd. Then when a → α−, the (n, 2j) entry becomes gj−1 after

(j − 1) 2 × 2 pivots for j = 1, . . . , n−1
2 , and therefore ρ(A) = O(gn/2).

Despite these examples, in our experiments, ρ(A) is almost always bounded by a
constant for both the weak and the strong conditions.

Although α =
√

5−1
2 ≈ 0.618 minimizes the a priori bound on the relative element

increase, our experiments show that the best α to minimize the average growth fac-
tor is usually between 0.82 and 0.86 for Bunch–Kaufman pivoting, as illustrated in
Figure 4.1, where 20,000 random matrices are generated for each matrix size and α.

With pivoting argument α =
√

5−1
2 , there are symmetric triadic matrices A having

ρ(A) = O(gn/2) and ρ(A) = O(n) for the weak and strong conditions, respectively.
But our experiments show that, in practice, LBLT factorizations of symmetric tridi-
agonal or symmetric tridiagonal matrices with corner elements added usually show
only constant growth in ρ(A), whenever any of the four pivoting strategies are applied.
Figure 4.2 shows the maximum growth factor of 20,000 random symmetric tridiagonal
n × n matrices for each n = 50, 100, . . . , 1000 and for random symmetric tridiagonal
matrices with corner elements.

4.3. Pivoting cost. When the Bunch–Parlett algorithm is applied, it is natural
to search the whole matrix instead of only the lower (or upper) triangular part due
to the data structure for sparse matrices. So the number of comparisons is at most
3k+O(1) to select a pivot in a k× k Schur complement. Therefore, the total number
of comparisons is bounded by 3

2n
2 + O(n) for a symmetric triadic A ∈ Rn×n, which

is more expensive than the O(n) cost of the factorization. The Bunch–Kaufman al-
gorithm requires at most 5n + O(1) comparisons for a symmetric triadic A ∈ Rn×n.
For the fast Bunch–Parlett and bounded Bunch–Kaufman pivoting strategies, the
worst-case number of comparisons is the same as that of Bunch–Parlett pivoting.
The average number of element comparisons is between that for the Bunch–Kaufman
and Bunch–Parlett pivoting strategies. Figure 4.3 shows the average number of com-
parisons of 20,000 symmetric matrices for each n = 50, 100, . . . , 1000.
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5. Perturbation theory. The perturbation analysis of LLT factorization of a
positive semidefinite symmetric matrix with complete pivoting is discussed in [12].
Partition A as

A =

[
A11 AT

21

A21 A22

]
,

where A11 ∈ Rk×k, and partition L and E accordingly. Assume that both A11 and
A11 + E11 are nonsingular, and let W = A−1

11 A
T
21 = L−T

11 LT
21. In [12], Higham showed

that with complete pivoting applied to a general positive semidefinite matrix,

‖W‖2,F ≤
√

1

3
(n− k)(4k − 1).

We give bounds on ‖W‖2,F for LXLT factorization of both full symmetric and sym-
metric triadic matrices.

Theorem 5.1. Let Sk(A) be the Schur complement appearing in an LXLT fac-
torization of a symmetric matrix A after processing the first k columns and k rows,
k < n. Suppose there is a symmetric perturbation in A, denoted by E. Let ‖ · ‖ be
a p-norm or the Frobenius norm and define absolute value | · | elementwise. Assume
that both A11 and A11 + E11 are nonsingular. Then

Sk(A + E) − Sk(A) = E22 − (E21W + WTET
21) + WTE11W + O(‖E‖2),

so

|Sk(A + E) − Sk(A)| ≤ |E22| + |E21| |W | + |WT | |ET
21| + |WT | |E11| |W | + O(‖E‖2)

and

‖Sk(A + E) − Sk(A)‖ ≤ ‖E‖(1 + ‖W‖2)2 + O(‖E‖2),

where

‖W‖2,F ≤
√

γ

γ + 2
(n− k) ((1 + γ)2k − 1)
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and γ is a bound on the absolute value of the elements of L.
If A is triadic, then this bound improves to

‖W‖2,F ≤ 2γΦγ

Φγ − 1

√
Φ2k

γ − 1

Φ2
γ − 1

= O(Φk
γ),

where

Φγ =
1 +

√
1 + 4/γ

2
γ.

The proof of the theorem is contained in the following series of lemmas. We begin
by generalizing to LXLT factorizations a result of Higham [12] for LLT factorization.

Lemma 5.2. Let Sk(A) be the Schur complement appearing in an LXLT fac-
torization of a symmetric matrix A after processing the first k columns and k rows,
k < n. Suppose there is a symmetric perturbation in A, denoted by E. Partition A as

A =

[
A11 AT

21

A21 A22

]
,

where A11 ∈ Rk×k, and partition E accordingly. If A11 and A11+E11 are nonsingular
then

Sk(A + E) = Sk(A) + E22 − (E21W + WTET
21) + WTE11W + O(‖E‖2),

where W = A−1
11 A

T
21.

Proof. The factorization takes the form

A =

[
A11 AT

21

A21 A22

]
=

[
L11

L21 In−k

] [
X

Sk(A)

] [
LT

11 LT
21

In−k

]
,

where L11 ∈ Rk×k is lower triangular and the symmetric matrix X ∈ Rk×k is block
diagonal with block order 1 or 2. The matrix X is either the identity, a diagonal
matrix, or a block diagonal matrix, depending on the factorization. In any case,
A11 = L11XLT

11 and A21 = L21XLT
11. Therefore, W = A−1

11 A
T
21 = L−T

11 LT
21. We also

know that Sk(A) = A22 −A21A
−1
11 A

T
21, and since A11 is nonsingular, (A11 +E11)

−1 =
(I + A−1

11 E11)
−1A−1

11 = (I − A−1
11 E11)A

−1
11 + O(‖E11‖2). The result is obtained by

substituting the previous two equations into Sk(A + E) = (A22 + E22) − (A21 +
E21)(A11 + E11)

−1(A21 + E21)
T and collecting the O(‖E‖2) terms.

Next, we bound the elements in W = L−T
11 LT

21.
Lemma 5.3. If L is unit lower triangular, with off-diagonal elements bounded in

absolute value by γ, then

|W | = |L−T
11 LT

21| ≤ yeT ,

where yk−j = γ(1 + γ)j and e is a vector of ones.
Proof. The matrix W satisfies LT

11W = LT
21, so let’s consider a single column of

this relationship. Let r be a column of W . We will compute a vector y satisfying
|r| ≤ y. Note that |rk|/γ is bounded by 1, and |rk−j |/γ is bounded by 1 plus the
sum of the later entries in r. If we let sk−j be a bound on the sum of the entries
k − j, . . . , k, then for j = 1, 2, . . . , k − 1, we have the recursions

yk−j = γ(1 + sk−j+1),

sk−j = sk−j+1 + yk−j ,
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with yk = γ and sk = γ. The solution to these recursions is

yk−j = γ(1 + γ)j ,

sk−j = (1 + γ)j+1 − 1.

Therefore, each column of W is bounded in absolute value by y and the result fol-
lows.

The bound on ‖W‖ follows immediately. This takes care of the general case and
leaves only the triadic bound to be demonstrated. We begin with two simple lemmas
and then proceed to the main result.

Lemma 5.4. Let Fγ(n) =
∑�n/2	

i=1 (n−i
i−1 )γn−i and Φγ =

1+
√

1+4/γ

2 γ. Then

1

1 + (1/γ)
Φn−1

γ ≤ Fγ(n) ≤ Φn−1
γ

for n = 1, 2, . . . and γ > 0.
Proof. We first observe that Fγ(n) = γ(Fγ(n − 1) + Fγ(n − 2)) for n > 2, with

Fγ(1) = 1 and Fγ(2) = γ. Note that γ + γΦγ = Φ2
γ . The result can be obtained by

mathematical induction.
Lemma 5.5. Let C ≥ 0 be an m × n matrix with n ≥ 2. Then ‖C‖p ≤ ‖CÎ‖p,

where 1 ≤ p ≤ ∞ or p = F , and the n × (n − 1) matrix Î is the identity matrix of
size n− 1, with its last row repeated.

Proof. The cases of p = F (Frobenius norm) and p = ∞ (∞-norm) are trivial.
When 0 ≤ p < ∞, ‖C‖p = max‖x‖p=1 ‖Cx‖p = ‖Cz‖p, and this value is achieved for
some z with ‖z‖p = 1. Note that zi ≥ 0 for i = 1, . . . , n, since all the elements of C
are nonnegative. Let ẑ = [z1, . . . , zn−2,max(zn−1, zn)]T . Then ‖ẑ‖p ≤ 1, and

‖C‖p = ‖Cz‖p ≤ ‖CÎẑ‖p ≤ ‖CÎ(ẑ/‖ẑ‖p)‖p ≤ max
‖x‖p=1

‖CÎx‖p = ‖CÎ‖p.

Lemma 5.6. The LBLT factorization for symmetric triadic matrices has

‖L−T
11 LT

21‖2,F ≤ 2γΦγ

Φγ − 1

√
Φ2k

γ − 1

Φ2
γ − 1

= O(Φk
γ),

where γ ≥ 1 is the off-diagonal element bound of L and Φγ =
1+

√
1+4/γ

2 γ.
Proof. The proof of Lemma 5.4 shows Fγ(i) = γ(Fγ(i− 1) + Fγ(i− 2)) for i > 2.

Observing the elements in L−1
11 L11 = I, we obtain

|L−1
11 | ≤

k∑
i=1

Fγ(k)Zk−1 =

⎡
⎢⎢⎢⎢⎢⎣

Fγ(1)
Fγ(2) Fγ(1)
Fγ(3) Fγ(2) Fγ(1)

...
. . .

. . .
. . .

Fγ(k) · · · Fγ(3) Fγ(2) Fγ(1)

⎤
⎥⎥⎥⎥⎥⎦
,

where Z ∈ Rk×k is the shift-down matrix. Note that this bound is attainable with
L11 = I − γZ − γZ2. By Lemma 5.4,

|L−T
11 |e ≤

[
Φk

γ − 1

Φγ − 1
,
Φk−1

γ − 1

Φγ − 1
, . . . , 1

]T

.(5.1)
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Since L is triadic, each row of LT
21 has at most two nonzero elements. Let |LT

21| =
R1 +R2, where R1 and R2 contain the first and the second nonzero elements in each
row, respectively. Then

‖L−T
11 LT

21‖ ≤ ‖|L−T
11 ||LT

21|‖ ≤ ‖|L−T
11 |R1‖ + ‖|L−T

11 |R2‖.

By Lemma 5.5,

‖|L−T
11 |R1‖ ≤ ‖|L−T

11 |R1În−k‖
≤ ‖|L−T

11 |R1În−k În−k−1‖
≤ · · · ≤ ‖|L−T

11 |R1În−k În−k−1 · · · Î2‖
≤ ‖|L−T

11 |(γe)‖ = γ‖|L−T
11 |e‖.

Similarly, ‖|L−T
11 |R2‖ ≤ γ‖|L−T

11 |e‖. By (5.1), for γ ≥ 1

‖L−T
11 LT

21‖2,F ≤ 2γ‖|L−T
11 |e‖2,F ≤ 2γΦγ

Φγ − 1

√
Φ2k

γ − 1

Φ2
γ − 1

.

Note that this bound is halved when n− k = 1.
For positive semidefinite triadic matrices and complete pivoting, γ = 1 so Φk

γ =

O(( 1+
√

5
2 )k).

In the LBLT factorization of a symmetric triadic matrix with diagonal pivoting,

γ can be 2 or 7+
√

17
4 ≈ 2.781, to minimize the element bound of matrix L or the

element growth factor, respectively.

6. Concluding remarks. We have studied various pivoting strategies in com-
puting the LXLT factorizations of symmetric triadic matrices. We denote the strate-
gies as follows: BT (Bunch’s pivoting strategy for a symmetric tridiagonal matrix),
BP (Bunch–Parlett), FBP (fast Bunch–Parlett), BBK (bounded Bunch–Kaufman),
and BK (Bunch–Kaufman). We summarize our results as follows:

1. The LLT , LDLT , and LBLT factors of a symmetric triadic matrix with any
diagonal pivoting strategy remain sparse.

2. We have analyzed the boundedness of the growth factors in case the pivoting
strategy satisfies either a strong or a weak condition.

3. We have presented a new choice of the α parameter that better controls the
growth factor.

4. In the LBLT factorization with various pivoting strategies, L is bounded for
BP, FBP, and BBK pivoting strategies, whereas the BK pivoting strategy may
result in L unbounded. All four pivoting strategies have the growth factor
controlled for full symmetric matrices. The bound on the growth factor is
smaller for symmetric triadic matrices.

5. For symmetric matrices, pivoting strategies BT and BK produce an L matrix
with no bounds on its elements, whereas the magnitude of elements in L from
pivoting strategies BBK, BP, and FBP is bounded by a constant γ given in
Table 3.1, depending on the parameter α in the algorithm.

6. For LDLT factorization of a positive definite symmetric matrix A with com-
plete pivoting, the magnification factor in the error bound for the Schur com-

plement after k steps is
√

1/3(n− k)(4k − 1) if A is full [12], and O(( 1+
√

5
2 )k)

if A triadic.
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7. For two pivoting strategies D and E, we will say D � E, D � E, and D  E
if D is better than, slightly better than, or similar to E, respectively. Our

experimental results with pivoting argument α =
√

5−1
2 ≈ 0.618 are as follows:

For LBLT factorizations of uniformly distributed tridiagonal matrices, the
maximum growth factors satisfy BP � FBP � BT � BBK � BK, as shown
in Figure 4.2, whereas the average number of comparisons satisfies BT �
BK  BBK � FBP � BP, as shown in Figure 4.3. Thus, more expensive
pivoting usually yields a smaller growth factor.

Appendix. Proof of bounds for pivoting on triadics in Theorem 4.1.
Theorem A.1. For LBLT factorization of a symmetric triadic A ∈ Rn×n, the

growth factor of off-diagonal elements ρ̄(A), defined in (3.6), is bounded as

ρ̄(A) ≤
{

2g�lg(n−1)� ≤ 2(n− 1)lg g if strong condition holds,
2g�(n−1)/2� if weak condition holds,

where n > 1 and

g = max

{
1

α
,

1

1 − α2

}
.

Proof. Without loss of generality, we assume the required interchanges of rows
and columns for pivoting are done prior to the factorization. Let Sk(A) be the Schur
complement of A after reducing k rows and k columns, and let

A(k+1) =
k n− k

k
n− k

[
0 0
0 Sk(A)

]
.

By Lemmas 2.1 and 2.3, at most two diagonal and two off-diagonal elements are

changed in the Schur complement. We denote them by a
(k+1)
ii , a

(k+1)
jj , a

(k+1)
ij , and

a
(k+1)
ji . In addition to a

(k+1)
ij and a

(k+1)
ji , A(k+1) has at most one nonzero off-diagonal

element in each of ith and jth rows, inherited from A(k−p). Let p = 1 or p = 2 for
the previous selection being 1 × 1 or 2 × 2, respectively.

Assume for now that

a
(k+1−p)
ij = a

(k+1−p)
ji = 0(A.1)

for each k. Later we will show that if this assumption breaks, the bounds on the
off-diagonal growth factor are at most doubled.

For a 1× 1 pivot, (A.1) implies that the weak condition coincides with the strong
condition. Therefore,

|a(k+1)
ij | =

|a(k)
ik ||a(k)

jk |
|a(k)

kk |
≤ 1

α
min{|a(k)

ik |, |a(k)
jk |} ≤ gmin{|a(k)

ik |, |a(k)
jk |}.(A.2)

For a 2 × 2 pivot
[ a

(k−1)
k−1,k−1 a

(k−1)
k−1,k

a
(k−1)
k,k−1 a

(k−1)
kk

]
, there are at most two nonzero off-diagonal

elements under the pivot, denoted by a
(k−1)
i,k−1 and a

(k−1)
jk . If i = j, then the only

element changed in A(k+1) from A(k−1) is a
(k+1)
ii . In this case, the matrix size is



SYMMETRIC TRIDIAGONAL AND TRIADIC MATRICES 593

reduced without increasing the off-diagonal elements. In order to maximize ρ̄(A), we
assume i �= j. The weak condition ensures (3.3). Therefore,

|a(k+1)
ij | ≤ 1

(1 − α2)|a(k−1)
k,k−1|2

[
|a(k−1)

i,k−1 | 0
] [ |a(k−1)

kk | |a(k−1)
k−1,k|

|a(k−1)
k,k−1| |a(k−1)

k−1,k−1|

][
0

|a(k−1)
jk |

]

=
|a(k−1)

i,k−1 ||a
(k−1)
jk |

(1 − α2)|a(k−1)
k,k−1|

≤
{

gmin{|a(k−1)
i,k−1 |, |a

(k−1)
jk |} if strong condition holds,

g|a(k−1)
jk | if weak condition holds.

(A.3)

Since the Schur complement is symmetric, we consider the elements in the lower
triangular. Let G(m) = gm maxi �=j |aij |.

Consider the case that the strong condition holds. By (A.3) for a 2× 2 pivot, an

off-diagonal element of size G(m) requires three G(m−1) elements: |a(k−1)
i,k−1 |, |a

(k−1)
jk |,

and |a(k−1)
k,k−1|. Note that the strong condition guarantees |a(k−1)

k,k−1| ≥ |a(k−1)
i,k−1 |. By (A.2)

for a 1×1 pivot, if |a(k+1)
ij | ≥ G(m), then |a(k)

ik |, |a(k)
jk | ≥ G(m−1). In other words, for

a 1×1 pivot, an off-diagonal element of size G(m) requires two off-diagonal supporting
elements of size G(m−1). Therefore, the bound on element growth using 1×1 pivots
is higher than that using 2×2 pivots. Note that each 1×1 elimination step introduces
at most one fill-in entry. Considering a sequence of 2m−1 pivots of size 1×1, we see by
induction that a G(m) element requires 2m G(0) elements that cannot contribute to
the growth of other elements, and thus the growth must be logarithmic. We illustrate
this in the following diagram for obtaining a G(3) element with the smallest number
of pivots. The last column indicates the Schur complements as the sources of the two
off-diagonal elements in each row if they were not present initially. Note that G(0)
elements are from the original matrix A, whereas G(1), G(2), and G(3) elements are
fill-in entries during the factorization.

∗ G(0) G(0)
∗ G(0) G(0)

G(0) G(0) ∗ G(1) G(1) A(2), A(1)

∗ G(0) G(0)
∗ G(0) G(0)

G(0) G(0) ∗ G(1) G(1) A(5), A(4)

G(0) G(1) G(0) G(1) ∗ G(2) G(2) A(6), A(3)

G(0) G(1) G(2) ∗ G(3) A(7)

G(0) G(1) G(2) G(3) ∗

The number of pivots is 2m−1 + 2m−2 + · · · + 20 = 2m − 1. The last 2 × 2 Schur
complement, with or without a row/column reduced afterward, cannot contribute to
off-diagonal element growth. Therefore, the dimension of the smallest matrix that
can have a G(m) off-diagonal element is (2m − 1) + 2 = 2m + 1. If A has dimension
less than 2m + 1 but larger than 2m−1, then the off-diagonal elements in the Schur
complements are at most G(m− 1) in magnitude. In other words,

ρ̄(A) ≤ g�lg(n−1)� ≤ (n− 1)lg g.(A.4)

Consider the case that the weak condition holds. Recall that for a 1×1 pivot, the
weak condition coincides with the strong condition, and an off-diagonal element of
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size G(m) requires two G(m− 1) elements. By (A.3) for a 2× 2 pivot, an off-diagonal
element of size G(m) requires only one G(m− 1) element. For maximal growth from
G(0) to G(1) we use a 1 × 1 pivot. Otherwise, the bound on element growth using
2 × 2 pivots is at least as big as that using 1 × 1 pivots. The bound can increase by
a factor of g for every two rows reduced during the decomposition, except from G(0)
to G(1) (one row/column reduced). The last Schur complement cannot contribute to
off-diagonal element growth. Therefore,

ρ̄(A) ≤ g�(n−1)/2�,(A.5)

where A ∈ Rn×n is symmetric triadic.
So far we assume (A.1) holds. Now we show that if (A.1) breaks, the bounds

in (A.4) and (A.5) are at most doubled. If a
(k+1−p)
ij = a

(k+1−p)
ji �= 0, then there

are no other off-diagonal elements in the ith and jth rows and columns in A(k+1),
where p = 1, 2 stands for 1 × 1, 2 × 2 pivots, respectively. As a result, A(k+1) is a
reducible matrix. After diagonally interchanging rows and columns, A(k+1) consists

of two diagonal blocks:
[ a

(k+1)
ii a

(k+1)
ij

a
(k+1)
ji a

(k+1)
jj

]
and the remaining matrix, in which all the

elements are taken from A(k+1−p). The bound on a
(k+1)
ji in the 2 × 2 block is at

most doubled, since it is a sum of two terms, each of which is bounded as (A.4) or
(A.5), depending on whether the condition satisfied is strong or weak. Note that no
off-diagonal element growth occurs afterward in this 2× 2 block, and the other block
is intact. Therefore, we obtain the result by safely declaring that the bounds in (A.4)
and (A.5) are at most doubled if (A.1) breaks.

Theorem A.2. For LBLT factorization of a symmetric triadic A ∈ Rn×n,
consider the growth factor ρ(A), defined in (3.1). If the weak condition holds,

ρ(A) ≤
{

4g(g(n−3)/2−1)
g−1 + 2(g(n−1)/2 + g(n+1)/2) + 1 if n odd,

4g(g(n−2)/2−1)
g−1 + 2gn/2 + 1 if n even.

That is, ρ(A) = O(gn/2). If the strong condition holds,

ρ(A) ≤ 2ng�lg(n−1)� ≤ 2n(n− 1)lg g = O(n1+lg g),

where n > 1 and g = max{ 1
α ,

1
1−α2 }.

Proof. The major difference between ρ(A) and ρ̄(A) is that the diagonal element
increases can accumulate, whereas the accumulation of two off-diagonal element in-
creases results in a reducible Schur complement, so further accumulation is impossible.
Therefore, the diagonal element growth factor is bounded by the sum of n elements,
each of which is bounded by Theorem 4.1. So we obtain the bound on ρ(A) for the
strong condition. Though this approach also gives a bound for the weak condition, a
tighter bound can be obtained, as follows.

The proof of Theorem A.1 shows that the off-diagonal element bound in the Schur
complement depends on the number of rows/columns reduced. We follow the notation
in the proof of Theorem A.1.

If the weak condition holds, the off-diagonal elements a
(k+1)
ij in A(k+1) (after

reducing k rows/columns) are bounded as |a(k+1)
ij | ≤ 2g�(k+1)/2� max |aij | for i �= j

and k from 1 to n − 2. This is also the bound on the diagonal element increase of
Ak+1 from the previous iteration. We sum up all the relative element increases during
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the decomposition to obtain a bound on ρ(A), where A ∈ Rn×n is symmetric triadic:

ρ(A) ≤ 1 + 2g�2/2� + 2g�3/2� + · · · + 2g�(n−1)/2� + 2g�(n−1)/2�+1

=

{
4g(g(n−3)/2−1)

g−1 + 2(g(n−1)/2 + g(n+1)/2) + 1 if n odd,
4g(g(n−2)/2−1)

g−1 + 2gn/2 + 1 if n even.

The underlined 1 occurs because each diagonal element in the initial A can be G(0).
The reason for the last term 2g�(n−1)/2�+1 is as follows. If a 1 × 1 pivot is chosen in
the last 2 × 2 Schur complement or a 2 × 2 pivot is chosen in the last 3 × 3 Schur
complement, the reduction can still increase the very last diagonal element, but there
is no off-diagonal element growth. If (A.1) breaks, the reduced 2 × 2 block can have
diagonal element growth but no off-diagonal element growth. This case is also taken
into account in 2g�(n−1)/2�+1. In a similar vein, we can also obtain a slightly tighter

bound for the strong condition, but it is also O(n1+lg g):

ρ(A) ≤ 1 + 2g�lg 2� + 2g�lg 3� + · · · + 2g�lg(n−1)� + 2g�lg(n−1)�+1 = O(n1+lg g).
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Abstract. Signs associated with real characteristic roots of a hermitian polynomial matrix L(s)
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1. Introduction. We first review the notion of inertial signs of a hermitian
pencil P (s) = A0+A1s. Suppose A0, A1 ∈ C

n×n are hermitian, and A1 is nonsingular.
Then det P �= 0 (zero polynomial) and P−1 is strictly proper rational. Let σ(P ) =
{λ |detP (λ) = 0} denote the set of characteristic values of P . The following result
goes back to Weierstraß (see [7], [5], [4]).

Lemma 1.1. Let A0 + A1s ∈ C
n×n[s] be a hermitian pencil and let A1 be non-

singular. Then there exists a nonsingular matrix T ∈ C
n×n such that T (A0 +A1s)T

∗

is the direct sum of blocks of types I and II as follows:

(I) εDr(s, α) = ε

⎛
⎜⎜⎜⎜⎝

0 0 . . . −1 s− α
0 0 . . . s− α 0
. . . . . . .
−1 s− α . . . 0 0

s− α 0 . . . 0 0

⎞
⎟⎟⎟⎟⎠

r×r

with α ∈ R and ε ∈ {1,−1}, and

(II) G2k(s, β) =

(
0 Dk(s, β)

Dk(s, β̄) 0

)

2k×2k

with β /∈ R. The direct sum T (A0 + A1s)T
∗ =

(1.1) diag
(
. . . , εDr(s, α), . . . , G2k(s, β), . . .

)

is uniquely determined up to ordering of blocks.
The block diagonal matrix in (1.1) is the Weierstraß canonical form of the pencil

A0 + A1s. We observe that a number ε = ±1 is attached to each block of type I.
Thus a sign can be associated with each elementary divisor corresponding to a real
characteristic root α.

Definition 1.2. Let A0 + A1s have πi elementary divisors of the form (s− α)i

and let εi1, . . . , εiπi
be the corresponding signs. Then

(1.2) (. . . , εi1, . . . , εiπi
, . . . )
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will be called the inertial signs of α. Set

(1.3) ηi = εi1 + · · · + εiπi ,

such that ηi = 0 if πi = 0. We call the numbers ηi the inertial signatures of α.
If A ∈ C

n×n is a hermitian matrix with 	 positive and ν negative eigenvalues
(counting multiplicities), then the difference 	 − ν is the signature of A. It will be
denoted by sgnA. If πi �= 0, then

ηi = sgn diag(εi1, . . . , εiπi).

Definition 1.2 is motivated by [6]. The terminology is not uniform. The Cauchy char-
acteristic in [2] includes elementary divisors and signs, and the term sign characteristic
can be found in [3].

Now consider a nonsingular hermitian polynomial matrix L ∈ C
n×n[s] such that

L(s) = A0 + A1 s + · · · + At s
t

and Ai = A∗
i , i = 0, . . . , t. Assume that L−1 is strictly proper rational. Set m =

deg det L. A factorization

(1.4) L−1(s) = C(A0 + A1s)
−1C∗

is a hermitian minimal realization of L−1 if P (s) = A0+A1s ∈ C
m×m[s] is a hermitian

pencil and C ∈ C
n×m. The following observation (see, e.g., [9]) is an immediate

consequence of Kalman’s state space isomorphism theorem.
Lemma 1.3. Let L ∈ C

n×n[s] be a nonsingular hermitian polynomial matrix with
deg detL = m. Suppose L−1 is strictly proper rational. Then L−1 admits a hermitian
minimal realization. If (1.4) and

L−1(s) = C̃(Ã0 + Ã1s)
−1C̃∗

are two hermitian minimal realizations, then A1 and Ã1 are nonsingular, and there
exists a nonsingular matrix T ∈ C

m×m such that

(1.5) Ã0 + Ã1s = T (A0 + A1s)T
∗ and C = C̃T ∗.

Set σ(L) = {λ | detL(λ) = 0}. If (1.4) is a minimal hermitian realization, then
σ(L) = σ(A0 +A1s), and (see, e.g., [1]) the elementary divisors of the pencil A0 +A1s
are the same as those of the polynomial matrix L. Moreover the preceding lemma
shows that the pencil A0 + A1s is determined by L up to congruence. This leads to
the following definition of inertial signs and signatures of polynomial matrices.

Definition 1.4. Let L ∈ C
n×n[s] be nonsingular and hermitian. Suppose L−1

is strictly proper rational, and L−1(s) = C(A0 + A1s)
−1C∗ is a hermitian minimal

realization. Let α ∈ σ(L) and α ∈ R. The inertial signs and signatures of α are
defined to be those of the characteristic value α of the pencil A0 + A1s.

It is the purpose of this paper to determine inertial signatures of real characteristic
values of L using Laurent expansions of L−1. Without loss of generality we may
assume 0 ∈ σ(L). We focus on the inertial signatures at α = 0. Let

(1.6) WL−1(s) = s−1[W0 + s−1W1 + · · · + s−(k−1)Wk−1]
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be the principal part of the Laurent expansion of L−1(s) at α = 0. Define the Hankel
matrices

H(L−1) =

⎛
⎜⎜⎜⎜⎝

W0 W1 . . . Wk−2 Wk−1

W1 W2 . . . Wk−1

. . . . .
Wk−2 Wk−1

Wk−1

⎞
⎟⎟⎟⎟⎠

,(1.7)

H(sL−1) =

⎛
⎜⎜⎝

W1 . . . Wk−2 Wk−1

W2 . . . Wk−1

. . . .
Wk−1

⎞
⎟⎟⎠ , . . . , H(sk−1L−1) = Wk−1.

Our main result is the following.
Theorem 1.5. Let L ∈ C

n×n[s] be a nonsingular hermitian polynomial matrix
with a strictly proper rational inverse. Let α = 0 be a characteristic root of L. Assume
that 0 is a pole of order k of L−1. Let ηi be the inertial signatures of L at α = 0.
Then

(1.8)

⎛
⎜⎜⎜⎜⎜⎜⎝

η1

.

.

.
ηk−1

ηk

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1 0 . . . . .
1 0 −1 0 . . .

1 0 −1 0 . . .
. . . . . .

. . . . .
0 −1 0
1 0 −1

1 0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

sgnH(sk−1L−1)
.
.
.

sgnH(sL−1)
sgnH(L−1)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The proof of the theorem will be given in section 3. It is based on a result of
Turnbull [8].

2. Turnbull’s signature test. In this section we deal with a hermitian pencil
P (s) = A0 + A1s. We describe a modified form of Turnbull’s signature test [8]. The
following notation will be used. We set Dr(s) = Dr(s, 0), and define r × r matrices

Er = (δi,r+1−i) =

⎛
⎜⎝

1

. .
.

1

⎞
⎟⎠ ,

Nr = (δi+1,i) =

⎛
⎜⎜⎜⎝

0
1 0

. . .
. . .

1 0

⎞
⎟⎟⎟⎠ .

Then Dr(s) = (sI −NT
r )Er.

Lemma 2.1. Let P (s) = A0 + A1s have an elementary divisor sk and suppose
πi = 0 for i > k. Let the inertial signs and signatures of α = 0 be given by (1.2) and
(1.3). If

(2.1) WP−1(s) = s−1[M0 + s−1M1 + · · · + sk−1Mk−1]
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is the principal part of the Laurent expansion of P−1(s) at α = 0, then

(2.2)

⎛
⎜⎜⎜⎜⎜⎜⎝

sgnM0

sgnM1

.

.

.
sgnMk−1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 0 . . .
1 0 1 0 1 . . .

1 0 1 0 . . .
. . . . . .

. . . . .
. . . .

1 0 1
1 0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

η1

.

.

.
ηk−1

ηk

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Proof. We may assume

(2.3) P (s) = diag
(
P̂ (s), Q(s)

)
, σ(P̂ ) = {0}, 0 /∈ σ(Q).

Let P̂ (s) be in Weierstraß canonical form such that

(2.4) P̂ (s) = diag
(
. . . , εi1Di(s), . . . , εiπiDi(s), . . .

)
.

Then

WP−1(s) = P̂−1(s) = diag(. . . , εi1D
−1
i (s), . . . , εiπi

D−1
i (s), . . . ).

We first deal with the case P̂ (s) = εDk(s) and proceed as in [8]. From

εD−1
k (s) = ε

k∑
i=0

N i
kEks

−i−1 = ε

⎛
⎜⎜⎜⎜⎝

0 0 0 . . . 0 s−1

0 0 0 . . . s−1 s−2

. . . . . . . .
0 s−1 s−2 . . . s−(k−2) s−(k−1)

s−1 s−2 s−3 . . . s−(k−1) s−k

⎞
⎟⎟⎟⎟⎠

follows

Mi = εN i
kEk = ε diag

(
0i×i, Ek−i

)
.

Therefore sgnEk = 0 if k is even, and sgnEk = 1 if k is odd. Hence

(2.5) sgnMk−1 = ε, sgnMk−2 = 0, sgnMk−3 = ε, . . . ,

and (2.2) holds with (ηk, ηk−1, . . . , η1) = (ε, 0, . . . , 0). In the general case, with P̂ (s)
given as in (2.4), we obtain (2.2) by inspecting P̂−1(s) and using (2.5).

3. Proof of the theorem. We shall need a generalization of Sylvester’s law of
inertia [2, p. 200].

Lemma 3.1. Let A ∈ C
n×n be hermitian. If Y ∈ C

t×n has full column rank, then
the matrices A and Y AY ∗ have the same rank and the same signature.

The proof of Theorem 1.5 starts from a minimal hermitian realization

(3.1) L−1(s) = C(A0 + A1s)
−1C∗,

where P (s) = A0+A1s is given by (2.3). Then P̂ (s) = Â0+Â1s, and Â1 is nonsingular,
and N̂ = −Â−1

1 Â0 is nilpotent with N̂k = 0. Let C = (Ĉ,D) be partitioned in
accordance with (2.3). Then

L−1(s) = ĈP̂−1(s)Ĉ∗ + DQ(s)D∗
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and

WL−1(s) = ĈP̂−1(s)Ĉ∗ = Ĉ[Â1(−N̂ + sI)]−1Ĉ∗.

Hence we have (1.6) with

Wi = ĈN̂ iÂ−1
1 Ĉ∗, i = 0, . . . , k − 1.

Let H(P̂−1) be the Hankel matrix associated with P̂−1(s). Then

H(P̂−1) =

⎛
⎜⎜⎝

Â−1
1 N̂Â−1

1 . . . N̂k−2Â−1
1 N̂k−1Â−1

1

N̂Â−1
1 N̂2Â−1

1 . . . N̂k−1Â−1
1

. . . . .

N̂k−1Â−1
1

⎞
⎟⎟⎠ .

Because of N̂k = 0 and N̂Â−1
1 = Â−1

1 N̂T we obtain

(3.2) H(P̂−1) =

⎛
⎜⎜⎜⎝

I

N̂
...

N̂k−1

⎞
⎟⎟⎟⎠ Â−1

1

(
I N̂T . . . (N̂k−1)T

)
.

Let

O = O(N̂ , Ĉ) =

⎛
⎜⎜⎜⎝

Ĉ

ĈN̂
...

ĈN̂k−1

⎞
⎟⎟⎟⎠

be the observability matrix of the pair
(
N̂ , Ĉ

)
. Then H(L−1) = OÂ−1

1 O∗, and
similarly

H(siL−1) = ON̂ iÂ−1
1 O∗, i = 1, . . . , k − 1.

The realization (3.1) is minimal. Hence O has full column rank [1], and Lemma 3.1
implies

(3.3) sgnH(siL−1) = sgn N̂ iÂ−1
1 , i = 0, . . . , k − 1.

Recall WP−1(s) = P̂−1(s). Therefore the matrices Mi in (2.1) are given by Mi =
N̂ iÂ−1

1 . Thus we have sgnMi = sgnH(siL−1). Then (2.1) yields

(
sgnH(L−1), . . . , sgnH(siL−1)

)
= (η1, . . . , ηk)(I + N2

k + N4
k + · · · ),

and because of

(I + N2
k + N4

k + · · · )−1 = I −N2
k

the proof is complete.
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A FAST ULV DECOMPOSITION SOLVER FOR HIERARCHICALLY
SEMISEPARABLE REPRESENTATIONS∗

S. CHANDRASEKARAN† , M. GU‡ , AND T. PALS†

Abstract. We consider an algebraic representation that is useful for matrices with off-diagonal
blocks of low numerical rank. A fast and stable solver for linear systems of equations in which the
coefficient matrix has this representation is presented. We also present a fast algorithm to construct
the hierarchically semiseparable representation in the general case.

Key words. fast multipole method, hierarchically semiseparable, fast algorithms, orthogonal
factorizations

AMS subject classification. 65F05

DOI. 10.1137/S0895479803436652

1. Introduction. In this paper we consider a representation of structured dense
matrices that we term hierarchically semiseparable (HSS). This representation is a
direct generalization of the one presented in [3]. It is also a special case of the FMM
(fast multipole method) representations [20, 2, 29, 30, 31]. It has also been discussed
as H2 matrices in [24].

This representation is useful for matrices characterized by a hierarchical low nu-
merical rank structure in the off-diagonal blocks. Examples of such matrices are
shown in Figure 1. The matrix in Figure 1(a) is obtained,1 for example, for the ma-
trix [log |xi − xj |], where 0 ≤ xi < xi+1 ≤ 1. Similarly the matrix in Figure 1(b) is
obtained for the matrix [log | sinπ(xi − xj)|]. This class of matrices arises frequently
in the numerical solution of partial differential and integral equations.

This work arose in an effort to stabilize the fast solver presented in [30, 31]. Our
initial efforts in this direction were presented in [5, 6, 7, 8, 9, 27, 28]. During this
time we learned about some work in linear time-varying systems theory [13], and
other independent work [17, 15, 16, 23, 24], that encouraged us to generalize our ideas
and present them in a more algebraic framework [3]. The corresponding technical
report [4] is more comprehensive and will give some indication to the reader of how
far the methods presented in this paper can be taken.

However, the FMM [20, 2, 29] is our most direct motivation for this work. In fact,
the ideas presented here can be viewed as a stable approach to a fast inverse multipole
method. There has been some significant work in this regard in the computational
electromagnetics literature [1, 12, 19, 22, 26, 30, 31]. The method presented here is
the first stable fast solver. In addition it also presents an algebraic generalization.

For applications of the fast solver we currently refer to [30, 31] and [4]. However,
the applications are much wider than indicated in these references. Some of these will
be presented in forthcoming papers.
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1In both cases the particular choice of the diagonal entries is not important.
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(b) log |x− y| on a circle.

Fig. 1. Submatrices labeled with a black dot are full-rank. All other submatrices have low
numerical rank.

For completeness we also present an algorithm to construct a numerical HSS
representation of a general matrix. This algorithm requires O(n2) flops and O(n)
space. It is similar to the sequentially semiseparable (SSS) construction algorithm
presented in [3, 13]. A construction algorithm for H2 matrices is presented in [25].
The algorithm we present also ensures that the computed HSS representation satisfies
some properties required to enable stability in the solver. We also present two cases
where the construction can be carried out in O(n) flops.

2. HSS representation. The representation is identical to the one presented
in [30, 31], except that we view it more generically.

The HSS representation is a hierarchical representation that is based on a recursive
row and column partitioning of the matrix. For example, for a 2×2 block partitioning
of the matrix A its HSS representation is given by

A =

(
D1;1 U1;1B1;1,2V

H
1;2

U1;2B1;2,1V
H
1;1

)
,

where the subscripted D, U , V , and B matrices are in the representation. To see
the recursive hierarchical nature we consider a block 4 × 4 partitioning of A and the
resultant two-level HSS representation:

A =

⎛
⎜⎜⎝

(
D2;1 U2;1B2;1,2V

H
2;2

U2;2B2;2,1V
H
2;1 D2;2

)
(U1;1B1;1,2V

H
1;2 )

(U1;2B1;2,1V
H
1;1 )

(
D2;3 U2;3B2;3,4V

H
2;4

U2;4B2;4,3V
H
2;3 D2;4

)

⎞
⎟⎟⎠ .

We first observe that only the two diagonal blocks D1;1 and D1;2 from the one-level
HSS representation have been partitioned at the second level, each of them seemingly
assigned their own HSS representations. However, that view is slightly misleading. In
fact, in the two-level HSS representation of the matrix A, we do not store the matrices
U1;i and V1;i for i = 1, 2. Rather we store only the U2;i and V2;i for i = 1, 2, 3, 4 and the
translation operators W2;i and R2;i for i = 1, 2, 3, 4, which can be used to reconstruct
the missing U1;i and V1;i via the defining relations

U1;1 =

(
U2;1R2;1

U2;2R2;2

)
,
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U1;2 =

(
U2;3R2;3

U2;4R2;4

)
,

V1;1 =

(
V2;1W2;1

V2;2W2;2

)
,

V1;2 =

(
V2;3W2;3

V2;4W2;4

)
.

These translation operators are an integral part of the FMM representation and lit-
erature, and their use in getting linear complexity algorithms is well known.

In general in a multilevel HSS representation the diagonal blocks at the ith level
are labeled Di;j . The Ui;j at the lowest levels are used in conjunction with the
translation operators Ri;j at that level to reconstruct the Ui−1,j ’s at the higher levels
via

Ui−1;j =

(
Ui;2jRi;2j−1

Ui;2jRi;2j

)
.(1)

Similarly for Vi;j we have

Vi−1;j =

(
Vi;2jWi;2j−1

Vi;2jRi;2j

)
.(2)

At every level only the diagonal blocks are eligible for partitioning. The off-
diagonal blocks in the upper-triangular part of the ith level are of the form
Ui;2j−1Bi;2j−1,2jV

H
i;2j and in the lower-triangular part of the form Ui;2jBi;2j,2j−1V

H
i;2j−1.

Therefore, the complete HSS representation of the matrix A consists of the Di;j , Ui;i,
and Vi;j at the lowest levels along with Bi;2j,2j−1, Bi;2j−1,2j , Ri;j , and Wi;j at every
level.

In the FMM literature it has been convenient to use a (binary in this case) tree
on which all these matrices can be represented. In this notation the root of the tree
corresponds to the whole matrix; the two children of the root correspond to the two
row (and column) partitions, and so on. In Figure 2 we depict the HSS tree (also
called a merge tree) for a uniform three-level HSS representation. We will refer to the
ith node at the k-level of the tree as Node(k, i).

It should be observed that every matrix has an HSS representation. However, HSS
representations are useful only when the translation operators are small compared to
the size of the original matrix. These representations can be constructed in O(n2) flops
and O(n) space; see [10, 24]. In special cases these representations can be constructed
in O(n) flops. The FMM literature is rife with such results. Some other interesting
instances can also be found in [10].

In this paper we restrict ourselves to HSS trees that are (almost) complete binary
trees. In a future paper we will generalize our methods to incomplete binary trees.

3. Fast multiplication. In this section, for the convenience of the reader, we
present the standard FMM algorithm for multiplying a matrix in HSS form with a
regular vector (or unstructured dense matrix). In particular consider the matrix-
vector product z = Ab, where A is in HSS form, with K + 1 levels in its HSS tree,
and mi indices in Node(K, i). Let ( bk;i ) denote a block row partitioning of b such
that bk;i has the rows whose indices belong to Node(k, i). We partition z similarly.

We begin by observing that we need to do the multiplication

U1;1B1;1,2V
H
1;2b1;2(3)
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R1;1

W1;1

B1;2,1

B1;1,2

D2;4

U2;4

V2;4

B2;1,2

B2;1,2

B2;3,4

B2;4,3

D2;3

U2;3

V2;3

D2;2

U2;2

V2;2

D2;1

U2;1

V2;1

R2;2

W2;2

R2;1

W2;1

R2;3

W2;3

R2;4

W2;4

R1;2

W1;2

Fig. 2. Three-level HSS representation on a binary tree.

and the multiplication

U2;3B2;3,4V
H
2;4b2;4.

Since

V H
1;2b1;2 =

(
V2;3W2;3

V2;4W2;4

)H (
b2;3
b2;4

)
= WH

2;3V
H
2;3b2;3 + WH

2;4V
H
2;4b2;4,

we can reduce the number of flops required to compute V H
1;2b1;2 in (3) if the number of

columns in W2;3 and W2;4 is small compared to the number of rows in V1;2. (This is
the basis of all the super-fast algorithms and was first used by Greengard and Rokhlin
in the design of FMMs.)

To formalize this idea we define the intermediate quantities

Gk;i = V H
k;ibk;i

and observe that the following recursions, as deduced from the preceding discussion,
are available to compute them:

GK;i = V H
K;ibK;i,(4)

Gk;i = WH
k+1;2i−1Gk+1;2i−1 + WH

k+1;2iGk+1;2i.(5)

With this notation we have that

U1;1B1;1,2V
H
1;2b1;2 = U1;1B1;1,2G1;2.

We now observe that we need to perform the multiplication U1;1B1;1,2G1;2. We also
observe that we need to do the multiplication

U2;1B2;1,2G2;2.
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Using (1) we see that

U1;1B1;1,2G1;2 =

(
U2;1R2;1B1;1,2G1;2

U2;2R2;2B1;1,2G1;2

)
.

Therefore the computation of U1;1B1;1,2G1;2 can be merged with the computations of
U2;1B2;1,2G2;2 when computing

z2;1 = · · · + U2;1 (B2;1,2G2;2 + R2;1B1;1,2G1;2) + · · · ,

where · · · denotes other terms that have to be added to produce the correct z2;1. Sim-
ilarly the term U2;2R2;2B2;1,2G2;2 from the computation of A1;1,2b1;2 can be merged
into other terms involving U2;2 in the computation of z2;2. Clearly there is a recur-
sive process occurring here. This motivates us to define the following intermediate
quantities recursively:

F0;1 = 0,(6)

Fk,2i−1 = Bk;2i−1,2iGk;2i + Rk;2i−1Fk−1,i,(7)

Fk,2i = Bk;2i,2i−1Gk;2i−1 + Rk;2iFk−1;i.(8)

We then observe that

zK;i = DK;ibK;i + UK;iFK;i.

With that we have described how to compute z = Ab rapidly when A has an
HSS representation. Equations (4) and (5) are called the up-sweep recursions, and
equations (6), (7), and (8) are called the down-sweep recursions for multiplication in
the FMM literature.

4. Fast backward stable solver. In this section we present our fast solver.
The algorithm we describe computes a ULV H decomposition implicitly, where U and
V are unitary matrices, and L is a lower-triangular matrix. By implicit, we mean
that the factors are not computed and stored explicitly. However, the algorithm
and techniques can be modified to compute the factors explicitly if so desired. That
will be the subject of a future paper. The algorithm can also be easily modified to
permit U and V to be represented as a product of elementary Gauss transforms and
permutation matrices. This would lead to a more efficient algorithm but with some
chance of numerical instability.

The basic idea of the algorithm is akin to that for the SSS representation. The
one major difference is that we operate on all block rows at the same time, whereas
in the SSS representation, each block row is operated on in a sequential fashion.

The algorithm is recursive in nature, and the recursion takes one of three possible
forms.

4.1. Compressible off-diagonal blocks. This is the first possible way in which
the recursion can proceed.

We begin by observing that block row i, excluding the diagonal block DK;i, has
its column space spanned by the columns of UK;i. Hence if the number of columns of
UK;i, denoted by nK;i, is strictly smaller than mi, the number of rows in that block,
we can find a unitary transformation qK;i such that

ŪK;i = qHK;iUK;i =

(
mi − nK;i 0

nK;i ÛK;i

)
.
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qH3;8 →

D3

D6

D8

D1

D2

D4

D5

D7

qH3;1 →

qH3;2 →

qH3;3 →

qH3;4 →

qH3;5 →

qH3;6 →

qH3;7 →

Fig. 3. A pictorial representation showing the qK;i’s compressing the off-diagonal portions of
each block row. The black rectangles and triangles show the nonzero positions in the column bases
of each off-diagonal block after compression by the qK;i’s.

In the above expression (and in the rest of the paper), variables written to the
left of block matrices in parenthesis denote row partition sizes.

We now multiply block row i by qHi . (See Figure 3.) The change in the off-
diagonal blocks is represented by the above equation since all of them have UK;i as
the leading term. The ith block of the right-hand side changes to become

qHK;ibK;i =

(
mi − nK;i βK;i

nK;i γK;i

)
.

We also observe that DK;i, the diagonal block, has become qHK;iDK;i. Now we pick a
unitary transformation wK;i such that

D̄K;i = (qHK;iDK;i)w
H
K;i =

(mi − nK;i nK;i

mi − nK;i DK;i;1,1 0
nK;i DK;i;2,1 DK;i;2,2

)
.

We then multiply the block column i from the right by wH
K;i. (See Figure 4.) The

change in the diagonal block is represented by the above equation. The off-diagonal
blocks in block column i have V H

K;i as the common last term. Hence we just need to
multiply VK;i to obtain

V̄K;i = wK;iVK;i =

(
mi − nK;i V̆K;i

nK;i V̂K;i

)
.
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wH
3;8

↓
wH

3;1

↓
wH

3;2

↓
wH

3;3

↓
wH

3;4

↓
wH

3;5

↓
wH

3;6

↓
wH

3;7

↓

Fig. 4. A pictorial representation showing the wK;i’s lower triangularizing the diagonal blocks
after the compression of the off-diagonal blocks by the qK;i’s (see Figure 3). The black rectangles
and triangles show the nonzero positions in the column bases and the diagonal blocks.

Since we multiplied block column i from the right by wH
K;i, we need to replace the

unknowns xK;i by wK;ixK;i:

wK;ixK;i =

(
mi − nK;i zK;i

nK;i x̂K;i

)
.(9)

At this stage the first mi − nK;i equations in block row i read as follows:

DK;i;1,1zK;i = βK;i,

which can be solved for zK;i to obtain zK;i = D−1
K;i;1,1βK;i. We now need to multiply

the first mi − nK;i columns in the block column i by zK;i and subtract it from the
right-hand side. To do this efficiently we observe that the system of equations has
been transformed as follows:

(
diag qHK;i A diagwH

K;i

)
(diagwK;i x) = diag qHK;i b.

If we define the vector

z̄K;i =

(
mi − nK;i zK;i

nK;i 0

)
,
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we then observe that the stated subtraction can be rewritten as follows:

b̄ = diag qHK;ib−
(
diag qHK;i A diagwH

K;i

)
z̄.

We can do this operation rapidly by observing that
(
diag qHK;i A diagwH

K;i

)

has the HSS representation {D̄K;i}2K

i=1, {ŪK;i}2K

i=1, {V̄K;i}2K

i=1, {{Rk;i}2k

i=1}Kk=0,

{{Wk;i}2k

i=1}Kk=0, {{Bk;2i−1,2i}2k−1

i=1 }Kk=0, {{Bk;2i,2i−1}2k−1

i=1 }Kk=0 and by using the fast
multiplication algorithm in section 3. Of course, the algorithm can (and should) be
modified to take advantage of the zeros in D̄K;i, ŪK;i, and z̄K;i.

Once the subtraction has been done, we discard the first mi − nK;i columns of
block column i and the first mi−nK;i rows of block row i. We observe that this leads
to a new system of equations of the form

Âx̂ = b̂,

where

b̄K;i =

(
mi − nK;i ∗
nK;i b̂K;i

)
,

and Â has the HSS representation {DK;i;2,2}2K

i=1, {ÛK;i}2K

i=1, {V̂K;i}2K

i=1, {{Rk;i}2k

i=1}Kk=0,

{{Wk;i}2k

i=1}Kk=0, {{Bk;2i−1,2i}2k−1

i=1 }Kk=0, {{Bk;2i,2i−1}2k−1

i=1 }Kk=0.
Therefore we are left with a system of equations identical to the one we started

with, and we can proceed to solve it recursively. Once we have done that we can
recover the unknowns x from z and x̂ using the formulas

xK;i = wH
K;i

(
zK;i

x̂K;i

)
.

Note that we have tacitly assumed that all block rows are such that mi > nK;i.
However, it is easy to modify the equations so that only those block rows that satisfy
mi > nK;i have their off-diagonal blocks compressed.

4.2. Incompressible off-diagonal blocks. This is the second possibility for
the recursion. It occurs when all block rows for the system cannot be compressed any
further by invertible transformations from the left. In this case we proceed to merge
block rows and columns that correspond to siblings in the merge tree. In particular
consider the first two block rows:(

D3;1;2,2 U3;1B3;1,2V
H
3;2 U3;1R3;1B2;1,2W

H
3;3V

H
3;3 U3;1R3;1B2;1,2W

H
3;4V

H
3;4 · · ·

U3;2B3;2,1V
H
3;1 D3;2;2,2 U3;2R3;2B2;1,2W

H
3;3V

H
3;3 U3;2R3;2B2;1,2W

H
3;4V

H
3;4 · · ·

)
.

We observe that these two block rows can be rewritten as((
D3;1;2,2 U3;1B3;1,2V

H
3;2

U3;2B3;2,1V
H
3;1 D3;2;2,2

) ((
U3;1R3;1

U3;2R3;2

)
B2;1,2

(
V3;3W3;3

V3;4W3;4

)H )
· · ·

)
.

This immediately suggests that we merge as follows:

D̂K−1;i =

(
DK;2i−1;2,2 UK;2i−1BK;2i−1,2iV

H
K;2i

UK;2iBK;2i,2i−1V
H
K;2i−1 DK;2i;2,2

)
,

ÛK−1;i =

(
UK;2i−1RK;2i−1

UK;2iRK;2i

)
,

V̂K−1;i =

(
VK;2i−1WK;2i−1

VK;2iWK;2i

)
.



FAST ULV SOLVERS FOR HSS FORMS 611

We then see that A has an HSS representation (with a merge tree with K, as op-

posed to K + 1, levels) given by the sequences {D̂K−1;i}2K−1

i=1 , {Û}2K−1

i=1 , {V̂ }2K−1

i=1 ,

{{Rk;i}2k

i=1}K−1
k=0 , {{Wk;i}2k

i=1}K−1
k=0 , {{Bk;2i−1,2i}2k−1

i=1 }K−1
k=0 , {{Bk;2i,2i−1}2k−1

i=1 }K−1
k=0 . Let

us denote by Â the matrix with this HSS representation (of course, A = Â). We then
observe that the system of equations is now in the form

Âx = b,(10)

which is exactly in the form we started with, except that the new HSS representation
has only K levels in the merge tree. Hence we can solve this system of equations
recursively for x. That is, we check if there are compressible off-diagonal blocks. If
so, we use the algorithm in section 4.1. If it is not compressible, we use the algorithm
in this section. If the tree is just a leaf, we use the algorithm in section 4.3.

4.3. No off-diagonal blocks. Observe that if K = 0, the equations read D1x =
b, which can be solved by traditional means for x. This case terminates the recursion.

With this we have given a complete account of the algorithm.

4.4. Flop count. We use the flop counts in Table 1 of the basic matrix opera-
tions that can be found, for example, in [18].

Table 1

Flop counts of basic matrix operations.

Operation Flops

QL factorization of skinny m× n matrix 2n2(m− n/3)
Q times m× k matrix 2kn(2m− n)
Forward substitution of n× n matrix with k right-hand sides n2k
m× n times n× k matrix 2mnk

We begin by estimating the flop count for the fast multiplication algorithm, as
that is an integral part of the solver. For simplicity we will assume that the ranks nk;i

are independent of i, and that there are l indices in each of the leaves of the merge
tree.

Computing GK;i will cost us 2lnKr2K flops, where r is the number of columns in
the right-hand side. Computing Gk;i from Gk+1;i costs 4nknk+1r2

k flops. Computing
Fk+1;i from Fk;i costs 42k+1nknk+1r flops. Finally computing zK;i costs 2lr(l+nK)2K

flops. Summing these costs over k we obtain

2lr(l + nK)2K + 2lnKr2K + 8r

K−1∑
k=1

nknk+12
k

as the total cost. Letting N = 2K l be the order of the matrix, we can simplify this
to obtain

2Nr(l + 2nK) + 8r

K−1∑
k=1

nknk+12
k

as the number of flops for the fast multiplication algorithm.
We now proceed to estimate the flops for the fast backward stable solver. To

keep the calculations simple we will assume that each level of the tree undergoes a
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compression step before going through a merge step. We will also assume that mk;i,
the size of the block rows at the kth stage, is independent of i.

Let us start with the compression step. We first need to compute the QL factor-
izations of Uk;i. This will cost us 2n2

k(mk − nk/3)2k flops. Then we need to apply
qk;i to the right-hand side. This costs us 2rmk(2mk − nk)2

k flops. We also need to
apply qk;i to Di (at the kth level), which costs us 2mknk(2mk−nk)2

k flops. Next the
LQ factorization of the diagonal blocks costs us 4m3

k2
k/3 flops. Applying wk;i to Vk;i

costs 2nkm
2
k2

k flops. The partial forward-substitution at level k costs (mk − nk)
2r2k

flops. Subtracting the computed unknowns from the right-hand side costs

2k2mkr(mk + 2nk) + 8r

k−1∑
s=1

nsns+12
s

flops. Recovering xk;i from zk;i will cost 2rm2
k2

k flops. That completes the compres-
sion stage.

For the merge step, forming the new diagonal blocks costs 8mkn
2
k2

k flops. Merging
Uk;i and Vk;i costs 8mkn

2
k2

k flops.
Therefore the total cost of the fast backward stable solver is

K∑
k=1

(
2n2

k(mk − nk/3)2k + 2rmk(2mk − nk)2
k + 2mknk(2mk − nk)2

k

+ 4m3
k2

k/3 + 2nkm
2
k2

k + (mk − nk)
2r2k + 2k2mkr(mk + 2nk)

+ 8r

k−1∑
s=1

nsns+12
s + 16mkn

2
k2

k

)
,

which can be simplified to

K∑
k=1

2k

(
4

3
m3

k + 6m2
knk − 2

3
n3
k + r

(
7m2

k + n2
k + 8

k−1∑
s=1

nsns+12
s

))
.

The terms not involving r can be thought of as the cost of factorization.
We now observe that under our assumptions mk = 2nk+1 for k < K. Making

this substitution we can simplify the count to

2Km2
K

(
4

3
mK + 6nK

)
+ 24

K−1∑
k=1

2kn2
k+1nk +

14

3

K∑
k=2

2kn3
k − 4

3
n3

1

+ r

(
7m2

K2K + 15

K∑
k=2

2kn2
k + n2

1 + 8

K∑
k=1

k−1∑
s=1

2snsns+1

)
.

To simplify further we assume that nk ≥ nk+1. Then we can get an upper bound
on the flop count

2Km2
K

(
4

3
mK + 6nK

)
+

86

3

K∑
k=1

2kn3
k − 4

3
n3

1

+ r

(
7m2

K2K + 15

K∑
k=2

2kn2
k + n2

1 + 8

K∑
k=1

k−1∑
s=1

2sn2
s

)
.
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We now compute the flop counts for some canonical examples. First we consider
the case when nk = p, a constant. In this case the upper bound on the flop count
simplifies to

2Km2
K

(
4

3
mK + 6p

)
+

86

3
p32K+1 + r

(
7m2

K2K + 23p22K+1
)
.

Using N = 2KmK , and assuming that mK = 2p, we get

46Np2 + 37Npr.

As can be seen, the constants are modest. By switching to Gauss transforms rather
than Householder transforms we can reduce the constants even further.

In many cases this flop count is sufficient to give an indication of the performance
of the algorithm. However, for theoretical purposes we also provide an upper bound
on the flop count under the assumption that nk ≤ γkn0. This model is useful when
applying the algorithm to matrices of the form Aij = f(xi, xj), when the points xi lie
in high-dimensional spaces.

For example, when f(xi, xj) = log |xi−xj |, and xi is a point in the two-dimensional

plane, we can take n0 = αN
1
2 and γ = 1√

2
. For there to be any speed-up possible at

all we must have that

α ≤ N
1
2

√
2
.

For simplicity, and since it is common in practice, we assume that α ≥ 1. We then
observe that mk = N2−k ≥ 2αN1/42−k/2, provided k < log2 N −2(log2 α+1). Hence
we take the depth of the tree to be

K = �log2 N − 2 log2 α− 1	 .

Note that mK is approximately 4α2 in this scenario. Under these assumptions the
flop count for the fast solver is not more than

98N
3
2α3 + 70Nα4 + Nα2r(4 log2

2 N + 11 log2 N + 28).

As can be seen the constant is quite sensitive to the size of α.
Next we consider three-dimensional problems. For example, when f(xi, xj) =

‖xi−xj‖−1, and xi is a point in three-dimensional space, we can take n0 = αN
2
3 and

γ = 1
3√4

. To obtain any speed-up at all, we must ensure that α < (N/2)1/3. For the

sake of simplicity we will also assume that α ≥ 1. We can determine the maximum
depth of the tree from the constraint mk ≥ 2nk, which yields

K ≤ �log2 N − 3 log2 α− 1	 .

Under this scenario mK is approximately 2α3. With these assumptions the flop count
for the fast solver is less than

58N2α3 + 18Nα6 + r(39N
4
3 log2 Nα2 + 74N

4
3α2 + 14Nα3).

As can be seen the constant is modest.
Observe that in both cases the fast dense solver matches the asymptotic com-

plexity of the corresponding sparse direct finite-element and finite-difference solvers
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Table 2

CPU run-times in seconds for both the fast stable algorithm and standard solver for random
HSS matrices with mi = nk;i = pk;i for all k and i. Timings are not reported when there was
insufficient main memory. (GEPP = Gaussian elimination with partial pivoting.)

Size
mi/nk;i/pk;i 256 512 1024 2048 4096 8192 16,384 32,768
16 0.03 0.06 0.13 0.27 0.49 0.99 2.10 4.74
32 0.05 0.12 0.27 0.56 1.14 2.34 4.75 9.81
64 0.09 0.26 0.58 1.27 2.60 5.33 11.11 23.19
128 0.09 0.63 1.71 3.92 8.45 17.14 35.16 74.07

GEPP 0.07 0.33 2.12 14.81 113.75 891.59 . . . . . .

Size
mi/nk;i/pk;i 65,536 131,072 262,144 524,288 1,048,576
16 9.93 27.95 64.28 224.73 889.65
32 20.56 44.53 106.35 408.39 . . .
64 50.24 129.81 405.13 . . . . . .
128 158.97 380.89 . . . . . . . . .

of the same dimension. Of course, many times the integral equations corresponding
to a particular PDE will be one dimension smaller, frequently yielding the advantage
to the integral equation method. However, the quadratic dependence on N for three-
dimensional problems makes this algorithm suitable only when the linear system is
highly ill-conditioned and a suitable preconditioner is lacking. In fact, this solver can
serve as an ideal preconditioner in this and other situations. Another situation where
this method is suitable even for three-dimensional problems is when there is a large
number of right-hand sides.

We remark that if many of the leaves at level K are empty, then the algorithm
we have specified will become inefficient. A more complicated algorithm that does
not suffer from this deficiency will be presented in a future paper.

4.5. Experimental run-times. We now present CPU run-times for our fast
solver. These timings were obtained on an Apple dual 1GHz PowerPC G4 machine
with 1.5GB of RAM, though no explicit use was made of the dual processors. Vendor
supplied BLAS [14] (uniprocessor) and LAPACK 3.0 were used in all routines. We
report on problem sizes ranging from 256 unknowns to 1,048,576 unknowns. Off-
diagonal ranks nk;i and pk;i were chosen to range from 16 to 128. In every instance
we chose mi = nk;i = pk;i for all i. The matrices were generated randomly to these
specifications.

The CPU run-times in seconds are reported in Table 2. Also shown are CPU
run-times in seconds for the standard Gaussian elimination with row pivoting solver
from LAPACK. This routine is highly tuned and essentially runs at peak flop-rates.
As can be seen our fast solver breaks even with the standard solver for reasonably
small matrix sizes, as predicted by the flop count. Entries marked by ellipses indicate
instances where there was insufficient memory to run the test. Again this also indicates
another reason why the fast solver might be preferred: memory efficiency.

4.6. Stability. The fast solver we presented can be shown to be numerically
backward stable, provided the HSS representation is in the proper form. However, the
proof would detract from the main ideas of this paper and will be presented elsewhere.
By proper form we mean that ‖Rk;i‖ ≤ 1 and ‖Wk;i‖ ≤ 1 for a submultiplicative norm.
We observe that the HSS construction algorithm presented in section 5 satisfies this
requirement for the 2-norm.
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However, the algorithm can also be shown to be backward stable to first order
in machine precision even if the weaker condition ‖Rk;iRk+1;2i(−1) · · · ‖ ≤ p(n) and
‖Wk;iWk+1;2i(−1) · · · ‖ ≤ q(n) is satisfied, where p(n) and q(n) are low-degree polyno-
mials in n. This condition is satisfied by the fast HSS construction algorithm presented
in subsection 5.1.

The reason for the claimed stability of the fast solver is due to the use of unitary
transformations and a single forward substitution. The proof is similar to the one for
the sequentially semiseparable representation [3] and will be presented elsewhere.

In Table 3 we present computed experimental backward errors for the fast solver
on a wide class of problems which lends credence to our claims of stability. These
experiments were carried out in double precision for matrix sizes ranging from 256 to
4096. The ranks of the off-diagonal blocks nk;i and pk;i were chosen to range from 16
to 128. Although the HSS forms were generated randomly, we did not ensure proper
form. We only ensured the milder condition that the entries of Wk;i and Rk;i were
no larger than 1 in magnitude. As can be seen from the backward errors presented in
Table 3 the fast solver was backward stable even in this case.

Table 3

One-norm backward errors ‖Ax − b‖1/(εmach(‖A‖1‖x‖1 + ‖b‖1)) of the fast solver in double
precision with |Wk;i| ≤ 1 and |Rk;i| ≤ 1. Entries much larger than 1 indicate a potential lack of
backward stability.

Size
mi/nk;i/pk;i 256 512 1024 2048 4096

16 0.31 0.27 0.32 0.25 0.16
32 0.34 0.33 0.24 0.22 0.20
64 0.54 0.38 0.33 0.28 0.25
128 0.47 0.43 0.36 0.28 0.28

5. Computing the HSS representation. In this section we describe an O(n2)
algorithm to compute the HSS representation of an arbitrary matrix to a given toler-
ance.

The key idea is to compute the singular value decomposition (SVD) of the matrices

Hk;i = (Ak;i,1 Ak;i,2 · · · Ak;i,i−1 Ak;i,i+1 Ak;i,i+2 · · · Ak;i,2k ) .(11)

Notice that Hk;i is essentially block row i of the matrix when partitioned according to
level k of the merge tree, except that the diagonal block corresponding to that level
Ak;i,i is missing.

Similarly we also need to compute the SVD of the matrices

Gk;i =
(
AH

k;1,i AH
k;2,i · · · AH

k;i−1,i AH
k;i+1,i AH

k;i+2,i · · · AH
k;2k;i

)H
.(12)

Suppose we have the SVD of Hk;i and Gk;i for k = 1 to K and for i = 1 to 2k:

Hk;i = Uk;iCk;iJ
H
k;i,

Gk;i = Lk;iMk;iV
H
k;i.

Observe that these equations directly define the auxiliary quantities Uk;i and Vk;i that
appear in (1) and (2). In particular we obtain UK;i and VK;i. Using (1) and (2) we
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can also compute

Rk+1;2i−1 = UH
k+1;2i−1(Uk;i)1,

Rk+1;2i = UH
k+1;2i(Uk;i)2,

Wk+1;2i−1 = V H
k+1;2i−1(Vk;i)1,

Wk+1;2i = V H
k+1;2i(Vk;i)2,

where we have the conforming partitions

Uk;i =

(
(Uk;i)1
(Uk;i)2

)
=

(
Uk+1;2i−1Rk+1;2i−1

Uk+1;2iRk+1;2i

)
,

Vk;i =

(
(Vk;i)1
(Vk;i)2

)
=

(
Vk+1;2i−1Wk+1;2i−1

Vk+1;2iWk+1;2i

)
.

This leaves us only with determining formulas for Bk;2i−1,2i and Bk;2i,2i−1. Ob-
serve that Ak;2i−1,2i is the 2i − 1 submatrix of Hk;2i−1 and Gk;2i in the partitioning
in (11) and (12). Therefore assuming that (Jk;2i−1)2i−1 and (Lk;2i)2i−1 denote the
appropriate submatrices, we have that

Ak;2i−1,2i = Uk;2i−1Bk;2i−1,2iV
H
k;2i = Uk;2i−1Ck;2i−1(Jk;2i−1)

H
2i−1 = (Lk;2i)2i−1Mk;2iV

H
k;2i.

This immediately gives us the formulas

Bk;2i−1,2i = Ck;2i−1(Jk;2i−1)
H
2i−1Vk;2i = UH

k;2i−1(Lk;2i)2i−1Mk;2i.

Similarly Ak;2i,2i−1 is the 2i − 1 submatrix of Hk;2i and Gk;2i−1 in the partitioning
in (11) and (12). Therefore assuming that (Jk;2i)2i−1 and (Lk;2i−1)2i−1 denote the
appropriate submatrices, we have that

Ak;2i,2i−1 = Uk;2iBk;2i,2i−1V
H
k;2i−1 = Uk;2iCk;2i(Jk;2i)

H
2i−1 = (Lk;2i−1)2i−1Mk;2i−1V

H
k;2i−1.

This immediately gives us the formulas

Bk;2i,2i−1 = Ck;2i(Jk;2i)
H
2i−1Vk;2i−1 = UH

k;2i(Lk;2i−1)2i−1Mk;2i−1.

All we need now is an efficient way to compute the needed SVDs. To this end
we observe that Hk;i is closely related to Hk+1;2i−1 and Hk+1;2i. In fact, by dropping
the 2i− 1 block column from

(
Hk+i;2i−1

Hk+1;2i

)
,

we obtain Hk;i. Similarly, by dropping the 2i− 1 block row from

(Gk+1;2i−1 Gk+1;2i ) ,

we obtain Gk;i. Hence we can obtain the SVD of Hk;i efficiently from the SVDs of
Hk+1;2i−1 and Hk+1;2i. Similarly for Gk;i.

Assuming that Bk;2i−1,2i is an nk;i × nk;i matrix and Bk;2i,2i−1 is a pk;i × pk;i

matrix, the complexity of the above algorithm is O(N(N +
∑

k;i(n
2
k;i + p2

k;i))).
The cost of the algorithm can be reduced by replacing the SVD with a rank-

revealing QR factorization [11, 21] instead.
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5.1. Smooth matrices. When the matrix entry Aij is specified by a function
f(xi, xj) that is smooth away from the diagonal, the HSS representation can be com-
puted more rapidly than in the general case. In this section we consider the special
case when the points xi lie on the real line. The more general case is beyond the scope
of this paper. Important examples of the function f(x, y) include log ‖g(x) − g(y)‖
and ‖g(x) − g(y)‖α, where g : R → Rd represents a simple closed or nonclosed curve
in d-dimensional space. For applications see [30, 31].

Since we are restricting ourselves to uniform HSS representations in this paper,
we will assume that the points xi are distributed uniformly in the interval [0, 1].
Note that this does not mean that the points xi are equispaced. Furthermore, for
simplicity, we will assume the function f has at most singularities at 0 and 1, and
that it is analytic away from these singularities. A good example to keep in mind is
f(x, y) = log |x− y|.

From the basic theory of polynomial approximation of such functions it follows
that if Tk(x) denotes the kth Chebyshev polynomial

Tk(x) = cos(k arccosx), −1 ≤ x ≤ 1,

and if

φa,b : [a, b] → [−1, 1], φa,b(x) = −1 + 2
x− a

b− a

denotes the affine-linear function that maps the interval [a, b] to [−1, 1], then on any
rectangle [a, b] × [c, d] such that a < b < c < d and min(d − c, b− a) > c− b, we can
find a short two-sided Chebyshev expansion of f(x, y) to a given accuracy:

f(x, y) ≈
∑
p,q

βp,qTp(φa,b(x))Tq(φc,d(y)).

More specifically, the (i, j)th entry of the matrix can be represented to a prescribed
accuracy by a short expansion of the form

f(xi, xj) ≈
∑
p,q

βp,qTp(φa,b(xi))Tq(φc,d(yj)).

We shall now show how these expansion coefficients can be used to compute an
HSS representation for the matrix quickly.

We first need to specify the merge tree we are going to use. We do so as follows.
We will assume that all the points xi lie in the interval [0, 1]. Hence we will associate
the interval [0, 1] (and hence all the points xi, and hence all indices) with the root
node. With the left child of the root we associate the interval [0, 0.5) and with the
right child the interval [0.5, 1]. This means that we associate all points xi in the
interval [0, 0.5) with the left child and hence all the corresponding indices with the
left child. Similarly for the right child. To the left child of the left child of the root
node, namely, Node(2, 1), we associate the interval [0, 0.25), to Node(2, 2) we associate
the interval [0.25, 0.5), and so on. In this way we assign the indices to the merge tree.

Note that the number of indices in two different nodes at the same level can be
different. Also note that we do not assume that the points xi are equispaced.

Let us denote the set of points xi that belong to Node(k, i) by xk;i. Let us denote
by Γk;i the Chebyshev–Vandermonde matrix evaluated at the points xk;i. We will
assume that the number of columns in Γk;i is fixed at p to ease the exposition.
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Fig. 5. Block partitioning of A1;1,2 and A1;2,1 suitable for Chebyshev expansions. The vertical
and horizontal lines are labeled according to the interval boundaries.

Each node of the merge tree is associated with a particular interval of the real
line. In particular Node(k, i) is associated with the interval 2−k[i− 1, i]. Therefore it
follows that Ak;i,j is associated with the rectangle 2−k[i− 1, i] × 2−k[j − 1, j].

Figure 5 displays a partitioning of A1;1,2 and A1;2,1 that will prove useful. We
observe that each off-diagonal block, except possibly the bottom-left and upper-right
blocks, in the displayed partition is associated with a rectangle on which the function
f has a short two-sided Chebyshev expansion. However, note that the blocks are
sometimes specified by intervals on two different levels of the merge tree. Hence we
will use the notation A(k;i),(r;j) to denote the submatrix whose row indices come from
Node(k, i) and column indices come from Node(r, j). We shall also use the notation

A(k;i),(r;j) = Γk;iC(k;i),(r;j)Γ
H
r;j(13)

for the corresponding two-sided Chebyshev expansion. Observe that C(k;i),(r;j) can be
computed in time independent of the size of A(k;i),(r;j). Since the block AK;i,i+1 does
not necessarily have a short two-sided Chebyshev expansion, we will assume instead
that it has fewer than p rows and columns, in which case it trivially has an expansion
of the form (13).

To construct the HSS representation we remind the reader that it is the low-
rank expansions of Hk;i and Gk;i that are crucial. Hence in Figure 6 we show the
partitioning of H2;3 that we will use. Now observe that we can construct a low-rank
expansion for Ak;i,i+1 and Ak;i+1,i for odd i, as follows. Let

Δk;i = diag

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ΓK;2K−k(i−1)+1

ΓK;2K−k(i−1)+2

...
Γk+2;2(2i−1)

Γk+2;2(2i)−1

...
ΓK;2K−ki−1

ΓK;2K−ki

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14)
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Fig. 6. Block partitioning of H2;3 suitable for Chebyshev expansions. The vertical and horizon-
tal lines are labeled according to the associated interval boundaries. The missing block in the middle
is the diagonal block. The dotted diagonal line shows the position of the diagonal.

be a block-diagonal matrix. In the above notation we assume that ΔK;i = ΓK;i and

ΔK−1;i =

(
ΓK;2i−1

ΓK;2i

)
.

Note that these formulas are consistent with (14). Then let

Uk;i = Δk;i,

Vk;i = Δk;i,

and let Bk;i,i+1 be the block matrix with block entries

(Bk;i,i+1)r,s = C(kr;ir),(ks;(i+1)s),

where Node(kr, ir) is the node corresponding to the rth diagonal block of Δk;i. Sim-
ilarly we define

(Bk;i+1,i)r,s = C(kr;(i+1)r),(ks;is).

All we have to specify now is Rk;i and Wk;i. First observe that Rk;i = Wk;i since
Uk;i = Vk;i. From the definition of Δk;i observe that

Δk;i =

(
Δk+1;2i−1Ωk+1;2i−1 0

0 Δk+1;2iΩk+1;2i

)
,

where

Rk;2i−1 = ( Ωk;2i−1 0 ) ,

Rk;2i = ( 0 Ωk;2i ) .

Hence it is sufficient to specify the Ωk;i’s. To do that we first specify the two sets of
auxiliary matrix-valued functions

σu(0) = I,

σu(i + 1) =

(
σu(i)CL

CR

)
,
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and

σl(0) = I,

σl(i + 1) =

(
CL

σl(i)CR

)
.

Then

Ωk;2i =

(
σu(K − k − 1) 0

0 I

)
,

Ωk;2i−1 =

(
I 0
0 σl(K − k − 1)

)
,

with the understanding that σu(−1) and σl(−1) denote the empty matrices.

With this we have given a complete specification for computing the HSS represen-
tation (assuming a uniform tree) of a smooth matrix with a one-dimensional kernel
function.

However, given the sparse structure of Uk;i and Rk;i, the fast solvers and multipli-
ers presented in this paper can, and should, be modified to exploit the extra structure.
This is important, as the Chebyshev expansions are not optimal low-rank expansions.

5.2. Sparse matrices. In the previous subsection we showed how to construct
rapidly the HSS representation of matrices whose entries are given by kernel functions
that are smooth away from the diagonal. Such matrices are intimately associated
with the fast multipole method and integral equations. In this subsection we consider
sparse matrices. For sparse matrices we can quickly construct a possibly suboptimal
HSS representation. For many sparse matrices this construction will actually lead to
the optimal HSS representation.

We proceed as follows. First we must determine the row and column partition
sizes. In this paper we will assume that these two partitions are identical. Suppose mi

denotes the size of the ith partition. We will again assume that the HSS tree is going
to be uniform and that the number of partitions is 2K for some K. The matrices Di

are straightforward to compute.

We form Ui as follows. Suppose the jith row in the ith partition is the first row
in that partition to have a nonzero entry that is not in Di; then the first column of
Ui will be the zero column with a one in the jith position. Suppose gi is the next
row after the jith one in the ith partition that has a nonzero entry outside Di; then
the second column of Ui will be a zero column with a one in the gith position. We
proceed until we have exhausted all the rows in the ith partition. Notice that we have
constructed Ui such that it is guaranteed to be the column basis for HK;i, as it must.

Next we form Vi. The construction is similar to that for Ui, except that we must
deal with the columns of the ith partition, and in particular the nonzero entries in
that partition that do not lie in Di. Suppose the jith column in the ith partition is
the first column in that partition to have a nonzero entry that is not in Di; then the
first column of Vi will be the zero column with a one in the jith position. Suppose
gi is the next column after the jith one in the ith partition that has a nonzero entry
outside Di; then the second column of Vi will be a zero column with a one in the gith
position. We proceed until we have exhausted all the columns in the ith partition.
Notice that we have constructed Vi such that it is guaranteed to be column basis for
GK;i, as it must.
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Now we specify how to form Rk;i. First we observe that we could compute Uk;i

using the same ideas we used to compute Ui = UK;i. From that we could then recover
Rk;i. However, we can also do this in a direct fashion. As usual, let

Uk;i =

(
(Uk;i)1
(Uk;i)2

)
=

(
Uk+1;2i−1Rk+1;2i−1

Uk+1;2iRk+1;2i

)
.

Then we observe that Rk+1;2i, for example, must drop the right columns in Uk+1;2i

so as to produce (Uk;i)2. Hence by looking at the nonzero entries of Ak+1;2i,2i−1 and
Ak+1;2i;2i+1, we can determine potential columns of Uk+1;2i that must be dropped.
We pick Rk+1;2i so that it drops just those columns. Note that not every nonzero row
in Ak+1;2i,2i−1 and Ak+1;2i;2i+1 induces a drop in Uk+1;2i, since some other column in
the same row might still have a nonzero entry.

We compute Wk;i in a fashion similar to that for Rk;i but with respect to Vk;i

rather than Uk;i.

All that is left to be specified is Bk;i,j . But this is easy now. Bk;i,j is just the
matrix obtained by dropping all zero rows and columns of Ak;i,j .

As can be seen, the HSS representation of a sparse matrix can be computed in
time proportional to the number of nonzeros in the matrix, provided, of course, that
the sparse matrix data structure supports efficient access for sequential reads of the
nonzeros entries of any row or column. Many common sparse matrix data structures
do exactly this, so we do not comment on it any further.
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1. Introduction. We consider the eigenvalue problem for a unitary matrix U ∈
C

n×n that is upper Hessenberg; i.e., uij = 0 whenever i > j + 1. Without loss
of generality we can assume that all of the subdiagonal entries uj+1,j are nonzero.
Assuming this, then by a unitary diagonal similarity transformation we can make
them real and positive. Thus we will assume that uj+1,j > 0 for j = 1, . . . , n − 1.
Then U can be expressed as a product of matrices of a very simple form [9]:

U = G1G2 · · ·Gn−1Gn,(1.1)

where Gk = diag{Ik−1, G̃k, In−k−1},

G̃k =

[
γk σk

σk −γk

]
, σk > 0, |γk |2 + σ2

k = 1,

for k = 1, . . . , n− 1, and Gn = diag{In−1, γn} with |γn | = 1.
We will refer to the numbers γ1, . . . , γn, σ1, . . . , σn−1 collectively as Schur pa-

rameters. Since these determine U completely, we see that we can store U , in the
form of Schur parameters, in O(n) storage space instead of the usual O(n2) for n× n
matrices. This being the case, one might reasonably hope to compute the eigenvalues
of U in O(n2) work instead of the usual O(n3). It turns out that this can be done,
and a number of interesting methods have been proposed. The first was an ingenious
method of Rutishauser [12], which is, however, unstable and can break down. It relies
on LU decompositions that sometimes do not exist. Gragg [9] showed how to do an
iteration of the shifted QR algorithm [8] in terms of Schur parameters. Supposing
the QR iteration starts with a matrix U and ends with a matrix Û , Gragg derived
formulas for computing the Schur parameters of Û directly from those of U in O(n)
arithmetic. Making the reasonable practical assumption that all of the eigenvalues
can be found in O(n) QR iterations, we see that we can get the eigenvalues in O(n2)
work. The formulas given in [9] turned out to be unstable, but they can be stabilized
[13]. Other methods that have been proposed are described below.

This paper presents another scheme for performing a unitary QR iteration in O(n)
work. Our method has several virtues. For one, it can do multishift QR iterations of
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arbitrary degree. Furthermore, it is straightforward and easy to understand. Finally,
it is backward stable. Numerical experiments confirm that the method works well.

2. Previous work. We have already mentioned the work of Rutishauser [12]
and Gragg [9]. Bunse-Gerstner and He [6] proposed a bisection method based on a
Sturm sequence. Gragg and Reichel [10] and Ammar, Reichel, and Sorensen [2, 3]
developed divide-and-conquer algorithms, which were improved by Gu et al. [11].

Several methods make use of the odd-even form. H is unitarily similar to

H̃ = HoHe,

where Ho (resp., He) is the product of the Gi with odd (resp., even) subscripts. Thus,
when n is even, for example,

Ho = diag{G̃1, G̃3, . . . , G̃n−1} and He = diag{1, G̃2, G̃4, . . . , G̃n}.

Ammar, Gragg, and Reichel [1] have used this form to develop an algorithm for real
orthogonal matrices that reduces the problem to two half-sized bidiagonal singular
value decompositions. The eigenvalue problem for H̃ = HoHe can also be formulated
as a generalized eigenvalue problem for the odd-even pencil

H0 − λH−1
e .

Bunse-Gerstner and Elsner [5] formulated variants of the QZ algorithm (single and
double shift) for the odd-even pencil.

3. Multishift QR algorithm. Our method is an efficient implementation of
the multishift QR algorithm [4, 17]. We will begin, therefore, with a brief review of
how the multishift QR algorithm is implemented implicitly. Given a matrix A ∈ C

n×n

in unreduced upper Hessenberg form and shifts μi ∈ C for i = 1, 2, . . . ,m, a multishift
QR iteration of degree m carries out the steps

(A− μiI) = Q̌iŘi,

Ǎi := ŘiQ̌i + μiI

for i = 1, 2, . . . ,m implicitly. The final matrix Â := Ǎm is produced directly from A
and is unitarily similar to A by

Â = Q∗AQ,(3.1)

where Q = Q̌1Q̌2 · · · Q̌m. It can be shown [4, 17] that Q is also the unitary factor in
the unitary-upper triangular decomposition

(A− μmI)(A− μm−1I) · · · (A− μ1I) = QR.

The transformation (3.1) from A to Â is carried out implicitly as follows:
1. Construct a unitary matrix V ∈ C

n×n that satisfies

V e1 =
1

α
(A− μmI)(A− μm−1I) · · · (A− μ1I)e1,

where α = ‖(A− μmI)(A− μm−1I) · · · (A− μ1I)e1 ‖2.
2. Reduce the matrix V ∗AV to upper Hessenberg form.
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Since A is upper Hessenberg, the unitary matrix V has the block diagonal form
V = diag{Ṽ1, In−m−1}, where Ṽ1 ∈ C

(m+1)×(m+1) is unitary. In fact, the matrix V ∗

maps the vector

v = (A− μmI)(A− μm−1I) . . . (A− μ1I)e1

to y = (α, 0, . . . , 0)T ∈ C
n.

Because of the form of V , the transformation A �→ V ∗A acts only on the first
(m + 1) rows, and the transformation V ∗A �→ (V ∗A)V acts only on the first (m + 1)
columns. Hence the unitary similarity transformation A �→ Ã := V ∗AV introduces
an initial bulge of size (m + 1) × (m + 1) given by the submatrix

⎡
⎢⎣

ã2,1 · · · ã2,m+1

...
...

ãm+2,1 · · · ãm+2,m+1

⎤
⎥⎦ .(3.2)

To return Ã to upper Hessenberg form, a unitary matrix P1 is built such that the
transformation Ã �→ P ∗

1 Ã acts only on rows 2, . . . ,m + 2 of Ã to zero out the entries
ã3,1, . . . , ãm+2,1. Matrix P1 has the block diagonal form diag{I1, P̃1, In−m−2}. The

transformation P ∗
1 Ã �→ (P ∗

1 Ã)P1 acts only on the columns 2, . . . ,m + 2, leaving the
newly created zeros unaffected, and creates a new row to the bulge. Hence the unitary
similarity transformation Ã �→ P ∗

1 ÃP1 returns the first column to upper Hessenberg
form and moves the bulge one row and one column down. A second unitary matrix P2

is built so that the transformation P ∗
1 ÃP1 �→ P ∗

2 (P ∗
1 ÃP1)P2 returns the second column

to Hessenberg form and moves the bulge one row and one column down. The process
is repeated until the bulge is chased off the bottom of the matrix and Ã is eventually
returned to upper Hessenberg form. In all, unitary matrices P1, P2, . . . , Pn−2 are
created to carry out this reduction. The kth unitary matrix has the block diagonal
form

Pk =

⎡
⎣

Ik
P̃k

In−m−k−1

⎤
⎦(3.3)

for k = 1, 2, . . . , n−m− 2 and

Pk =

[
Ik

P̃k

]
(3.4)

for k = n−m−1, . . . , n−2. It can be shown [4, 17] that the upper Hessenberg matrix
that is obtained at the end of this reduction of Ã is the matrix Â in (3.1). Hence
matrices A and Â are related by

Â = (P ∗
n−2 · · ·P ∗

2 P
∗
1 V

∗)A(V P1P2 · · ·Pn−2).

If A is unitary Hessenberg, we make the following modification in the scheme: The
matrices P1, P2, . . . , Pn−2 are constructed such that we get real, positive subdiagonal
entries in Â. We require this so that Â has a factorization of the form (1.1). Matrix
P1, for instance, can be chosen as the unitary matrix that maps the first column of
Ã to the vector (ã11, ξ, 0, 0, . . . , 0)T ∈ C

n, where ξ = ‖(ã21, . . . , ãm+2,1)‖2.
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4. Efficient unitary multishift QR iteration. We now show how to imple-
ment a multishift QR iteration efficiently on a unitary matrix in factored form. Let
U ∈ C

n×n be a unitary matrix in upper Hessenberg form with uj+1,j > 0 for j = 1,
. . . , n− 1. Then U has a factorization

U = G1G2 · · ·Gn−1Gn,(4.1)

where

Gk =

⎡
⎣

Ik−1

G̃k

In−k−1

⎤
⎦(4.2)

with

G̃k =

[
γk σk

σk −γk

]
, σk > 0, |γk |2 + σ2

k = 1,

for k = 1, . . . , n− 1, and

Gn =

[
In−1

γn

]
(4.3)

with |γn | = 1. The QR iteration will produce a new unitary matrix Û in factored
form:

Û = Ĝ1Ĝ2 · · · Ĝn−1Ĝn.(4.4)

We define two vectors g = (γ1, . . . , γn) ∈ C
n and s = (σ1, . . . , σn−1) ∈ R

n−1 to
store matrix U . Let μi ∈ C for i = 1, . . . ,m be the shifts. The first part of the implicit
algorithm is as follows. We construct a matrix V = diag{Ṽ1, In−m−1} as described in
the preceding section. If Ũ := V ∗UV , then Ũ contains the initial bulge given by the
submatrix Ũ(2 : m+ 2, 1 : m+ 1). The second part of the algorithm is to return Ũ to
upper Hessenberg form Û by chasing this bulge. The idea behind our implementation
is to multiply together the first few of the Gi factors to build a leading submatrix of
U that is big enough to accommodate the bulge. We then build the bulge and begin
to chase it downward. As we do so, we must multiply in additional Gi factors to
accommodate the progressing bulge. However, we also get to factor out matrices Ĝ1,
Ĝ2, . . . from the top since, as soon as the bulge begins to move downward, we can
begin to refactor the top part of the matrix, for which the iteration is complete. At
any given point in the algorithm, the part of the matrix that contains the bulge can
be stored in a work area of dimension (m + 2) × (m + 2). On each forward step we
must factor in one new Gi at the bottom of the work area, and we get to factor out
a Ĝj at the top. The total storage space needed by our algorithm is thus O(n+m2).

Let

W1 =

[
G̃1

Im

]⎡
⎣

I1
G̃2

Im−1

⎤
⎦ · · ·

[
Im

G̃m+1

]
.

Thus W1 is the (m+2)× (m+2) leading principal submatrix of G1G2 · · ·Gm+1. This
goes into the work area initially. Note that the submatrix W1(:, 1 : m+ 1), consisting
of the first (m + 1) columns of W1, is the submatrix U(1 : m + 2, 1 : m + 1) of U .
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It follows that the submatrix Ũ(1 : m+ 2, 1 : m+ 1), which contains the initial bulge,
is the first m + 1 columns of W2 := V ∗

1 W1V1, where V1 = diag{Ṽ1, I1}. In computing
W2, we have thus performed the transformation U �→ V ∗UV by working only with
matrix W1.

We now chase the bulge. The matrix P1 = diag{I1, P̃1, In−m−2} is constructed
such that the transformation Ũ �→ P ∗

1 Ũ returns the first column of Ũ to upper
Hessenberg form. In terms of the working matrix, we perform the transformation

W2 �→ W
(1)
2 := P̃

(1)∗
1 W2, where P̃ (1) = diag{I1, P̃1}. Further, P̃1 is constructed so

that the entry W
(1)
2 (2, 1) > 0. Hence the first column of W

(1)
2 is (γ̂1, σ̂1, 0, . . . , 0)T .

We can then perform the factorization

W
(1)
2 =

[
G̃

(1)
1

Im

] [
I1

W̃
(1)
2

]
,(4.5)

where

G̃
(1)
1 =

[
γ̂1 σ̂1

σ̂1 −γ̂1

]
.

The matrix Ĝ1 = diag{G̃(1)
1 , Im−2} is the first matrix in the factorization (4.4). The

first entries of the vectors g and s are replaced with the new Schur parameters γ̂1 and

σ̂1. From (4.5), we see that W̃
(1)
2 is the trailing (m+1)× (m+1) principal submatrix

of diag{G̃(1)
1 , Im}

∗
W

(1)
2 . We extract W̃

(1)
2 and let

W
(2)
2 :=

[
W̃

(1)
2

I1

]
.(4.6)

This is our new working matrix. The next factor in (4.1) is multiplied in:

W
(3)
2 := W

(2)
2

[
Im

G̃m+2

]
.

Finally, to carry out the transformation P ∗
1 Ũ �→ Ũ1 := (P ∗

1 Ũ)P1 we note from (3.3)
that P1 commutes with Gm+3, . . . , Gn. Thus if

W3 := W
(3)
2

[
P̃1

I1

]
,

then the first (m + 1) columns of W3 form the submatrix Ũ1(3 : m + 3, 2 : m + 2),
which contains the new bulge. This completes the transformation Ũ �→ P ∗

1 ŨP1.
In general, for k = 2, . . . , n − m − 2, we have the working matrix Wk+1, whose

first (m + 1) columns contain the bulge. The matrix Pk having the form (3.3) is
built. In this block diagonal form, the unitary matrix P̃k is constructed such that the
transformation

Wk+1 �→ W
(1)
k+1 := P̃

(1)∗
k Wk+1,(4.7)

where P̃
(1)
k = diag{I1, P̃k}, returns the first column of Wk+1 to upper Hessenberg

form and makes the entry W
(1)
k+1(2, 1) > 0. Next, the factorization

W
(1)
k+1 =

[
G̃

(1)
k

Im

] [
I1

W̃
(1)
k+1

]
(4.8)
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is performed, where

G̃
(1)
k =

[
γ̂k σ̂k

σ̂k −γ̂k

]
.

The kth entries in the vectors g and s are updated with γ̂k and σ̂k, respectively. The

submatrix W̃
(1)
k+1 is extracted, and the working matrix

W
(2)
k+1 :=

[
W̃

(1)
k+1

I1

]
(4.9)

is formed. The next factor in (4.1) is multiplied in,

W
(3)
k+1 := W

(2)
k+1

[
Im

G̃m+k+1

]
,

and a full working matrix is formed by

Wk+2 := W
(3)
k+1

[
P̃k

I1

]
.(4.10)

When k = n−m− 1, the working matrix begins to shrink. After the operations
(4.7) and (4.8), there is no need to make the extension indicated by (4.9), because
G̃n = [γn] is only 1× 1, not 2× 2. On subsequent steps the working matrix continues
to shrink, because there are no more factors to multiply in. By the time the bulge
chase is complete, the working matrix has been reduced to 2× 2 and can be factored
to form

[
γ̂n−1 σ̂n−1

σ̂n−1 −γ̂n−1

] [
1 0
0 γ̂n

]
.

The new Schur parameters γ̂n−1, σ̂n−1, and γ̂n replace the old ones in g and s, and
the iteration is complete.

Enforcement of unitarity. One other important detail needs to be mentioned.
Each new pair of Schur parameters γ̂k, σ̂k satisfies | γ̂k |

2
+ σ̂2

k = 1 in principle, but
in practice roundoff errors will cause this equation to be violated by a tiny amount.
Therefore the following normalization step is required:

ν ←
(
| γ̂k |

2
+ σ̂2

k

)1/2

,

γ̂k ← γ̂k/ν,
σ̂k ← σ̂k/ν.

(4.11)

This should be done even when k = n, taking σ̂n = 0. This enforcement of unitarity
is essential to the stability of the algorithm. If it is not done, the matrix will (over
the course of many iterations) drift away from being unitary, and the algorithm will
fail.

Backward stability. If we could perform a QR iteration in exact arithmetic,
we would have Û = Q∗UQ, where Q, U , and Û are exactly unitary matrices. Now
suppose we perform the iteration in floating-point arithmetic, at first supposing that
U and Û are fully assembled, i.e., not in the factored form U = G1 · · ·Gn. Then it is
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well established that the computed Û satisfies Û = Q∗(U + E)Q, where Q is exactly
unitary and ‖E ‖2 is a modest multiple of the unit roundoff of the floating-point
arithmetic [19, Chapter 3]. Thus the iteration is backward stable.

The additional complication that arises in our algorithm is that the matrix U
is presented in factored form, and Û is produced in factored form. In the course of
the iteration, factors are multiplied together at some points and split apart at others.
Errors occur during each of these operations, and we need to analyze their effect.

There is no problem with the phase in which factors are multiplied together. The
multiplication of two unitary (or near unitary) matrices results in a product that has
a tiny backward error.

The big question is what happens in the splitting-apart step shown in (4.5) and

(4.8). The factorization (4.8) is effected by multiplying W
(1)
k+1 on the left by the

conjugate transpose of diag{G̃(1)
k , Im} to obtain

[
I1

W̃
(1)
k+1

]
=

⎡
⎢⎢⎢⎣

1 0 · · · 0
0
...
0

W̃
(1)
k+1

⎤
⎥⎥⎥⎦ .

The generation of zeros in the first row of this matrix depends upon the fact that it
is unitary and therefore has orthonormal columns. In fact, the matrix is not quite
unitary, so those first-row entries will not be exactly zero in practice. We need to
show that they are tiny enough that setting them to zero does not compromise the
stability of the algorithm.

The success of the analysis hinges on the fact that we perform the normalization
step (4.11) each time we produce a new pair of Schur parameters. This ensures that
no matter how many steps we have taken in the algorithm, each of the Gi matrices is
nearly unitary, having the form Gi = G̃i +Ei, where G̃i is exactly unitary and ‖Ei ‖2

is on the order of the unit roundoff u.
Now suppose we multiply together two matrices that are nearly unitary. Say we

have A = Ã + E and B = B̃ + F , where Ã and B̃ are unitary and ‖E ‖2 and ‖F ‖2

are on the order of the unit roundoff u. If we multiply them together, we obtain a
computed product P that satisfies

P = AB + H,

where ‖H ‖2 is on the order of u. Substituting in the forms of A and B, and letting

P̃ = ÃB̃, we find that

P = P̃ + K,

where K = EB̃+ ÃF +EF +H. Thus P is the sum of a unitary matrix and an error
matrix K such that ‖K ‖2 is on the order of u.

The first working array that gets split apart is W
(1)
2 , which gets factored as

shown in (4.5). W
(1)
2 was formed by multiplying together several matrices that are

almost exactly unitary. Therefore, by applying the analysis of the previous paragraph

repeatedly, we see that W
(1)
2 = W̃ + E, where W̃ is exactly unitary and ‖E ‖2 is at

most a modest multiple of u. The first column of W
(1)
2 has the form (γ̌1, σ̌1, 0, . . . , 0)T ,

where γ̌2
1 + σ̌2

1 = 1+ ε1, with ε1 on the order of u. Let G = diag{G̃(1)
1 , Im}, the matrix
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in (4.5) that has the property that G∗ zeros out the entry σ̌1 in the first column of

W
(1)
2 . The entries γ̂1 and σ̂1, which are used to build G, are obtained from γ̌1 and σ̌1

by carrying out the normalization step (4.11). Since roundoff errors are incurred in
the normalization step, G∗ transforms (γ̌1, σ̌1, 0, . . . , 0)T to (1+ ε2, ε3, 0, . . . , 0)T ; that
is, it does not exactly succeed in transforming σ̌1 to zero. Let G̃ denote the theoretical

G matrix built using the entries from the first column of W̃ rather than W
(1)
2 . This

matrix is exactly unitary, and the first column of G̃∗W̃ is exactly e1 = (1, 0, 0, . . . , 0)T .

Moreover, since W
(1)
2 differs only slightly from W̃ and the computation (4.11) has high

relative accuracy in floating-point arithmetic, G = G̃+F , where ‖F ‖2 is on the order
of u.

Now consider the computation G∗W
(1)
2 , which forms the factor diag{I1, W̃ (1)

2 } in
(4.5). We have

G∗W
(1)
2 = G̃∗W̃ + H,(4.12)

where H = F ∗W̃ + G̃∗E +F ∗E. The matrix G̃∗W̃ is exactly unitary, its first column
is exactly e1, and its first row is exactly eT1 . Since ‖H ‖2 is at most a modest multiple
of u, we conclude from (4.12) that the first row and column of the computed matrix

G∗W
(1)
2 differ from eT1 and e1, respectively, by errors on the order of u. Therefore,

the error we make in setting the first row and column to eT1 and e1, respectively, is
tiny. Their contribution to the backward error is equally tiny.

We also deduce from (4.12) that the matrix W̃
(1)
2 that is created in (4.5) differs

only negligibly from a unitary matrix. This is the part of the matrix that is carried
forward to the working array (4.6). Now, proceeding inductively, we can conclude that
at every step of the algorithm the matrix in the working array differs only negligibly
from a unitary matrix. At each factorization (4.8) a tiny backward error is incurred,
and the part of the working array that is moved forward differs only negligibly from a
unitary matrix. Therefore the algorithm is backward stable. This argument depends
critically on the normalization (4.11), which guarantees that each new factor that is
brought into the working array is almost exactly unitary.

Operation count. The bulk of the arithmetic in our algorithm is contained in
the steps (4.7) and (4.10). Each unitary transformation is taken to be the product
of a reflector followed by a diagonal phase-correcting transformation to enforce the
condition ûk+1,k > 0. The latter costs O(m) arithmetic; the real work is in applying
the reflector. Each of these is at most (m + 1) × (m + 1) (smaller at the very end of
the iteration), and the cost of applying it efficiently to the working matrix on left or
right is about 4m2 flops [16, section 3.2]. Since the reflector is applied only to the
small work area and not to the full Hessenberg matrix, the amount of arithmetic is
O(m2) instead of O(nm); this is where we realize our savings. Since n − 1 reflectors
are applied (on left and right) in the whole iteration, the arithmetic cost is about
8nm2 flops.

If m is fixed and small, then we can say that the cost of an iteration is O(n),
in the sense that the arithmetic is bounded by Cmn, where Cm is independent of
n. However, the fact that Cm grows like m2 as m is increased shows that it will be
inefficient to take m too large.

There is another important reason for keeping m fairly small. If m is made much
bigger than 8 or 10, roundoff errors interfere with the mechanism of shift transmission
and render the QR iteration ineffective [15]. This phenomenon is known as shift
blurring.
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5. Shift strategies. Eberlein and Huang [7] presented a globally convergent
shift strategy for the unitary QR algorithm, and they showed that it converges at least
quadratically. Wang and Gragg [14] proposed a family of strategies that includes that
of Eberlein and Huang. They demonstrated global convergence and showed that the
convergence rate is always at least cubic. These strategies are for single QR iterations,
the case m = 1.

Since we are taking multiple steps, we need a different strategy. The most common
way to obtain m shifts is to take the eigenvalues of the trailing m ×m submatrix of
U . Watkins and Elsner [18] showed that this strategy is cubically convergent when it
converges. However, it is not globally convergent, as the following well-known example
shows. Let U be the unitary circulant shift matrix, which looks like

⎡
⎢⎢⎣

1
1

1
1

⎤
⎥⎥⎦

in the 4× 4 case. For any m < n, if we take the eigenvalues of the trailing submatrix
as shifts, we get shifts 0, . . . , 0, which are equidistant from all of the eigenvalues. A
QR iteration on U with these shifts goes nowhere.

Since the eigenvalues of a unitary matrix lie on the unit circle, it make sense to
choose shifts that are on the unit circle. We tried two strategies. The first computes
the eigenvalues of the trailing m × m submatrix and normalizes each of them by
dividing it by its absolute value. If any of the tentative shifts happens to be zero,
it is replaced by a random number on the unit circle. If we use this strategy on the
circulant shift matrix, we get m random shifts.

A second strategy stems from the following observation. The last m rows of the
unreduced Hessenberg matrix U are orthonormal. Since un−m+1,n−m > 0, the trailing
m × m submatrix U(n − m + 1 : n, n − m + 1 : n) is not unitary, but it is nearly
unitary. Its rows are orthogonal, and they all have norm 1, except that the top row
U(n−m+1, n−m+1 : n) has norm less than 1. Unitarity can be restored by dividing
this row by its norm. In the rare case when the whole top row is zero, a suitable first
row can be generated by orthonormalizing a random row against rows 2 through m.
The m eigenvalues of the modified matrix then give m shifts on the unit circle.

When this strategy is used on the circulant shift matrix, the orthonormalization
process will generate a first row of the form (0, . . . , 0, γ) with |γ | = 1. The shifts are
then the roots of the equation zm − γ = 0, which are equally spaced points on the
unit circle.

We found that these two strategies work about equally well. Both are locally
cubically convergent: As un−m+1,n−m → 0, the trailing m × m submatrix becomes
closer and closer to unitary. Its eigenvalues become ever closer to the unit circle, and
normalizing them as in the first strategy moves them only slightly. On the other hand,
if we modify the matrix as in the second strategy by normalizing its first row, that
also moves the eigenvalues only slightly, because the rescaling factor is very close to 1.
Thus both strategies behave asymptotically the same as the strategy that simply takes
the eigenvalues of the trailing submatrix as shifts; that is, they converge cubically [18]
when they converge.

We conjecture that both strategies converge globally.

6. Numerical results. To verify that our algorithm works as expected, we
coded it in MATLAB and tried it out on numerous unitary matrices. Test problems
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Table 6.1

Error in computed eigenvalues of a 1000 × 1000 unitary matrix.

2 Maximum error
m = 1 1.10 × 10−13

m = 2 5.31 × 10−14

m = 3 3.25 × 10−14

m = 4 2.77 × 10−14

m = 5 2.71 × 10−14

m = 6 2.53 × 10−14

m = 7 2.52 × 10−14

m = 8 2.14 × 10−14

MATLAB 1.03 × 10−14

with known eigenvalues were generated as follows. A unitary diagonal matrix D
was generated and its eigenvalues noted. A unitary matrix Q, random with respect
to the Haar measure, was generated, and the random unitary matrix B = QDQ∗

formed. Then B was transformed to upper Hessenberg form to yield an upper Hes-
senberg unitary matrix A with known eigenvalues, which was then factored into
the form (1.1).

The eigenvalues of unitary matrices are perfectly conditioned, so we always expect
to be able to compute them to very high accuracy. We found that our algorithm was
able to do this. The results in Table 6.1 are typical. These are for a matrix of order
1000 × 1000 with eigenvalues randomly distributed on the unit circle. We computed
the eigenvalues with our code using m = 1, 2, 3, . . . , 8 and obtained accurate results
in all cases. It is interesting that increasing m increases the accuracy. At m = 4 the
maximum error is only about one fourth what it is for m = 1. We already have at
least two reasons for not taking m too large, but these numbers suggest that m = 1
may not be the best choice.

For real orthogonal matrices one should always take m ≥ 2, and the complex
shifts should be taken in conjugate pairs. Then the matrix (A−μmI) · · · (A−μ1I) is
real, and all operations can be done in real arithmetic.

As Table 6.1 shows, we also had the standard MATLAB QR code compute the
eigenvalues of the Hessenberg matrix, and we found that it was a bit more accurate
than our codes, but the difference was not substantial.

The results in Table 6.1 are for a single matrix, but they are entirely typical of
what we observed. The test matrices included matrices with many repeated eigenval-
ues and others with tight clusters of eigenvalues. The eigenvalues of smaller matrices
are computed with slightly more accuracy than are those of large ones, but in all cases
the results were qualitatively like those in Table 6.1. We conclude that our algorithm
works as expected.
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1. Introduction. Semidefinite linear systems arise in many applications, as a
result of discretization of semidefinite partial differential equations or as an important
part of a complex numerical model. Examples include the equations coming from
discretizing the Poisson equation with Neumann boundary conditions (see Bochev
and Lehoucq [3]), linear elasticity equations with traction free boundary conditions,
systems arising in Markov processes [7], and also graph partitioning applications [8,
9]. Some more subtle examples are provided by the linear systems obtained from
the generalized finite element method discretizations of partial differential equations
(see [23, 21, 22] and [26]). For such problems, using iterative solvers is unavoidable,
because direct methods such as Gaussian elimination or the Cholesky decomposition
are hard to apply in a straightforward way (since the problem is singular).

We consider the problem of finding a solution x ∈ R
n to

Ax = b,(1.1)

where A ∈ R
n×n is a given symmetric and semidefinite matrix and b ∈ R

n is a given
vector in the range of A. A stationary linear iterative method to solve (1.1) can be
obtained using a splitting of the matrix A = M −N ,

Mx� = Nx�−1 + b.(1.2)

Convergence properties of (1.2) for semidefinite problems have been studied by many
authors. Classic as well as more recent results on this topic can be found in [1, 15, 4,
6, 19] (and also many references listed therein). We note that all of these convergence
results require that the iterator M be an invertible matrix (see, e.g., [6]).
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It is easy to see, however, that the iterations (1.2) are well defined even for a
singular iterator M as long as the right-hand side falls in the range of M . Such a
situation occurs, for example, in multigrid methods (when the coarsest grid problem
is singular; see [13]) and balancing domain decomposition methods (nonoverlapping
or overlapping; see [14, 12]). In this paper we will study the convergence of (1.2)
without assuming that M is invertible. Our main result is given in Theorem 4.4 be-
low. The conditions under which this convergence result holds have been applied to
studying more general subspace correction algorithms for variational problems (multi-
grid and domain decomposition methods being classical examples for such methods).
For nonsingular symmetric positive definite problems we refer to [25] and [27] for
general theory of subspace correction methods, and for the relations between the con-
ditions given here and the convergence of subspace correction methods for variational
semidefinite problems in Hilbert spaces we refer to our recent work [13]. In any event,
deriving necessary and sufficient conditions for energy norm convergence without as-
suming that M is invertible is of theoretical interest in its own right. We further point
out that our result here is also new even when M is nonsingular. Related convergence
results that use an algebraic framework for Schwarz methods (multiplicative and ad-
ditive) can be found in Nepomnyaschikh [18], Chang and Sun [5], Marek and Szyld
[16], and Nabben and Szyld [17].

The structure of the paper is as follows. In section 2, we give definitions and
relevant notation related to matrix splittings. In section 3, we introduce the P-
regularity and weak regularity of splittings and their relations to the energy norm
convergence. We also provide a simple example of a matrix that is not P-regular but
results in a convergent iteration (as defined in (2.3) below). In section 4, we give more
refined necessary and sufficient conditions and prove energy norm convergence.

2. Notation and preliminaries. We first introduce standard notation. For a
finite dimensional space V with an inner product (·, ·) and any subspace W ⊂ V , W⊥

denotes the orthogonal complement of W with respect to the inner product (·, ·), and
V/W denotes the quotient space; for a given matrix T , the range of T and the null
space of T are denoted by R(T ) and N (T ), respectively. Further, following [25], we
write x1 � y1 (x2 � y2) whenever there exist generic constants c1 and c2 such that
x1 ≤ c1y1 (x2 ≥ c2y2).

We consider again the semidefinite system (1.1). Given an initial guess x0, we
rewrite the iteration (1.2) for the solution of (1.1) as follows:

M(x� − x�−1) = b−Ax�−1, � = 1, 2, . . . .(2.1)

Clearly, if N (A) �= {0}, the solution of (1.1) is not unique (but unique in the quotient
space R

n/N (A)). Similarly if N (M) �= {0}, the solution of (2.1) is not unique either.
A special solution of (2.1) can be given by

x� = x�−1 + M†(b−Ax�−1),(2.2)

where M† ≡ (MTM)−1MT is the Moore–Penrose generalized inverse of M . It is
obvious that for an invertible M , M† = M−1. The Moore–Penrose inverse for the
splitting matrix M has been used, for example, by Joshi [10] in an attempt to general-
ize the result of Keller [11] for rectangular matrices A. However, since M is assumed
to be of full rank in [10] when A is a square matrix, M† is reduced to the usual inverse
of M .

Probably the best known and quoted results in the theory of the convergence of
iterative methods for singular linear systems are contained in work by Keller [11].
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For an invertible iterator M , Keller defines a convergent linear iterative method as a
method for which the error propagation matrix T satisfies

lim
k→∞

T k = PN , with T := I −M−1A = M−1N,(2.3)

where PN is a projection (not necessarily orthogonal) onto the null space N (A). Other
forms of abstract necessary and sufficient conditions for energy norm convergence are
given in [1]. More refined analysis and also relations between various types of such
conditions are identified and studied in [24]. In many instances, however, it is difficult
to verify a relation such as (2.3). A more practical (but only sufficient) condition,
known as the P-regularity condition, introduced in the aforementioned work by Keller,
has been used as a criterion in many of the previous studies on the convergence of
iterative methods [1, 15, 4] and [6].

3. On P-regular and weak regular splittings. We now recall the conver-
gence concept for the iteration (2.2) given by Keller [11, Theorem 1, p. 282] (again
we assume that A is semidefinite).

Definition 3.1. We say that the scheme (2.2) is convergent if, for any initial
guess x0 ∈ Rn, we have

lim
�→∞

Ax� = b.(3.1)

Let x be a solution to (1.1); then it is easy to see that (3.1) is equivalent to

lim
�→∞

‖x− x�‖Rn/N (A) = 0

or

lim
�→∞

|x− x�|A = 0,

where |x|A = (Ax, x)1/2; see, e.g., [1, 11, 15] and references cited therein.
An obvious sufficient condition for the convergence (3.1) is

|I −M†A|A < 1.(3.2)

When this condition is satisfied, we will say that (2.2) is energy norm convergent or
seminorm convergent.

One main convergence result for (2.2), derived by Keller [11], can be summarized
in the following theorem.

Theorem 3.2 (see Keller [11]). The iterative scheme (2.2) is energy norm con-
vergent if the splitting A = M −N is P-regular, in the sense that

(K1) M is invertible, and
(K2) MT + M −A is positive definite.
For some special singular systems, considered by, e.g., Marek and Szyld [16], the

convergence has been studied via the theory of nonnegative matrices, for which the
weak-regularity condition, proposed in Ortega and Rheinboldt [20], is often used as
a sufficient condition. A version of the weak-regularity condition (see, e.g., Berman
and Plemmons [1]) is as follows: A splitting A = M −N is called weakly regular if M
is invertible and, in addition, both M−1 and M−1N are nonnegative matrices. We
shall now provide an example to show that neither P-regularity nor weak regularity
of the matrix splitting is necessary for the convergence of (2.1).
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Example 1. Consider the symmetric positive semidefinite matrix A given below:

A =

(
1/2 −1
−1 2

)
.

We introduce a splitting A = M −N , where

M =

(
−1 −4
0 4

)
and M−1 =

(
−1 −1
0 1/4

)
.

Then

M = M + MT −A =

(
−5/2 −3
−3 6

)
.

This splitting obviously is not P-regular, since M is apparently not positive definite.
Moreover, the splitting above is also not weakly regular, since M−1 has two negative
elements; that is, M−1 is not nonnegative.

However, it is also obvious that E = I −M−1A is convergent. More precisely,

E� = E ∀ � ≥ 1 and E = PN (A),

where PN (A) is a projection onto N (A). Note that the projection PN (A) is not or-
thogonal.

We would like to remark that in case R(M†A) ⊂ R(A), a convergence result can
easily be derived in a fashion similar to the positive definite case, since A becomes
symmetric and positive definite on R(A) (see, e.g., [25]). An example for which such
a relation holds is the Richardson iteration. However, this is not the case for other
classical iterations, such as the Gauss–Seidel or Jacobi iterations and the multigrid
and domain decomposition methods.

4. New conditions and analysis. In this section, we present new conditions
that are necessary and sufficient for the energy norm convergence of the iteration
(2.2). They are given as follows:

(A1) R(A) ⊂ R(M), or equivalently, N (MT ) ⊂ N (A).
(A2) MT + M −A is symmetric positive definite on R(M†A).

Note that when M is nonsingular, (A1) always holds. If the decomposition A = M−N
satisfies the assumption (A1) and additionally N (M) ⊂ N (A), then the splitting is
called a subproper splitting (see, e.g., Berman and Neumann [2]).

The assumption (A1) is obviously necessary for (2.2) to be well-defined for any
initial guess x0, since b − Ax�−1 ∈ R(A). We note that both (A1) and (A2) are
clearly weaker than (K1) and (K2) in Theorem 3.2. The identity (4.1), proven below,
obviously holds for M being square and nonsingular. We also note that the relation
given by (4.1) can also be found as an assumption on the iterator M in Joshi [10] for
the study of iterative methods for problems with rectangular A.

Lemma 4.1. Assume that (A1) holds. Then

MM†A = A,(4.1)

and we also have the following inequality:

‖M†Ax‖ � |x|A ∀x ∈ R
n.(4.2)
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Moreover, for any x�−1, the iterate (2.1) has a unique solution x� ∈ R
n/N (M), which

is given by (2.2).
Proof. By the definition of the Moore–Penrose inverse, it is obvious that MM†M =

M . This then implies

MM†y = y ∀y ∈ R(M).

Now, from the assumption (A1), we obtain that

MM†y = y ∀y ∈ R(A) ⊂ R(M).

This proves that MM†A = A, and hence (4.1) holds.
To prove (4.2) we observe that

|x|2A = (Ax, x) ≤ ‖Ax‖‖x‖Rn/N (A)

� ‖MM†Ax‖|x|A by (4.1)

� ‖M†Ax‖|x|A, since M is bounded.

This proves the inequality (4.2).
To complete the proof of the lemma, we first use the fact that (A1) implies that

(2.1) is solvable; i.e., for any x�−1 there exists x� such that M(x�−x�−1) = b−Ax�−1.
However, since N (M) is not empty, the x� is determined uniquely only in the space
R

n/N (M) for any x�−1. Furthermore, the iterate x� that is obtained from (2.2)
can be a solution to (2.1) for any given x�−1. We observe that since x� − x�−1 =
M†(b−Ax�−1),

M(x� − x�−1) = MM†A(x− x�−1) = A(x− x�−1), by (4.1).

This completes the proof.
The next lemma is related to assumption (A2) and has a well-known analogue

when A is symmetric and positive definite. It implies that the P-regularity is necessary
and sufficient for the energy norm convergence when A is nonsingular (see, e.g., Young
[28]). For semidefinite A the result is as follows.

Lemma 4.2. Under the assumption (A1), the following identity holds for all
x ∈ R

n:

|x|2A − |(I −M†A)x|2A = ((MT + M −A)M†Ax,M†Ax).(4.3)

Proof. A direct calculation shows that for any x ∈ R
n we have

|x|2A − |(I −M†A)x|2A = (Ax,M†Ax + (M†)TAx− (M†)TAM†Ax)

= (Ax, (M† + (M†)T − (M†)TAM†)Ax).(4.4)

The desired result then follows by transposition of both sides of (4.1), which is
A(M†)TMT = A. This completes the proof.

From the identity (4.4), we conclude that the assumption (A2) is sufficient for
the energy norm convergence. To prove that it is also necessary, we now introduce a
pair of conditions (A2a) and (A2b). Together they are equivalent to (A2), as seen in
the next lemma.

Lemma 4.3. If the assumption (A1) holds, then the (A2) is equivalent to the
following two conditions:
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(A2a) ∃ω ∈ (0, 2) such that (M†Ax,M†Ax)A ≤ ω(M†Ax,Ax) ∀x ∈ R
n.

(A2b) ∃α > 0 such that (M†Ax,M†Ax)A ≥ α(M†Ax,M†Ax) ∀x ∈ R
n.

Proof. We first show that (A2a) and (A2b) imply (A2). We begin by rewriting
(4.4) in the following form:

|x|2A − |(I −M†A)x|2A =
(
(MT + M −A)M†Ax,M†Ax

)
(4.5)

= 2(Ax,M†Ax) − (M†Ax,M†Ax)A.

We then conclude that (A2) is equivalent to the existence of a constant δ > 0 such
that

2(y,M†y) ≥ δ(M†y,M†y) + (M†y,M†y)A ∀y ∈ R(A).(4.6)

From (A2a) and (A2b) we have that

2(y,M†y) ≥ 2

ω
(M†y,M†y)A

= (M†y,M†y)A +

(
2

ω
− 1

)
(M†y,M†y)A

≥ (M†y,M†y)A +

(
2

ω
− 1

)
α(M†y,M†y).

This means that (4.6) holds with δ = (2/ω − 1)α, which proves (A2).
To prove the reverse implication, we assume that (A2) is satisfied. Then (A2a)

can be obtained from (4.6),

2(y,M†y) ≥
(

δ

‖A‖ + 1

)
(M†y,M†y)A ∀y ∈ R(A),

and (A2b) can be obtained by using (4.5), the Cauchy–Schwarz inequality, and (4.2),
as follows:

‖M†Ax‖2 � 2(Ax,M†Ax) ≤ 2|x|A|M†Ax|A � ‖M†Ax‖|M†Ax|A.

This completes the proof.
We would also like to remark that (A2b) is equivalent to the following relation:

R(M†A) ∩N (A) = {0}.(4.7)

When M is invertible, (4.7) has been considered as a part of necessary and sufficient
condition for convergence in a work by Szyld [24].

The following theorem is the main result in this paper.
Theorem 4.4. The iterative scheme (2.2) is energy norm convergent if and only

if both (A1) and (A2) (or equivalently (A1), (A2a), and (A2b)) are satisfied.
Proof. The identity (4.4), the assumption (A2), and (4.2) in Lemma 4.2 imply

that

|x|2A − |(I −M†A)x|2A � ‖M†Ax‖2 � |x|2A.

This shows that I −M†A is a contraction in the | · |A seminorm; i.e.,

|(I −M†A)x|A ≤ δ|x|A for some δ ∈ [0, 1).
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We shall now prove that (A2) is also a necessary condition. Let us assume that (A2)
does not hold. Then there exists x ∈ R

n such that

|x|2A − |(I −M†A)x|2A ≤ 0.(4.8)

This contradicts the fact that |I −M†A|A < 1. This completes the proof.
When A is symmetric and positive definite, the assumption (A2a) is the well-

known necessary and sufficient condition for the energy norm convergence of the
iterative method (2.2). However, as we shall see, for A being only positive semidefinite,
(A2a) alone is not sufficient for convergence. For example, whenever R(M†A) =
N (A), (A2a) holds true, but it is not difficult to see that in general there will not be
energy norm convergence unless (A2b) is added to the set of assumptions.

Example 2: (A2b) is necessary for the convergence. Let

A =

(
1/2 −1
−1 2

)
.(4.9)

We introduce a splitting A = M −N , where M is given by

M−1 =

(
2 2
−1 0

)
.

A simple algebraic manipulation yields

R(M−1A) = N (A).

It is then straightforward to see that

|E|2A = |I −M−1A|2A = 1.

This means that the iteration is not convergent.
As we have seen before, the splitting given in Example 1 above is neither P-regular

nor weak-regular. We now revisit the example to show that it in fact satisfies (A2a)
and (A2b).

Example 1 revisited. Consider the splitting given in Example 1. We have that

N (A)⊥ = span

{(
−1
2

)}
, N (A) = span

{(
2
1

)}
,

and (
M̄

(
−1
2

)
,

(
−1
2

))
=

163

2
.

This implies that the splitting A = M − N satisfies (A2a). We note that since
R(M−1A) ∩N (A) = {0}, (A2b) holds true.
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Abstract. Canonical decomposition is a key concept in multilinear algebra. In this paper we
consider the decomposition of higher-order tensors which have the property that the rank is smaller
than the greatest dimension. We derive a new and relatively weak deterministic sufficient condition
for uniqueness. The proof is constructive. It shows that the canonical components can be obtained
from a simultaneous matrix diagonalization by congruence, yielding a new algorithm. From the
deterministic condition we derive an easy-to-check dimensionality condition that guarantees generic
uniqueness.
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1. Introduction. An increasing number of problems in signal processing, data
analysis, and scientific computing involves the manipulation of quantities whose ele-
ments are addressed by more than two indices. In the literature these higher-order
analogues of vectors (first order) and matrices (second order) are called higher-order
tensors, multidimensional matrices, or multiway arrays. The algebra of higher-order
tensors is called multilinear algebra. This paper presents some new contributions
concerning a tensor decomposition known as the canonical decomposition (CANDE-
COMP) [9] or parallel factors model (PARAFAC) [24, 41].

In the following subsection we first introduce some basic definitions. In section 1.2
we have a closer look at the CANDECOMP. In section 1.3 we set out the problem
discussed in this paper and define our notation.

1.1. Basic definitions.
Definition 1.1. An n-mode vector of an (I1 × I2 × · · · × IN )-tensor A is an

In-dimensional vector obtained from A by varying the index in and keeping the other
indices fixed [27].

Definition 1.2. A real higher-order tensor is supersymmetric when it is invari-
ant under arbitrary index permutations.

Definition 1.3. An N th-order tensor A has rank 1 if it equals the outer product
of N vectors U (1), U (2), . . . , U (N):

ai1i2...iN = u
(1)
i1

u
(2)
i2

. . . u
(N)
iN

for all values of the indices.
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The outer product of U (1), U (2), . . . , U (N) is denoted by U (1) ◦ U (2) ◦ · · · ◦ U (N).
Example 1. Consider the (2 × 2 × 2)-tensor A defined by

a111 = −a121 = 3, a211 = −a221 = 6, a112 = −a122 = 1, a212 = −a222 = 2.

The 1-mode, 2-mode, and 3-mode vectors are the columns of the matrices

(
3 −3 1 −1
6 −6 2 −2

)
,

(
3 6 1 2
−3 −6 −1 −2

)
, and

(
3 6 −3 −6
1 2 −1 −2

)
,

respectively. The tensor is rank 1 because it can be decomposed as

A =

(
1
2

)
◦
(

1
−1

)
◦
(

3
1

)
.

Definition 1.4. The rank of a tensor A is the minimal number of rank-1 tensors
that yield A in a linear combination [31].

Definition 1.5. The scalar product 〈A,B〉 of two tensors A,B ∈ R
I1×I2×···×IN

is defined as

〈A,B〉 =

I1∑
i1=1

I2∑
i2=1

. . .

IN∑
iN=1

ai1i2...iN bi1i2...iN .

This definition generalizes the standard scalar product of vectors (〈A,B〉 = ATB)

and the standard scalar product of matrices (〈A,B〉 =
∑I1

i1=1

∑I2
i2=1 aijbij , with

A,B ∈ R
I1×I2). Note that, for two (I1 × I2 × · · · × IN ) rank-1 tensors A = U

(1)
1 ◦

U
(1)
2 ◦ · · · ◦ U (1)

N and B = V
(1)
1 ◦ V (1)

2 ◦ · · · ◦ V (1)
N , we have

〈A,B〉 =

I1∑
i1=1

I2∑
i2=1

. . .

IN∑
iN=1

u
(1)
i1

u
(2)
i2

. . . u
(N)
iN

v
(1)
i1

v
(2)
i2

. . . v
(N)
iN

= (UT
1 V1)(U

T
2 V2) . . . (U

T
NVN ).(1.1)

Definition 1.6. The Frobenius norm of a tensor A ∈ R
I1×I2×···×IN is defined

as

‖A‖ =
√
〈A,A〉 =

(
I1∑

i1=1

I2∑
i2=1

. . .

IN∑
iN=1

a2
i1i2...iN

) 1
2

.

Definition 1.7. The Kruskal rank or k-rank of a matrix A, denoted by rankk(A),
is the maximal number r such that any set of r columns of A is linearly independent
[31].

By definition, we have that rankk(A) � rank(A).
Example 2. Consider the matrix

A =

(
1 2 4
2 1 2

)
,

which has rank 2. The k-rank of A is 1, because its last two columns are proportional.
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A
= + · · ·++

U
(1)
1

λ1 λ2 λR

U
(1)
2 U

(1)
R

U
(2)
1 U

(2)
2 U

(2)
R

U
(3)
1 U

(3)
2 U

(3)
R

Fig. 1.1. Visualization of the CANDECOMP for a third-order tensor.

1.2. The canonical decomposition. We now introduce the decomposition
that is dealt with in this paper.

Definition 1.8. A canonical decomposition of a tensor A ∈ R
I1×I2×···×IN is a

decomposition of A as a linear combination of a minimal number of rank-1 terms:

A =

R∑
r=1

λr U
(1)
r ◦ U (2)

r ◦ · · · ◦ U (N)
r .(1.2)

The decomposition is visualized for third-order tensors in Figure 1.1.

The supersymmetric variant in which U
(1)
r = U

(2)
r = · · · = U

(N)
r , r = 1, . . . , R,

was already studied in the nineteenth century in the context of invariant theory [11].
Around 1970, the unsymmetric decomposition was independently introduced in psy-
chometrics [9] and phonetics [24]. Later on, the decomposition was also applied in
chemometrics and the food industry [1, 6, 41]. In these various disciplines the CAN-
DECOMP is used for the purpose of multiway factor analysis. The term “canonical
decomposition” is standard in psychometrics, while in chemometrics the decompo-
sition is called a “parallel factors model.” Recently, the CANDECOMP has found
important applications in signal processing. In wireless telecommunications, it pro-
vides powerful means for the exploitation of different types of diversity [38, 39]. It also
describes the basic structure of higher-order cumulants of multivariate data on which
all algebraic methods for independent component analysis (ICA) are based [10, 14, 26].
Moreover, decomposition is finding its way into scientific computing, where it leads
to a way around the curse of dimensionality [4, 5].

To a large extent, the practical importance of the CANDECOMP stems from
its uniqueness properties. It is clear that one can arbitrarily permute the different
rank-1 terms. Also, the factors of a same rank-1 term may be arbitrarily scaled, as
long as their product remains the same. We call a CANDECOMP unique when it
is only subject to these trivial indeterminacies. The following theorem establishes a
condition under which uniqueness is guaranteed.

Theorem 1.9. The CANDECOMP (1.2) is unique if

N∑
n=1

rankk(U
(n)) � 2R + N − 1,(1.3)

where R is the rank and N is the order.
This theorem was first proved for real third-order tensors in [31]. A concise proof

that also applies to complex tensors was given in [38]. The result was generalized to
tensors of arbitrary order in [40].
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Note that, contrary to singular value decomposition (SVD) in the matrix case,
no orthogonality constraints are imposed on the matrices U(n) to ensure uniqueness.
Imposing orthogonality constraints yields a different decomposition that has different
properties [20, 29, 30].

Contrary to matrices, there is no easy way to find the rank of higher-order tensors,
except for some special cases [11, 16]. In addition, the rank of an (I1 × I2 × · · ·× IN )-
tensor is not bounded by min(I1, I2, . . . , IN ) [11, 31]. The determination of the rank
of a given tensor is usually a matter of trial and error.

For a given R, it is common practice to look for the canonical components by
straightforward minimization of the quadratic cost function

f(Â) = ‖A − Â‖2(1.4)

over all rank-R tensors Â, which we will parametrize as

Â =
R∑

r=1

λ̂r Û
(1)
r ◦ Û (2)

r ◦ · · · ◦ Û (N)
r .(1.5)

It is possible to resort to an alternating least-squares (ALS) algorithm, in which the
vector estimates are updated mode per mode [6, 9, 38]. The idea is as follows. Define

Û(n) = [Û
(n)
1 Û

(n)
2 . . . Û

(n)
R ],

Λ̂ = diag([λ̂1 λ̂2 . . . λ̂R]).

Now let us imagine that the matrices Û(m), m �= n, are fixed and that the only un-
knowns are the components of the matrix Û(n) · Λ̂. Because of the multilinearity of the
CANDECOMP, the estimation of these components is a classical linear least squares
problem. An ALS iteration consists of repeating this procedure for different mode
numbers: in each step the estimate of one of the matrices U(1),U(2), . . . ,U(N) is op-
timized, while the other matrix estimates are kept constant. In [34] a Gauss–Newton
method is described, in which all the factors of the CANDECOMP are updated si-
multaneously; in addition, the inherent indeterminacy of the decomposition has been
fixed by adding a quadratic regularization constraint on the component entries. We
also mention that the canonical components can in principle not be obtained by means
of a deflation algorithm. The reason is that the best rank-1 approximation of A gen-
erally does not correspond to one of the terms in (1.2), and that the residue is in
general not of rank R− 1 [13, 28, 45].

In [16] we studied the special case of an (I1 × I2 × I3)-tensor A of which (i)

the rank R � min(I1, I2), (ii) the set {U (1)
r }(1�r�R) is linearly independent, (iii)

the set {U (2)
r }(1�r�R) is linearly independent, and (iv) the set {U (3)

r }(1�r�R) does
not contain collinear vectors. In this case, the canonical components can be obtained
from a simultaneous matrix decomposition. Simultaneous matrix decompositions have
become an important tool for signal processing and data analysis in the last decade
[2, 3, 8, 19, 23, 35, 36, 42, 43, 44]. Let us, for instance, consider a simultaneous
diagonalization by congruence:

M1 = W · Λ1 · WT

...

MN = W · ΛN · WT ,(1.6)
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in which M1, . . . ,MN ∈ R
P×P are given symmetric matrices, W ∈ R

P×P is an un-
known nonsingular matrix, and Λ1, . . . ,ΛN ∈ R

P×P are unknown diagonal matrices.
Theoretically, W can already be obtained from two of these decompositions. Let us
assume for convenience that Mn is nonsingular and that all the diagonal entries of
Λm · Λ−1

n are mutually different. Then W follows from the eigenvalue decomposition
(EVD) Mm · M−1

n = W · Λm · Λ−1
n · W−1 [32]. From a numerical point of view,

it is preferable to take all the equations in (2.13) into account when the matrices
M1, . . . ,MN are only known with limited precision. Equation (2.13) then has to be
solved in some optimal way—for instance, by minimizing

g(Ŵ, Λ̂1, . . . , Λ̂N ) =

N∑
n=1

‖Mn − Ŵ · Λ̂n · ŴT ‖2.

1.3. This paper. In this paper we consider the special case of tensors that are
tall in one mode. More precisely we assume that IN � R. This case occurs very often
in practice. The tall mode may, for instance, be formed by different samples over
time or different samples from a population. Note that in this case condition (1.3)
generically reduces to

N−1∑
n=1

min(In, R) � R + N − 1.(1.7)

(We call a property generic when it holds everywhere, except for a set of Lebesgue
measure 0.) Hence, the maximum value R for which uniqueness of the CANDECOMP

is guaranteed is bounded by
∑N−1

n=1 In −N + 1.
In this paper we derive a new sufficient condition for uniqueness in the case that

IN � R. The proof is constructive. It shows that the canonical components can
be obtained from a simultaneous matrix diagonalization by congruence. The case
of third-order tensors is treated in section 2. Fourth-order tensors are discussed in
section 3. Along these lines, the approach can be generalized to tensors of arbitrary
order. In section 4 some numerical results are shown. The presentation is in terms of
real tensors. Complex tensors can be dealt with in the same way.

The derivation in section 2.1 was inspired by the ICA algorithm presented in
[7]. In the latter paper, a “rank-1 detecting device” was proposed that is similar to
mapping Φ in Theorem 2.1. It was subsequently shown that this device could be used
to find the ICA solution from the fourth-order cumulant tensor of the data via an
EVD of a real symmetric matrix. In the derivation the symmetries of the cumulant
tensor were exploited. Here we only make use of the algebraic structure of the CAN-
DECOMP. The canonical components are computed by means of the (approximate)
simultaneous decomposition of a set of matrices instead of the decomposition of a
single matrix. The ICA application is worked out in more detail in [18].

Notation. In this paper scalars are denoted by lowercase italic letters (a, b, . . . ),
vectors are written as italic capitals (A, B, . . . ), matrices correspond to boldface
capitals (A, B, . . . ), and tensors are written as calligraphic letters (A, B, . . . ). This
notation is consistently used for lower-order parts of a given structure. For instance,
the entry with row index i and column index j in a matrix A, i.e., (A)ij , is symbolized
by aij (also (A)i = ai and (A)i1i2...iN = ai1i2...iN ). The ith column vector of a matrix
A is denoted as Ai, i.e., A = [A1A2 . . . ]. Italic capitals are also used to denote index
upper bounds (e.g., i = 1, 2, . . . , I). The zero tensor is denoted by O. The symbol ⊗
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denotes the Kronecker product,

A ⊗ H
def
=

⎛
⎜⎝

a11H a12H . . .
a21H a22H . . .

...
...

⎞
⎟⎠ ,

and 	 represents the Khatri–Rao or columnwise Kronecker product [37]:

A 	 H
def
= (A1 ⊗H1 . . . AR ⊗HR) .

The operator diag(·) stacks its vector argument in a square diagonal matrix. We
denote the 2-norm condition number of a matrix, i.e., the ratio of its largest to its
smallest singular value, by cond(·). The (N × N) identity matrix is represented by
IN×N . The (I×J) zero matrix is denoted by 0I×J . Finally, PJ·I×I·J is the (IJ×IJ)
permutation matrix of which the entries at positions ((j − 1)I + i, (i − 1)J + j),
i = 1, 2, . . . , I, j = 1, 2, . . . , J , are equal to one, the other entries being equal to zero.

2. The third-order case.

2.1. Deterministic uniqueness condition and algorithm. Consider an (I×
J ×K)-tensor T of which the CANDECOMP is given by

tijk =

R∑
r=1

airbjrckr ∀i, j, k(2.1)

in which A ∈ R
I×R, B ∈ R

J×R, C ∈ R
K×R. We assume that min(IJ,K) � R.

Consider a matrix T ∈ R
IJ×K in which the entries of T are stacked as follows:

(T)(i−1)J+j,k = tijk.

We have

T = (A 	 B) · CT .(2.2)

We assume that both A	B and C are full column rank. Both conditions are generi-
cally satisfied if R � min(IJ,K), as will be explained in section 2.2. Note that, in this
case, the rank of the tensor T is equal to the rank of its matrix representation T. We
notice that if A 	 B is not full column rank, (2.1) is not unique [33]. As a matter of
fact, in this case a decomposition with a smaller number of terms is possible. (If, for

instance, AR ⊗BR =
∑R−1

r=1 αrAr ⊗Br, then T =
∑R−1

r=1 Ar ◦Br ◦ (Cr +αrCR).) On
the other hand, if C is not full column rank, then the rank of T may nevertheless be
equal to R and the CANDECOMP may still be unique (e.g., (1.3) may be satisfied).
In that case, the rank of T cannot be estimated as the rank of T, and the algorithm
below will fail.

Consider a factorization of T of the form

T = E · FT ,(2.3)

with E ∈ R
IJ×R and F ∈ R

K×R full column rank. Because of (2.2) and (2.3), we
have

A 	 B = E · W(2.4)
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for some nonsingular W ∈ R
R×R. The task is now to find W such that the columns

of E ·W are Kronecker products. A vector that is equal to the Kronecker product of
a vector A ∈ R

I and a vector B ∈ R
J can be represented as an (I×J) rank-1 matrix;

cf. (2.14)–(2.15) below. Matrices with rank at most 1 and matrices of which the
rank is strictly greater than 1 can be distinguished by means of the bilinear mapping
introduced in the following theorem.

Theorem 2.1. Consider the mapping Φ : (X,Y) ∈ R
I×J × R

I×J → Φ(X,Y) ∈
R

I×I×J×J defined by

(Φ(X,Y))ijkl = xikyjl + yikxjl − xilyjk − yilxjk.(2.5)

Then we have Φ(X,X) = O if and only if X is at most rank 1.
Proof. The “if” part is obvious. For the “only if” part, let the SVD of X be given

by U · Σ · VT , with Σ = diag([σ1 . . . σM ]), where M = min(I, J). We have

xikxjl =

M∑
r,s=1

σrσsuirvkrujsvls,

xilxjk =

M∑
r,s=1

σrσsuirvlrujsvks,

Φ(X,X) = 2
M∑

r,s=1

σrσs(Ur ◦ Us ◦ Vr ◦ Vs − Ur ◦ Us ◦ Vs ◦ Vr).(2.6)

Rank-1 terms corresponding to the same r= s cancel out in (2.6). Due to the orthog-
onality of U and V, the other terms are mutually orthogonal, as can be verified by
means of (1.1). Because of the linear independence of these terms, we must have that
σrσs = 0 whenever r �= s. Hence, Σ is at most rank 1.

Another way to see this is by observing that the entries of Φ(X,X)/2 correspond
to the determinants of the different (2×2) submatrices of X. A necessary and sufficient
condition for X to be at most rank 1 is that all these determinants vanish.

Define matrices E1, . . . ,ER ∈ R
I×J corresponding to each column of E in (2.3)

so that

(Er)ij = e(i−1)J+j,r ∀i, j, r

and let Prs = Φ(Er,Es). Note that Φ is symmetric in its arguments; hence

Prs = Psr ∀r, s.(2.7)

Since Φ is bilinear, we have from (2.4)

Prs =

R∑
t,u=1

(W−1)tr(W
−1)usΦ

(
AtB

T
t , AuB

T
u

)
.(2.8)

Assume at this point that there exists a symmetric matrix M of which the entries sat-
isfy the following set of homogeneous linear equations (we will justify this assumption
below):

R∑
r,s=1

mrsPrs = O.(2.9)
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Substitution of (2.8) in (2.9) yields

R∑
r,s=1

R∑
t,u=1

(W−1)tr(W
−1)usmrsΦ

(
AtB

T
t , AuB

T
u

)
= O.

According to Theorem 2.1, we have Φ
(
AtB

T
t , AtB

T
t

)
= O, 1 � t � R. Hence

R∑
r,s=1

R∑
t,u=1

t�=u

(W−1)tr(W
−1)usmrsΦ

(
AtB

T
t , AuB

T
u

)
= O.

Furthermore, due to (2.7) and the symmetry of M we have

R∑
r,s=1

R∑
t,u=1

t<u

(W−1)tr(W
−1)usmrsΦ

(
AtB

T
t , AuB

T
u

)
= O.(2.10)

Denote

λtu =

R∑
r,s=1

(W−1)tr(W
−1)usmrs.(2.11)

Let us now make the crucial assumption that the tensors Φ
(
AtB

T
t , AuB

T
u

)
, 1 � t <

u � R, are linearly independent. Then (2.10) implies that λtu = 0 when t �= u. As a
consequence, (2.11) can be written in a matrix format as

M = W · Λ · WT ,(2.12)

in which Λ is diagonal. Actually, one can see that any diagonal matrix Λ generates a
matrix M that satisfies (2.9). Hence, if the tensors {Φ(AtB

T
t , AuB

T
u )}t<u are linearly

independent, these matrices form an R-dimensional subspace of the symmetric (R×R)
matrices. Let {Mr} represent a basis of this subspace. We have

M1 = W · Λ1 · WT

...

MR = W · ΛR · WT ,(2.13)

in which Λ1, . . . ,ΛR are diagonal. Equation (2.13) is of the form (1.6). The matrix
W can be determined from this simultaneous matrix decomposition by means of the
algorithms presented in [6, 9, 16, 19, 34, 42, 43, 44]. Comparing these algorithms is
outside the scope of this paper.

Once W is known, A	B can be obtained from (2.4). Let the columns of A	B
be mapped to (I × J) matrices Gr as follows:

(Gr)ij = (A 	 B)(i−1)J+j,r, r = 1, . . . , R.(2.14)

Then we have

Gr = ArB
T
r , r = 1, . . . , R,(2.15)
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from which A and B can be obtained. On the other hand, from (2.2), (2.3), and (2.4)
it follows that

C = F · W−T .(2.16)

Equation (2.13) can also be interpreted as the CANDECOMP of a cubic (R ×
R×R)-tensor M of rank R. In M, the matrices M1, . . . , MR are stacked as follows:

mijk = (Mk)ij ∀i, j, k.

Define a matrix L ∈ R
R×R as follows:

L =

⎛
⎜⎝

(Λ1)11 · · · (Λ1)RR

...
...

(ΛR)11 · · · (ΛR)RR

⎞
⎟⎠ .

Then (2.13) can be written as

M =
R∑

r=1

Wr ◦Wr ◦ Lr,

which is indeed a CANDECOMP of M. Hence the computation of the CANDECOMP
(2.1), with possibly R < I and/or R < J , has been reformulated as a problem of the
type discussed in [16].

We conclude that the CANDECOMP in (2.1) is unique if C is full column rank
and if the tensors {Φ(AtB

T
t , AuB

T
u )}1�t<u�R are linearly independent. This is an

easy-to-check deterministic sufficient (but not necessary) condition for uniqueness. If
it is satisfied, the canonical components may be computed from the equations derived
above. Algorithm 2.1 summarizes the procedure.

If C is column rank deficient, and rank(T ) = R, then the algorithm fails, as
already explained above. If {Φ(AtB

T
t , AuB

T
u )}1�t<u�R are linearly dependent, then

(2.9) has solutions that cannot be decomposed as in (2.12), and the algorithm fails as
well.

In practice, tensor T may only be known with limited precision. In this respect,
some comments concerning the practical implementation of Algorithm 2.1 are in order:

Step 2. The rank R may be obtained as the number of significant singular values
of T.

Step 3. This factorization may, for instance, be obtained as follows: Let the SVD
of T be given by T = U · S · VT . Let Ũ ∈ R

I×R, S̃ ∈ R
R×R, Ṽ ∈ R

J×R denote the
dominant part of U, S, V, respectively. Then we may take E and F equal to

E = Ũ · S̃, F = Ṽ.

Step 4. Actually only Prs, r � s, have to be computed, because of (2.7).
Step 6. Because of (2.7) and the symmetry of M, the equation can be written as

R∑
s=1

mssPss + 2

R∑
s,t=1

s<t

mstPst = O.(2.17)

This equation has to be solved in the least-squares sense. Stack Pst in a vector
Pst ∈ R

I2J2

, 1 � r � s � R. Let the R singular vectors of the coefficient matrix
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Algorithm 2.1

In: T ∈ R
I×J×K satisfying

T =

R∑
r=1

Ar ◦Br ◦ Cr,

with both {Cr}1�r�R and {Φ(AtB
T
t , AuB

T
u )}1�t<u�R linearly independent.

Out: rank R and CANDECOMP factor matrices A ∈ R
I×R, B ∈ R

J×R, C ∈
R

K×R.
1. Stack T in T ∈ R

IJ×K as follows:

(T)(i−1)J+j,k = (T )ijk ∀i, j, k.

2. R = rank(T).
3. Compute factorization

T = E · FT ,

with E ∈ R
IJ×R and F ∈ R

K×R full column rank.
4. Stack E in E ∈ R

I×J×R as follows:

(E)ijr = (E)(i−1)J+j,r ∀i, j, r.

5. Compute Prs ∈ R
I×I×J×J , 1 � r, s � R, as follows:

(Prs)ijkl = eikrejls + eiksejlr − eilrejks − eilsejkr ∀i, j, k, l.

6. Compute the kernel of

R∑
s,t=1

mstPst = O

under the constraint mst = mts ∀s, t. Stack R linearly independent
solutions in symmetric matrices M1, . . . , MR ∈ R

R×R.
7. Determine W ∈ R

R×R that simultaneously diagonalizes M1, . . . , MR:

M1 = W · Λ1 · WT

...

MR = W · ΛR · WT .

8. A 	 B = E · W and C = F · W−T .
9. Stack A 	 B in G1, . . . , GR ∈ R

I×J as follows:

(Gr)ij = (A 	 B)(i−1)J+j,r ∀i, j.

10. Obtain Ar, Br from

Gr = ArB
T
r ∀r.
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[P11, . . . , PRR, 2P12, 2P13, . . . , 2PR−1,R], corresponding to the smallest singular val-
ues, be denoted by (w1,1,r, . . . , wR,R,r, w1,2,r, w1,3,r, . . . , wR−1,R,r)

T , 1 � r � R. Then
we may take Mr equal to

Mr =

⎛
⎜⎜⎜⎝

w1,1,r w1,2,r · · · w1,R,r

w1,2,r w2,2,r · · · w2,R,r

...
...

. . .
...

w1,R,r w2,R,r · · · wR,R,r

⎞
⎟⎟⎟⎠ ∀r.

Step 7. The matrices Mr may be weighted according to their expected relative
precision. The singular values of the coefficient matrix in step 6 give an indication of
this precision.

Step 10. Ar and Br are obtained from the best rank-1 approximation of Gr.
Remark 1. It turns out that our deterministic sufficient condition for uniqueness

has also, in an entirely different manner, been derived in [22]. In that paper, a matrix

U ∈ C
I2J2×R(R−1)/2 is defined as follows:

(U)
(i1−1)(IJ2)+(i2−1)J2+(j1−1)J+j2,

(u−2)(u−1)
2 +t

=

∣∣∣∣
ait aiu
akt aku

∣∣∣∣ ·
∣∣∣∣
ajt aju
alt alu

∣∣∣∣ ,
(2.18)

1 � i1, i2 � I, 1 � j1, j2 � J, 1 � t < u � R.

It is shown that the CANDECOMP is unique if U and C are full column rank. It is
easy to verify that

(U)
(i1−1)(IJ2)+(i2−1)J2+(j1−1)J+j2,

(u−2)(u−1)
2 +t

=
(
Φ(AtB

T
t , AuB

T
u )

)
i1i2j1j2

.(2.19)

In other words, the columns of U are vector representations of the tensors {Φ(AtB
T
t ,

AuB
T
u )}1�t<u�R. Hence, the uniqueness conditions in this paper and in [22] are the

same.

2.2. Generic uniqueness condition. In this section we examine under which
conditions on R both {Cr}1�r�R and {Φ(AtB

T
t , AuB

T
u )}1�t<u�R are generically lin-

early independent. We will derive bounds on R that depend only on the dimensions
of the tensor. A generic tensor whose rank and dimensions satisfy these constraints
has a CANDECOMP that is unique and comprises components that can be computed
by means of Algorithm 2.1. We start from the following lemma.

Lemma 2.2. Consider A ∈ R
I×R and B ∈ R

J×R. Generically we have

rank(A 	 B) = min(IJ,R).

Proof. Denote R̃ = rank(A 	 B). Let us assume that R̃ < min(IJ,R). The
theorem follows from the observation that a generic perturbation of the vectors Ar	Br

makes the set linearly independent. Let us map Ar 	Br to the (I×J) matrix ArB
T
r ,

r = 1, . . . , R. Assume, without loss of generality, that A1B
T
1 lies in the vector space

V generated by ArB
T
r , r = 2, 3, . . . , R. It suffices to prove that a generic perturbation

of A1B
T
1 does not lie in V. Let V⊥ ∈ R

I×J be orthogonal to V, i.e., the scalar
product of V⊥ and any matrix in V is zero. We have 〈A1B

T
1 ,V

⊥〉 = AT
1 V⊥B1 =

0. Let the perturbed version of A1B
T
1 be denoted by Ã1B̃

T
1 . Generically we have

〈Ã1B̃
T
1 ,V

⊥〉 = ÃT
1 V⊥B̃1 �= 0, i.e., the perturbation has a component orthogonal
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to V. As a consequence, Ã1 	 B̃1 has a component orthogonal to Ar 	 Br, r =
2, 3, . . . , R.

Remark 2. That matrices A and B are full rank or full k-rank does not guarantee
their Khatri–Rao product will be full rank. Consider, for instance,

A =

(
1 0 1 1
0 1 1 −1

)
, B =

(
1 0 1 1
0 1 2 −2

)
.

We have rank(A) = rankk(A) = rank(B) = rankk(B) = 2. However,

A 	 B =

⎛
⎜⎜⎝

1 0 1 1
0 0 2 −2
0 0 1 −1
0 1 2 2

⎞
⎟⎟⎠ ,

such that rank(A 	 B) = rankk(A 	 B) = 3 < 4.
Before continuing with Lemmas 2.3 and 2.4, we explain the intuition behind

Lemma 2.2. We start with a geometric description of the surface formed by the
matrices of which the rank is at most 1; cf. [12, 25] and the references therein.

Let SN be the sphere consisting of the unit-norm vectors in R
N . Define the outer

product SI × SJ as the set formed by the outer products of any vector on SI and
any vector on SJ . This corresponds to the set of unit-norm rank-1 matrices in R

I×J .
It consists of two disjoint parts, consisting of the positive and negative semidefinite
rank-1 matrices, respectively. Each of these parts corresponds to a highly symmetric
surface in R

I×J . Namely, each part is mapped onto itself by any transformation of
the form

f : R
I×J → R

I×J : X → f(X) = QI · X · QJ ,

in which QI and QJ are orthogonal matrices in R
I×I and R

J×J , respectively, rep-
resenting rotations and/or reflections. The full set of (I × J) matrices of which the
rank is at most 1, represented by R

I×J
R�1, is obtained by allowing arbitrary scalings of

the elements of SI × SJ . Hence R
I×J
R�1 corresponds to a double cone built on SI × SJ .

Let us focus on the case of symmetric (2×2) matrices, which form a vector space
of dimension 3, and hence allow for a visual representation (see Figure 2.1). The
symmetric positive semidefinite unit-norm rank-1 matrices form a circle. Reflection
around the origin yields a second circle, corresponding to the symmetric negative
semidefinite unit-norm rank-1 matrices. Arbitrary symmetric rank-1 matrices are
obtained by scaling, i.e., they form a double cone built on the two circles. It is now
clear that, with probability one, three arbitrarily chosen points on the double cone are
not confined to a common two-dimensional plane. This is equivalent to saying that
the rank of A	A for A ∈ R

2×3 is generically equal to 3, since the columns Ar ⊗Ar

of A	A can be interpreted as a vector representation of the rank-1 matrices ArA
T
r .

The situation for R
I×J
R�1 is completely similar. Randomly sampling points on

the double cone yields a set that is maximally linearly independent. This has been
formalized in Lemma 2.2.

We now have the following two lemmas.
Lemma 2.3. Let V = {Vm|1 � m � M} be a set of linearly independent vectors

in R
N2

. Let W1, . . . , WR be vectors in R
N . Let WR = {Wp⊗Wq|1 � p < q � R}. If

R � N + 1 and M +
R(R− 1)

2
� N2,(2.20)
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+

−

+/−

I2×2

−I2×2

02×2

Fig. 2.1. Visualization of the vector space of symmetric (2 × 2) matrices. The double cone is
formed by the rank-1 matrices. The upper cone contains the positive definite matrices. The lower
cone contains the negative definite matrices. The surrounding space contains the indefinite matrices.
Taking at random three points on the double cone yields a linearly independent set. The three points
indicated by a little square belong to the same subspace, represented by the dashed plane. After a
(generic) small displacement of these points on the double cone, they are no longer constrained to a
two-dimensional subspace.

then the vectors in V ∪ WR are linearly independent for a generic choice of Wr,
1 � r � R.

Proof. Let WR−1 = {Wp ⊗Wq|1 � p < q � R − 1}. The proof is by induction.
We first show that the lemma holds for M � N2 − 1 and R = 2. Then we show that,
assuming that the lemma holds for (M,R − 1), it still holds for (M,R) if (2.20) is
satisfied.

Let V ⊥ ∈ R
N2

be orthogonal to the vectors in V. To initialize the induction,
it suffices to show that W1 ⊗ W2 generically has a component in the direction of
V ⊥. Define a matrix V⊥ ∈ R

N×N by (V⊥)n1n2
= (V ⊥)(n1−1)N+n2

. Then we have

(W1 ⊗W2)
TV ⊥ = WT

1 V⊥W2, which is indeed generically different from zero.

Now we prove the induction step. The matrices [W1 . . .WR−1], [W2 . . .WR] ∈
R

N×R are generically full column rank if R � N + 1. By a property of the Kronecker
product, [W1 . . .WR−1]⊗ [W2 . . .WR] is also full column rank. The set WR, consisting
of columns of the latter matrix, is thus linearly independent. Now suppose that the set
V∪WR is linearly dependent. We prove that the set becomes linearly independent by
a generic perturbation of the vector WR. We prove this by contradiction. Let WR be
replaced by a vector W̃R that is not proportional to WR. The set WR is consistently
replaced by W̃R. Suppose that V ∪ W̃R is still linearly dependent. Generically,
we may assume that V1 can be written as a linear combination of the vectors in
(V \ {V1}) ∪WR. We may also assume that V1 is a linear combination of the vectors
in (V \ {V1}) ∪ W̃R. In other words, V1 is in the intersection of the subspaces U and
Ũ generated by (V \ {V1}) ∪ WR and (V \ {V1}) ∪ W̃R, respectively. U equals the
sum of the subspace generated by (V \ {V1}) ∪ WR−1 and the subspace generated
by {W1 ⊗ WR, . . . ,WR−1 ⊗ WR}. Ũ equals the sum of the subspace generated by
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(V \ {V1}) ∪ WR−1 and the subspace generated by {W1 ⊗ W̃R, . . . ,WR−1 ⊗ W̃R}. U

cannot be equal to R
N2

since dim(U) � M − 1 + R(R − 1)/2 < N2; neither can

Ũ be equal to R
N2

. Taking into account that the vectors {W1 ⊗ WR, . . . ,WR−1 ⊗
WR,W1 ⊗ W̃R, . . . ,WR−1 ⊗ W̃R}, being the columns of [W1 . . .WR−1]⊗ [WR W̃R], are
linearly independent, we conclude that the intersection of U and Ũ is equal to the
subspace generated by (V \ {V1}) ∪ WR−1. Since V1 is in the intersection of U and
Ũ, it is a linear combination of the vectors in (V \ {V1}) ∪ WR−1. This means that
the set V ∪ WR−1 is linearly dependent, which is in contradiction to the induction
hypothesis.

Lemma 2.4. Let V = {Vm|1 � m � M} be a set of linearly independent vectors

in R
I2J2

. Let A1, . . . , AR be vectors in R
I and let B1, . . . , BR be vectors in R

J . If

R � IJ + 1 and M +
R(R− 1)

2
� I2J2,(2.21)

then the vectors in V ∪ {Ap ⊗Bp ⊗Aq ⊗Bq|1 � p < q � R} are linearly independent
for a generic choice of Ar and Br, 1 � r � R.

Proof. The proof is analogous to the proof of Lemma 2.3. The role of [W1 . . .WR−1],
[W2 . . .WR] is now played by [A1⊗B1 . . . AR−1⊗BR−1], [A2⊗B2 . . . AR⊗BR] ∈ R

IJ×R.
The latter matrices are generically full column rank if R � IJ + 1 because of Lemma
2.2.

We now have the following theorem.
Theorem 2.5. The CANDECOMP in (2.1) is generically unique if R � K and

R(R− 1) � I(I − 1)J(J − 1)/2.
Proof. The second inequality implies that R � IJ . According to Lemma 2.2,

A 	 B is generically full column rank, which is a necessary requirement for (2.1) to
be a CANDECOMP (cf. above). We will prove the theorem by checking that the
deterministic conditions for uniqueness derived in section 2.1 are generically satisfied.
According to the first inequality of the theorem, C is tall. Hence, it is generically
full column rank. We will now show that the second inequality generically guarantees
linear independence of {Φ(ApB

T
p , AqB

T
q )}p<q.

Consider the following bijective mapping of vectors in R
I2J2

to tensors in R
I×I×J×J :

(F1(X))ijkl = x(i−1)IJ2+(j−1)J2+(k−1)J+l.

The image vector of Φ(ApB
T
p , AqB

T
q ) under the inverse mapping F−1

1 is given by

Ap ⊗Aq ⊗ (Bp ⊗Bq −Bq ⊗Bp)

+ Aq ⊗Ap ⊗ (Bq ⊗Bp −Bp ⊗Bq)

= (Ap ⊗Aq −Aq ⊗Ap) ⊗ (Bp ⊗Bq −Bq ⊗Bp)

= [(II2×I2 − PI2×I2) · (Ap ⊗Aq)] ⊗ [(IJ2×J2 − PJ2×J2) · (Bp ⊗Bq)]

= [(II2×I2 − PI2×I2) ⊗ (IJ2×J2 − PJ2×J2)] · [Ap ⊗Aq ⊗Bp ⊗Bq]

def
= G · [Ap ⊗Aq ⊗Bp ⊗Bq].(2.22)

Linear independence of {Φ(ApB
T
p , AqB

T
q )}p<q is equivalent to linear independence of

the image vectors. The latter are linearly independent if and only if the intersection
of the kernel of G and the subspace generated by {Ap ⊗ Aq ⊗ Bp ⊗ Bq}p<q contains
only the null vector. In other words, a basis of the kernel of G and the vectors
Ap ⊗ Aq ⊗ Bp ⊗ Bq, p < q, have to form a linearly independent set. The dimension
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of the kernel of G is I2J2 − rank(G). According to Lemma 2.4, the set formed by
a basis of the kernel and the R(R − 1)/2 vectors Ap ⊗ Aq ⊗ Bp ⊗ Bq is generically
linearly independent if

R(R− 1)

2
� rank (G) .(2.23)

We now compute rank(G). Consider Y ′ ∈ R
I2

and Y ∈ R
I×I , linked by y′(i1−1)I+i2 =

yi1i2 , i1, i2 = 1, . . . , I. The matrix PI2×I2 is such that PI2×I2Y ′ and YT are linked
in the same way, i.e., (PI2×I2Y ′)(i1−1)I+i2 = yi2i1 . Hence the kernel of II2×I2 −
PI2×I2 corresponds to the I(I+1)/2-dimensional space of symmetric (I×I) matrices.
Therefore rank(II2×I2−PI2×I2) = I(I−1)/2 and rank(IJ2×J2−PJ2×J2) = J(J−1)/2.
By a property of the Kronecker product we obtain

rank (G) = I(I − 1)J(J − 1)/4.(2.24)

Combining (2.23 ) and (2.24) yields that the set {Φ(ApB
T
p , AqB

T
q )}p<q is generically

linearly independent if and only if

R(R− 1)

2
� I(I − 1)J(J − 1)

4
.

3. The fourth-order case.

3.1. Deterministic uniqueness condition and algorithm. Now consider an
(I × J ×K × L)-tensor T of which the CANDECOMP is given by

tijkl =

R∑
r=1

airbjrckrdlr,(3.1)

in which A ∈ R
I×R, B ∈ R

J×R, C ∈ R
K×R, D ∈ R

L×R.
Consider a matrix T ∈ R

IJK×L in which the entries of T are stacked as follows:

(T)(i−1)JK+(j−1)K+k,l = tijkl ∀i, j, k, l.

We have

T = (A 	 B 	 C) · DT .(3.2)

We assume that both A 	 B 	 C and D are full column rank. Both conditions are
generically satisfied if R � min(IJK,L) (generic properties will be examined in detail
in section 3.2). In this case, the rank of T is equal to the rank of T.

Consider a factorization of T of the form

T = E · FT ,(3.3)

with E ∈ R
IJK×R and F ∈ R

L×R full column rank. Because of (3.2) and (3.3), we
have

A 	 B 	 C = E · W(3.4)

for some nonsingular W ∈ R
R×R. The task is now to find W such that the columns

of E ·W correspond to third-order rank-1 tensors. Therefore, we will make use of the
following third-order variant of Theorem 2.1.
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Theorem 3.1. Consider the mappings Ψ1 : (X ,Y) ∈ R
I×J×K × R

I×J×K →
Ψ1(X ,Y) ∈ R

I×I×J×J×K×K , Ψ2 : (X ,Y) ∈ R
I×J×K × R

I×J×K → Ψ2(X ,Y) ∈
R

I×I×J×J×K×K, and Ψ : (X ,Y)∈R
I×J×K×R

I×J×K→Ψ(X ,Y)∈R
I×I×J×J×K×K×2,

defined by

(Ψ(X ,Y))ijklmn1 = (Ψ1(X ,Y))ijklmn

= xikmyjln + yikmxjln − xjkmyiln − yjkmxiln,(3.5)

(Ψ(X ,Y))ijklmn2 = (Ψ2(X ,Y))ijklmn

= xikmyjln + yikmxjln − xilmyjkn − yilmxjkn.(3.6)

Then we have Ψ(X ,X ) = 0 if and only if X is at most rank 1.
Proof. The “if” part is obvious. For the “only if” part, let us first consider the

condition

xikmxjln − xjkmxiln = 0,(3.7)

following from (3.5). Define a matrix X(1) ∈ R
I×JK by the elementwise equation

(X(1))i,(j−1)K+k = xijk ∀i, j, k.

The columns of X(1) correspond to the different mode-1 vectors of X . Equation (3.7)
is equivalent to

det

((
xikm xiln

xjkm xjln

))
= 0.

Imposing constraint (3.7) for all indices is equivalent to claiming that the determinant
of any (2 × 2) submatrix of X(1) vanishes. This is satisfied if and only if X(1) is at
most rank 1. In other words, (3.7) holds for all index combinations if and only if all
the mode-1 vectors of X are proportional. Similarly, the condition

xikmxjln − xilmxjkn = 0,(3.8)

following from (3.6), is satisfied for all indices if and only if all the mode-2 vectors
are proportional. Consider the matrices Xk ∈ R

I×J , 1 � l � K, defined by the
elementwise equation (Xk)ij = xijk. If all mode-1 vectors are proportional to a
vector A and if all mode-2 vectors are proportional to a vector B, then all matrices
Xk are proportional to ABT :

Xk = ckABT

or

xijk = aibjck

for all indices. Hence, (3.7) and (3.8) guarantee that X is at most rank 1, and vice-
versa.

Remark 3. One could add a third tensor slice to Ψ(X ,Y), as follows:

(Ψ(X ,Y))ijklmn3 = (Ψ3(X ,Y))ijklmn

= xikmyjln + yikmxjln − xiknyjlm − yiknxjlm.
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However, as the proof of Theorem 3.1 demonstrates, this brings in no additional
information. On the other hand, one may arbitrarily choose which two of the tensor
slices Ψ1(X ,Y), Ψ2(X ,Y), Ψ3(X ,Y) are retained. In what follows, we will work with
Ψ(X ,Y) as defined in Theorem 3.1.

Define tensors E1, . . . , ER ∈ R
I×J×K by

(Er)ijk = e(i−1)JK+(j−1)K+k,r ∀i, j, k, r

and let Qrs = Ψ(Er, Es). Due to the bilinearity of Ψ, we have

Qrs =

R∑
t,u=1

(W−1)tr(W
−1)usΨ(At ◦Bt ◦ Ct, Au ◦Bu ◦ Cu).(3.9)

In analogy with section 2.1, we have that linear independence of {Ψ(At ◦ Bt ◦
Ct, Au ◦ Bu ◦ Cu)}1�t<u�R guarantees that any symmetric matrix M of which the
entries satisfy the following set of homogeneous linear equations

R∑
s,t=1

mrsQrs = O,(3.10)

can be decomposed as

M = W · Λ · WT ,(3.11)

in which Λ is diagonal. Equation (3.10) has R linearly independent solutions, which
lead to a simultaneous matrix diagonalization as in (2.13), from which W can be
obtained. Once W is known, A 	 B 	 C can be obtained from (3.4). On the other
hand, from (3.2), (3.3), and (3.4) we have

D = F · W−T .(3.12)

We conclude that the CANDECOMP in (3.1) is unique if D is full column rank
and if the tensors {Ψ(At ◦Bt ◦Ct, Au ◦Bu ◦Cu)}1�t<u�R are linearly independent. In
that case, the canonical components may be computed using Algorithm 3.1. Similar
comments to those regarding Algorithm 2.1 are in order. With respect to step 10, we
mention that Ar, Br, Cr are obtained from the best rank-1 approximation of Gr.

3.2. Generic uniqueness condition. In this section, we check under which
conditions on R both {Dr}1�r�R and {Ψ(At ◦ Bt ◦ Ct, Au ◦ Bu ◦ Cu)}1�t<u�R are
generically linearly independent. Under these conditions, a generic tensor has a unique
CANDECOMP, the components of which can be computed by means of Algorithm
3.1.

We have the following theorem.
Theorem 3.2. The CANDECOMP in (3.1) is generically unique if R � L and

R(R− 1) � IJK(3IJK − IJ − IK − JK − I − J −K + 3)/4.
Proof. In analogy with the proof of Theorem 2.5, we have that A 	 B 	 C and

D are generically full column rank. We will now show that the second inequality of
the theorem generically guarantees linear independence of {Ψ(Ap ◦Bp ◦Cp, Aq ◦Bq ◦
Cq)}p<q.

Consider the following mapping of vectors in R
I2J2K2

to tensors in R
I×I×J×J×K×K :

(F1(X))ijklmn = x(i−1)IJ2K2+(j−1)J2K2+(k−1)JK2+(l−1)K2+(m−1)K+n.
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Algorithm 3.1

In: T ∈ R
I×J×K×L satisfying

T =

R∑
r=1

Ar ◦Br ◦ Cr ◦Dr,

with both {Dr}1�r�R and {Ψ(At ◦Bt ◦ Ct, Au ◦Bu ◦ Cu)}1�t<u�R linearly inde-
pendent.
Out: rank R and CANDECOMP factor matrices A ∈ R

I×R, B ∈ R
J×R, C ∈

R
K×R, D ∈ R

L×R.
1. Stack T in T ∈ R

IJK×L as follows:

(T)(i−1)JK+(j−1)K+k,l = (T )ijkl ∀i, j, k, l.

2. R = rank(T).
3. Compute factorization

T = E · FT ,

with E ∈ R
IJK×R and F ∈ R

L×R full column rank.
4. Stack E in E ∈ R

I×J×K×R as follows:

(E)ijkr = (E)(i−1)JK+(j−1)K+k,r ∀i, j, k, r.

5. Compute Qrs ∈ R
I×I×J×J×K×K×2, 1 � r, s � R, as follows:

(Qrs)ijklmn1 = eikmrejlns + eikmsejlnr − ejkmreilns − ejkmseilnr,

(Qrs)ijklmn2 = eikmrejlns + eikmsejlnr − eilmrejkns − eilmsejknr.

6. Compute the kernel of

R∑
s,t=1

mstQst = O

under the constraint mst = mts ∀s, t. Stack R linearly independent
solutions in symmetric matrices M1, . . . , MR ∈ R

R×R.
7. Determine W ∈ R

R×R that simultaneously diagonalizes M1, . . . , MR:

M1 = W · Λ1 · WT

...

MR = W · ΛR · WT .

8. A 	 B 	 C = E · W and D = F · W−T .
9. Stack A 	 B 	 C in G1, . . . , GR ∈ R

I×J×K as follows:

(Gr)ijk = (A 	 B 	 C)(i−1)JK+(j−1)K+k,r ∀i, j, k.

10. Obtain Ar, Br, Cr from

Gr = Ar ◦Br ◦ Cr ∀r.
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The image vector of Ψ1(Ap ◦ Bp ◦ Cp, Aq ◦ Bq ◦ Cq) under the inverse mapping F−1
1

is given by

(Ap ⊗Aq −Aq ⊗Ap) ⊗ (Bp ⊗Bq ⊗ Cp ⊗ Cq −Bq ⊗Bp ⊗ Cq ⊗ Cp)

= [(II2×I2 − PI2×I2) · (Ap ⊗Aq)]

⊗[(IJ2K2×J2K2 − PJ2×J2 ⊗ PK2×K2) · (Bp ⊗Bq ⊗ Cp ⊗ Cq)]

= [(II2×I2 − PI2×I2) ⊗ (IJ2K2×J2K2 − PJ2×J2 ⊗ PK2×K2)]

·[Ap ⊗Aq ⊗Bp ⊗Bq ⊗ Cp ⊗ Cq]

def
= G1 · [Ap ⊗Aq ⊗Bp ⊗Bq ⊗ Cp ⊗ Cq].(3.13)

Similarly, the image vector of Ψ2(Ap ◦Bp ◦ Cp, Aq ◦Bq ◦ Cq) under F−1
1 is given by

[(II2K2×I2K2 − PI2×I2 ⊗ PK2×K2) ⊗ (IJ2×J2 − PJ2×J2)]

·[II2×I2 ⊗ PK2·J2×J2·K2 ] · [Ap ⊗Aq ⊗Bp ⊗Bq ⊗ Cp ⊗ Cq]

def
= G2 · [Ap ⊗Aq ⊗Bp ⊗Bq ⊗ Cp ⊗ Cq].(3.14)

Define G = (GT
1 GT

2 )T . The tensors {Ψ(Ap ◦ Bp ◦ Cp, Aq ◦ Bq ◦ Cq)}p<q are linearly
independent if and only if a basis of the kernel of G and the vectors Ap ⊗Aq ⊗Bp ⊗
Bq ⊗ Cp ⊗ Cq, p < q, form a linearly independent set. By reasoning as in the proofs
of Lemma 2.4 and Theorem 2.5, we obtain that this is generically guaranteed if

R(R− 1)/2 � rank(G).(3.15)

We will now compute rank(G). Define

K1,1 = {H ∈ R
I×I×J×J×K×K |hijklmn = hjiklmn},

K1,2 = {H ∈ R
I×I×J×J×K×K |hijklmn = hijlknm},

K2,1 = {H ∈ R
I×I×J×J×K×K |hijklmn = hijlkmn},

K2,2 = {H ∈ R
I×I×J×J×K×K |hijklmn = hjiklnm}.

K1 = K1,1 ∩ K1,2, K2 = K2,1 ∩ K2,2, and K = K1 ∩ K2 are the kernels of G1, G2, and
G, respectively. We have

rank (G) = I2J2K2 − dim(K1 ∩ K2),(3.16)

dim(K1 ∩ K2) = dim(K1) + dim(K2) − dim(K1 + K2),(3.17)

dim(K1) = dim(K1,1) + dim(K1,2) − dim(K1,1 + K1,2),(3.18)

dim(K2) = dim(K2,1) + dim(K2,2) − dim(K2,1 + K2,2),(3.19)

dim(K1 + K2) = dim(K1,1 + K1,2 + K2,1 + K2,2)

+ dim(K1,1) + dim(K1,2) + dim(K2,1) + dim(K2,2)

− dim(K1,1 ∩ K1,2) − dim(K1,1 ∩ K2,1) − dim(K1,1 ∩ K2,2)

− dim(K1,2 ∩ K2,1) − dim(K1,2 ∩ K2,2) − dim(K2,1 ∩ K2,2)

+ dim(K1,2 ∩ K2,1 ∩ K2,2) + dim(K1,1 ∩ K2,1 ∩ K2,2)

+ dim(K1,1 ∩ K1,2 ∩ K2,2) + dim(K1,1 ∩ K1,2 ∩ K2,1)

− dim(K1,1 ∩ K1,2 ∩ K2,1 ∩ K2,2).(3.20)



CANONICAL DECOMPOSITION AND MATRIX DIAGONALIZATION 661

By counting degrees of freedom we obtain

dim(K1,1 ∩ K2,1) =
I(I + 1)J(J + 1)K2

4
,(3.21)

dim(K1,1 ∩ K2,2) =
I(I + 1)K(K + 1)J2

4
,(3.22)

dim(K1,2 ∩ K2,1) =
J(J + 1)K(K + 1)I2

4
,(3.23)

dim(K1,2 ∩ K2,2) =
IJK(IJK + I + J + K)

4
,(3.24)

dim(K1,1 ∩ K1,2 ∩ K2,1 ∩ K2,2) = dim(K1,2 ∩ K2,1 ∩ K2,2)(3.25)

= dim(K1,1 ∩ K2,1 ∩ K2,2)(3.26)

= dim(K1,1 ∩ K1,2 ∩ K2,2)(3.27)

= dim(K1,1 ∩ K1,2 ∩ K2,1)(3.28)

=
IJK(I + 1)(J + 1)(K + 1)

8
.(3.29)

The second condition in the theorem follows from combining (3.15)–(3.29).

4. Numerical experiments. In the numerical experiments in this section, ten-
sors are generated in the following way:

T̃ =
T

‖T ‖ + σN
N

‖N‖ ,(4.1)

in which T is exactly rank R and can be decomposed as in (1.2). The second term
in (4.1) is a noise term. The entries of N are drawn from a zero-mean unit-variance
Gaussian distribution and σN controls the noise level.

Monte Carlo experiments consisting of 100 runs are carried out. The canonical
components are estimated in three different ways. First, Algorithm 2.1 is applied. The
simultaneous matrix diagonalization in step 4 is realized by means of the extended
QZ-iteration proposed in [42]. This iteration is initialized by means of the generalized
Schur decomposition [21] of M1 and M2 in (2.13). Denote subsequent estimates of

Q by Q̂k and Q̂k+1. Then the algorithm is stopped when the Frobenius norm of
the off-diagonal part of Q̂H

k+1Q̂k drops below 1e − 4. Second, the ALS algorithm
described in [6, 9, 38, 41] is applied. It is initialized with 10 different random starting

values. Let U(N) be obtained from U(N) by dividing all columns by their Frobenius
norm. The ALS algorithm is stopped when the Frobenius norm of the difference of

two subsequent estimates Û
(N)

k and Û
(N)

k+1 of U(N), optimally ordered and scaled,
drops below a certain threshold εALS ; at most 500 iteration steps are carried out. Of
the 10 results that are obtained, the best is retained. Third, we used the extended
QZ-result to initialize the ALS algorithm.

A condition number for T is defined as follows:

κ(A) = cond([λ1 U
(1)
1 ⊗ U

(2)
1 ⊗ · · · ⊗ U

(N)
1 , . . . , λR U

(1)
R ⊗ U

(2)
R ⊗ · · · ⊗ U

(N)
R ]).

This definition generalizes the standard 2-norm condition number of a matrix, which

is obtained by taking λr, U
(1)
r , and U

(2)
r equal to the singular values, left singular

vectors, and right singular vectors, respectively. The value of κ(A) indicates how
close the canonical rank-1 components are to an (R − 1)-dimensional subspace. For
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Fig. 4.1. Relative error obtained in the first experiment (R = 4). Left: mean. Right: median.

instance, if two rank-1 terms are close, the condition number will be large. The
condition number will also be large if the norm of one of the rank-1 terms is small.

The accuracy is measured in terms of the relative error e= ‖U(N)− Û
(N)‖/‖U(N)‖,

in which Û
(N)

is the estimate of U(N), optimally ordered and scaled.
In a first experiment, we consider T̃ ∈ R

3×4×12. The entries of U(1), U(2), and
U(3) are drawn from a zero-mean unit-variance Gaussian distribution. We look at the
effect of varying the noise level σN on the error e. We consider two cases: R = 4 and
R = 6. Note that uniqueness of the decomposition in the case R = 6 is not covered
by Theorem 1.9. In the case R = 4, we set εALS = 1e− 7, and in the case R = 6, we
choose εALS = 1e− 8.

The results for R = 4 are plotted in Figure 4.1. The mean ALS accuracy is
much worse than the mean accuracy obtained for Algorithm 2.1. To a large extent,
this is due to the fact that in a number of cases, in particular those in which T
was ill-conditioned, the ALS algorithm did not find the global optimum or did not
converge in 500 steps. The mean and the standard deviations of κ(T ), over all tensor
realizations, were both equal to 5. Exceptionally bad results do not influence the
median curves. By choosing the threshold εALS as small as 1e−7, a median accuracy
similar to that of the extended QZ-iteration was obtained. However, this made the
computational cost of the best ALS iteration (out of 10) typically a factor 500 greater
than that of Algorithm 2.1. We conclude that Algorithm 2.1 was more robust and
less computationally demanding than the ALS algorithm. An additional ALS stage,
after the extended QZ-iteration, did not allow for a significant improvement of the
accuracy.

The results for R = 6 are plotted in Figure 4.2. Clearly, the ALS algorithm did
not find the solution. Moreover, the computational cost of the best ALS iteration (out
of 10), was typically three orders of magnitude higher than that of Algorithm 2.1. We
conclude that this problem was too hard for the ALS approach, while Algorithm 2.1
performed well. An additional ALS stage, after the extended QZ-iteration, allowed
us to marginally improve the accuracy.

In a second experiment, we specifically consider the influence of the condition
number. Tensors T̃ ∈ R

3×3×9 are generated as in (4.1), in which now U(1), U(2),
U(3) are given by

U(1) = U(2) =

⎛
⎝

1 0 0 1/
√

3

0 1 0 1/
√

3

0 0 1 1/
√

3

⎞
⎠ ,



CANONICAL DECOMPOSITION AND MATRIX DIAGONALIZATION 663

2 2.5 3 3.5 4 4.5 5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Alg. 2.1

ALS

Alg. 2.1 + ALS

− log σN

e

2 2.5 3 3.5 4 4.5 5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Alg. 2.1

ALS

Alg. 2.1 + ALS

− log σN

e

Fig. 4.2. Relative error obtained in the first experiment (R = 6). Left: mean. Right: median.
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Fig. 4.3. Relative error obtained in the second experiment. Left: mean. Right: median.

U(3) =

⎛
⎜⎜⎝

−1 −1 −1 1 1 1 1 1 1
1 1 1 −1 −1 −1 1 1 1
1 1 1 1 1 1 −1 −1 −1
1 −1 1 −1 1 −1 1 −1 1

⎞
⎟⎟⎠

T

.

Furthermore, we have λ1 = λ2 = λ3 = 1 and λ4 = 21−n. The condition number κ(T )
is then approximately equal to 2n−1. By varying n between 1 and 6, we make κ(T )
vary between about 1 and 32. The noise amplitude σN is fixed to 1e − 3. We set
εALS = 1e− 7; increasing this tolerance decreases the accuracy obtained by the ALS
algorithm. The results are shown in Figure 4.3. We see that, for increasing values of
κ(T ), ALS breaks down while Algorithm 2.1 continues to work properly. Moreover,
the computational cost of the best ALS iteration (out of 10) was typically a factor
500 greater than that of Algorithm 2.1. An additional ALS stage after the extended
QZ-iteration did not improve the accuracy.

In a third experiment we consider fourth-order tensors T̃ ∈ R
3×2×2×12. The en-

tries of U(1), U(2), U(3), and U(4) are drawn from a zero-mean unit-variance Gaussian
distribution. We look at the effect of varying the noise level σN on the error e. We
consider the case R = 4. We set εALS = 1e−7; increasing this tolerance decreases the
accuracy obtained by the ALS algorithm. The results are shown in Figure 4.4. Similar
conclusions can be drawn to those in the first experiment. The computational cost of
the best ALS iteration (out of 10) was typically two orders of magnitude greater than
that of Algorithm 2.1. An additional ALS stage after the extended QZ-iteration did
not improve the accuracy.
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Fig. 4.4. Relative error obtained in the third experiment. Left: mean. Right: median.

5. Conclusion. In this paper we have considered the CANDECOMP of higher-
order tensors of which at least one dimension is not smaller than the rank. This
problem is key to many applications. We have explicitly addressed the case of third-
and fourth-order tensors. Along these lines, the approach can be generalized to tensors
of arbitrary order.

Under the working assumptions of this paper, the rank of a tensor is equal to
the rank of a matrix representation of that tensor. Hence, it does not have to be
estimated by means of trial and error.

We have derived a new deterministic condition that guarantees uniqueness of the
CANDECOMP. The proof leads to a new algorithm in which the canonical compo-
nents are obtained from a simultaneous matrix diagonalization by congruence. Numer-
ical experiments showed that this algorithm is superior to the standard ALS algorithm
with random initializations, especially when the problem is not well-conditioned or
involves a high number of terms.

From the deterministic condition a simple bound on the tensor rank has been
derived under which the CANDECOMP is generically unique. Assuming an (I1 ×
I2 × · · · × IN )-tensor A of which rank(A) � IN , the bound is roughly proportional to
the product of I1, . . . , IN−1. This is a much weaker constraint than (1.7), in which
the bound is up to a constant equal to the sum of I1, . . . , IN−1.

Acknowledgment. We would like to thank Dr. J. Dehaene (K.U.Leuven) for
discussions that helped to improve the presentation of section 2.2.
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GENERALIZED HADAMARD PRODUCT AND THE DERIVATIVES
OF SPECTRAL FUNCTIONS∗
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Abstract. Real valued functions, F (X), on a symmetric matrix argument are called spectral if
F (UTXU) = F (X) for every orthogonal matrix U and X ∈ domF . We are interested in a description
of the higher order derivatives (when they exist) of F with respect to X. Formulae for the gradient
and the Hessian of F are given in [A. S. Lewis, Math. Oper. Res., 21 (1996), pp. 576–588] and
[A. S. Lewis and H. S. Sendov, SIAM Matrix Anal. Appl., 23 (2001), pp. 368–386]. In this work we
present common features of these two formulae that are preserved in the higher order derivatives.

Key words. spectral function, twice differentiable, higher order derivatives, eigenvalues, sym-
metric function, perturbation theory, multilinear algebra
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1. Introduction. Spectral functions are real valued functions on a symmetric
matrix argument invariant under conjugation by orthogonal matrices. More precisely,
F : Sn → R is spectral if

F (UTXU) = F (X)

for all X ∈ domF and U ∈ On—the orthogonal group on R
n. By restricting F to

the subspace of diagonal matrices, it is not difficult to see that spectral functions can
be represented by the composition

F = f ◦ λ,

where f : R
n → R is a symmetric function (f(Px) = f(x) for any permutation matrix

P and vector x), and λ : Sn → R
n is the eigenvalue map λ(X) = (λ1(X), . . . , λn(X))—

the vector of eigenvalues of X. We assume throughout that

λ1(X) ≥ · · · ≥ λn(X).

The study of spectral functions generalizes the study of the individual eigenvalues
of a symmetric matrix since if we let

φk(x) : R
n → R,

φk(x) := the kth largest element of {x1, . . . , xn},

then φk(x) is symmetric and

λk(X) = (φk ◦ λ)(X).

Various differential properties of eigenvalues have been studied for a long time.
They find a lot of applications in areas ranging from matrix perturbation theory [17]
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and eigenvalue optimization [10], [9] to quantum mechanics [4]. The Taylor directional
expansion (when it exists) of the eigenvalues of symmetric matrices depending on one
scalar parameter is described in the monograph by Kato [3]. This naturally raises
questions about the differentiability properties of the more general spectral functions.
Many such questions have already been investigated in the literature, and the answers
to most of them follow the same pattern: f ◦λ has a property at the matrix X if and
only if f has the same property at the vector λ(X). In this way, properties of the
function f ◦ λ on Sn are reduced to properties of the simpler function f on R

n.
Some of the properties of f ◦ λ at (or around) a matrix X that hold if and only

if f has the same property at (or around) the vector λ(X) are as follows:
(i) F is lower semicontinuous at X if and only if f is at λ(X) [6].
(ii) F is lower semicontinuous and convex if and only if f is [2], [6].
(iii) The symmetric function corresponding to the Fenchel conjugate of F is the

Fenchel conjugate of f [14], [6]. (A similar statement holds for the recession
function of F [14].)

(iv) F is pointed, has good asymptotic behavior, or is a barrier function on the
set λ−1(C) if and only if f is such on C [14].

(v) F is Lipschitz around X if and only if f is such around λ(X) [7].
(vi) F is (continuously) differentiable at X if and only if f is at λ(X) [7].
(vii) F is strictly differentiable at X if and only if f is at λ(X) [7], [8].
(viii) ∇(f ◦ λ) is semismooth at X if and only if ∇f is at λ(X) [13].
(ix) If f is lower semicontinuous and convex, then F is twice epidifferentiable at

X relative to Ω if and only if f is twice epidifferentiable at λ(X) relative to
λ(Ω) [18], where Ω is an arbitrary epigradient.

(x) F has a quadratic expansion at X if and only if f has a quadratic expansion
at λ(X) [12].

(xi) F is twice (continuously) differentiable at X if and only if f is twice (contin-
uously) differentiable at λ(X) [11].

(xii) F ∈ C∞ at X ⇔ f ∈ C∞ at λ(X) [1].
(xiii) F is analytic at X if and only if f is at λ(X) [19].
(xiv) F is a polynomial of the entries of X if and only if f is a polynomial. This is

a consequence of the Chevalley restriction theorem [20, p. 143].
There are of course exceptions to that pattern. For example, f being directionally

differentiable at λ(X) does not imply that f ◦ λ is such at X; see [7].
Formulae for the gradient and the Hessian of the spectral function F given in

terms of the derivatives of the symmetric function f were derived in [7] and [11]. In
order to reproduce them here we need a bit more notation. For any vector x in R

n,
denote by Diagx the diagonal matrix with vector x on the main diagonal, and denote
by diag : Mn → R

n its dual operator defined by diag (X) = (x11, . . . , xnn). Recall
that the Hadamard product of two matrices A = [Aij ] and B = [Bij ] of the same
dimension is the matrix A ◦B = [AijBij ]. Thus we have

∇(f ◦ λ)(X) = V
(
Diag∇f(λ(X))

)
V T ,(1)

∇2(f ◦ λ)(X)[H1, H2] = ∇2f(λ(X))[diag H̃1,diag H̃2] + 〈A(λ(X)), H̃1 ◦ H̃2〉,(2)

where V is any orthogonal matrix such that X = V
(
Diagλ(X)

)
V T is the ordered

spectral decomposition of X; H̃i = V THiV for i = 1, 2, and x ∈ R
n → A(x) is a

matrix valued map that is continuous if ∇2f(x) is.
In [11] a conjecture was made that F is k-times (continuously) differentiable at

X if and only if f is such at λ(X). When that happens, a natural issue is to find a
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practical description of the kth derivative of F and an efficient way to compute it. In
addition, explicit formulae for the first kth derivatives of F generalize the terms in the
kth order Taylor directional expansion (when it exists) of the individual eigenvalues,
given in [3].

This work aims to generalize some common features in formulae (1) and (2)
that are preserved in the higher order derivatives of f ◦ λ. The language we present
simplifies the description of the higher order derivatives of spectral functions and
offers a systematic way for evaluating them when those derivatives are viewed as
multilinear functions on the space of symmetric matrices. In section 2 we introduce
a multilinear map on the space of square matrices, which generalizes the Hadamard
product between two matrices. In section 4 we present its multilinear dual operator,
which generalizes the Diag operator. The connections with the derivatives of spectral
functions are indicated throughout.

The current paper is the first of three. In [15] we formulate calculus-type rules
for the interaction between that generalization of the Hadamard product and the
eigenvalues of symmetric matrices. Then in [16] we describe how to compute the
higher order derivatives of spectral functions in two general cases. For example, we
show that Conjecture 4.1 holds for the derivatives of any function (not necessarily
symmetric) of the eigenvalues of symmetric matrices at a matrix X with distinct
eigenvalues. And second, we show that it holds for the derivatives of separable spectral
functions at an arbitrary symmetric matrix X. (Separable spectral functions are those
arising from symmetric functions f(x) = g(x1) + · · ·+ g(xn) for some function g on a
scalar argument.) The computation of the maps Aσ(x) (see (16) below) in these two
cases is particularly simple.

2. Generalizations of the Hadamard product. By {Hpq : 1 ≤ p, q ≤ n} we
denote the standard basis of the space Mn of all n × n real matrices. That is, the
matrices Hpq are such that (Hpq)

ij is 1 if (i, j) = (p, q), and 0 otherwise.
The Hadamard product, H1 ◦ H2, between two matrices H1 and H2 from Mn

is a matrix valued function on two matrix arguments, linear in each argument sep-
arately. Thus, it is uniquely determined by its values on the pairs of basic matrices
(Hp1q1 , Hp2q2). On such basic pairs the Hadamard product is defined as

(Hp1q1 ◦Hp2q2)
ij =

{
1 if i = p1 = p2 and j = q1 = q2,
0 otherwise.

An analogous object is obtained if a cross Hadamard product is defined as follows:

(Hp1q1 ◦(12) Hp2q2)
ij :=

{
1 if i = p1 = q2 and j = p2 = q1,
0 otherwise,

and then extended to a bilinear function on Mn ×Mn. The Hadamard product and
the cross Hadamard product are essentially the same:

Hp1q1 ◦(12) Hp2q2 = Hp1q1 ◦HT
p2q2 = Hp1q1 ◦Hq2p2

.

These observations can be generalized in the following way. Denote by N the set
of all natural numbers and by Nk the set {1, 2, . . . , k}. A k-tensor on R

n is a real
valued map on R

n × · · · × R
n (k-times) linear in each argument separately. When a

basis in R
n is fixed, a k-tensor can be viewed as an n × · · · × n (k-times) “block” of

numbers. We index the elements of a tensor in a similar way to the entries of a matrix;
thus by T i1...ik we denote the (i1, . . . , ik)th entry of T . The space of all k-tensors on
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R
n will be denoted by T k,n. The set of all permutations on Nk as well as the set of all

n× n permutation matrices will be denoted by P k. (It will be clear from the context
which one we mean.)

Definition 2.1. For a fixed permutation σ on Nk, define the σ-Hadamard product
between k basic matrices, Hp1q1 , Hp2q2 , . . . , Hpkqk , to be a k-tensor on R

n as follows:

(Hp1q1 ◦σ Hp2q2 ◦σ · · · ◦σ Hpkqk)i1i2...ik =

{
1 if is = ps = qσ(s) ∀s = 1, . . . , k,
0 otherwise.

Now, extend this product to a k-tensor valued map on k matrix arguments, linear in
each of them separately.

Another way to write the above definition is using the Kronecker delta symbol.
Recall that δij is equal to 1 if i = j, and 0 otherwise. Thus,

(Hp1q1 ◦σ Hp2q2 ◦σ · · · ◦σ Hpkqk)i1i2...ik = δi1p1
δi1qσ(1)

· · · δikpk
δikqσ(k)(3)

= δi1p1δp1qσ(1)
· · · δikpk

δpkqσ(k)
.

The next lemma gives the formula for the general entry of the σ-Hadamard prod-
uct between arbitrary matrices.

Lemma 2.2. The σ-Hadamard product of arbitrary matrices is given by

(H1 ◦σ H2 ◦σ · · · ◦σ Hk)
i1i2...ik = H

i1iσ−1(1)

1 · · ·Hikiσ−1(k)

k

= H
iσ(1)i1
σ(1) · · ·Hiσ(k)ik

σ(k) .

Proof. Let σ be a permutation on Nk and let H1, . . . , Hk be arbitrary matrices.
Since the product is linear in each argument separately, we compute

(H1 ◦σ H2 ◦σ · · · ◦σ Hk)
i1i2...ik

=

n,n∑
p1,q1=1

· · ·
n,n∑

pk,qk=1

Hp1q1
1 · · ·Hpkqk

k (Hp1q1 ◦σ Hp2q2 ◦σ · · · ◦σ Hpkqk)i1i2...ik

=

n,n∑
p1,q1=1

· · ·
n,n∑

pk,qk=1

Hp1q1
1 · · ·Hpkqk

k δi1p1δi1qσ(1)
· · · δikpk

δikqσ(k)

=

n,n∑
p1,q1=1

· · ·
n,n∑

pk,qk=1

Hp1q1
1 · · ·Hpkqk

k δi1p1δiσ−1(1)q1
· · · δikpk

δiσ−1(k)qk

= H
i1iσ−1(1)

1 · · ·Hikiσ−1(k)

k

= H
iσ(1)i1
σ(1) · · ·Hiσ(k)ik

σ(k) .

Corollary 2.3. When the first k− 1 of the matrices involved in the product are
basic, we get

(Hp1q1 ◦σ · · · ◦σ Hpk−1qk−1
◦σ H)i1i2...ik

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Hikik
( k−1∏

s=1

δispsδisqσ(s)

)
if k = σ−1(k),

Hiσ(l)il
(
δilpl

δikqσ(k)

)( k−1∏
s=1
s �=l

δispsδisqσ(s)

)
if l := σ−1(k) �= k.
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Proof. Suppose first that l := σ−1(k) �= k. Using the result of the previous lemma
we calculate

(Hp1q1 ◦σ · · · ◦σ Hpk−1qk−1
◦σ H)i1i2...ik = H

i1iσ−1(1)
p1q1 · · ·Hik−1iσ−1(k−1)

pk−1qk−1 Hikiσ−1(k)

= δi1p1
δiσ−1(1)q1

· · · δik−1pk−1
δiσ−1(k−1)qk−1

Hikiσ−1(k)

= δi1p1
δi1qσ(1)

· · · δil−1pl−1
δil−1qσ(l−1)

Hiσ(l)ilδil+1pl+1
δil+1qσ(l+1)

· · · δik−1pk−1
δik−1qσ(k−1)

(
δilpl

δikqσ(k)

)
.

The case l = k follows as well.
The above corollary can be easily modified when the matrix H is in an arbitrary

position in the product.
We often represent a permutation by its cycle decomposition. For example,

(123)(45) is the permutation on N5 that maps 1 to 2, 2 to 3, 3 to 1, in addition
to 4 to 5 and 5 to 4.

Example 2.4. We already saw that when k = 2 and σ = (12) the σ-Hadamard
product is essentially the ordinary Hadamard product:

H1 ◦(12) H2 = H1 ◦HT
2 .

If we restrict our attention to the space of symmetric matrices, then the two products
coincide. In the case when σ = (1)(2) we get

H1 ◦(1)(2) H2 = (diagH1)(diagH2)
T .

Example 2.5. In the case k = 1, there is one permutation, σ = (1), on the
elements of the set N1, and the σ-Hadamard product corresponding to it is a vector
valued linear map:

(◦σHp1q1)
i1 =

{
1 if i1 = p1 = q1,
0 otherwise

= (diagHq1p1
)i1 .

Extending by linearity we get

◦σH = diagH.

The standard scalar product between any two k-tensors T1 and T2 is given by

〈T1, T2〉 =

n,...,n∑
i1,...,ik=1

T i1...ik
1 T i1...ik

2 .

Lemma 2.6. Let T be a k-tensor on R
n, and let H be a matrix in Mn. Let

Hp1q1 , . . . , Hpk−1qk−1
be basic matrices in Mn, and let σ be a permutation on Nk.

Then the following identities hold.
(i) If σ−1(k) = k, then

〈T,Hp1q1 ◦σ · · · ◦σ Hpk−1qk−1
◦σ H〉 =

( k−1∏
t=1

δptqσ(t)

) n∑
t=1

T p1...pk−1tHtt.
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(ii) If σ−1(k) = l, where l �= k, then

〈T,Hp1q1 ◦σ · · · ◦σ Hpk−1qk−1
◦σ H〉 =

( k−1∏
t=1
t�=l

δptqσ(t)

)
T p1...pk−1qσ(k)Hqσ(k)pσ−1(k) .

Proof. Using the definitions and observation (3), we calculate

〈T,Hp1q1 ◦σ Hp2q2 ◦σ · · · ◦σ Hpk−1qk−1
◦σ H〉

=

n,n∑
pk,qk=1

Hpkqk〈T,Hp1q1 ◦σ Hp2q2 ◦σ · · · ◦σ Hpk−1qk−1
◦σ Hpkqk〉

=

n,n∑
pk,qk=1

Hpkqk

n,...,n∑
i1,...,ik=1

T i1...ik(Hp1q1 ◦σ Hp2q2 ◦σ · · · ◦σ Hpk−1qk−1
◦σ Hpkqk)i1...ik

=

n,n∑
pk,qk=1

Hpkqk

n,...,n∑
i1,...,ik=1

T i1...ikδi1p1
δp1qσ(1)

· · · δikpk
δpkqσ(k)

=

n,n∑
pk,qk=1

HpkqkT p1...pkδp1qσ(1)
· · · δpkqσ(k)

.

The result follows easily by considering the two cases separately.

3. A partial order on P k and a property of the σ-Hadamard product.
Given two permutations σ, μ on Nk, we say that σ refines μ if for every s ∈ Nk there
is an r ∈ Nk such that

{σl(s) : l = 1, 2, . . . } ⊆ {μl(r) : l = 1, 2, . . . },

where σl(s) = σ(σ(· · · (σ(s)) · · · ), l times. Informally, σ refines μ if the elements of
every cycle of σ are contained in a cycle of μ; thus, the cycles of σ partition the cycles
of μ. If σ refines μ, we denote it by

μ � σ.

The refinement relationship is a preorder on P k (it is reflexive and transitive, but
not antisymmetric). With respect to this preorder, the identity permutation is the
biggest element (that is, bigger than any other element) and every permutation with
only one cycle is a smallest element (that is, smaller than any other element).

There is a natural map between the set P k and the diagonal subspaces of R
k,

given as follows:

D(σ) = {x ∈ R
k : xs = xσ(s) ∀s ∈ Nk}.

This map is onto but is not one-to-one since, for example, when k = 3, D((123)) =
D((132)) = {x ∈ R

3 : x1 = x2 = x3}. The image of the identity permutation is R
k.

The following relationship helps to visualize the partial order on P k:

μ � σ ⇔ D(μ) ⊆ D(σ).

Given a permutation μ ∈ P k and a tensor T ∈ T k,n, we denote by Pμ(T ) the
tensor in T k,n defined by

(Pμ(T ))i1...ik =

{
T i1...ik if is = iμ(s) ∀s ∈ Nk,
0 otherwise.
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Informally, the tensor Pμ(T ) preserves the entries of T lying on the “subspace” D(μ)
of T and replaces the rest of the entries with zeros.

Next is the main result of this section. It describes exactly when one can “trans-
fer” diagonal “subspaces” of T between different σ-Hadamard products.

Theorem 3.1. Let σ1, σ2, and μ be three permutations on Nk. Then the identity

〈Pμ(T ), H1 ◦σ1 · · · ◦σ1 Hk〉 = 〈Pμ(T ), H1 ◦σ2 · · · ◦σ2 Hk〉(4)

holds for any matrices H1, . . . , Hk and any tensor T in T k,n if and only if μ � σ−1
2 ◦σ1.

Proof. Since both sides are linear in each of the matrices H1, . . . , Hk separately,
it is enough to prove the theorem when these matrices are basic. In other words, we
show that

〈Pμ(T ), Hp1q1 ◦σ1 · · · ◦σ1 Hpkqk〉 = 〈Pμ(T ), Hp1q1 ◦σ2 · · · ◦σ2 Hpkqk〉

for any indexes p1, . . . , pk, q1, . . . , qk and any T ∈ T k,n if and only if μ � σ−1
2 ◦ σ1.

Direct calculation gives

〈Pμ(T ), Hp1q1 ◦σ1
· · · ◦σ1

Hpkqk〉

=

n,...,n∑
i1,...,ik=1

(Pμ(T ))i1...ik(Hp1q1 ◦σ1
· · · ◦σ1

Hpkqk)i1...ik

=

n,...,n∑
i1,...,ik=1

(Pμ(T ))i1...ikH
i1iσ−1

1 (1)

p1q1 · · ·H
ikiσ−1

1 (k)

pkqk

=

n,...,n∑
i1,...,ik=1

(Pμ(T ))i1...ikδi1p1δi1qσ1(1)
· · · δikpk

δikqσ1(k)

= (Pμ(T ))p1...pkδp1qσ1(1)
· · · δpkqσ1(k)

.

The last expression is equal to T p1...pk when ps = pμ(s) = qσ1(s) for all s ∈ Nk, and is
equal to 0 otherwise.

Analogously, the right-hand side of (4) is

〈Pμ(T ), Hp1q1 ◦σ2
· · · ◦σ2 Hpkqk〉 = (Pμ(T ))p1...pkδp1qσ2(1)

· · · δpkqσ2(k)
,

which is equal to T p1...pk when ps = pμ(s) = qσ2(s) for all s ∈ Nk, and is equal to 0
otherwise.

Suppose that μ � σ−1
2 ◦ σ1. We consider three cases.

If there is an s0 such that ps0 �= pμ(s0), then both sides of (4) are zero and the
equality is trivial.

If ps = pμ(s) for all s ∈ Nk but for some s0 we have that ps0 �= qσ1(s0), then it is not
possible to have ps = qσ2(s) for all s ∈ Nk. Indeed, suppose on the contrary that ps =
qσ2(s) for all s ∈ Nk. Letting r = σ2(s) we get pσ−1

2 (r) = qr for every r ∈ Nk. Therefore

pσ−1
2 (σ1(s))

= qσ1(s) for every s ∈ Nk and in particular pσ−1
2 (σ1(s0))

= qσ1(s0) �= ps0 .

But μ � σ−1
2 ◦ σ1 implies that σ−1

2 (σ1(s0)) and s0 belong to the same cycle of μ, that
is, μl(s0) = σ−1

2 (σ1(s0)) for some l ∈ N. By the assumption in this case we have that
ps0 = pμl(s0) for every l, which is a contradiction. Thus, for some s1 ∈ Nk we have
ps1 �= qσ2(s1), and again both sides of (4) are equal to zero.

Suppose finally that ps = pμ(s) = qσ1(s) for all s ∈ Nk. Then the left-hand side
of (4) is equal to T p1...pk . We are done if we show that ps = qσ2(s) for every s ∈ Nk.
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Suppose this is not true, that is, for some s0, ps0 �= qσ2(s0). Then for r0 = σ2(s0)

we have pσ−1
2 (r0)

�= qr0 , and for s1 = σ−1
1 (r0) we have pσ−1

2 (σ1(s1))
�= qσ1(s1). The

condition μ � σ−1
2 ◦ σ1 implies that σ−1

2 (σ1(s1)) and s1 belong to the same cycle of
μ, and we reach a contradiction as in the previous case.

To prove the opposite direction of the theorem, suppose that

(Pμ(T ))p1...pkδp1qσ1(1)
· · · δpkqσ1(k)

= (Pμ(T ))p1...pkδp1qσ2(1)
· · · δpkqσ2(k)

(5)

for every choice of the indexes p1, . . . , pk and q1, . . . , qk and every T . Take T to be
such that T i1...ik �= 0 for every choice of the indexes i1, . . . , ik satisfying is = iμ(s)

for every s ∈ Nk. Suppose that μ � σ−1
2 ◦ σ1. This means that there is a number

s0 ∈ Nk such that σ−1
2 (σ1(s0)) and s0 are not in the same cycle of μ. Choose the

indexes p1, . . . , pk and q1, . . . , qk so that ps = pμ(s) and ps = qσ1(s) for every s ∈ Nk.
Moreover, choose the indexes p1, . . . , pk so that if s, r ∈ Nk are not in the same cycle
of μ, then ps �= pr. This in particular means that

pσ−1
2 (σ1(s0))

�= ps0 .(6)

With those choices, the left-hand side of (5) is equal to T p1...pk �= 0. We reach a
contradiction by showing that for some r0, pr0 �= qσ2(r0), implying that the right-hand
side of (5) is zero. Suppose on the contrary that pr = qσ2(r) for every r ∈ Nk. Then
pσ−1

2 (σ1(s))
= qσ1(s) = ps for every s ∈ Nk, contradicting (6). We are done.

Notice that if μ � ν, then for arbitrary permutation σ in P k we have

μ � ν−1 = (σ ◦ ν)−1 ◦ σ.

This observation leads to the next corollary.
Corollary 3.2. Suppose μ and ν are permutations in P k such that μ � ν.

Then for an arbitrary permutation σ ∈ P k, any matrices H1, . . . , Hk, and a tensor T
in T k,n, we have the identity

〈Pμ(T ), H1 ◦σ · · · ◦σ Hk〉 = 〈Pμ(T ), H1 ◦σ◦ν · · · ◦σ◦ν Hk〉.

In particular, the result holds when ν = μ or ν = μ−1.
It is useful to see explicitly the conclusions of the above theorem when k ≤ 3. We

summarize them in the next corollary.
Corollary 3.3. For any T ∈ T 2,n and any two matrices H1 and H2 we have

〈P
(12)

(T ), H1 ◦(1)(2) H2〉 = 〈P
(12)

(T ), H1 ◦(12) H2〉.

For any T ∈ T 3,n and any three matrices H1, H2, and H3 we have

〈P
(13)

(T ), H1 ◦(132) H2 ◦(132) H3〉 = 〈P
(13)

(T ), H1 ◦(12)(3) H2 ◦(12)(3) H3〉,
〈P

(23)
(T ), H1 ◦(123) H2 ◦(123) H3〉 = 〈P

(23)
(T ), H1 ◦(12)(3) H2 ◦(12)(3) H3〉

and

〈P
(13)

(T ), H1 ◦(13)(2) H2 ◦(13)(2) H3〉 = 〈P
(13)

(T ), H1 ◦(1)(2)(3) H2 ◦(1)(2)(3) H3〉,
〈P

(23)
(T ), H1 ◦(1)(23) H2 ◦(1)(23) H3〉 = 〈P

(23)
(T ), H1 ◦(1)(2)(3) H2 ◦(1)(2)(3) H3〉.

Finally, for any two permutations σ1, σ2 on N3 we have

〈P
(123)

(T ), H1 ◦σ1 H2 ◦σ1 H3〉 = 〈P
(123)

(T ), H1 ◦σ2 H2 ◦σ2 H3〉.



HADAMARD PRODUCTS AND SPECTRAL FUNCTIONS 675

Example 3.4. Let us have another look at formula (1) for the first derivative of
a spectral function at X. Let X = V (Diag λ(X))V T and Ẽ = V TEV , where E is a
symmetric matrix. Using the definitions and notation in the previous subsection, we
have

∇(f ◦ λ)(X)[E] = 〈V
(
Diag∇f(μ)

)
V T , E〉

= 〈∇f(μ),diag Ẽ〉
= 〈∇f(μ), ◦

(1)
Ẽ〉.

Example 3.5. Let X be a symmetric matrix with ordered spectral decomposition
X = V (Diag λ(X))V T . Take two symmetric matrices E1 and E2 and let Ẽi = V TEiV
for i = 1, 2. As we saw in the examples in section 2, we have

E1 ◦(1)(2) E2 = (diagE1)(diagE2)
T and E1 ◦(12) E2 = E1 ◦ E2.

Then formula (2) for the Hessian of the spectral function f ◦ λ becomes

∇2(f ◦ λ)(X)[E1, E2] = ∇2f(λ(X))[diag Ẽ1,diag Ẽ2] + 〈A(λ(X)), Ẽ1 ◦ Ẽ2〉
= 〈∇2f(λ(X)), Ẽ1 ◦(1)(2) Ẽ2〉 + 〈A(λ(X)), Ẽ1 ◦(12) Ẽ2〉.

These examples support the following conjecture, describing the structure of the
higher order derivatives of spectral functions. (More instances of when the conjecture
holds are given after its equivalent reformulation in Conjecture 4.1.)

Conjecture 3.1. The spectral function f ◦λ is k-times (continuously) differentiable
at X if and only if f(x) is k-times (continuously) differentiable at the vector λ(X).
Moreover, there are k-tensor valued maps Aσ : R

n → T k,n, σ ∈ P k, depending only
on the symmetric function f , such that for any symmetric matrices E1, . . . , Ek, we
have

∇k(f ◦ λ)(X)[E1, . . . , Ek] =
∑
σ∈Pk

〈Aσ(λ(X)), Ẽ1 ◦σ · · · ◦σ Ẽk〉,(7)

where X = V (Diag λ(X))V T and Ẽi = V TEiV for i = 1, . . . , k.
The left-hand side of formula (7) is the kth derivative of the spectral function

evaluated at the matrices E1, . . . , Ek, while on the right side these matrices are con-
jugated by V and “jumbled” into the σ-Hadamard products Ẽ1 ◦σ · · · ◦σ Ẽk. Our
goal in the next section is to identify more clearly the multilinear operator on the
right-hand side of (7) acting on the matrices E1, . . . , Ek.

4. The Diag σ operator. Recall that the adjoint of the linear operator Diag :
R

n → Mn is the operator diag : Mn → R
n. That is, we have the identity

〈Diag x,H〉 = 〈x,diagH〉(8)

for any vector x and any matrix H. It is also easy to verify that for any vector x,
matrix H, and orthogonal matrix U , we have

〈U(Diag x)UT , H〉 = 〈x,diag(UTHU)〉 = 〈x, ◦
(1)

(UTHU)〉,(9)

where the last equality is trivial from Example 2.5.
In this section we generalize (8) and (9) for an arbitrary k-tensor in place of x

and an arbitrary σ-Hadamard product in place of ◦
(1)

.
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Let T be an arbitrary k-tensor on R
n and let σ be a permutation on Nk. We

define Diag σT to be a 2k-tensor on R
n in the following way:

(Diag σT )
i1...ik
j1...jk =

{
T i1...ik if is = jσ(s) ∀s ∈ Nk,
0 otherwise.

Informally speaking, viewing tensors as cubes placed at the origin of the positive
orthant of a Euclidean space and its indices as coordinates, the operator Diag σT
then lifts T onto the k-dimensional diagonal plane defined by

{(x, y) ∈ R
k × R

k |xs = yσ(s) ∀s ∈ Nk}.

Notice that this map between the permutations on Nk and k-dimensional diagonal
subspaces of R

k × R
k is one-to-one.

When k = 1 and σ = (1), the definition of Diag σT coincides with the definition of
the Diag operator in (8). An equivalent way to define Diag σT useful for calculations
is

(Diag σT )
i1...ik
j1...jk = T i1...ikδi1jσ(1)

· · · δikjσ(k)
.

We now consider an action—call it conjugation—of the group On of all n × n
orthogonal matrices on the space of all k-tensors on R

n. For any k-tensor T and
U ∈ On, this action will be denoted by UTUT and defined by

(UTUT )i1...ik =

n∑
p1=1

· · ·
n∑

pk=1

(
T p1...pkU i1p1 · · ·U ikpk

)
.(10)

When k = 1, this is exactly the action of On on R
n, and when k = 2 the definition

coincides with the conjugate action of On on the space of n × n square matrices. In
general, it is not difficult to see that it is possible to order the entries of T ∈ T k,n into

a vector vec (T ) ∈ R
nk

such that

UTUT = vec−1
(
(⊗kU)vec (T )

)
,(11)

where ⊗kU is the kth tensor power of U and vec−1 is the inverse of the linear operation
vec . The fact that ⊗kU is an orthogonal matrix whenever U is, the well-known
identity (⊗kV )(⊗kU) = ⊗k(V U), and (11) show the following lemma.

Lemma 4.1. The conjugate action is associative and norm preserving. That is,
for any k-tensor T on R

n and any two orthogonal matrices U , V in On,

V (UTUT )V T = (V U)T (V U)T

and

‖UTUT ‖ = ‖T‖.

Any 2k-tensor T on Rn can naturally be viewed as a k-tensor on the space Mn

in the following way. Let H1, . . . , Hk be any n× n matrices; then

T [H1, . . . , Hk] :=

n,n∑
p1,q1=1

· · ·
n,n∑

pk,qk=1

T
p1...pk
q1...qkHp1q1

1 · · ·Hpkqk
k .
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Let P be an n × n permutation matrix and σ its corresponding permutation on
Nn, that is, PT ei = eσ(i) for all i = 1, . . . , n, where {ei | i = 1, . . . , n} is the standard
basis in R

n. The action of P on the tensors is what one expects it to be:

(PTPT )i1...ik =

n∑
p1=1

· · ·
n∑

pk=1

(
T p1...pk

k∏
ν=1

P iνpν

)
= T σ(i1)...σ(ik).

The conjugation by an orthogonal matrix is defined on tensors on R
n of any

dimension. The next lemma shows that the conjugation by a permutation matrix
commutes with the lifting operation Diag μ for any permutation μ.

Lemma 4.2. For any permutation μ on Nk, any permutation matrix P in Pn,
and any k-tensor T on R

n, we have

P (Diag μT )PT = Diag μ(PTPT ).

Proof. Let σ be the permutation on Nn corresponding to P . Fix any multi-index
(i1...ikj1...jk). We begin calculating the right-hand side entry corresponding to that index.
In the third equality below, we use the fact that σ is a one-to-one map.

(
P (Diag μT )PT

)i1...ik
j1...jk =

(
Diag μT

)σ(i1)...σ(ik)
σ(j1)...σ(jk)

= T σ(i1)...σ(ik)δσ(i1)σ(jμ(1)) · · · δσ(ik)σ(jμ(k))

= T σ(i1)...σ(ik)δi1jμ(1)
· · · δikjμ(k)

= (PTPT )i1...ikδi1jμ(1)
· · · δikjμ(k)

=
(
Diag μ(PTPT )

)i1...ik
j1...jk .

These preparations lead to the following generalization to (9). (When k = 1 and
σ = (1) we obtain (9) exactly.)

Theorem 4.3. For any k-tensor T on R
n, any matrices H1, . . . , Hk in Mn, any

orthogonal matrix U in On, and any permutation σ on Nk, we have the identity

〈T, H̃1 ◦σ · · · ◦σ H̃k〉 =
(
U(Diag σT )UT

)
[H1, . . . , Hk],(12)

where H̃i = UTHiU for all i = 1, 2, . . . , k.

Proof. Since both sides are linear in each argument separately, it is enough to
show that the equality holds for k-tuples (Hi1j1 , . . . , Hikjk) of basic matrices.

Using Lemma 2.2 and the fact that H̃pq
ij = U ipU jq, we develop the left-hand side

of (12):

〈T, H̃i1j1 ◦σ · · · ◦σ H̃ikjk〉 =

n,...,n∑
p1,...,pk=1

T p1...pkH̃
p1pσ−1(1)

i1j1
· · · H̃pkpσ−1(k)

ikjk

=

n,...,n∑
p1,...,pk=1

T p1...pkU i1p1U j1pσ−1(1) · · ·U ikpkU jkpσ−1(k) .



678 HRISTO S. SENDOV

On the other hand, using the definitions we calculate that the right-hand side is

(U(Diag σT )UT )[Hi1j1 , . . . , Hikjk ]

=

n,n∑
p1,q1=1

· · ·
n,n∑

pk,qk=1

(
(U(Diag σT )UT )

p1...pk
q1...qkHp1q1

i1j1
· · ·Hpkqk

ikjk

)

= (U(Diag σT )UT )
i1...ik
j1...jk

=

n,n∑
p1,q1=1

· · ·
n,n∑

pk,qk=1

(
(Diag σT )

p1...pk
q1...qk

k∏
ν=1

U iνpνU jνqν
)

=

n∑
p1=1

· · ·
n∑

pk=1

(
T p1...pk

k∏
ν=1

U iνpνU jνpσ−1(ν)

)
.

This shows that both sides are equal.
Corollary 4.4. For any k-tensor T , any matrices H1, . . . , Hk, and any permu-

tation σ on Nk, we have the identity

〈T,H1 ◦σ . . . ◦σ Hk〉 = (Diag σT )[H1, . . . , Hk].(13)

If in Corollary 4.4 we substitute the matrices H1, . . . , Hk with H̃1, . . . , H̃k and
use Theorem 4.3, we obtain the next result.

Corollary 4.5. For any k-tensor T , orthogonal matrix U ∈ On, permutation
σ on Nk, and any matrices H1, . . . , Hk, we have the identity

(Diag σT )[H̃1, . . . , H̃k] =
(
U(Diag σT )UT

)
[H1, . . . , Hk].(14)

If in Corollary 4.4 we take σ to be the identity permutation, then we get the next
corollary, which generalizes (8).

Corollary 4.6. For any k-tensor T and any matrices H1, . . . , Hk, we have the
identity

T [diagH1, . . . ,diagHk] = (Diag (id)T )[H1, . . . , Hk].(15)

We conclude this section with a second look at the first two derivatives of spectral
functions.

Example 4.7. As we saw in Example 3.4, the first derivative of the spectral
function f ◦ λ at the point X = V (Diag λ(X))V T , applied to the symmetric matrix
E, is given by the formula

∇(f ◦ λ)(X)[E] = 〈V
(
Diag∇f(λ(X))

)
V T , E〉 = V

(
Diag (1)∇f(λ(X))

)
V T [E].

The usefulness of the notation becomes more evident below.
Example 4.8. Let X be a symmetric matrix with ordered spectral decomposition

X = V (Diag λ(X))V T . Take two symmetric matrices E1 and E2 and let Ẽi = V TEiV
for i = 1, 2. As we saw in Example 3.4, the Hessian of the spectral function f ◦ λ at
the point X = V (Diag λ(X))V T , applied to the symmetric matrices E1 and E2, is
given by the formula

∇2(f ◦ λ)(X)[E1, E2] = 〈∇2f(λ(X)), Ẽ1 ◦(1)(2) Ẽ2〉 + 〈A(λ(X)), Ẽ1 ◦(12) Ẽ2〉.
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With the notation introduced in this section we can rewrite it as

∇2(f ◦ λ)(X)[E1, E2] =
(
V
(
Diag (1)(2)∇2f(λ(X))

)
V T

)
[E1, E2]

+
(
V
(
Diag (12)A(λ(X))

)
V T

)
[E1, E2],

or, in other words,

∇2(f ◦ λ)(X) = V
(
Diag (1)(2)∇2f(λ(X)) + Diag (12)A(λ(X))

)
V T .

Finally, we express Conjecture 3.1 in the new language.
Conjecture 4.1. The spectral function f ◦λ is k-times (continuously) differentiable

at X if and only if f(x) is k-times (continuously) differentiable at the vector λ(X).
Moreover, there are k-tensor valued maps Aσ : R

n → T k,n, σ ∈ P k, depending only
on the symmetric function f , such that

∇k(f ◦ λ)(X) = V
( ∑

σ∈Pk

Diag σAσ(λ(X))
)
V T ,(16)

where X = V (Diag λ(X))V T .
Formula (16) says that the orthogonal matrix V in the ordered spectral decompo-

sition of X also “diagonalizes” the kth derivative of f ◦ λ at X. Moreover, the effect
of the eigenvalues in the right-hand side of (16) can very clearly be seen: only V and
λ(X) depend on the eigenvalues. In addition, we can easily evaluate the derivative,
as a multilinear function, at any k symmetric matrices, using Theorem 4.3 and the
σ-Hadamard product. Finally, there are precisely k! summands in the right-hand
side of (16); this should be compared with the classical Faà de Bruno formula [5,
Lemma 1.3.1] for the kth derivative of the composition of two (smooth) functions, in
which the number of summands in highly nontrivial.

In [16] we show that this conjecture holds for the derivatives of any function
(not necessarily symmetric) of the eigenvalues of symmetric matrices, at a symmetric
matrix X with distinct eigenvalues, as well as for the derivatives of separable spectral
functions at an arbitrary symmetric matrix X. (Separable spectral functions are those
arising from symmetric functions f(x) = g(x1) + · · · + g(xn) for some function g on
a scalar argument.) There we also describe how, for every σ in P k, to compute the
operators Aσ(x), depending only on the symmetric function f(x).

5. Sufficient condition for Conjecture 4.1. Recall that Examples 4.7, and
4.8 show that Conjecture 4.1 holds for k = 1 and k = 2. The next theorem summarizes
this section.

Theorem 5.1. Using the notation from Conjecture 4.1, we have the following:
• It is enough to establish Conjecture 4.1 only in the case when X = Diag x for

some x ∈ R
n with x1 ≥ · · · ≥ xn.

• If the maps Aσ are continuous at λ(X) for all σ ∈ P k, then ∇k(f ◦ λ) is
continuous at X.

We begin with a simple lemma. For brevity, given a k-tensor T on Mn by T [H],
we denote the (k − 1)-tensor T [·, . . . , H].

Lemma 5.2. Let T be any 2k-tensor on Rn, U ∈ On, and let H be any matrix.
Then the following identity holds:

U(T [H̃])UT = (UTUT )[H],

where H̃ = UTHU .
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Proof. Since both sides are linear with respect to H, it is enough to prove the
identity only for basic matrices Hikjk . By the definition of conjugation, and using the

fact that H̃pq
ikjk

= U ikpU jkq, we obtain

(
U(T [H̃ikjk ])UT

)i1...ik−1

j1...jk−1

=

n,...,n∑
ps,qs=1

s=1,...,k−1

(T [H̃ikjk ])
p1...pk−1
q1...qk−1U i1p1U j1q1 · · ·U ik−1pk−1U jk−1qk−1

=

n,...,n∑
ps,qs=1
s=1,...,k

T
p1...pk
q1...qkU i1p1U j1q1 · · ·U ikpkU jkqk

= (UTUT )
i1...ik
j1...jk

=
(
(UTUT )[Hikjk ]

)i1...ik−1

j1...jk−1 .

We now establish the first part of Theorem 5.1. Suppose that Conjecture 4.1
holds for all derivatives of order less than k and for the kth derivative it holds only for
ordered diagonal matrices. We show that the conjecture holds for the kth derivative at
an arbitrary matrix. Indeed, let X = V (Diag λ(X))V T , let E be arbitrary symmetric
matrix, and denote Ẽ = V TEV . Then

∇k−1F (X + E) = ∇k−1F
(
V (Diag λ(X) + Ẽ)V T

)

= V
(
∇k−1F (Diag λ(X) + Ẽ)

)
V T

= V
(
∇k−1F (Diag λ(X))

)
V T + V

(
∇kF (Diag λ(X))[Ẽ]

)
V T + o(‖E‖)

= ∇k−1F (X) +
(
V (∇kF (Diag λ(X)))V T

)
[E] + o(‖E‖),

where in the last equality we used Lemma 5.2. This shows that ∇k−1F is differentiable
at X and that V (∇kF (Diag λ(X)))V T is the kth derivative of F at X.

The second part of Theorem 5.1 is the next proposition.

Proposition 5.3. Suppose the kth derivative of the spectral function F = f ◦ λ
is given by (16) for all X. If for every σ ∈ P k the tensor valued map x ∈ R

n →
Aσ(x) ∈ T k,n is continuous, then ∇kF (X) is continuous in X, that is, F ∈ Ck.

Proof. Suppose that there is a sequence of symmetric matrices Xm approaching
X and an ε > 0 such that

‖∇kF (Xm) −∇kF (X)‖ > ε ∀m.

Let Xm = Vm(Diag λ(Xm))V T
m and suppose without loss of generality that the or-

thogonal Vm approaches V (otherwise, take a subsequence.) By continuity of the
eigenvalues, we have that X = V (Diag λ(X))V T and that λ(Xm) approaches λ(X).
Using the formula for the kth derivative and the continuity of the maps Aσ(x), the
contradiction follows.
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DECOUPLING PROBLEM FOR DESCRIPTOR SYSTEMS∗
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Abstract. The row by row decoupling problem (RRDP) for descriptor systems is considered
using proportional state feedback and input transformation. Necessary and sufficient conditions for
the solvability of the RRDP are provided. These solvability conditions can be readily verified. A
constructive solution to the RRDP is given so that the desired feedback and input transformation
matrices can be obtained by a numerically reliable procedure.
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1. Introduction. The row by row decoupling problem (RRDP) has played a
central role in classical as well as modern control theory, since it provides a powerful
methodology to reduce a multi-input/multioutput complex system to a set of single
input/single output systems, thus facilitating a decoupled control strategy of such
systems. The row by row decoupling is usually required for ease of system operations,
for example, in the process and chemical industries [1, 2].

Consider descriptor systems of the form{
Eẋ = Ax + Bu,
y = Cx,

(1)

where E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, E is singular, x ∈ Rn is the state,
u ∈ Rm is the control input, and y ∈ Rm is the output. It is well known that the
existence and uniqueness of (classical) solutions to (1) are guaranteed if (E,A) is
regular, i.e., det(αE − βA) �= 0 for some (α, β) ∈ C2. The system (1) is said to have
index at most one if the dimension of the largest nilpotent block in the Kronecker
canonical form of (E,A) is at most one [17].

Descriptor systems that are regular and of index at most one can be separated
into purely dynamical and purely algebraic parts (fast and slow modes). If the index
is larger than 1, then impulses can arise in the response of the system if the control
is not sufficiently smooth [7, 17]. Therefore, in the design of feedback control, one
should ensure that the closed-loop system is regular and of index at most one.

If we apply state feedback of the form

u = Fx + Hv(2)

to the descriptor system (1), then the closed-loop system becomes{
Eẋ = (A + BF )x + BHv,
y = Cx.

(3)
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The problem to be considered can be stated as follows.
The RRDP. Given a descriptor system of the form (1), determine a state feedback

matrix F ∈ Rm×n and a nonsingular input transformation matrix H ∈ Rm×m such
that

(a) the pencil (E,A + BF ) is regular and of index at most one;
(b) the closed-loop transfer function matrix

C(sE −A−BF )−1BH is nonsingular and diagonal.(4)

Here C(sE −A−BF )−1BH being nonsingular means that

rank(C(sE −A−BF )−1BH) = m for some s ∈ C.

Before studying the RRDP for the descriptor system (1), we summarize the main
results on the RRDP available in the literature.

The RRDP for linear time-invariant systems of the form
{
E ẋ = Ax + Bu,
y = Cx(5)

with E ,A ∈ Rk×k, B ∈ Rk×p, C ∈ Rp×k, and E nonsingular has been investigated
extensively over the last three decades and is still attracting continuing interests
[2, 3, 4, 5, 6, 9, 10, 21]. In particular, because system (5) is equivalent to

{
ẋ = E−1Ax + E−1Bu,
y = Cx,

we have the following theorem.
Theorem 1 (see [3]). Given system (5) with E nonsingular, let ci be the ith row

of C. If

ci(E−1A)j(E−1B) �= 0

for some nonnegative integer j, then set

li = min{j ≥ 0 : j is integer satisfying ci(E−1A)j(E−1B) �= 0};

otherwise, set li = k − 1. Define

L =

⎡
⎢⎢⎢⎣

c1(E−1A)l1

c2(E−1A)l2

...
cp(E−1A)lp

⎤
⎥⎥⎥⎦ (E−1B), K =

⎡
⎢⎢⎢⎣

c1(E−1A)l1+1

c2(E−1A)l2+1

...
cp(E−1A)lp+1

⎤
⎥⎥⎥⎦ (E−1B).

Then the RRDP for system (5) is solvable if and only if the matrix L is nonsingular.
In this case, a solution pair (F ,H) is given by

F = −L−1K, H = L−1.

Although Theorem 1 provides an explicit solution for the RRDP of the linear
time-invariant system (5) with E nonsingular, some natural questions remain.

(a) If the RRDP is solvable,
(i) can we solve the RRDP with the additional requirement of stability?
(ii) does numerically reliable solution exist for the RRDP with stability?
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(b) If the RRDP is not solvable, can one resort to a relaxed problem of triangular
decoupling?

Regarding (a)(i), the RRDP with stability for the system (5) has been investigated
in [5, 6] using geometric and structural approaches, giving coordinate-free solvability
conditions. But, the results in [5, 6] cannot lead to numerically reliable methods for
computing a solution to the problem. To address (a)(ii), a numerically reliable method
has been developed in [14] based on orthogonal transformations. If the condition of
Theorem 1 is not satisfied so that the RRDP is not solvable, it is shown in [15] that
a triangular decoupling problem may be solvable under less restrictive conditions.
In [15], explicit solvability conditions are provided with a parameterization of all
solutions to the triangular decoupling problem.

Unfortunately, the above results for the RRDP for the system (5) with E nonsin-
gular cannot be readily extended to the general descriptor system (1). For example,
it is not possible to apply existing results to system (1) by decomposing it into differ-
ential and algebraic parts and then deal with them separately. Instead, it is necessary
to develop a separate theory to handle the RRDP for descriptor systems. The RRDP
for descriptor system (1) has been studied in [7, 11, 19]. In [7], it is shown that the
RRDP for system (1) is solvable using combined proportional and derivative state
feedback if and only if the input-output transfer function is invertible. However, the
use of derivative feedback is undesirable due to noise accentuation and an increase in
the system order. To our knowledge, the solution is still not known for the RRDP of
the descriptor system (1) using only proportional state feedback.

A problem related to the RRDP is the disturbance decoupling problem. Although
the objectives of the RRDP are different from the disturbance decoupling problem,
we will make use of the matrix pencil approach developed in [12, 13] to characterize
necessary and sufficient conditions for the solvability of the RRDP for the system (1).
In this paper, we provide numerically reliable methods for verifying the solvability of
the RRDP for the system (1) and for computing the solution matrices F and H. These
results are new to our knowledge and are valuable, as real descriptor systems with
singular E do exist in practice. However, the RRDP with stability for the descriptor
system (1) remains an open problem.

The paper is organized as follows. Some necessary preliminary results for matrix
pencils are collected in section 2. In section 3, necessary and sufficient solvability
conditions as well as a numerically reliable algorithm for the RRDP of descriptor
system (1) are established. Concluding remarks are included in section 4.

2. Preliminaries. The following two lemmas are basic results for matrix pencils
and will be needed in the development to be given in the next section.

Lemma 2 (see [12, 14]). Given E ,A ∈ Rn×n,B ∈ Rn×m, C ∈ Rp×n, and D ∈
Rp×m with E nonsingular,

(i)

C(sE − A)−1B + D = 0

if and only if

D = 0, max
s∈C

rank

[
sE − A B

C 0

]
= n;

(ii) assume

rank
[
sE − A B

]
= n ∀s ∈ C.
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Then

max
s∈C

rank

[
sE − A B

C −D

]
= n

if and only if

C = 0, D = 0.

Lemma 3. Given E ,A ∈ Rn×l,B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m,
(i)

max
s∈C

rank

[
sE − A B

C −D

]
≥ rank(E) + rank(D);

(ii) if E and D are of full row rank, then

max
s∈C

rank

[
sE − A B

C −D

]
= n + p.(6)

Proof. Part (i). We can assume without loss of generality that

D =

[ τ m− τ

D11 0
0 0

]
}τ
}p− τ

with D11 nonsingular and rank(D) = rank(D11) = τ . Denote

B =
[ τ m− τ

B1 B2

]
, C =

[
C1

C2

]
}τ
}p− τ

,

and let the generalized upper triangular form [8, 20] of

[
sE − A + B1D−1

11 C1 B2

C2 0

]

be

P
[

sE − A + B1D−1
11 C1 B2

C2 0

]
Q

μ1 μ2 μ3 μ4

=

⎡
⎢⎢⎢⎢⎣

sΘ11 − Φ11 sΘ12 − Φ12 sΘ13 − Φ13 sΘ14 − Φ14

0 sΘ22 − Φ22 sΘ23 − Φ23 sΘ24 − Φ24

0 0 sΘ33 − Φ33 sΘ34 − Φ34

0 0 0 sΘ44 − Φ44

⎤
⎥⎥⎥⎥⎦

}ν1

}μ2

}μ3

}ν4

,

where P and Q are orthogonal, Θ11 is of full row rank, Θ44 is of full column rank,
Θ22 is nonsingular, and

rank(sΘ11−Φ11) = ν1, rank(sΘ33−Φ33) = μ3, rank(sΘ44−Φ44) = μ4 ∀s ∈ C.
(7)
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Now we have that

rank(E) = rank

⎡
⎢⎢⎣

Θ11 Θ12 Θ13 Θ14

0 Θ22 Θ23 Θ24

0 0 Θ33 Θ34

0 0 0 Θ44

⎤
⎥⎥⎦ = ν1+μ2+rank(Θ33)+μ4 ≤ ν1+μ2+μ3+μ4

and the equality rank(D) = τ yield that

maxs∈C rank

[
sE − A B

C −D

]

= maxs∈C rank

⎡
⎣

sE − A B1 B2

C1 −D11 0
C2 0 0

⎤
⎦

= maxs∈C rank

[
sE − A + B1D−1

11 C1 B2

C2 0

]
+ τ

= maxs∈C rank

⎡
⎢⎢⎣

sΘ11 − Φ11 sΘ12 − Φ12 sΘ13 − Φ13 sΘ14 − Φ14

0 sΘ22 − Φ22 sΘ23 − Φ23 sΘ24 − Φ24

0 0 sΘ33 − Φ33 sΘ34 − Φ34

0 0 0 sΘ44 − Φ44

⎤
⎥⎥⎦ + τ

= ν1 + μ2 + μ3 + μ4 + τ ≥ rank(E) + rank(D).

Part (ii). Since E and D are of full row rank, by part (i) we obtain that

max
s∈C

rank

[
sE − A B

C −D

]
≥ rank(E) + rank(D) = n + p.

But, it is obvious that

max
s∈C

rank

[
sE − A B

C −D

]
≤ n + p.

Hence,

max
s∈C

rank

[
sE − A B

C −D

]
= n + p.

The next lemma provides necessary and sufficient conditions for a matrix pencil
to be regular and of index at most one.

Lemma 4 (see [7, 17]). Let E,A ∈ Rn×n. The following statements are equiva-
lent.

(i) (E,A) is regular and of index at most one.
(ii) rank

[
E AS∞(E)

]
= n, where S∞(E) denotes a matrix with orthogonal

columns spanning the right nullspace of matrix E.
(iii) deg(det(sE −A)) = rank(E).

3. Main results. The purpose of this section is to present necessary and suffi-
cient solvability conditions as well as a numerically reliable algorithm for the RRDP
of descriptor system (1). For this purpose, first we transform the RRDP for descrip-
tor system (1) into the RRDP for a linear time-invariant system using orthogonal
transformations.
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Theorem 5. Given system (1), there exist nonnegative integers n1, n2, n3, ñ2,
and ñ3 and orthogonal matrices U, V,Q ∈ Rn×n, and W ∈ Rm×m with

Q =

[ n1 n2 + n3

Q11 Q12

Q21 Q22

]
}n1

}n2 + n3
(8)

such that n1 + n2 + n3 = n1 + ñ2 + ñ3 = n, Q11 is nonsingular, and
⎡
⎣

Q11 Q12 0
0 I 0
0 0 I

⎤
⎦
[

U 0
0 I

]⎡
⎣

sE −A | B
−−− − −−
C | 0

⎤
⎦
[

V 0
0 W

]

=

⎡
⎢⎢⎢⎢⎣

n1 n2 n3 ñ2 m− ñ2

sE11 −A11 −A12 sE13 −A13 | 0 B12

−A21 −A22 sE23 −A23 | B21 0
0 0 sE33 −A33 | 0 0

−−−−− −−− −−−−− − −−− −−−
C1 C2 C3 | 0 0

⎤
⎥⎥⎥⎥⎦

}n1

}ñ2

}ñ3

}m

,(9)

where E11 and B21 are nonsingular, and sE33 − A33 is of full column rank for any
s ∈ C.

Proof. The form (9) is constructed in [23].
In the following, we give a system interpretation of the form (9).
With respect to the coordinate transformations in the form (9), the system (1)

can be expressed as
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

([
Q11 Q12

0 I

]
UEV

)
V T ẋ =

([
Q11 Q12

0 I

]
UAV

)
V Tx

+

([
Q11 Q12

0 I

]
UBW

)
WTu,

y = (CV )V Tx,

(10)

where V Tx represents the transformed state vector and WTu the transformed input.
Let

V Tx =

⎡
⎣

x̃
x2

x3

⎤
⎦

}n1

}n2

}n3

, WTu =

[
u1

u2

]
}ñ2

}m− ñ2
.(11)

Then system (10) is equivalent to
⎧⎪⎪⎨
⎪⎪⎩

E11
˙̃x + E13ẋ3 = A11x̃ + A12x2 + A13x3 + B12u2,

E23ẋ3 = A21x̃ + A22x2 + A23x3 + B21u1,
E33ẋ3 = A33x3,
y = C1x̃ + C2x2 + C3x3.

(12)

Because sE33 − A33 is of full column rank for any s ∈ C, according to [22], we know
that

x3 = 0 ∀t ≥ 0.

Consequently, E33ẋ3 = A33x3 is a redundant subsystem (associated with x3 con-
strained to be zero). As the redundant subsystem has a zero trajectory x3 = 0, we
can delete this part. Therefore, (1) is reduced to
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• a regular subsystem (with nonsingular E11)

⎧⎪⎪⎨
⎪⎪⎩

E11
˙̃x = A11x̃ +

[
B12 A12

] [ u2

x2

]
,

y = C1x̃ +
[

0 C2

] [ u2

x2

]
;

(13)

• an algebraic subsystem (associated with x2)

0 = A21x̃ + A22x2 + B21u1.(14)

The algebraic part of the system results in the algebraic condition (14), which must
be satisfied. This can be taken as an algebraic constraint on the feasibility of the
system (1). Since B21 is nonsingular, we can always find an input u1 to ensure that
the descriptor system (1) is consistent. If we consider

[
u2

x2

]
= ũ

as a new input and choose u1 = −B−1
21 (A21x̃ + A22x2), then the regular subsystem

(13) becomes

{
E11

˙̃x = A11x̃ +
[
B12 A12

]
ũ,

y = C1x̃ +
[

0 C2

]
ũ,

(15)

and the algebraic constraint (14) is satisfied. The regular subsystem (15) preserves
the finite zeros of the descriptor system (1), as shown in the next corollary.

Corollary 6. Given a descriptor system (1), let the form (9) be determined.
Then the finite zeros of system (1) are the same as those of system (15).

Proof. The finite zeros of systems (1) and (15) are the finite eigenvalues of matrix
pencils

[
A− sE B

C 0

]
and

[
A11 − sE11 B12 A12

C1 0 C2

]
,

respectively. By construction, B21 is nonsingular and sE33−A33 has full column rank
for any s ∈ C. Hence, we obtain by means of the form (9) that matrix pencils

[
A− sE B

C 0

]
and

[
A11 − sE11 B12 A12

C1 0 C2

]

have the same finite eigenvalues. Therefore, systems (1) and (15) have the same set
of finite zeros.

After removing the redundant subsystem E33ẋ3 = A33x3 and assuming that the
algebraic consistency (14) is satisfied, it is therefore natural to focus on the regular
subsystem (15) of the descriptor system (1).

The following lemma shows that the form (9) can be used to characterize the
existence of a feedback matrix F such that the pencil (E,A + BF ) is regular and of
index at most one.

Lemma 7. Given a descriptor system of the form (1), there exists a matrix F
such that the pencil (E,A + BF ) is regular and of index at most one if and only if

n3 = ñ3, E23 = 0, E33 = 0.(16)
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Proof. For any F ∈ Rm×n, denote

WTFV =:

[ n1 n2 n3

F11 F12 F13

F21 F22 F23

]
}ñ2

}m− ñ2
.(17)

We have [
Q11 Q12

0 I

]
U(sE −A−BF )V

=

⎡
⎣

sE11 −A11 −B12F21 −A12 −B12F22 sE13 −A13 −B12F23

−(A21 + B21F11) −(A22 + B21F12) sE23 − (A23 + B21F13)
0 0 sE33 −A33

⎤
⎦ .(18)

Necessity. Let F ∈ Rm×n be such that the pencil (E,A + BF ) is regular and of
index at most one. Then by the regularity of (E,A + BF ) we have

max
s∈C

rank(sE −A−BF ) = n,

which together with (18) yields that

max
s∈C

rank(sE33 −A33) = ñ3.

Note that sE33 −A33 is of full column rank for any s ∈ C. Thus,

ñ3 = n3.(19)

Since the pencil (E,A + BF ) is regular and of index at most one, sE33 − A33 is of
full column rank for any s ∈ C, and we have using Lemma 4(iii) and (19) that

rank(E) = deg(det(sE −A−BF ))

= deg(det

([
sE11 −A11 −B12F21 −A12 −B12F22

−(A21 + B21F11) −(A22 + B21F12)

])

+ deg(det(sE33 −A33))

= deg(det

([
sE11 −A11 −B12F21 −A12 −B12F22

−(A21 + B21F11) −(A22 + B21F12)

])

≤ rank(E11)

= n1.(20)

Because E11 ∈ Rn1×n1 is nonsingular, we also have

rank(E) = rank(E11) + rank

[
E23

E33

]
= n1 + rank

[
E23

E33

]
.(21)

Hence, we obtain

E23 = 0, E33 = 0,(22)

which together with (19) give the condition (16).
Sufficiency. Assume condition (16) holds. It follows that ñ2 = n2 and rank(E) =

n1. Let

F12 = −B−1
21 (A22 + I), F11, F13, F21, F22, and F23 are arbitrary.(23)

By Lemma 4(ii), we know that (E,A+BF ) is regular and of index at most one.
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In Corollary 6, it is shown that systems (1) and (15) have the same set of finite
zeros. In the next result it will be shown that the RRDP for descriptor system (1)
can be reduced to the RRDP for the linear time-invariant system (15).

Theorem 8. Given a descriptor system (1), the RRDP for system (1) is solvable
if and only if the condition (16) holds and, furthermore,

the RRDP for system (15) is solvable;(24)

i.e., there exist matrices F and H with H nonsingular such that

TF,H(s) = ((C1 +
[
0 C2

]
F)(sE11−A11−

[
B12 A12

]
F)−1

[
B12 A12

]
+
[
0 C2

]
)H

(25)

is nonsingular and diagonal.
Proof. For any F ∈ Rm×n and H ∈ Rm×m, denote WTFV as in (17), and let

H̃ = WTH.(26)

Clearly, if H is nonsingular, then H̃ is nonsingular. We will first prove “necessity”
and then “sufficiency.”

Necessity. Let F ∈ Rm×n and H ∈ Rm×m with H nonsingular be such that the
pencil (E,A + BF ) is regular, of index at most one, and (4) is true. Then condition
(16) of the theorem follows directly from Lemma 7. Note that the condition (16)
implies that

ñ2 = n2, rank(E) = n1.(27)

We have shown in the proof of Lemma 7 that (20) holds, from which it follows that
the pencil

([
E11 0
0 0

]
,

[
A11 + B12F21 A12 + B12F22

A21 + B21F11 A22 + B21F12

])

is regular and of index at most one. Hence, by Lemma 4(ii), we have that A22+B21F12

is nonsingular. Now a simple calculation yields that

C(sE −A−BF )−1BH

=
[
C1 C2 C3

]
⎡
⎣
sE11 −A11 −B12F21 −A12 −B12F22 sE13 −A13 −B12F23

−(A21 + B21F11) −(A22 + B21F12) −(A23 + B21F13)
0 0 −A33

⎤
⎦
−1

×

⎡
⎣

0 B12

B21 0
0 0

⎤
⎦ H̃

=
[
C1 C2

] [ sE11 −A11 −B12F21 −A12 −B12F22

−(A21 + B21F11) −(A22 + B21F12)

]−1 [
0 B12

B21 0

]
H̃

= TF,H(s),

(28)

where

F =

[
F21 − F22(A22 + B21F12)

−1(A21 + B21F11)
−(A22 + B21F12)

−1(A21 + B21F11)

]
,(29)

H =

[
−F22(A22 + B21F12)

−1 I
−(A22 + B21F12)

−1 0

] [
B21 0
0 I

]
H̃.(30)
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Since H̃, B21, and A22 + B21F12 are nonsingular, so is H. Hence, the nonsingularity
and diagonality of C(sE − A − BF )−1BH imply that TF,H(s) is nonsingular and
diagonal. This is equivalent to the solvability of the RRDP for system (15).

Sufficiency. We will prove the sufficiency constructively. Assume that conditions
(16) and (24) hold. Condition (16) implies that n2 = ñ2, and so the system (15) is
square. From the condition (24) there are matrices F and H with H nonsingular and

F =

[
F1

F2

]
}m− n2

}n2

such that TF,H(s) is nonsingular and diagonal. Let (F,H) be determined by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
B21 0
0 I

]
WTF =

[
F2 −A21 −I −A22 0

F1 0 0

]
V T ,

[
B21 0
0 I

]
WTH =

[
0 In2

Im−n2 0

]
H,

(31)

partition F as in (17), and define H̃ by (26). We have that A22 + B21F12 = −I
and (29) and (30) hold. By condition (16) and the proof of the sufficiency of Lemma
7, (E,A + BF ) is regular and of index at most one. Moreover, (28) yields that
C(sE −A−BF )−1BH is nonsingular and diagonal.

In general,
[

0 C2

]
�= 0, and, consequently, Theorem 1 cannot be extended to

system (15). Hence, we reduce the RRDP for system (15) to the one for a system of
the form (5) via the following factorization.

Theorem 9. Given a descriptor system (1) and assuming that the form (9) has
been determined, then there exist orthogonal matrices U ,V, and W and a permutation
matrix P such that

[
U 0
0 P

]⎡
⎣

sE11 −A11 | B12 A12

−−−− − −− −−
C1 | 0 C2

⎤
⎦
[

V 0
0 W

]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

μ1 μ2 ν m + n2 − ñ2 − ν

sE11 −A11 sE12 −A12 | B11 B12

−A21 sE22 −A22 | B21 B22

0 sE32 −A32 | 0 0
−−−−− −−−−− − −−−− −−−−−−

C11 C12 | D11 0
0 C22 | D21 0

⎤
⎥⎥⎥⎥⎥⎥⎦

}μ1

}τ2
}τ3

}ν
}m− ν

,(32)

where μ1 + μ2 = μ1 + τ2 + τ3 = n1, E11 and D11 are nonsingular,
[
B21 B22

]
is of

full row rank, and

rank

[
sE11 −A11 B11 B12

−A21 B21 B22

]
= μ1 + τ2 ∀s ∈ C,(33)

max
s∈C

rank

[
sE32 −A32

C22

]
= μ2.(34)

Proof. The forms (32) are constructed in [23].
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Let

VT x̃ =

[
x11

x21

]
}μ1

}μ2
, WT ũ =

[
u11

u21

]
}ν
}m + n2 − ñ2 − ν

, Py =

[
y1

y2

]
}ν
}m− ν

.

(35)

Then system (15) is equivalent to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E11ẋ11 + E12ẋ21 = A11x11 + A12x21 + B11u11 + B12u21,[
E22

E32

]
ẋ21 =

[
A22

A32

]
x21 +

[
A21 B21

0 0

] [
x11

u11

]
+

[
B22

0

]
u21,

y1 = C11x11 + C12x21 + D11u11,
y2 = C22x21 + D21u11.

(36)

Now, the nonsingularity of E11 implies that

[
E22

E32

]

is nonsingular. So, if B22 is nonsingular, we take u11 = 0, and we denote v21 =
u21 + B−1

22 A21x11, then the system (36) becomes

⎧⎨
⎩

[
E22

E32

]
ẋ21 =

[
A22

A32

]
x21 +

[
B22

0

]
v21,

y2 = C22x21

(37)

and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E11ẋ11 = (A11 − B12B−1
22 A21)x11 +

(
A12 − E12

[
E22

E32

]−1 [ A22

A32

])
x21

+

(
B12 − E12

[
E22

E32

]−1 [ B22

0

])
v21,

y1 = C11x11 + C12x21.

The main feature of system (37) is that it is a linear time-invariant system of the form
(5) because

[
E22

E32

]

is nonsingular.
Remark 1. In the descriptions above, we set u11 = 0 to motivate how the system

(37) may be deduced from the system (15) by a particular choice of the input. Hence,
if the RRDP for the system (15) is solvable, so must the RRDP for the system
(37) (i.e., the latter is a necessary condition for the former). However, whether the
RRDP for the system (15) is solvable or not should not depend on the choice of the
input. Indeed, in Theorem 10, we show that a necessary and sufficient condition for
the solvability of the RRDP for the system (15) can be expressed in terms of the
solvability of the RRDP for the system (37) independent of the choice of the input,
and an examination of the proof of Theorem 10 will reveal that we never make use of
u11 = 0 in the proof. To summarize, the descriptions above are just a simple argument
intended to introduce the form of the system (37) for easy reference in Theorem 10;
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otherwise, the choice u11 = 0 is not used in the rigorous proof of the equivalence
between the RRDPs for the systems (15) and (37).

The following theorem shows that we can reduce the RRDP for system (15)
further to the RRDP for system (37).

Theorem 10. Given a descriptor system (1), suppose the forms (9) and (32)
have been determined. Assume that the condition (16) is true. Then the RRDP for
system (15) is solvable if and only if

D21 = 0, B22 is nonsingular,(38)

and, furthermore,

the RRDP for system (37) is solvable.(39)

Proof. Since n3 = ñ3 in the form (9), n2 = ñ2 and

m + n2 − ñ2 − ν = m− ν, B12 ∈ Rμ1×(m−ν), B22 ∈ Rτ2×(m−ν).(40)

Necessity. Assume that F and H with H nonsingular solve the RRDP of system
(15), TF,H(s) defined by (25) being diagonal and nonsingular. Let

WTFV =

[ μ1 μ2

F11 F12

F21 F22

]
}ν
}m− ν

, WTHPT =

[ ν m− ν

H11 H12

H21 H22

]
}ν
}m− ν

.(41)

Since P is a permutation matrix, PTF,H(s)PT is also diagonal and nonsingular, or,
equivalently,

[
T11(s) T12(s)
T21(s) T22(s)

]

=

⎛
⎜⎝
[

D11 0
D21 0

]
+

[
C11 + D11F11 C12 + D11F12

D21F11 C22 + D21F12

]

×(U(sE11 −A11 −
[
B12 A12

]
F)V)−1

⎡
⎣

B11 B12

B21 B22

0 0

⎤
⎦
⎞
⎠
[

H11 H12

H21 H22

]

= PTF,H(s)PT

is diagonal and nonsingular; here

T11(s) ∈ Rν×ν , T12(s) ∈ Rν×(m−ν), T21(s) ∈ R(m−ν)×ν , T22(s) ∈ R(m−ν)×(m−ν),

so we get

T11(s) and T22(s) are diagonal and nonsingular, T12(s) = 0, T21(s) = 0.

Hence, we have

D11H12 +
[
C11 + D11F11 C12 + D11F12

]
(U(sE11 −A11 −

[
B12 A12

]
F)V)−1

×

⎡
⎣

B11H12 + B12H22

B21H12 + B22H22

0

⎤
⎦

= T12(s) = 0,
(42)
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D21H11 +
[
D21F11 C22 + D21F12

]
(U(sE11 −A11 −

[
B12 A12

]
F)V)−1

×

⎡
⎣

B11H11 + B12H21

B21H11 + B22H21

0

⎤
⎦

= T21(s) = 0.(43)

Thus, Lemma 2(i) gives that

D11H12 = 0, D21H11 = 0.(44)

Since D11 and

[
H11 H12

H21 H22

]

are nonsingular, we have

H12 = 0, D21 = 0, H11 and H22 are nonsingular.(45)

Using (45), (43) becomes

[
0 C22

]
(U(sE11−A11−

[
B12 A12

]
F)V)−1

⎡
⎣

B11 + B12H21H−1
11

B21 + B22H21H−1
11

0

⎤
⎦ = 0.(46)

By Lemma 2(i) and properties (34) and (46), we get

n1 = μ1 + μ2 = maxs∈C rank

⎡
⎢⎢⎣
U(sE11 −A11 −

[
B12 A12

]
F)V

⎡
⎣
B11 + B12H21H−1

11

B21 + B22H21H−1
11

0

⎤
⎦

[
0 C22

]
0

⎤
⎥⎥⎦

= maxs∈C rank

⎡
⎢⎣
sE11 − A11 − B11F11 − B12F21 sE12 − A12 − B11F12 − B12F22 B11 + B12H21H−1

11

−A21 − B21F11 − B22F21 sE22 − A22 − B21F12 − B22F22 B21 + B22H21H−1
11

0 sE32 − A32 0

0 C22 0

⎤
⎥⎦

= maxs∈C rank

[
sE11 −A11 − B11F11 − B12F21 B11 + B12H21H−1

11

−A21 − B21F11 − B22F21 B21 + B22H21H−1
11

]
+ μ2

≥ rank(E11) + rank(B21 + B22H21H−1
11 ) + μ2 (by Lemma 3(i))

= μ1 + μ2 + rank(B21 + B22H21H−1
11 ).

(47)

Thus,

B21 + B22H21H−1
11 = 0,(48)

which implies that

rank(B22) = rank
[
B21 B22

]
.(49)
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By construction,
[
B21 B22

]
is of full row rank (= τ2). Hence,

rank(B22) = τ2.(50)

Note that E11 is nonsingular and B22 is of full row rank (see (50)); Lemma 3(ii) yields
that

max
s∈C

rank

[
sE11 −A11 − B11F11 − B12F21 B12

−A21 − B21F11 − B22F21 B22

]
= μ1 + τ2.(51)

Since

T22(s) =
[
0 C22

]
(U(sE11−A11−

[
B12 A12

]
F)V)−1

⎡
⎣

B12

B22

0

⎤
⎦H22 ∈ R(m−ν)×(m−ν)

is diagonal and nonsingular, and E11 ∈ Rn1×n1 , we have using (34), (50), (51), and
the nonsingularity of H22 and E11 that

n1 + (m− ν) = μ1 + μ2 + (m− ν)

= max
s∈C

rank

⎡
⎢⎢⎣

U(sE11 −A11 −
[
B12 A12

]
F)V

⎡
⎣

B12

B22

0

⎤
⎦H22

[
0 C22

]
0

⎤
⎥⎥⎦

= max
s∈C

rank

⎡
⎢⎢⎣
sE11 −A11 − B11F11 − B12F21 sE12 −A12 − B11F12 − B12F22 B12H22

−A21 − B21F11 − B22F21 sE22 −A22 − B21F12 − B22F22 B22H22

0 sE32 −A32 0
0 C22 0

⎤
⎥⎥⎦

= max
s∈C

rank

[
sE11 −A11 − B11F11 − B12F21 B12

−A21 − B21F11 − B22F21 B22

]
+ μ2

= (μ1 + τ2) + μ2 (by Lemma 3(ii)).

Hence,

τ2 = m− ν.(52)

Since B22 ∈ Rτ2×(m−ν) (see (40)), it follows from (50) and (52) that B22 is nonsingular,
which together with (45) proves that condition (38) of the theorem holds.

Using the nonsingularity of B22, we have from (48) that

H21H−1
11 = −B−1

22 B21,(53)

which gives that

B11 + B12H21H−1
11 = B11 − B12B−1

22 B21.(54)

From (47), (48), and (54), we obtain

μ1 = max
s∈C

rank

[
sE11 −A11 − B11F11 − B12F21 B11 − B12B−1

22 B21

−A21 − B21F11 − B22F21 0

]

= max
s∈C

rank

[
sE11 − A11 − B11F11 − B12F21 − B12B−1

22 (−A21 − B21F11 − B22F21) B11 − B12B−1
22 B21

−A21 − B21F11 − B22F21 0

]

= max
s∈C

rank

[
sE11 −A11 + B12B−1

22 A21 − (B11 − B12B−1
22 B21)F11 B11 − B12B−1

22 B21

−A21 − B21F11 − B22F21 0

]
.
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Consequently, we have

μ1 = max
s∈C

rank

[
sE11 −A11 + B12B−1

22 A21 B11 − B12B−1
22 B21

−A21 − B21F11 − B22F21 0

]
.(55)

Because (33) holds and B22 is nonsingular,

μ1 + τ2 = rank

[
sE11 −A11 B11 B12

−A21 B21 B22

]

= rank

[
sE11 −A11 + B12B−1

22 A21 B11 − B12B−1
22 B21 0

−A21 B21 B22

]
∀s ∈ C,

which gives that

rank
[
sE11 −A11 + B12B−1

22 A21 B11 − B12B−1
22 B21

]
= μ1 ∀s ∈ C.(56)

Thus, by applying Lemma 2(ii) to (55) we get

A21 + B21F11 + B22F21 = 0.(57)

Since B22 is nonsingular, B21F12 + B22F22 = B22F̃22 with F̃22 = B−1
22 B21F12 + F22,

and

C22

[
sE22 −A22 − B22F̃22

sE32 −A32

]−1 [ B22

0

]
H22

=
[

0 C22

]
(U(sE11 −A11 −

[
B12 A12

]
F)V)−1

⎡
⎣

B12

B22

0

⎤
⎦H22

is diagonal and nonsingular. Hence, the condition (39) of the theorem follows.
Sufficiency. We will prove the sufficiency constructively. Assume that conditions

(38) and (39) hold. Since n3 = ñ3 implies n2 = ñ2, the system (37) is square. From
the condition (39) there are matrices F̃22 and H22 such that

T22(s) = C22

[
sE22 −A22 − B22F̃22

sE32 −A32

]−1 [B22

0

]
H22 is diagonal and nonsingular.(58)

Define (F ,H) by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
D11 0
B21 B22

]
WTHPT =

[
I 0
0 B22H22

]
,

[
D11 0
B21 B22

]
WTFV =

[
−C11 −C12

−A21 B22F̃22

]
.

(59)

and partition WTFV and WTHPT as in (41). A direct calculation yields that

D11H11 = I, B21F12 + B22F22 = B22F̃22,(60)

and, furthermore,

TF,H(s) = PT

[
I 0
0 T22(s)

]
P
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is diagonal and nonsingular. Therefore, F and H above solve the RRDP for system
(15).

By combining Theorems 1, 8, and 10 we obtain the following result, which presents
explicit and numerically verifiable necessary and sufficient solvability conditions for
the RRDP of system (1).

Theorem 11. Given a descriptor system (1) and assuming that the forms (9)
and (32) have been determined, then the following statements are equivalent:

(i) The RRDP for descriptor system (1) is solvable.
(ii)

(a) n3 = ñ3, E23 = 0, E33 = 0,

(b) D21 = 0, B22 is nonsingular,

and the RRDP for linear time-invariant system (37) is solvable.
(iii) The conditions in (a) and (b) above hold and

(c) L is nonsingular,

where L is defined as follows.
Let ci be the ith row of C22. If

ci

([
E22

E32

]−1 [A22

A32

])j ([
E22

E32

]−1 [B22

0

])
�= 0

for some nonnegative integer j; then set

li = min{j ≥ 0 : j is integer satisfying

ci

([
E22

E32

]−1 [ A22

A32

])j ([
E22

E32

]−1 [ B22

0

])
�= 0};

otherwise, set li = μ2 − 1. Define

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1

([
E22

E32

]−1 [ A22

A32

])l1

c2

([
E22

E32

]−1 [ A22

A32

])l2

...

cm−ν

([
E22

E32

]−1 [ A22

A32

])lm−ν

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

([
E22

E32

]−1 [ B22

0

])
.(61)

It is well known that it is ill-conditioned to compute the matrix L in Theorem
11(iii). Hence, Theorem 11(iii) cannot be used for the purpose of numerical compu-
tation [18]. Fortunately, the RRDP for system (37), in which

[
E22

E32

]

is nonsingular, has been reinvestigated, and a numerically reliable algorithm has been
developed using orthogonal transformations in [14, 16]. As a result, Theorem 11(ii),
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the proofs of Theorems 8 and 10, and the work in [14, 16] can be used as a basis
for devising a numerically reliable algorithm for solving the RRDP for the descriptor
system (1) as follows.

Algorithm 1.

Input: Matrices E,A,B, and C of the system (1) with E singular.
Output: Solution (F,H) of the RRDP for system (1) if the solution exists.
Step 1. Compute the form (9); check conditions in (a) of Theorem 11(ii). If these
conditions are satisfied, go to Step 2; otherwise, conclude that “The RRDP is not
solvable” and stop.
Step 2. Compute the form (32); check condition in (b) of Theorem 11(ii). If these
conditions are satisfied, go to Step 3; otherwise, conclude that “The RRDP is not
solvable” and stop.
Step 3. Verify the solvability conditions of the RRDP for the linear time-invariant sys-
tem (37) and compute a solution (F̃22,H22) (if possible) using the algorithm developed
in [16].
Step 4. Solve the 4 linear equations in (59) and (31) to get (F,H). Output (F,H)
and stop.

In Algorithm 1, Steps 1, 2, and 3 are implemented using only orthogonal trans-
formations, and the equations in Step 4 can be solved by existing reliable methods in
MATLAB software. Therefore, Algorithm 1 is numerically reliable.

In the following we present a numerical example to illustrate Algorithm 1. In
this example, all calculations were carried out using MATLAB 5.3 on a HP 712/80
workstation with IEEE standard; i.e., the machine accuracy is about ε ∼= 10−16. For
the sake of space limitation, we display only the matrices in systems (1), (15), and
(37) and the computed (F,H). But, all other data produced by Algorithm 1 can be
obtained from us on request.

Example 1. Given a system of the form (1) with

E =

⎡
⎣

−2.114533471754 −1.370853194916 1.736011048459 −0.777424723706 0.15552253682 −2.56440325995
1.981948836367 1.026489453419 −1.105079726788 1.060541636692 0.15747945272 1.83814732774

−1.127692341885 −0.738768389781 0.831143443676 −0.430676489733 0.07468092963 −1.60807586863
−0.854341367338 −0.769620562458 0.940592064356 −0.149518153491 0.18927466491 −1.19013292159
0.959445385414 0.382758195679 −0.738961628069 0.400705245192 −0.09207348992 1.47285621736
1.096197281699 0.333111128291 −0.419336283785 0.700588861755 0.14595331319 1.23474652554

⎤
⎦,

A =

⎡
⎣

−2.496603142235 −3.027855453825 3.468783236849 0.841588723375 −0.389109896897 −3.758198911069
2.915229861871 2.562626759424 −2.641568611375 0.232761516265 −0.025600000866 4.225601295896

−2.9425385772285 −3.2106922758844 3.4465197574242 −0.1313124529388 −0.175539883543 −3.956516650065
−2.489894380756 −2.570286952960 1.313484388828 0.586156437213 0.670989681583 −3.581315152567
−0.021382994553 −0.390533814618 0.523695683833 0.011304370558 0.011554521246 −0.807953060870
1.419644861011 0.660544600602 −0.674155524801 0.845044224805 −0.061255771247 1.272523221691

⎤
⎦,

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.2981194205345 0.2863134942399 0.2343502478597
−0.1599567951551 −0.0253643526707 0.2901408282503
0.2845183665656 0.1741030084725 −0.2934607414939
−0.4542405355796 −0.2318865773690 0.0001128595941
0.1872510988007 −0.0171206916918 −0.0015501494030
−0.3507039683173 0.0264223889745 0.4739000261467

⎤
⎥⎥⎥⎥⎥⎥⎦
,

C =
[
−0.166889510228 0.038161721675 0.362202814343 0.989416167409 −0.191104341881 0.172703849180
0.010071486000 0.008210117004 0.005330380954 0.012683631440 0.010082426509 −0.026547375104

−1.212588186646 −0.619627725178 0.990749246465 −0.455865810296 0.152486891422 −1.845755890228

]
,

E is singular with rank(E) = 5.
By performing Step 1 of Algorithm 1 we get the form (9) with

n1 = 5, n2 = ñ2 = 1, n3 = ñ3 = 0, E23 and E33 are nonexistent,

E11 =

[
−1.81412863731296 0.42421095468505 −1.05025682473091 3.17662461567576 −1.81554610479108
−2.28707883576749 0.58790381967586 −0.87731476780594 3.11620021773695 −2.16544496029582
−0.48446826993548 0.42267233234963 −0.15485265545682 0.41083294329550 −0.28637255352499
−0.44261627208646 −0.22062625954174 −0.18343402237887 1.30497574966312 −1.04899876010130
0.73772319004855 −0.40897839106130 0.02906644815678 −0.44508380911416 0.59700805882825

]
,
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A11 =

[
−2.82399053295603 −1.54190993452611 −1.18141927967749 6.87716695193563 −2.85898044575291
−3.48328679385907 −0.57668298994711 −1.79073168993224 7.63482380219169 −3.24859841311216
0.68284133476315 0.51353758146361 0.55962161514123 −1.87270290373406 0.62638380994589
0.27344305777165 −0.35875365745341 −0.07124731006193 0.14804286298798 0.46447362716188

−0.23342751856190 −1.00663606035709 −0.06650585078729 1.15561346009253 −0.39823667919127

]
,

[
B12 A12

]
=

⎡
⎢⎢⎢⎢⎣

−0.29338446075126 −0.22855442644477 −0.66970485705469
0.02262609006324 0.57657906855771 −0.24241575506484
−0.03965740026352 −0.07378004229509 0.01290081567965
−0.32758200246128 −0.43860929198782 −0.44527719790514
−0.14453716656447 −0.41240236312705 −0.25082197786380

⎤
⎥⎥⎥⎥⎦
,

C1 =
[
−0.49764149376588 0.26436703986119 −0.37975128183368 −0.52558936731624 −0.33982643711893
−0.00466385565791 0.01770707047205 −0.01384911053026 −0.00520420774033 0.02470573280247
1.07461245340293 −0.12658398822948 0.34423979427567 −1.76367786178704 1.44010323440087

]
,

C2 =

⎡
⎣

0.59356291253968
0
0

⎤
⎦ .

So, the condition (16) is true.
Next, we perform Step 2 of Algorithm 1 to get the form (32) with

μ1 = 1, μ2 = 4, τ2 = 2, τ3 = 2, ν = 1, D21 = 0, B22 is nonsingular,

[
E22

E32

]
=

⎡
⎣

0.18497650851300 0.21650255217584 −1.42163757723914 0.06052836892962
0.14215088563157 0.08522385113982 −6.06459778219956 1.67086227506901
0.00000000000000 0.00753734517815 −0.05947922313868 0.05399731930089
−0.13125083366301 −0.20761568732362 −1.17186177742605 −0.20101487098613

⎤
⎦,

[
A22

A32

]
=

⎡
⎣

1.98285434904403 1.32236482538160 −6.66396698837071 2.82024406998733
2.52659314741932 1.78106640040819 −8.93198215464291 3.05066915354195
−0.00000000000000 0.01488524911679 0.06423512937203 −0.04810327759609
−0.25920285056388 −0.41001322791008 0.12457919258231 0.11493631853526

⎤
⎦,

[
B22

0

]
=

⎡
⎢⎢⎣
−0.17545104068710 −0.03097433768157
−0.13911242684627 0.26719805271403

0 0
0 0

⎤
⎥⎥⎦ ,

C22 =

[
0 0 0 0.03412545630891
0 0 −2.35658869878193 0.95930344402099

]
.

Hence, the condition (38) holds.
Then, by performing Step 3 of Algorithm 1, we get a solution (F̃22,H22) to the

RRDP for system (37):

F̃22 =
[

9.802293309432168 5.646580746820156 −35.08609913450191 14.41371812628298
−3.301832971710871 −3.096022324474101 10.20273393604259 −1.043725946131937

]

and

H22 =

[
0.9996702178578495 −0.7886455744849721

−0.02.567986619979914 0.6148480770444584

]
.

Finally, by solving the four linear equations in Step 4 of Algorithm 1, we get

H =

⎡
⎣

−0.17686381243266 −0.46126177248064 −0.11010692440574
−5.21439030830574 −0.29532442684054 0.55048173448973
1.10055215419784 0.83667261229188 −0.82755442430760

⎤
⎦ ,
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F =
[

2.2179774813366 3.178794801661 −4.860781467075 0.199813884087 0.281334640565 8.543338100611
6.031618125212 7.960378436260 −7.806500773764 4.155869542985 0.747155047430 9.384264975229

−16.361782614150 −16.151965525174 14.586848000379 −0.397781332210 0.589084350377 −24.14475367080

]
.

Now we verify that the above pair (F,H) is a solution of the RRDP for system
(1). By computing the SVD of E using MATLAB code svd.m we obtain orthogonal
matrices W,W ∈ R6×6 such that (WEW,W (A + BF )W,W (BH), CW) is of the
following form:

WEW =

[ 5 1

Θ11 0
0 0

]
}5
}1 , W (A + BF )W =

[ 5 1

Φ11 Φ12

Φ21 Φ22

]
}5
}1 ,

WBH =

[
Ψ1

Ψ2

]
}5
}1 , CW =

[ 5 1

Υ1 Υ2

]
,

where Θ11 is nonsingular and Φ22 = −1.00000000000004 �= 0. Thus, the pencil
(E,A + BF ) is regular and of index at most one. Furthermore, a simple calculation
by using MATLAB code

C(sE −A−BF )−1BH
= tf

(
ss
(
Θ−1

11 (Φ11 − Φ12Φ
−1
22 Φ21),Θ

−1
11 (Ψ1 − Φ12Φ

−1
22 Ψ2), (Υ1 − Υ2Φ

−1
22 Φ21),−Υ2Φ

−1
22 Ψ2

))

yields that

C(sE −A−BF )−1BH =

⎡
⎣

T11(s) T12(s) T13(s)
T21(s) T22(s) T23(s)
T31(s) T32(s) T33(s)

⎤
⎦

with

⎡
⎣
T11(s)
T21(s)
T31(s)

⎤
⎦ =

⎡
⎢⎢⎢⎣

s5−5.466s4+9.888s3−5.912s2−4.865×10−14s−2.039×10−28

s5−5.466s4+9.888s3−5.912s2−3.147×10−14s−7.126×10−28

s3−3.950s2+3.90s+1.732×10−14

s5−5.466s4+9.888s3−5.912s2−3.147×10−14s−7.126×10−28 × 1.292 × 10−15

− s3−3.949s2+3.900s+2.252×10−14

s5−5.466s4+9.888s3−5.912s2−3.147×10−14s−7.126×10−28 × 3.444 × 10−14

⎤
⎥⎥⎥⎦ ,

⎡
⎣
T12(s)
T22(s)
T32(s)

⎤
⎦ =

⎡
⎢⎢⎢⎣

s5+1.811s4−16.65s3+25.82s2−15.20s−7.119×10−14

s5−5.466s4+9.888s3−5.912s2−3.147×10−14s−7.126×10−28 × 4.613 × 10−16

0.005079s4−0.02776s3+0.05022s2−0.03003s−2.034×10−15

s5−5.466s4+9.888s3−5.912s2−3.147×10−14s−7.126×10−28

s3−3.896s2+5.276s−2.929
s5−5.466s4+9.888s3−5.912s2−3.147×10−14s−7.126×10−28 × 1.958 × 10−14

⎤
⎥⎥⎥⎦ ,

⎡
⎣
T13(s)
T23(s)
T33(s)

⎤
⎦ =

⎡
⎢⎢⎢⎣

s5−8.802s4−6.047s3+13.74s2+3.245×10−15s−2.693×10−30

s5−5.466s4+9.888s3−5.912s2−3.147×10−14s−7.126×10−28 × 1.895 × 10−16

s2−1.841s−0.2652
s5−5.466s4+9.888s3−5.912s2−3.147×10−14s−7.126×10−28 3.659 × 10−15

0.07654s4−0.4184s3+0.7568s2−0.4526s+2.889×10−14

s5−5.466s4+9.888s3−5.912s2−3.147×10−14s−7.126×10−28

⎤
⎥⎥⎥⎦ .

Although the off-diagonal elements of C(sE−A−BF )−1BH are not exactly zero, the
numerator coefficients of all off-diagonal terms are of an order of magnitude O(10−14)
that are attributed to numerical rounding error. Thus, C(sE − A − BF )−1BH is
for practical purposes diagonal and nonsingular. This can also be demonstrated by



ROW BY ROW DECOUPLING PROBLEMS FOR DESCRIPTOR SYSTEMS 701

a step response analysis: it has been found that the response to steps or sinusoidal
inputs applied on each separate control channel of the closed-loop system effectively
gives terms on the off-diagonal parts which are about O(10−14). Hence, the above
pair (F,H) is a solution of the RRDP for system (1).

Remark 2. We can also verify that C(sE − A − BF )−1BH in Example 1 is
diagonal as follows.

Let (BH)i denote the ith column of BH ( i = 1, 2, 3). We obtain orthogonal ma-
trices Wi and Wi (i = 1, 2, 3) by computing the controllable staircase forms [20] of the
pairs (sE−A−BF, (BH)i) (i = 1, 2, 3) such that (Wi(sE−A−BF )Wi,Wi(BH)i, CWi)
(i = 1, 2, 3) are of the following forms:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W1(sE −A−BF )W1 =

[ 4 2

sΘ
(1)
11 − Φ

(1)
11 sΘ

(1)
12 − Φ

(1)
12

0 sΘ
(1)
22 − Φ

(1)
22

]
}4
}2 ,

W1(BH)1 =

[
Ψ

(1)
1

0

]
}4
}2 , CW1 =

⎡
⎢⎣

4 2

Υ
(1)
11 Υ

(1)
12

Υ
(1)
21 Υ

(1)
22

Υ
(1)
31 Υ

(1)
32

⎤
⎥⎦

}1
}1
}1

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W2(sE −A−BF )W2 =

[ 4 2

sΘ
(2)
11 − Φ

(2)
11 sΘ

(2)
12 − Φ

(2)
12

0 sΘ
(2)
22 − Φ

(2)
22

]
}4
}2 ,

W2(BH)2 =

[
Ψ

(2)
2

0

]
}4
}2 , CW2 =

⎡
⎢⎣

4 2

Υ
(2)
11 Υ

(2)
12

Υ
(2)
21 Υ

(2)
22

Υ
(2)
31 Υ

(2)
32

⎤
⎥⎦

}1
}1
}1

,

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W3(sE −A−BF )W3 =

[ 4 2

sΘ
(3)
11 − Φ

(3)
11 sΘ

(3)
12 − Φ

(3)
12

0 sΘ
(3)
22 − Φ

(3)
22

]
}4
}2 ,

W3(BH)3 =

[
Ψ

(3)
3

0

]
}4
}2 , CW3 =

⎡
⎢⎣

4 2

Υ
(3)
11 Υ

(3)
12

Υ
(3)
21 Υ

(3)
22

Υ
(3)
31 Υ

(3)
32

⎤
⎥⎦

}1
}1
}1

,

where ∥∥∥∥∥

[
Υ

(1)
21

Υ
(1)
31

]∥∥∥∥∥
2

/‖C‖2 = O(10−15),

∥∥∥∥∥

[
Υ

(2)
11

Υ
(2)
31

]∥∥∥∥∥
2

/‖C‖2 = O(10−15),

∥∥∥∥∥

[
Υ

(3)
11

Υ
(3)
21

]∥∥∥∥∥
2

/‖C‖2 = O(10−15),

and

‖Υ(1)
11 ‖/‖C‖ = O(1), ‖Υ(2)

21 ‖/‖C‖ = O(1), ‖Υ(3)
31 ‖/‖C‖ = O(1).

Therefore, C(sE −A−BF )−1BH is diagonal.
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4. Conclusions. We have presented necessary and sufficient conditions for the
solvability of the RRDP for descriptor systems. A numerical procedure, which is
implementable and reliable, has been provided to verify these solvability conditions
and compute the solution matrices.
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Abstract. In this paper tools are developed to analyse a recently proposed random matrix model
of communication networks that employ additive-increase multiplicative-decrease (AIMD) congestion
control algorithms. We investigate properties of the Markov process describing the evolution of the
window sizes of network users. Using paracontractivity properties of the matrices involved in the
model, it is shown that the process has a unique invariant probability, and the support of this
probability is characterized. Based on these results we obtain a weak law of large numbers for the
average distribution of resources between the users of a network. This shows that under reasonable
assumptions such networks have a well-defined stochastic equilibrium. ns2 simulation results are
discussed to validate the obtained formulae. (The simulation program ns2, or network simulator, is
an industry standard for the simulation of Internet dynamics.)

Key words. positive matrices, infinite products of positive matrices, AIMD congestion control,
communication networks, Markov e-chain, law of large numbers
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1. Introduction. The dynamics of communication networks have attracted in-
creased attention in recent years. Networks of devices that employ additive-increase
multiplicative-decrease (AIMD) congestion control algorithms, such as the widely de-
ployed transmission control protocol (TCP), have become the focus of much of this
activity. Typically, the approach adopted by the community is to model such networks
by means of a fluid analogy and to employ techniques from control theory and convex
optimization in their analysis; see the recent book by Srikant [27] and the references
therein for an overview of this work. Recently, several authors have proposed an al-
ternative model of TCP dynamics using products of random matrices [2, 3, 24]. The
basic approach followed in these papers is to use ideas from hybrid systems theory to
model the dynamics of AIMD networks as a switched, or time-varying, discrete time
linear system. The approach adopted in [24] allows for techniques from the theory
of nonnegative matrices and Markov chains to be employed in the analysis of these
networks. The application of these techniques to the study of such networks and the
mathematical analysis of the model are the principal contributions of this paper.

Networks of unsynchronized sources and drop-tail queues have been the subject of
several other studies [1, 3, 5, 12, 16], and it has been documented by many authors that
networks of many AIMD flows exhibit extremely complex behavior. Consequently, it
is convenient to analyze such networks from a probabilistic viewpoint, as we shall do
in section 4. The novelty of our approach lies in the fact that we use positive matrices
to model network behavior. We shall see that this will enable us to use results from
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the theory of positive matrices to be employed to make predictions concerning the
behavior of AIMD networks.

Fluid analogy approaches to the modeling of networks of unsynchronized sources
have been the subject of wide study in the TCP community; see [6, 13, 14, 18, 19,
20, 21, 22, 15, 28, 17] and the accompanying references for further details. However,
several authors have recently developed hybrid system models of networks with a sin-
gle bottleneck link which employ AIMD congestion control mechanisms, most notably
Hespanha [11] and Baccelli and Hong [2]. We note that the model derived in [2] is
similar to the model presented here. However, whereas the model derived by Baccelli
and Hong is also a random matrix model, it has an affine structure. The correspond-
ing homogeneous (linear) part is characterized by matrices without any nonnegativity
structure. In [25, 24] the same model as the one presented here is discussed. The
paper [24] deals with the derivation of expected average throughputs and with the
question of model validation. In [25] implications of the model for network respon-
siveness and network fairness are discussed, and the model validation is carried one
step further in that the effects of background traffic are analyzed.

In section 2 we begin our discussion by giving an overview of AIMD congestion
control and by briefly reviewing the random matrix model of AIMD network dynamic
first derived in [24]. In section 3 a number of basic results are presented relating to
the set of matrices used in the model. It is shown that on a jointly invariant subspace
the matrices are paracontractive, which is used to show that with probability one, left
products of the matrices approach the set of rank-1 column stochastic matrices. This
ergodicity property plays a vital role in all the subsequent considerations. Section 4 is
devoted to the analysis of the Markov chain model of the AIMD process. It is shown
that the chain in question is an e-chain. Using the results of section 3 we obtain that
this chain has positive and aperiodic states. From this we obtain the unique existence
of an invariant probability and weak law of large number statements. Finally, the
support of the invariant probability is characterized. In section 5 we collect and
derive a number of results that are useful in characterizing the stochastic equilibria
of various types of communication networks that employ AIMD congestion control
mechanisms. In section 6 we apply these results to the study of networks employing
TCP congestion control. It is shown that the model is able to predict the average
behavior of TCP flows very accurately.

2. Column stochastic matrices and AIMD congestion control. A com-
munication network consists of a number of sources and sinks connected together
via links and routers. In this paper we assume that these links can be modeled as a
constant propagation delay together with a queue, that the queue is operating accord-
ing to a drop-tail discipline, and that all of the sources are operating an AIMD-like
congestion control algorithm. In AIMD congestion control each source maintains an
internal variable wi (the window size) which tracks the number of sent unacknowl-
edged packets that can be in transit at any time. When the window size is exhausted,
the source must wait for an acknowledgment before sending a new packet. Conges-
tion control is achieved by dynamically adapting the window size according to an
additive-increase multiplicative-decrease law. Roughly speaking, the source gently
probes the network for spare capacity by increasing the rate at which packets are
inserted into the network, and backs off rapidly the number of packets transmitted
through the network when congestion is detected through the loss of data packets.
More specifically, an individual source sends packets of data through the network to
a destination, and the transmission is deemed complete if an acknowledgment issued
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Fig. 2.1. Evolution of window size.

by the destination upon receipt of the packet is received by the source. As long as
transmission is successful, that is, as long as all acknowledgments are received, the
source increments wi(t) by a fixed amount αi upon receipt of an acknowledgment.
If an acknowledgment for a certain packet does not arrive at the sender, it is as-
sumed that there has been a packet loss due to congestion in the network. As a
consequence, the variable wi(t) is reduced in multiplicative fashion to βiwi(t), where
0 < βi < 1.

2.1. A model for AIMD dynamics. In [26] a model has been presented which
assumes that (i) at congestion every source experiences a packet drop; and (ii) each
source has the same round-trip time (RTT).1 In [24] this model has been extended
to a random model of unsynchronized networks, where sources have different RTTs.
We briefly describe the derivation of the model here. A standing assumption of the
model is that all sources compete for the capacity of a single bottleneck router, and
if packets are lost, this happens because the queue of that router is overflowing.

By a congestion event we describe the situation that more packets arrive at a
router than can be serviced and the queue of the router is already full. In this case,
necessarily some packets are lost. Without the assumption of synchronization, at
a congestion event not all sources are necessarily informed of this congestion. For
the moment uniform RTT is still assumed; we will weaken this assumption later on.
Let wi(k) denote the congestion window size of source i immediately before the kth
network congestion event is detected by the source.

Over the kth congestion epoch as depicted in Figure 2.1 three important events
can be discerned: ta(k), tb(k), and tc(k). The time ta(k) denotes the instant at which
the number of unacknowledged packets in flight equals βiwi(k); tb(k) is the time at
which the bottleneck queue is full; and tc(k) is the time at which packet drop is
detected by some of the sources, where time is measured in units of RTT.2 It follows
from the definition of the AIMD algorithm that the window evolution is completely
defined over all time instants by knowledge of the wi(k) and the event times ta(k),
tb(k), and tc(k) of each congestion epoch. We therefore only need to investigate the
behavior of these quantities.

1One RTT is the time between sending a packet and receiving the corresponding acknowledgment
when there are no packet drops.

2Note that measuring time in units of RTT results in a linear rate of increase for each of the
congestion window variables between congestion events.
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We assume that sources that lose a package at congestion are informed of this loss
one RTT after the queue at the bottleneck link becomes full; that is, tc(k)− tb(k) = 1.
Also,

wi(k) ≥ 0 and

n∑
i=1

wi(k) = P +

n∑
i=1

αi ∀k > 0,(2.1)

where P is the maximum number of packets which can be in transit in the network
at any time; P is usually equal to qmax + BTd, where qmax is the maximum queue
length of the congested link, B is the service rate of the congested link in packets per
second, and Td is the RTT when the queue is empty. At the (k + 1)th congestion
event

wi(k + 1) =

{
βs
iwi(k) + αi[tc(k) − ta(k)] if source i experiences congestion,

wi(k) + αi[tc(k) − ta(k)] else,
(2.2)

and we set

βi(k) ∈ {βs
i , 1} ,(2.3)

corresponding to whether the source experiences a packet loss or not. Then summing
the equations in (2.2) and using (2.1) we obtain

tc(k) − ta(k) =
1∑n

i=1 αi

[
P −

n∑
i=1

βi(k)wi(k)

]
+ 1,(2.4)

and using (2.2)–(2.4), it follows that

wi(k + 1) = βi(k)wi(k) +
αi∑n
j=1 αj

⎡
⎣

n∑
j=1

(1 − βj(k))wj(k)

⎤
⎦ .(2.5)

Thus the dynamics of an entire network of such sources is given by

w(k + 1) = A(k)w(k),(2.6)

where wT (k) = [w1(k), . . . , wn(k)], and, writing D(β(k)) = diag(β1(k), . . . , βn(k)),

A(k) = D(β(k)) +
1∑n

j=1 αj

⎡
⎢⎢⎣

α1

α2

· · ·
αn

⎤
⎥⎥⎦
[

1 − β1(k) · · · 1 − βn(k)
]
.(2.7)

As the entries of w(k) are nonnegative for all k ≥ 0 the equations (2.6) define
a positive linear system [4]. Using bi(s) ∈ (0, 1], i = 1, . . . , n, we also see that all
possible matrices that appear are column stochastic. In what follows we will call
column stochastic matrices of the form (2.7) AIMD matrices.

So far we have worked with the assumption of uniform RTT, which is quite
restrictive (although it may, for example, be valid in some long-distance networks
[29]). We now extend our approach to more general network conditions. As we will
see, the model that we obtain shares many structural and qualitative properties of
the model described above. To distinguish variables, the nominal parameters of the
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Fig. 2.2. Evolution of window size over a congestion epoch. T (k) is the length of the congestion
epoch in seconds.

sources used in the previous section are now denoted by αs
i , β

s
i , i = 1, . . . , n. Here the

index s may remind the reader that these are the parameters that are chosen by each
source.

Consider the general case of a number of sources competing for shared bandwidth
in a generic dumbbell topology (where sources may have different RTTs and drops
need not be synchronized). The evolution of the window size wi of a typical source
as a function of time, over the kth congestion epoch, is depicted in Figure 2.2. As
before a number of important events may be discerned, where we now measure time
in seconds, rather than units of RTT. Denote by tai(k) the time at which the number
of packets in flight belonging to source i is equal to βs

iwi(k); tq(k) is the time at
which the bottleneck queue begins to fill; tb(k) is the time at which the bottleneck
queue is full; and tci(k) is the time at which the ith source is informed of congestion.
In this case the evolution of the ith congestion window variable does not evolve lin-
early with time after tq seconds due to the effect of the bottleneck queue filling and
the resulting variation in RTT; namely, the RTT of the ith source increases accord-
ing to RTTi(t) = Tdi

+ q(t)/B after tq, where Tdi is the RTT of source i when the
bottleneck queue is empty and 0 ≤ q(t) ≤ qmax denotes the number of packets in the
queue. Note also that we do not assume that every source experiences a drop when
congestion occurs. For example, a situation is depicted in Figure 2.2 where the ith
source experiences congestion at the end of the epoch, whereas the jth source does not.

Given these general features it is clear that the modeling task is more involved
than in the synchronized case. Nonetheless, it is possible to relate wi(k) and wi(k+1)
using a similar approach to the synchronized case by accounting for the effect of
nonuniform RTTs and unsynchronized packet drops as follows.

Due to the variation in RTT, the congestion window of a flow does not evolve
linearly with time over a congestion epoch. Nevertheless, we may relate wi(k) and
wi(k + 1) linearly by defining an average rate αi(k) depending on the kth congestion
epoch:

αi(k) :=
wi(k + 1) − βi(k)w(k)

T (k)
,(2.8)

where T (k) is the duration of the kth epoch measured in seconds. Equivalently we
have

wi(k + 1) = βi(k)wi(k) + αi(k)T (k) .(2.9)
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In the case when qmax � BTdi
, i = 1, . . . , n, the average αi are (almost) independent

of k and given by αi(k) ≈ αs
i/Tdi for all k ∈ N, i = 1, . . . , n. The situation when

αi ≈
αs
i

Tdi

, i = 1, . . . , n,(2.10)

is of considerable practical importance and such networks are the principal concern of
this paper. See [24] for a discussion of networks where this assumption is reasonable.

In view of (2.3) and (2.9) a convenient representation of the network dynamics is
obtained as follows. At congestion the bottleneck link is operating at its capacity B,
i.e.,

n∑
i=1

wi(k) − αi

RTTi,max
= B,(2.11)

where RTTi,max is the RTT experienced by the ith flow when the bottleneck queue
is full. Note that RTTi,max is independent of k. Setting γi := (RTTi,max)−1 we have
that

n∑
i=1

γiwi(k) = B +

n∑
i=1

γiαi .(2.12)

Using steps similar to the ones performed in (2.2)–(2.4) we obtain the model

wi(k + 1) = βi(k)wi(k) +
αi∑n

j=1 γjαj

⎛
⎝

n∑
j=1

γj(1 − βj(k))wj(k)

⎞
⎠ ,(2.13)

and the dynamics of the entire network of sources at the kth congestion event are
again described by w(k + 1) = A(k)w(k), where

A(k) = D(β(k)) +
1∑n

j=1 γjαj

⎡
⎢⎢⎣

α1

α2

· · ·
αn

⎤
⎥⎥⎦ [γ1(1 − β1(k)), . . . , γn(1 − βn(k))],(2.14)

and where βi(k) is either 1 or βs
i . The nonnegative matrices A2, . . . , Am are con-

structed by taking the matrix A1,

A1 =

⎡
⎢⎢⎢⎣

βs
1 0 · · · 0
0 βs

2 0 0
... 0

. . . 0
0 0 · · · βs

n

⎤
⎥⎥⎥⎦ +

1∑n
j=1 γjαj

⎡
⎢⎢⎣

α1

α2

· · ·
αn

⎤
⎥⎥⎦
[
γ1(1 − βs

1), . . . , γn(1 − βs
n)

]
,

and setting some, but not all, of the βi to 1. This gives rise to m = 2n − 1 matrices
associated with the system (2.13) that correspond to the different combinations of
source drops that are possible. These matrices are not AIMD matrices in the sense
we have defined above. However, by a small transformation we come back to our
original situation.

By considering the evolution of wT
γ (k) = [γ1w1(k), γ2w2(k), . . . , γnwn(k)] we ob-

tain the following description of the network dynamics:

wγ(k + 1) = Ā(k)wγ(k)(2.15)
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with Ā(k) ∈ Ā = {Ā1, . . . , Ām}, m = 2n − 1, and where the Āi are obtained by the
diagonal similarity transformation associated with the change of variables. As before
the nonnegative matrices Ā2, . . . , Ām are constructed by taking the matrix Ā1 and
setting some, but not all, of the βs

i to 1. It is easy to see that all of the matrices in
the set Ā are now AIMD matrices; for convenience we use this representation of the
network dynamics to prove the main mathematical results presented in this paper.
Note furthermore that the similarity transformation used to bring the matrices in
AIMD form depends only on the round-trip times RTTi and not on the αs

i , β
s
i .

2.2. Networks of flows whose parameters vary in time. Before proceeding
with our analysis we note that for some applications it is convenient to allow the
parameters of the matrix A(k) to vary in more general a manner than that described
in the previous two sections. Our model may be extended trivially to model networks
whose AIMD parameters vary with time: αi(k); βi(k). Such situations may arise in
applications where the protocol adapts its parameters to reflect prevailing network
conditions or in applications where variations in network delays lead to a consequent
variation in the AIMD parameters (for example, due to routing changes or in wireless
networks) [22]; in fact a number of AIMD networks of this type have recently been
proposed by a number of authors in the context of high-speed long-distance networks
[29]. We account for such behavior in this paper by defining the set M to be the union
of a finite number of matrix sets Āj , each of which is defined as above but which

corresponds to fixed AIMD parameters {αj
1, . . . , α

j
n} and {βj

1, . . . , β
j
n}, 1 ≤ j ≤ h,

with M =
⋃h

j=1 Āj , where h is some fixed integer.

3. Preliminaries. The principal objective of this paper is to collect and develop
analytic tools to analyze models of the form derived in section 2. We will see in section
5 that it is possible to characterize the stochastic behavior of the random variable w(k)
under certain assumptions. The derivation of these results is somewhat technical, and
to ease exposition we introduce here a number of definitions and preliminary results.

3.1. Basic notation. The following results are based on the theory of nonnega-
tive matrices. A matrix A or a vector x is said to be nonnegative if each of its entries is
a nonnegative real number and matrices or vectors are called positive if all their entries
are positive. We write A � B or A 	 B if A−B is positive, respectively, nonnegative.
The set of nonnegative matrices in R

n×n is denoted by R
n×n
+ . The componentwise

absolute value of A = (aij) ∈ R
n×m is defined by |A| := (|aij |) ∈ R

n×m
+ .

A special subset of R
n×n
+ are the column stochastic matrices. A matrix A ∈ R

n×n
+

is called column stochastic if for each of its columns the sum of the corresponding
elements is equal to 1. Denoting e := [1, 1, . . . , 1]T , it follows that eT is a left eigen-
vector of a column stochastic matrix corresponding to the eigenvalue 1. We denote
by R ⊂ R

n×n the set of all column stochastic matrices of rank-1 and the distance
between a matrix P ∈ R

n×n and the set R by dist (P,R) = inf{‖P − C‖ : C ∈ R},
where ‖ · ‖ is the induced l1-norm. Finally, the standard jth unit vector is denoted
by ej , so that e =

∑n
j=1 ej .

3.2. Basic assumptions. Our basic objective is to model the evolution of the
vector w(k) for networks of AIMD flows. We consider a set of AIMD matrices M =
{M1, . . . ,Mμ}, μ ≥ 1. Associated to this set we consider the deterministic system

x(k + 1) ∈ {Mx(k) | M ∈ M}(3.1)
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and a Markov chain model

w(k + 1) = A(k)w(k) ,(3.2)

where for each k the A(k) is a random variable with values in M. We recall that
by (2.1) the sum

∑
i wi(k) is a constant. We may thus restrict our attention to the

simplex

Σ :=

{
x ∈ R

n
+ | eTx =

n∑
i=1

xi = 1

}
,

and we will study the evolution of (3.2) on Σ. We assume that the random variables
A(k), k = 0, 1, . . . , are independent and identically distributed (i.i.d.) and denote

P (A(k) = Mi) = ρi , i = 1, . . . , μ .

As we are dealing with probabilities, necessarily, we assume
∑

i ρi = 1. With this
setup the sequence {w(k)}k∈N is a Markov process. The random variable of a product
of length k is denoted by Π(k) = A(k)A(k − 1) . . . A(0).

Clearly, w(k) = Π(k)w(0), and consequently the behavior of w(k), as well as
the network fairness and convergence properties, are governed by the asymptotic
properties of the matrix product Π(k) as k → ∞.

Assumption 3.1. Let M = {M1, . . . ,Mμ} be a set of matrices of the form (2.7).
We assume that the probability that A(k) = Mi in (3.2) is independent of k and equals
ρi > 0.

Comment 3.2. In other words Assumption 3.1 says that the probability that the
network dynamics are described by w(k+1) = A(k)w(k), A(k) = Mi over the kth con-
gestion epoch is ρi and that the random variables A(k), k ∈ N are i.i.d. Furthermore,
we assume that we only have matrices in the set M which occur with positive proba-
bility. Without this assumption there is little insight to be gained into the dynamics of
the Markov chain (3.2) by studying the deterministic system (3.1). This assumption
implies no loss of generality because we may simply remove matrices with 0 probability
from the set M.

Given the probabilities ρi for Mi ∈ M, one may then define the probability λj

that source j experiences a backoff at the kth congestion event as follows:

λj =
∑

ρi ,

where the summation is taken over those i which correspond to a matrix in which the
jth source sees a drop. To put it another way, the summation is over those indices i
for which the matrix Mi is defined with a value of βj �= 1.

Assumption 3.3. Let M = {M1, . . . ,Mμ} be the set of AIMD matrices defining
(3.2) and assume that P (A(k) = Mi) = ρi, i = 1, . . . , μ. We assume that λj > 0 for
all j ∈ {1, . . . , n}.

Simply stated, by Assumption 3.3 all flows must see a drop almost surely at some
time (provided that they live for a long enough time).

3.3. Column stochastic matrices. Column stochastic matrices will play a
central role in the discussion in section 5. We begin by collecting some results. The
following two are immediate consequences of the definition of a column stochastic
matrix.
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Lemma 3.4. A matrix A ∈ R
n×n
+ is column stochastic if and only if eTA = eT .

Any product of a finite number of column stochastic matrices is a column stochastic
matrix (i.e., the set of column stochastic matrices is a semigroup).

It is sometimes convenient to consider the subspace orthogonal to e, which we
denote by

S := {z ∈ R
n | eT z = 0} .

The subspace S is an invariant subspace for all column stochastic matrices. Given a
column stochastic matrix A we denote by Ã : S → S the linear operator obtained by
restricting A to S. Furthermore, we denote by ‖ · ‖ the 1-norm and the corresponding
induced matrix norm.

Lemma 3.5. For any column stochastic matrix A it holds that ‖A‖ = 1 and
‖Ã‖ ≤ 1. If A is positive, then ‖Ã‖ < 1 .

Proof. The first claim is immediate from the standard characterization of the
induced 1-norm as the column-sum norm. The second claim follows as ‖Ã‖ ≤ ‖A‖
using the definition of induced norms. Finally, if A is positive, then for a vector
z ∈ S, ‖z‖ = 1 it holds that −A|z| ≺ |Az| ≺ A|z| as z has positive and negative
entries due to eT z = 0. This implies for z ∈ S, ‖z‖ = 1 that

‖Ãz‖ = ‖Az‖ = ‖ |Az| ‖ < ‖A|z| ‖ = 1 .

This shows the assertion.
A feature in the proof of our main results is the observation that products of

our AIMD matrices converge to a certain compact subset of the rank-1 idempotent
matrices (in the sense that the distance to this set goes to zero). We use the following
lemma to estimate the distance of a matrix product from the set R defined at the
beginning of this section.

Lemma 3.6. Let A ∈ R
n×n
+ be column stochastic; then dist (A,R) ≤ 2‖Ã‖.

Proof. Let A1 = A − AeeT /n. Note that AeeT /n is a rank-1 column stochastic
matrix. Then dist (A,R) = inf{‖A−C‖ : C ∈ R} ≤ ‖A−AeeT /n‖ = ‖A1‖. We are
proving that ‖A1‖ ≤ 2‖Ã‖. So let x = z + te, where z ∈ S, t ∈ R are arbitrary. Then

A1x = (A−AeeT /n)(z + te) = Az = Ãz ,

so

‖A1x‖ ≤ ‖Ãz‖ ≤ ‖Ã‖‖z‖ .

To complete the proof we show that ‖z‖ ≤ 2‖z + te‖. Indeed, if z1, z2, . . . , zn are the
components of z ordered such that z1 ≥ z2 ≥ · · · ≥ zr ≥ 0 > zr+1 ≥ · · · ≥ zn, then
‖z‖ = |z1|+ |z2|+ · · ·+ |zn| = 2(|z1|+ |z2|+ · · ·+ |zr|). On the other hand for t ≥ 0,

‖z + te‖ =
n∑

j=1

|zj + t| ≥
r∑

j=1

|zj + t| ≥
r∑

j=1

|zj | =
1

2
‖z‖ ,

thus ‖z‖ ≤ 2‖z + te‖. For t < 0 a similar argument applies.
Recall that the similarity transformation described to obtain (2.15) is applied

simultaneously to the matrices from (2.14). Thus each matrix M ∈ M can be written
in the form

diag(β1, β2, . . . , βn) +
1∑n

j=1 αjγj
[α1γ1, . . . , αnγn]T [(1 − β1), . . . , (1 − βn)] ,(3.3)
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where αj(M) are positive, and all βj(M) are positive and not greater than 1. The
parameters γj are also positive and independent of M ∈ M, as they are determined
by the RTTs of the sources; see (2.15). Thus the matrices in M are column stochastic.
Note that if the jth column of M ∈ M is not strictly positive, then that column is
equal to ej . Using the assumptions given in section 3.2, we now aim to prove certain
convergence results for the restriction of A(k)A(k − 1) · · ·A(1) to S. To this end we
employ the notion of paracontractivity [7, 10] from the theory of nonhomogeneous
matrix products. A linear operator A on R

n is called paracontractive with respect to
the norm ‖ · ‖ if

Ax �= x ⇒ ‖Ax‖ < ‖x‖.(3.4)

We will employ the following three results to show that almost surely products of
matrices from M converge to the set R. The following result is proved in [7].

Theorem 3.7. Let ‖ · ‖ be a norm on R
n and let F ⊂ R

n×n be a finite set of
linear operators which are paracontractive with respect to ‖ · ‖. Then for any sequence
{Ak}k∈N ⊂ FN, the sequence of left products {AkAk−1 . . . A1}k∈N converges.

The second result shows that all matrices from M are paracontractive with respect
to the 1-norm on S.

Lemma 3.8. Let A ∈ M. Then Ã is paracontractive on S with respect to the
1-norm.

Proof. As before, let ‖ · ‖ denote the 1-norm. For x ∈ S we want to show
(3.4). We know that any matrix from M can be written in the form (3.3), where
βi ∈ (0, 1], i = 1, . . . , n, and βj < 1 for some j ∈ {1, . . . , n}. Also αi > 0 and γi > 0
for i = 1, 2, . . . , n. Without loss of generality, assume that β1 = β2 = · · · = βq = 1 for
q < n and βi < 1, i = q + 1, . . . , n. In this case our matrix A is of the form

A =

[
Iq A12

0 A22

]
,

where Iq is the identity matrix of order q and where A12, A22 � 0 are such that the

elements of each column of A sums to 1. Pick x ∈ S. If we partition x =
[
zT1 zT2

]T
accordingly, we have

Ax =

[
z1 + A21z2

A22z2

]
.

By Lemma 3.5 it follows that ‖Ax‖ ≤ ‖x‖. If ‖Ax‖ = ‖x‖, then in each entry of Ax
the summands have the same sign, because otherwise ‖Ax‖ < ‖A|x|‖ ≤ ‖|x|‖ = ‖x‖, a
contradiction. For 1 ≤ j ≤ q, this implies that for (Ax)j = xj+ajq+1xq+1+· · ·+ajnxn

the signs of the summands coincide. Similarly for q + 1 ≤ j ≤ n the signs of the
summands of (Ax)j = ajq+1xq+1 + · · ·+ ajnxn coincide. This implies xixj ≥ 0 for all
i = 1, 2, . . . , n and all j = q + 1, q + 2, . . . , n. If we fix j ≥ q + 1, we have

0 = xje
Tx = xj(x1 + · · · + xn) ≥ x2

j .(3.5)

We conclude that z2 = 0, which also means that Ax = x. Thus for x ∈ S, we have
‖Ax‖ ≤ ‖x‖ with equality if and only if Ax = x, as desired.

Our third result is purely technical and is stated as a separate lemma to aid
exposition of Theorem 3.10.

Corollary 3.9. If A ∈ M is such that its not strictly positive columns are
indexed by i1, i2, . . . , iq and x ∈ S is such that Ax = x, then x lies in the subspace
spanned by the vectors ei1 , ei2 , . . . , eiq .
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Proof. This follows from the previous proof, as we have seen that Ax = x implies
that xj = 0 for j = q + 1, . . . , n. In other words, x ∈ span{e1, . . . , eq}. The general
statement follows by permutation.

Given the three previous results it is now possible to show that almost all products
of matrices from M approach the set R.

Theorem 3.10. Let {Ak}k∈N be a sequence of matrices from M. Assume that
for all i ∈ {1, 2, . . . , n} there is a matrix Ti ∈ M with positive ith column which occurs
infinitely often in {Ak}k∈N. Then

lim
k→∞

{ÃkÃk−1 · · · Ã1} = 0 .

In particular under Assumption 3.3, we have for the stochastic process {A(k)}k∈N that
limk→∞ Ã(k)Ã(k − 1) · · · Ã(0) = 0 almost surely.

Proof. By Lemma 3.8, the matrices Ãk, k ∈ N, are paracontractive with re-
spect to ‖ · ‖. Using Theorem 3.7 it follows that {ÃkÃk−1 · · · Ã1}k∈N is conver-
gent. To prove that the limit is 0 let s ∈ S. Then there exist y ∈ S such that
y = limk→∞ AkAk−1 · · ·A1s. We will prove that y = 0 from which the first assertion
follows. For fixed i let {Ank

}k∈N be a subsequence of {Ak}k∈N with Ank
= Ti. Then

y = lim
k→∞

Ank
Ank−1 · · ·A1s = Ti lim

k→∞
Ank−1 · · ·A1s = Tiy.

Thus Tiy = y ∈ S since s ∈ S. By Corollary 3.9 the ith coordinate of y is zero.
Since i is arbitrary, it follows that y = 0.

By Assumption 3.3 for each j ∈ {1, . . . , n} the probability that matrices with
positive jth column occur infinitely often in a realization of the process is equal to 1.
Thus limk→∞ Ã(k)Ã(k − 1) · · · Ã(0) = 0 with probability 1.

The next result shows that the expected distance between A(k)A(k − 1) · · ·A(1)
and R decreases exponentially; a fact of independent interest.

Proposition 3.11. Let {A(k)}k∈N be a sequence of random variables satisfying
Assumptions 3.1 and 3.3. Let d(k) := E(dist (A(k)A(k − 1) · · ·A(1),R)). Then there
exist η < 1 and C ≥ 1 such that for all k it holds that

d(k) ≤ Cηk.(3.6)

Proof. Let θ = 1 − minj=1,n λj < 1 and let l be an integer such that 1 > nθl.
At first, note that the jth column of the product of several matrices from M

is positive if and only if one of these matrices has positive jth column, otherwise it
is equal to ej . Consider the products of length l: Π(l) = A(l)A(l − 1) · A(1). The
probability that the jth column of Π(l) is not strictly positive is oj := (1 − λj)

l ≤
θl. For the probability ql that at least one column of Π(l) is not strictly positive,
we have that ql ≤ o1 + o2 + · · · + on ≤ nθl. Thus the probability pl that Π(l) is
positive satisfies pl = 1 − ql ≥ 1 − nθl > 0. Let k = dl + r, where 0 ≤ r < l. We
can split the product Π(k) = A(k)A(k − 1) · · ·A(1) into the product of the first r
terms D0 = A(k)A(k − 1) · · ·A(k − r + 1) and the product of d blocks of length l:
Di = A(il)A(il−1) · · ·A(l(i−1)+1) for i = 1, 2, . . . , d. So Π(k) = D0Dd · · ·D1. Note
that for all i = 0, 1, . . . , d, Di, as a product of column stochastic matrices, is column
stochastic, and therefore ‖Di‖ = 1 and ‖D̃i‖ ≤ 1. With this notation we have

dist (Π(k),R) ≤ 2‖Π̃(k)‖ = 2‖D̃0D̃d · · · D̃1‖ ≤ 2‖D̃d · · · D̃1‖ .

Define

δ := max{‖T̃‖ : T = AlAl−1 . . . A1 > 0, A1, A2, . . . , Al ∈ M} < 1 .(3.7)
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Since the set in (3.7) is finite, the maximum exists and is strictly less than 1 by
Lemma 3.5. For any j ∈ {0, 1, 2, . . . , d} the probability that exactly j of the matrices
D1, D2, . . . , Dd are positive is equal to zj =

(
d
j

)
pjl (1 − pl)

d−j . We also know that if j

of matrices D1, D2, . . . , Dd are positive, then ‖(DdDd−1 · · ·D1) ˜ ‖ = ‖D̃d · · · D̃1‖ ≤
‖D̃d‖ · · · ‖D̃1‖ ≤ δj . Thus we obtain

d(k) ≤ 2E(‖D̃d‖ · · · ‖D̃1‖) ≤ 2

d∑
j=0

zjδ
j

= 2

d∑
j=0

(
d

j

)
(plδ)

j(1 − pl)
d−j = 2(1 + plδ − pl)

d ≤ Cηk ,

where for the last inequality we choose

η := (1 − pl + plδ)
1/l < 1 and C := 2/ηl .(3.8)

This shows the assertion.

4. Invariant measures. In this section we study the existence of invariant mea-
sures of the Markov process {w(k)}k∈N. Throughout we assume that Assumptions 3.1
and 3.3 are satisfied. Our considerations are based on the results presented in [23], to
which we refer the reader for further background material. We briefly present some
basic properties for the Markov chain {w(k)}k∈N on the simplex Σ. By B(Σ) we
denote the Borel σ-algebra of Σ.

Associated with our Markov chain there is a transition kernel P (x,X) for x ∈
Σ, X ∈ B(Σ), which gives the probability to reach the set X from the point x. This
transition kernel acts on continuous functions h : Σ → R through

Ph(x) =

∫
Σ

h(y)P (x, dy) =

μ∑
i=1

ρih(Mix) .(4.1)

It is obvious that Ph is continuous for continuous h, so that P is (weak) Feller.
Furthermore we have ‖Ai‖ ≤ 1, i = 1, . . . , μ, so that ‖Ai(x − y)‖ ≤ ‖x − y‖. Using
the uniform continuity of h it follows that for any continuous function h : Σ → R, the
sequence

P kh , k ∈ N ,

defined inductively through repeated application of (4.1), is equicontinuous. Markov
chains whose transition kernel have this property are called e-chains; see [23].

An important notion in the study of Markov chains are invariant probabilities.
Recall that a probability measure π is called invariant for a Markov process if

π(X) =

∫
Σ

P (x,X)dπ(x) ∀X ∈ B(Σ),

that is, intuitively, the distribution of mass on Σ given by the probability measure π
is not changed if it is rearranged according to the evolution of the Markov process.

As we are considering an e-chain, we obtain from [23, Theorem 12.0.1] that an
invariant probability exists in our case. We aim to show its uniqueness. To this end



STOCHASTIC EQUILIBRIA OF AIMD COMMUNICATION NETWORKS 715

we first study the possible support of invariant measures. We introduce the set of
sequences

L := {{Ak}k∈N ∈ MN | {Ak}k∈N satisfies the conditions of Theorem 3.10}.

By Theorem 3.10 we know that the left products of a sequence {Ak}k∈N ∈ L approach
the set of rank-1 column stochastic matrices. We define the set of limit points of such
sequences by

RL := {R ∈ R | ∃{Ak}k∈N ∈ L, kl → ∞ : lim
l→∞

Π(kl) = R} .

As the matrices R ∈ R are column stochastic and of rank 1 they can be represented
in the form R = zeT , where z 	 0 and ‖z‖ = 1. Thus the set RL naturally defines a
subset of the simplex Σ by

C := {z ∈ Σ | zeT ∈ RL} .(4.2)

We note the following properties of C.
Proposition 4.1. Consider a finite set of AIMD matrices M and the associated

deterministic system (3.1) and the Markov chain (3.2). Let C be defined by (4.2).
Then

(i) C is forward invariant under (3.1);
(ii) for any solution {x(k)}k∈N, x(0) ∈ Σ of (3.1) the distance

dist (x(k), C)

is nonincreasing;
(iii) for any z ∈ C and any open neighborhood U ⊂ Σ of z there is a k0 > 0 such

that P k(x, U) > δ > 0 for all k ≥ k0 and all x ∈ Σ;
(iv) for any initial condition w0 ∈ Σ we have almost surely

lim
k→∞

dist (w(k), C) = 0 .

Proof. (i) Let x ∈ C, B ∈ M. By definition there exists a sequence {Ak}k∈N ∈ L
and kl → ∞ such that

Π(kl) = Akl
Akl−1 . . . A1 → zeT .

We write Π(kl) = zeT + Δk, where ‖Δk‖ → 0. Now we define a new sequence by
repeating our initial sequence and inserting B, i.e., we consider the sequence

{A1, A2, . . . , Ak1 , B,A1, A2, . . . , Ak2 , B,A1, . . . , Ak3 , B,A1, . . . } .

Denoting products of length l of this sequence by Ψ(l) we have

Ψ

⎛
⎝l +

l∑
j=1

kj

⎞
⎠ = BΠ(kl)Ψ

⎛
⎝(l − 1) +

l−1∑
j=1

kj

⎞
⎠ = B(zeT + Δk)Ψ

⎛
⎝(l − 1) +

l−1∑
j=1

kj

⎞
⎠

= BzeT + BΔkΨ

⎛
⎝(l − 1) +

l−1∑
j=1

kj

⎞
⎠ ,
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where we have used that all matrices are column stochastic in the last step. As
‖Δk‖ → 0, this implies that Ψ(l +

∑l
j=1 kj) → BzeT as l → ∞. The constructed

sequence clearly lies in L so that Bz ∈ C, which is what we wanted to show.
(ii) Let x ∈ Σ. Pick a z ∈ cl C such that dist (x, C) = ‖x − z‖. Then for A ∈ M

it follows using (i) that

dist (Ax, C) ≤ ‖Ax−Az‖ ≤ ‖x− z‖ = dist (x, C) .

This shows the assertion.
(iii) Fix z ∈ C and let U ⊂ Σ be an open neighborhood of z. Then we may choose

ε > 0 such that x ∈ Σ, ‖x− z‖ < ε implies x ∈ U . By definition of C there exists a k0

and a product Π(k0) such that ‖Π(k0) − zeT ‖ < ε. This implies for any x ∈ Σ that

‖Π(k0)x− z‖ = ‖(Π(k0) − zeT )x‖ < ε ,

so that Π(k0)x ∈ U and, consequently, P k0(x, U) > δ > 0 for all x ∈ Σ. As this
probability is independent of x we see in particular that P k(z, U) > δ > 0 for all
k ≥ k0 by considering the transition from k − k0 to k.

(iv) This is an immediate consequence of Theorem 3.10.
In the terminology of Markov chains, we have proved in Proposition 4.1(iii) that

each z ∈ C is positive and aperiodic for the Markov chain {w(k)}k∈N. For a general
definition of positive and aperiodic states of an e-chain, see [23, pp. 456, 459]. Using
the existence of positive and aperiodic states we obtain the following fundamental
statement from [23, Theorem 18.0.2] and [8].

Theorem 4.2. Consider a finite set of AIMD matrices M and the associated
Markov chain (3.2). Then

(i) there exists a unique invariant probability π;
(ii) for every x ∈ Σ and every continuous function h : Σ → R we have that if

w(0) = x, then

lim
k→∞

1

k

k−1∑
j=0

h(w(j)) =

∫
Σ

h(y)dπ(y) almost surely;

(iii) for every x ∈ Σ and every continuous function h : Σ → R we have

∫
Σ

h(y)P k(x, dy) →
∫

Σ

h(y)dπ(y) as k → ∞ .

The previous result can be sharpened by using the special structure of the set of
AIMD matrices M.

Theorem 4.3. Consider a finite set of AIMD matrices M and the associated
Markov chain (3.2) with its unique invariant probability π. Then

suppπ = cl C .

Proof. We first show that C ⊂ suppπ. Assume to the contrary that x ∈ C \
suppπ. Then there exists an open neighborhood V of x with V ∩ suppπ = ∅. By
Proposition 4.1(iii) it follows for all y ∈ suppπ that P k(y, V ) > 0 for some k large
enough, which contradicts x /∈ suppπ.

To show suppπ ⊂ cl C, let ε > 0 and consider the set

Uε := {x ∈ Σ | dist (x, C) > ε} .
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As the distance of w(k) to C is nonincreasing for every sample path by Proposi-
tion 4.1(ii), this shows that P (x, Uε) > 0 implies x ∈ Uε. Thus

π(Uε) =

∫
Σ

P (x, Uε)dπ(x) =

∫
Uε

P (x, Uε)dπ(x) .

If π(Uε) > 0, this shows that with probability 1 any evolution starting in Uε stays in
Uε. This is a contradiction to dist (w(k), C) → 0 with probability 1, which we know
by Proposition 4.1(iv). This shows π(Uε) = 0, and as ε > 0 was arbitrary, we obtain
the assertion.

The interesting point of the previous result is that the support of the invariant
probability π is determined by the set of matrices M, and only the distribution of
mass on that set changes under variation of the probabilities ρi. In the next section we
show that in some cases the expected values of the average can be elegantly expressed
in terms of the data, without the knowledge of the invariant probability π.

5. Long term averages. From a practical point of view, we now present the
main results of the paper. For the system defined in section 3.2 we know that the
stochastic process {w(k)} satisfies the strong law of large numbers. An important
consequence of this result is that the vector of window sizes w(k), averaged over time,
converges in probability to a well-defined stochastic equilibrium. It is of interest to
know what this equilibrium is given the data of the system.

Recall that Π(k) is the random variable defined by Π(k) = A(k − 1)A(k −
2) . . . A(0). It is prudent at this point to note that it follows from the discussion
that the expectation of the random variable A(k) is independent of k and is equal to

E(A(k)) = E(A(1)) =

μ∑
i=1

ρiMi.(5.1)

Given Assumption 3.3, this immediately implies that matrix E(A(1)) is a positive
column stochastic matrix and consequently has a unique Perron3 eigenvector xp given
by E(A(1))xp = xp, x

T
p y = 1. Using the independence of the random variables A(k),

this shows the following statement.
Proposition 5.1. Consider a finite set of AIMD matrices M and let {A(k)}k∈N

be an i.i.d. stochastic process satisfying Assumptions 3.1 and 3.3. Then the expectation
of Π(k) is given by

E(Π(k)) =

(
μ∑

i=1

ρiMi

)k

, and we have lim
k→∞

E(Π(k)) = xpe
T ,(5.2)

where the vector xp � 0 is uniquely determined by
(

μ∑
i=1

ρiMi

)
xp = xp , eTxp = 1 .(5.3)

We are now interested in the long-term average of the window size. To this end
we define the random variable w(k) by

w(k) :=
1

k + 1

k∑
i=0

w(i) =

(
1

k + 1

k∑
i=0

Π(i)

)
w(0) = Π(k)w(0) .

3Recall that for any column stochastic matrix V � 0 with Perron eigenvector xp, it holds that
limk→∞ V k = xpeT [4].
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Corollary 5.2. Consider a finite set of AIMD matrices M, and let {A(k)}k∈N

be an i.i.d. stochastic process satisfying Assumptions 3.1 and 3.3. Then the expectation
of w(k) is given by

E(w(k)) =
1

k + 1
(I + E(A(1)) + E(A(1))2 + · · · + E(A(1))k)w(0),

and with xp defined by (5.3) we have

lim
k→∞

E(w(k)) = xpe
Tw(0) .

Proof. This follows since E(A(1))k → xpe
T as k → ∞.

The following theorem shows how the average distribution of network capacities
can be characterized.

Theorem 5.3. Consider a finite set of AIMD matrices M and the associated
Markov chain (3.2). Let Assumptions 3.1 and 3.3 be satisfied. Then, almost surely,

lim
k→∞

w(k) = xpe
Tw(0),(5.4)

where the vector xp is defined by (5.3).
Proof. This is a consequence of Theorem 4.2 and Corollary 5.2. To be precise, by

Theorem 4.2(ii) we have that if w(0) ∈ Σ, then

w(k) →
∫

Σ

wdπ(w) =: Eπ(w)

almost surely. (To obtain the desired result for vectors from the scalar results pre-
sented in Theorem 4.2, it suffices to consider the projections onto each coordinate.) If
w(0) 	 0 is not in Σ, this equation scales by eTw(0) by linearity. Thus in particular
E(w(k)) → Eπ(w)eTw(0). As by Corollary 5.2 we have E(w(k)) → xpe

Tw(0), which
implies (5.4).

To summarize, the previous result says that the average distribution of the re-
sources of the network is given by the vector xp, which can be simply obtained by
finding the dominant eigenvalue of

∑
ρiMi � 0.

5.1. Stochastic equilibria of AIMD networks. Proposition 5.1 and Theo-
rem 5.3 provide remarkable insights into the behavior of communication networks em-
ploying AIMD congestion control. In principle, they relate the asymptotic properties
of such networks to the Perron eigenvector of E(A(1)). Since E(A(1)) is easily com-
putable, it is possible not only to predict but also to control the asymptotic properties
of such networks through judiciously manipulating the AIMD parameters and/or the
probabilities ρi. In this context it is natural to ask whether the Perron eigenvector
of E(A(1)) can be directly related to the AIMD parameters of the network. We now
discuss some examples, where the calculation of E(A(1)) is particularly simple.

(i) Time-invariant networks. By this we mean that the network parameters can-
not change in time and that there is a unique set of AIMD parameters ((α1, . . . , αn),
(β1, . . . , βn)) that is used in the construction of all matrices M ∈ M. In this case it
is readily shown that

E(A(1)) = diag(δ1, . . . , δn) +
1∑n

i=1 αiγi
[α1γ1, . . . , αnγn]T [1 − δ1, . . . , 1 − δn],(5.5)
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where δi = 1 − λi(1 − βi). Further, it follows directly by inspection that the Perron
eigenvector of E(A(1)) is given by

xp =

[
α1γ1

λ1(1 − β1)
, . . . ,

αnγn
λn(1 − βn)

]T
.

Consequently, the network convergence properties and the rates of convergence of
E(w(k)) can be controlled directly by manipulating the network parameters (αi, βi, ρi).
Clearly, such networks are of great interest since most practical wireline networks (in-
cluding those employing TCP) fall into this category. A more detailed discussion of
such network types can be found in [24].

(ii) Time-varying networks. Here we assume that there is a finite set of AIMD
parameters ((αl

1, . . . , α
l
n), (βl

1, . . . , β
l
n)), l = 1, . . . ,m, and all matrices in M ∈ M

are constructed as an AIMD matrix corresponding to one of these parameters. In
this case it is convenient to consider two cases: (a) networks where the αi = αl

i are
independent of l and the βl

i vary; and (b) networks where both αl
i and βl

i vary.

In the first case it is again readily shown that

E(A(1)) = diag(δ1, . . . , δn) +
1∑n

i=1 αiγi
[α1γ1, . . . , αnγn]T [1 − δ1, . . . , 1 − δn],(5.6)

where δi = E(βi) < 1. As before xp can be found by inspection and is given by

xp =

[
α1γ1

1 − δ1
, . . . ,

αnγn
1 − δn

]T
.(5.7)

In the more general case it appears to be difficult to derive explicit formulae
for xp. One simplification occurs when the following situation prevails. The matrix
E(A(1)) can be written as

E(A(1)) =

h∑
j=1

∑
Mi∈Āj

ρiMi =

h∑
j=1

Zj .(5.8)

In the case when the Zj are positive matrices with a common Perron eigenvector
xp, it follows that xp is also the Perron eigenvector of E(A(1)) and the stochastic
equilibria of the corresponding communication network is defined by xp. Hence, it
follows that time-varying networks constructed by switching between networks with a
common equilibrium results in a constituent network with the same equilibrium state
(although the rate of convergence to this equilibrium is difficult to bound).

6. Experimental results. The mathematical results derived in section 5 are
surprisingly simple when one considers the potential mathematical complexity of the
unsynchronized network model (2.6). The simplicity of these results is a direct conse-
quence of Assumptions 3.1 and 3.3. The objective of this section is therefore twofold:
(i) to validate the unsynchronized model (2.6) in a general context; and (ii) to validate
the analytical predictions of the model and thereby confirm that the aforementioned
assumptions are appropriate in practical situations.

6.1. Networks of two unsynchronized flows: Ensemble averages. We
first consider the behavior of two TCP flows in the dumbbell topology shown in
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Fig. 6.1. Dumbbell topology.
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Fig. 6.2. Evolution of window size: Predictions of the network model compared with packet-
level ns2 simulation results. Key: ◦ = flow 1 (model), ♦ = flow 2 (model), dashed line = flow 1
(ns2), solid line = flow 2 (ns2). Network parameters: B = 100Mb, qmax = 80 packets, T̄ = 20ms,
T0 = 102ms; T1 = 42ms; no background web traffic.

Figure 6.1. Our analytic results are based upon two fundamental assumptions: (i)
that the dynamics of the evolution of the source congestion windows can be accurately
modeled by (2.6); and (ii) that the allocation of packet drops among the sources at
congestion can be described by random variables. We consider each of these assump-
tions in turn.

(i) Accuracy of dynamic model. A comparison of the predictions made by the
model (2.6) against the output of a packet-level ns2 simulation is depicted in Figure
6.2. Here, the pattern of packet drops observed in the simulation is used to select the
appropriate matrix A(k) from the set M at each congestion event when evaluating
(2.6). As can be seen, the model output is very accurate. In Figure 6.3 we also plot
the evolution of the linear combination

∑n
i=1 γiwi, where the γi are defined in (2.12).

It can be seen that
∑n

i=1 γiwi has the same value at each congestion event thereby
validating the constraint (2.12) used in the model.

(ii) Validity of random drop model. It is well known that networks of TCP flows
with drop-tail queues can exhibit a rich variety of deterministic drop-behaviors [9].
However, most real networks carry at least a small amount of web traffic. It is shown
in [25] that already a small amount of background web traffic is enough to disrupt the
coherent structure associated with phase effects and other complex phenomena pre-
viously observed in simulations of unsynchronized networks [9]. This is confirmed by
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Fig. 6.3. Evolution of
∑n

i=1 γiwi. Network parameters: B = 100Mb, qmax = 80 packets,
T̄ = 20ms, T0 = 102ms; T1 = 42ms; no background web traffic.
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Fig. 6.4. Variation of ensemble mean wi(k) with congestion epoch in dumbbell topology of
Figure 6.1. Key: + = ns2 simulation result (average over 200 runs); solid line = Proposition
5.1. Network parameters: B = 50Mb, qmax = 50 packets, T̄ = 20ms, T0 = 102ms, T1 = 2ms;
approximately 0.5% bidirectional background web traffic.

statistical tests of this measured data, which confirm the validity of Assumptions 3.1
and 3.3.

By performing repeated packet-level simulations with different random seed val-
ues for the web traffic generator, the ensemble average congestion window can be
estimated. We can also determine from the simulation results the proportion of con-
gestion events corresponding to both flows simultaneously seeing a packet drop, flow
1 seeing a drop only, and flow 2 seeing a drop only. Using these estimates of the
probabilities ρi, the ensemble average congestion window can also be estimated from
Proposition 5.1. An example of the resulting estimates are shown in Figure 6.4. Here,
we run simulations for 250 seconds with one flow started at 0 seconds and a second
TCP flow started after 50 seconds (giving the first flow the opportunity to reach its
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Fig. 6.5. Variation of ensemble mean wi(k) with congestion epoch in dumbbell topology of Fig-
ure 6.1. Key: + = ns2 simulation result (average over 200 runs); solid line Proposition 5.1. Network
parameters: B = 50Mb, qmax = 50 packets, T̄ = 20ms, T0 = 2ms, T1 = 42ms; approximately 0.5%
bidirectional background web traffic.

steady state). A small amount of bidirectional background web traffic is also included
and slow-start is switched off to allow us to focus on the congestion avoidance be-
havior. The average congestion window evolution, estimated from 200 runs of the
simulation, is plotted in Figure 6.4 together with the predictions of Proposition 5.1.
It can be seen that the agreement is remarkably good. Not only is the long-term
average accurately captured, but so is the manner in which the flows converge to this
long-term average. That is, the model accurately describes the dynamic evolution
over time, on average, of the TCP flows and thereby is useful for the analysis of both
short and long-lived flows. The results shown in Figure 6.4 are for a single choice
of network conditions, but the model remains accurate for other conditions; see, for
example, Figure 6.5. As can be seen from the figures, the predictions of Proposition
5.1 and the ns2 simulations are consistently in close agreement.
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Abstract. The least-squares solution of overdetermined linear systems with Toeplitz- or Cauchy-
like structure is studied with an “augmented matrix” approach. A fast algorithm for the computation
of the pseudoinverse in the full-rank case is developed, based on the displacement properties of the
matrices involved, and the parameters on which the algorithm depends are determined optimally.
Finally, the performance of the method is tested through numerical experimentation.
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1. Displacement and reconstructibility. The idea of displacement structure
was introduced in [12, 26] in connection to Toeplitz matrices and later extended in
many subsequent papers and reviews (see, e.g., [6, 23, 28, 29, 34]). In this setting a
structured matrix is characterized by a low displacement rank, meaning that its image
under a certain displacement operator has low rank. The displacement structure of
generalized inverse matrices and of pseudoinverses was investigated in [17, 18].

There are basically two types of displacement operators, defined on the linear
space of complex m × n matrices. The first one is the so-called Stein displacement
operator (or discrete time Lyapunov displacement operator),

∇{U,V }(A) = A− UAV,

where U and V are square matrices of dimension m and n, respectively. In this
paper we adopt the Sylvester (or continuous time Lyapunov) displacement operator,
introduced for the first time in [23]. We say that a matrix A of size m × n satisfies
a (Sylvester) displacement equation for two given displacement matrices U ∈ C

m×m

and V ∈ C
n×n if

Δ{U,V }(A) := UA−AV = GH∗,

where G ∈ C
m×δ, H ∈ C

n×δ, and H∗ denotes the conjugate transpose of H. The
matrices G and H, in general not unique, are called the generators of A, and

rankΔ(A) := rank(Δ{U,V }(A)) ≤ δ

is its displacement rank. If G and H are full-rank matrices, then δ = rankΔ(A). In
the cases of interest δ depends only on the structure of the matrix A and not on its
dimension.
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The main advantage in considering the displacement structure of a matrix is that,
unlike other classical structures, it is inherited by its inverse, by its Schur comple-
ments of any order, and by products of structured matrices. This property led to
the development of a family of fast algorithms (order O(n2) for an n× n matrix) for
the LU factorization of a structured matrix, based on the recursive computation of
Schur complements by accessing and modifying only the displacement matrices and
generators of the given matrix.

The Cauchy-like displacement structure, characterized by diagonal displacement
matrices, is of particular interest. In fact, as this structure is pivoting-invariant, i.e., it
is preserved through rows and/or column permutations, it allows the employment
of pivoting procedures to improve the steadiness of LU factorization [13, 20, 22].
Moreover, the displacement matrices typical of some classical structures (Toeplitz,
Hankel, Vandermonde, etc.) can be diagonalized by fast transforms, so that it is
possible to convert structured matrices belonging to these classes into Cauchy-like
matrices by suitably modifying their generators [13, 20, 21].

When the displacement operator Δ is injective, the information contained in the
displacement matrices and generators of a given matrix is sufficient to reconstruct the
matrix itself. On the contrary, when the kernel of Δ is nontrivial it is necessary to
store extra data, besides the generators, to recover all the elements of a matrix. In
this case, the matrix is called partially reconstructible.

In [27], using results from [14], partially reconstructible matrices are treated by
splitting the space into a direct sum of the kernel of the displacement operator, whose
dimension is generally small, and its orthogonal complement. In this paper, since the
adopted displacement matrices (and so the kernel of the operator) are going to change
during the computation, we use a different, more pragmatic approach to deal with
partially reconstructible matrices (see also [22]).

The aim of this paper is to apply some of the results quoted above to an idea
originally introduced in [25], where the authors showed that many Toeplitz-derived
matrices, like T−1

1 , T1T2, T1 − T2T
−1
3 T4, even though they do not share the Toeplitz

structure with their factors Ti, can be expressed as Schur complements of certain aug-
mented matrices and stored by means of their displacement matrices and generators.
In [25], in particular, it is suggested to express the solution

x = (ATW−1A)−1ATW−1b

of the generalized least-squares problem [1]

min
x

‖B−1(Ax − b)‖2,

where A is a full-rank matrix and W = BBT is positive definite, as the Schur com-
plement of the submatrix

[
−W A
AT 0

]

into the larger matrix

⎡
⎣
−W A −b
AT 0 0
0 I 0

⎤
⎦ .
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In the following, continuing research started in [35], we develop this idea by con-
verting a full-rank Toeplitz least-squares problem into a Cauchy-like one, and by
employing the generalized Schur algorithm for its solution. We show that it is pos-
sible to apply this approach only to a particular class of Cauchy-like matrices and
that, by assigning suitable values to some parameters, the matrix resulting from the
above conversion falls into this class. The stability of the algorithm is enhanced by a
pivoting strategy and by choosing optimally the constants on which the method de-
pends. The performance of the method is finally illustrated by the results of numerical
experiments.

There are many references about fast and superfast algorithms for Toeplitz least-
squares problems; see, e.g., [2, 7, 8, 10, 11, 36]. In [7], a superfast method is proposed
for the solution of a Toeplitz least-squares linear system, which operates on the dis-
placement representation of a particular augmented matrix by a divide-and-conquer
version of the generalized Schur algorithm.

Among the most recent papers, we mention [5], [16], and [40]. In [5], applying
some results from [6], a fast algorithm for the solution of a square Toeplitz-like linear
system is developed, which is proved to be backward stable. Since the algorithm is
based on a modified fast QR factorization, it probably could be adapted for least-
squares problems. In [16], using an augmented matrix approach, but a procedure
different from the one proposed here, the linear system is previously transformed into
a Cauchy-like one and then solved by a variation of the generalized Schur algorithm;
moreover, an approximation of the total pivoting strategy is proposed, which gives
good stability properties without enlarging the complexity of the algorithm. Finally,
in [40] the authors describe a superfast method (O((m+n) log2(m+n)) floating point
operations for an m× n matrix), based on the extension of the Toeplitz matrix to a
circulant one and on the successive conversion of the least-squares linear system into
an interpolation problem; the algorithm is stabilized by a particular technique.

Obviously, direct methods are not the only possible approach for solving least-
squares problems, and iterative methods (see, e.g., [4]) often outperform them. Any-
way, as noted above, there is still much interest in the study of direct algorithms, and
we think that the method developed here can lead to interesting followups, as outlined
in section 8, in Tikhonov regularization, in particular for what concerns multiparam-
eter regularization and the estimation of the optimal regularization parameter.

2. Cauchy-like least squares. A Cauchy-like (or generalized Cauchy) matrix
C of size m × n is a matrix which satisfies, for given complex vectors t ∈ C

m and
s ∈ C

n, the displacement equation

Δ{Dt,Ds}(C) = DtC − CDs = GCH
∗
C ,(2.1)

where the displacement matrices are diagonal,

Dt = diag(t1, . . . , tm), Ds = diag(s1, . . . , sn),

the generators are

G∗
C =

[
φ1 · · · φm

]
, H∗

C =
[
ψ1 · · · ψn

]
,

φi,ψj ∈ C
δ are column vectors and, usually, δ � n.

When the condition ti �= sj is verified for any (i, j), the elements of the matrix C
can be explicitly written in the form

Cij =
φ∗

i · ψj

ti − sj
, i = 1, . . . ,m, j = 1, . . . , n.
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This formula loses its significance if tk = s� for (k, �) in some subset I0 ⊂ {1, . . . ,m}×
{1, . . . , n}. When this happens, the corresponding Cauchy-like matrix is partially
reconstructible, in the sense of the definition given in section 1. This means that the
elements Cij with (i, j) /∈ I0 are uniquely determined by the displacement matrices
and generators, while it is necessary to store extra information to recover the elements
indexed in I0. In this case, the kernel of the displacement operator consists of all the
matrices whose entries are zero whenever their indexes are not in I0, so that the
dimension of the null space agrees with the cardinality of I0.

If for each k there is at most one index � such that tk = s�, like, for example,
when t is a permutation of s and si �= sj for i �= j, a possible workaround consists of
storing the vector

u = Ce, e = (1, . . . , 1)T ,

and reconstructing C by the formula

Cij =

{
φ∗

i ·ψj

ti−sj
, ti �= sj ,

ui −
∑

k �=j Cik, ti = sj .

Let us consider the linear system

Cx = b,(2.2)

where C is an m× n complex Cauchy-like matrix with m ≥ n, rank(C) = n, x ∈ C
n,

and b ∈ C
m. Computing its least-squares solution [1] means solving the optimization

problem

min
x∈Cn

‖Cx − b‖2,(2.3)

whose minimizer is the solution of the system of normal equations

C∗Cx = C∗b.(2.4)

When a matrix A of dimension m× n is partitioned into blocks as

A =

[
A11 A12

A21 A22

]
,

with A11 ∈ C
r×r nonsingular, we define its Schur r-complement as

Sr(A) := A22 −A21A
−1
11 A12.

The computation of Sr(A) is equivalent to the application of the first r steps of
Gauss reduction. Anyway, when A has displacement structure, the generalized Schur
algorithm [28, 29] can perform this task in O(αmr) operations, with α independent
on m and r, operating only on the displacement matrices and generators of A.

Now, consider the augmented matrix

MC =

⎡
⎣
Im C 0
C∗ 0 C∗

0 In 0

⎤
⎦(2.5)
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of dimension (m + 2n) × (2m + n), where Im is the identity matrix of dimension m.
A matrix which can be partitioned into structured blocks, like (2.5), is sometimes
referred to as a mosaic matrix [19].

The pseudoinverse (or Moore–Penrose inverse) of C [1], that is, the solution
operator of problem (2.3), is given by the Schur (m + n)-complement of MC ; in fact

Sm+n(MC) = −
[
0 In

] [Im C
C∗ 0

]−1 [
0
C∗

]
= (C∗C)−1C∗.

We will compute Sm+n(MC) by a fast implementation of the generalized Schur algo-
rithm and use it to evaluate the solution

x = (C∗C)−1C∗b

to the normal equations (2.4). To do so, we must first investigate the displacement
structure of the mosaic matrix (2.5).

From (2.1) we obtain the following equation for C∗:

D∗
sC

∗ − C∗D∗
t = −HCG

∗
C ;(2.6)

in order to satisfy the displacement equations of both C and C∗ we define the dis-
placement structure of MC with respect to

DL = Dt ⊕D∗
s ⊕Ds,

DR = D∗
t ⊕Ds ⊕D∗

t .

Since the displacement matrices DL and DR are diagonal, MC is itself Cauchy-like.
By writing explicitly Δ{DL,DR}(MC) we observe that, while the identity matrix

in the block with coordinates (3, 2) satisfies the equation

DsIn − InDs = 0,

in accordance with its trivial Cauchy structure (rankΔ{Ds,Ds}
(In) = 0 for any diagonal

matrix Ds), the (1, 1) block reads

DtIm − ImD∗
t ,

leading to the unacceptable consequence of considering Im as a Cauchy-like matrix
with displacement rank m when t is a vector with complex entries. This shows that
the above approach is favorable only when Dt = D∗

t , in particular when C is a
real Cauchy-like matrix. When this happens, the displacement rank of MC is 2δ if
δ = rankΔ(C), and a pair of generators is given by

GM =

⎡
⎣
GC 0
0 −HC

0 0

⎤
⎦ , HM =

⎡
⎣

0 GC

HC 0
0 GC

⎤
⎦ .

However, a nice displacement structure for MC can be recovered also when Dt �=
D∗

t , but |ti| = |sj | = 1, i = 1, . . . ,m, j = 1, . . . , n. In fact, under this assumption Dt

and Ds are unitary matrices, and multiplying (2.6) times Ds on the left and Dt on
the right leads to

DsC
∗ − C∗Dt = GC∗H∗

C∗ ,(2.7)
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with GC∗ = DsHC and HC∗ = D∗
tGC . In this case MC is Cauchy-like with rank 2δ,

displacement matrices

DL = Dt ⊕Ds ⊕Ds,

DR = Dt ⊕Ds ⊕Dt,
(2.8)

and generators

GM =

⎡
⎣
GC 0
0 GC∗

0 0

⎤
⎦ , HM =

⎡
⎣

0 HC∗

HC 0
0 HC∗

⎤
⎦ .

Note that this procedure can be applied also when |ti| = |sj | = α �= 0 for all i, j by
simply rescaling the initial linear system (2.2).

It is important to note that if we consider the displacement operator Δ{DL,DR}
with displacement matrices (2.8), then the blocks of MC with coordinates (1, 1), (1, 3),
(2, 2), and (3, 2), marked here with a gray background,

⎡
⎣

Im C 0
C∗ 0 C∗

0 In 0

⎤
⎦ ,

are partially reconstructible, since their displacement matrices are equal. Under the
assumption that ti �= tj and si �= sj for i �= j, the kernel of the corresponding
displacement operator consists of all diagonal matrices.

3. Toeplitz-like least squares. A Toeplitz matrix T ∈ C
m×n is characterized

by the property

Tij = ti−j , i = 1, . . . ,m, j = 1, . . . , n.

A matrix A ∈ C
m×n is called Toeplitz-like if, for fixed ξ, η ∈ C \ {0}, it satisfies the

displacement equation

Δξ,η(A) := Zξ,mA−AZη,n = GAH
∗
A,(3.1)

where G ∈ C
m×δ, H ∈ C

n×δ, δ is a fixed integer (δ � n), and each of the displacement
matrices is a φ-cyclic forward shift, defined by

Zφ,k =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 φ
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠

∈ C
k×k.

Toeplitz-like matrices include Toeplitz matrices as a subclass. In fact any Toeplitz
matrix T satisfies (3.1) with displacement rank δ = 2, regardless of its dimension. A
pair of generators for T is given by

GA =

⎛
⎜⎜⎜⎜⎜⎝

−ηt0 1
t−n+1 − ηt1 0
t−n+2 − ηt2 0

...
...

t−n+m−1 − ηtm−1 0

⎞
⎟⎟⎟⎟⎟⎠

, HA =

⎛
⎜⎜⎜⎜⎜⎝

0 ξtm−1 − t−1

0 ξtm−2 − t−2

...
...

0 ξtm−n+1 − t−n+1

1 ξtm−n

⎞
⎟⎟⎟⎟⎟⎠

.
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When m = n, the operator Δξ,η(A) is noninvertible if and only if ξ = η. In this
case, its kernel consists of all the ξ-circulant matrices [14, Theorem 1.1]. As will be
shown later, for computational purposes it is convenient to take |ξ| = |η| = 1.

In analogy with section 2, we consider the overdetermined linear system

Ax = b,(3.2)

where A is an m×n complex Toeplitz-like matrix, m ≥ n, rank(A) = n, x ∈ C
n, and

b ∈ C
m, and solve it in the least-squares sense. The pseudoinverse of A,

A† = (A∗A)−1A∗,

can be computed as the Schur (m + n)-complement of the mosaic matrix

MA =

⎡
⎣
Im A 0
A∗ 0 A∗

0 In 0

⎤
⎦(3.3)

of dimension (m + 2n) × (2m + n).
Fixing an arbitrary pair of complex numbers (ξ, η), the Toeplitz structure of A∗

leads to the displacement equation

Δη,ξ(A
∗) = Zη,nA

∗ −A∗Zξ,m = GA∗H∗
A∗ ,(3.4)

where GA∗ and HA∗ , in principle, could be computed analogously to GA and HA.
Moreover, for the identity matrix we have

Δξ,ξ(Im) = Zξ,mIm − ImZξ,m = 0(3.5)

for any ξ ∈ C. It is then immediate to observe that MA satisfies the displacement
equation

ZLMA −MAZR = GMA
H∗

MA

with

ZL = Zξ,m ⊕ Zη,n ⊕ Zη,n,

ZR = Zξ,m ⊕ Zη,n ⊕ Zξ,m,

and

GMA
=

⎡
⎣
GA 0
0 GA∗

0 0

⎤
⎦ , HMA

=

⎡
⎣

0 HA∗

HA 0
0 HA∗

⎤
⎦ .

When A is a Toeplitz matrix, we have rankΔ(MA) ≤ 4. However, since the displace-
ment matrices ZL and ZR are not shift matrices, MA is not Toeplitz-like itself.

For any ξ ∈ C, we take its mth complex roots (tj)
m = ξ, j = 1, . . . ,m, ordered

by increasing phase, and introduce the matrices of dimension m:

Dξ,m = diag(t1, . . . , tm),

Fξ,m =
1√
m

⎡
⎢⎢⎢⎣

1 t1 · · · tm−1
1

1 t2 · · · tm−1
2

...
...

...
1 tm · · · tm−1

m

⎤
⎥⎥⎥⎦ .
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The matrix Fξ,m is connected to the normalized Fourier matrix Fm = F1,m by means
of the relation

Fξ,m = Fm · diag(1, t1, t
2
1, . . . , t

m−1
1 ).

If we choose ξ so that |ξ| = 1, the matrix Fξ,m is unitary and we can apply the
factorizations

Zξ,m = F∗
ξ,mDξ,mFξ,m, Zη,n = F∗

η,nDη,nFη,n(3.6)

in (3.1), (3.4), and (3.5) in order to convert the Toeplitz-like blocks A, A∗, Im, and
In of MA to Cauchy-like matrices [13, 21]. The corresponding displacement equations
are summarized in Table 1.

Table 1

Cauchy-like matrices and their displacement features.

Displacement Generators
C = Fξ,mAF∗

η,n {Dξ,m, Dη,n} GC = Fξ,mGA HC = Fη,nHA

C∗ = Fη,nA∗F∗
ξ,m {Dη,n, Dξ,m} GC∗ = Fη,nGA∗ HC∗ = Fξ,mHA∗

Im {Dξ,m, Dξ,m} GIm = 0 HIm = 0
In {Dη,n, Dη,n} GIn = 0 HIn = 0

Then, since the diagonal entries of Dξ,m and Dη,n are complex numbers of mod-
ulus 1, we are under the assumptions which led to the displacement equation (2.7) for
C∗ and can conclude that the mosaic matrix

MC =

⎡
⎣
Im C 0
C∗ 0 C∗

0 In 0

⎤
⎦ ,

made up with the Cauchy-like blocks resulting from Table 1, satisfies the displacement
equation

DLMC −MCDR = GMC
H∗

MC

with

DL = Dξ,m ⊕Dη,n ⊕Dη,n,

DR = Dξ,m ⊕Dη,n ⊕Dξ,m,
(3.7)

and

GMC
=

⎡
⎣
GC 0
0 GC∗

0 0

⎤
⎦ , HMC

=

⎡
⎣

0 HC∗

HC 0
0 HC∗

⎤
⎦ .(3.8)

Moreover, the displacement ranks of MC and of the original matrix MA are the same;
in particular, when the matrix A is Toeplitz we have rankΔ(MC) ≤ 4. We stress the
fact that, also in this case, the blocks of MC with coordinates (1, 1), (1, 3), (2, 2), and
(3, 2) are partially reconstructible Cauchy-like matrices.

We observe that, by (2.7), we have

GC∗ = Dη,nHC and HC∗ = D∗
ξ,mGC ,
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so that a pair of generators for A∗ is given by

GA∗ = Zη,nHA and HA∗ = Z∗
ξ,mGA.

From the computational point of view, we also remark that the transformations de-
scribed above will turn a real matrix A into a complex Cauchy-like matrix C, forcing
us to switch to complex arithmetic.

4. Choosing the values of ξ and η. The values of ξ and η chosen in (3.1)
determine the displacement structure of the Toeplitz matrix A and, consequently, of
the corresponding Cauchy-like matrix C (see Table 1).

The only restriction on the choice of these values, for the moment, is that ξ and
η should be complex numbers of unit modulus. This assumption allows us both to
employ factorizations (3.6) to transform MA into the Cauchy-like matrix MC by a
fast and stable computation and to make use of the displacement equation (2.7) for
the adjoint matrix C∗.

Anyway, for a Cauchy-like matrix C to be totally reconstructible from its dis-
placement matrices and generators, it is necessary that all the diagonal entries of the
first displacement matrix be different from those of the second one. Since we are free
to fix ξ and η to suit our needs, we will choose them in order that the matrices Dξ,m

and Dη,n in Table 1 satisfy this condition.
Moreover, since under this assumption all the elements of C are given by

Cij =
φ∗

i · ψj

ti − sj
, i = 1, . . . ,m, j = 1, . . . , n,

with φ∗
i , ψ∗

j being the rows of the generators GC , HC and ti, sj being the diagonal
entries of Dξ,m, Dη,n, respectively, we intend to increase steadiness and avoid overflows
in the computation by ensuring that the minimum value assumed by the denominator
in this expression is as large as possible.

For what follows, it is not restrictive to set ξ = 1 and η = eiπϕ, with ϕ ∈ (0, 1],
so that

tk+1 = eiπ 2k
m , k = 0, . . . ,m− 1,

sj+1 = eiπ ϕ+2j
n , j = 0, . . . , n− 1.

(4.1)

Our objective is to take the value of ϕ, which solves the following optimization prob-
lem:

max
ϕ

min
k,j

∣∣∣tk+1 − sj+1

∣∣∣.(4.2)

We will show that it is possible to solve (4.2) by the same computational cost required
for the evaluation of gcd(m,n) (the greatest common divisor between m and n),
that is, O(logm) using Euclid’s algorithm [30, section 4.5.2, Algorithm X], which is
implemented in the gcd function of MATLAB [33].

We have ∣∣∣tk+1 − sj+1

∣∣∣ =
∣∣∣e iπ

m [αϕ−2(k−jα)] − 1
∣∣∣ = 2

∣∣∣sin (
θ(ϕ,k,j)

)∣∣∣,
where α = m

n ≥ 1 and

θ(ϕ,k,j) =
π

m

[αϕ
2

− (k − jα)
]
∈ (−π, π)

for k = 0, . . . ,m− 1 and j = 0, . . . , n− 1.
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For a given ϕ, the quantity |tk+1 − sj+1| reaches its minimum when the angle
θ(ϕ,k,j) is closest to any of the angles −π, 0, π. The angles θ(ϕ,k,j) which are closest
to −π and π are, respectively,

θ(ϕ,m−1,0) = −π +
π

m

(
1 +

αϕ

2

)
,

θ(ϕ,0,n−1) = π − π

n

(
1 − ϕ

2

)
.

The optimal value of ϕ is obtained by equating the sines of these two angles, obtaining

ϕ̄ =
m− n

m
= 1 − 1

α
.

The minimum of (4.2) corresponding to ϕ̄ is 2 sin
(
πm+n

2mn

)
.

Let us now consider how to determine ϕ in order that the value of θ(ϕ,k,j) closest to
zero is as large as possible. When α is an integer, the sequence {k− jα} takes integer
values and it is immediate to observe that in this case the optimal ϕ is ϕ∗ = α−1. For
m = 2n, for example, we obtain ϕ∗ = 1

2 and η = i, while we get η = −1 for m = n
(this is the choice made in [13]).

When α is noninteger, to maximize the angle θ(ϕ,k,j) for each pair (k, j) we must
impose the condition that the ratio αϕ

2 is one-half of the minimum nonzero value
taken by |k − jα|.

Theorem 4.1. The minimum nonzero value taken by |k − jα|, when k = 0, . . . ,
m− 1 and j = 0, . . . , n− 1, is

β =
gcd(m,n)

n
.

Proof. Let g = gcd(m,n) and n̄ = n/g. Since jα is noninteger for j = 1, . . . , n̄−1,
it is sufficient to consider j < n̄.

We have m ≥ n, so there exist natural numbers r and s such that m = rn + s.
Moreover, � = s/g is integer, so we can write

k − jα = k − jr − j
s

n
= k − jr − j�

n̄
.

Since

{j� mod n̄ : j ∈ Zn̄} = Zn̄,

where Zn̄ is the additive group of integers modulo n̄ [31], it is immediate to observe
that the minimum nonzero value of |k − jα| is

β =
1

n̄
=

g

n
.

This result leads to

ϕ∗ =
β

α
=

gcd(m,n)

m

and the corresponding minimum of (4.2) is given by 2 sin
(
πβ
2m

)
.
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Since β ≤ 1 ≤ α, letting θ∗ = πβ
2m it is immediate to observe that

|sin(θ∗)| <
∣∣sin (

θ(ϕ∗,m−1,0)

)∣∣ , |sin(θ∗)| ≤
∣∣sin (

θ(ϕ∗,0,n−1)

)∣∣ ,

and

|sin(θ∗)| <
∣∣sin (

θ(ϕ̄,m−1,0)

)∣∣ =
∣∣sin (

θ(ϕ̄,0,n−1)

)∣∣ ,

which implies that the optimum of (4.2) is attained for ϕ = ϕ∗.

Theorem 4.1 shows that the worst-case scenario is when gcd(m,n) = 1, that is,
when m and n are mutually prime numbers. In this case the minimum of (4.2) is
2 sin

(
π

2mn

)
.

5. Schur complementation. The generalized Schur algorithm is a fast method
for computing the LU factorization of a matrix A with displacement structure, through
recursive Schur complementation, which operates only on the displacement matrices
and generators of A.

In this paper we are not directly interested in LU factorization, but only in the
computation of the Schur (m + n)-complement of the mosaic matrices MC (2.5) and
MA (3.3). The outline of the Schur algorithm, when applied to MC , is the following:

for k = 1, . . . ,m + n
extract the kth column of MC from the displacement data
extract the kth row of MC from the displacement data
update the left generator GMC

update the right generator HMC

In principle, this procedure could be applied directly to MC . Anyway, by exploiting
its particular mosaic structure and the large number of null entries, it is possible to
optimize the algorithm in order to reduce the computational load.

Moreover, as already pointed out in [13, 20], it is simple to employ partial pivoting
to improve the stability of the Schur algorithm, when applied to Cauchy-like matrices,
as this displacement structure is pivoting-invariant. However, since the entries of
the Schur complement Sr(A) of a given matrix A are, in general, modified by rows
pivoting, we must restrict its action to the first r rows of A. In fact, this procedure is
equivalent to the matrix product

PA =

[
Pr 0
0 I

] [
A11 A12

A21 A22

]
=

[
PrA11 PrA12

A21 A22

]
,(5.1)

where Pr is a permutation matrix of dimension r, and it is immediate to verify that
Sr(PA) = Sr(A).

As to MA, its displacement structure seems too complicated for a direct appli-
cation of the Schur algorithm and, in any case, the structure would be destroyed by
pivoting. For these reasons, following the idea introduced in [13, 20], we will first
convert MA into a Cauchy-like matrix by the technique described in section 3, and
then apply our optimized algorithm to the resulting matrix.

The algorithm takes as input the displacement matrices (3.7) and the gen-
erators (3.8) of MC and returns the displacement matrices and generators of the
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for i = 1, . . . ,m + n
pi = i

for i = 1, . . . , n
di = 0

δi =
φ∗

m+i·ψm+n+1

tm+i−sm+n+1

vi = 1

Fig. 1. Initialization of the algorithm.

Schur complement Sm+n(MC). We will represent the input matrices in the form

DL = diag(t1, . . . , tm+2n),

DR = diag(s1, . . . , s2m+n),

G∗
MC

=
[
φ1 · · · φm+2n

]
,

H∗
MC

=
[
ψ1 · · · ψ2m+n

]
,

(5.2)

where φi,ψj ∈ C
2δ and δ is the displacement rank of C. Notice that, for the sake of

simplicity, we use the symbols ti, sj , φi, and ψj to refer to the displacement structure
of the mosaic matrix MC , and not of the matrix C as before.

Since some of the blocks of MC are partially reconstructible, it is necessary to use
some additional vectors for its storage. The diagonal entries of the block (2, 2) will be
stored in the vector d = (d1, . . . , dn)T . Their value is initially zero, but pivoting will
cause it to change. On the contrary, there is no need to store additional information
for the other partially reconstructible blocks, namely, the blocks with coordinates
(1, 1), (1, 3), and (3, 2).

A particular treatment is requested for block (2, 3). In fact, while at the start of
the process it can be totally reconstructed from the generators, as a consequence of
pivoting some of the diagonal components of its left displacement matrix may become
equal to one of the entries of the right one. In order to be able to reconstruct this
block, we use a vector δ = (δ1, . . . , δn)T to store one element for each of its rows,

(k)

(r)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ · · · · · · · · · ∗ ∗ · · · · · · · · · ∗ 0 · · · · · · · · · 0

. . .
...

...
...

...
...

1 · · · 0 ∗ · · · · · · · · · ∗ 0 · · · · · · · · · 0

. . .
..
.

..

.
..
.

..

.
1 ∗ · · · · · · · · · ∗ 0 · · · · · · · · · 0

∗ · · · ∗ ∗ · · · · · · · · · ∗ ∗ · · · · · · · · · ∗
...

...
...

. . .
...

...
...

∗ · · · ∗ ∗ ∗ ∗ ∗ · · · · · · · · · ∗
...

...
...

. . .
...

...
...

∗ · · · ∗ ∗ · · · · · · · · · ∗ ∗ · · · · · · · · · ∗
0 · · · 0 1 0 · · · · · · · · · 0
...

...
. . .

...
...

0 · · · 0 1 0 · · · · · · · · · 0
...

...
. . .

...
...

0 · · · 0 1 0 · · · · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 2. kth step of first phase of the algorithm.
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and a vector of indexes v = (v1, . . . , vn)T to keep track of their position on each row.
Namely, the variable δi contains the element (MC)m+i,m+n+vi .

The initialization of the algorithm, reported in Figure 1, consists of setting up a
vector p, which records the permutation introduced by pivoting, and assigning initial
values to the vectors d, δ, and v. As can be seen, δ is initialized with the first column
of block (2, 3).

The rest of the algorithm can be divided in two phases. In the first phase only
the first m columns of MC are processed. The kth step is represented in Figure 2,
while the algorithm is described in Figure 3. First of all, the nonzero entries of the
kth column are computed and the element of maximum modulus is located. Notice
that, in this phase, pivoting is naturally limited to the first m+ n rows, as the last n
components of the kth column are always zero when k = 1, . . . ,m.

If the maximum is already in the right position, the kth row can be immediately
constructed. If, on the contrary, we are going to exchange the kth and the rth rows,

for k = 1, . . . ,m
�k = 1
for i = m + 1, . . . ,m + n

�i =
φ∗

i ·ψk
ti−sk

find r such that |�r| = maxi=k,m+1,...,m+n |�i|
if r = k

uk = 1
for j = k + 1, . . . ,m,m + n + 1, . . . , 2m + n

uj = 0
for j = m + 1, . . . ,m + n

uj =
φ∗

k·ψj

tk−sj

else
if pr = r

w = r
ur = dr−m

else
w = m + n + vr−m

uw = δr−m

for j = k, . . . , w − 1, w + 1, . . . , 2m + n

uj =
φ∗

r ·ψj

tr−sj

dr−m =
φ∗

k·ψr
tk−sr

δr−m = 0
vr−m = k
swap (�k, �r)
swap (φk,φr)
swap (tk, tr)
swap (pk, pr)

for i = m + 1, . . . ,m + n
�i = �i/�k
φi = φi − �iφk

di−m = di−m − �iui

δi−m = δi−m − �ium+n+vi−m

for j = k + 1, . . . , 2m + n
ψj = ψj −

uj

�k
ψk

Fig. 3. First phase of the algorithm.



FAST SOLUTION OF TOEPLITZ- AND CAUCHY-LIKE LSPs 737

(k)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ · · · · · · · · · ∗ ∗ · · · · · · · · · ∗ 0 · · · · · · · · · 0

. . .
...

...
...

...
...

∗ · · · ∗ ∗ · · · · · · · · · ∗ 0 · · · · · · · · · 0

. . .
...

...
...

...
...

∗ ∗ · · · · · · · · · ∗ 0 · · · · · · · · · 0
∗ · · · · · · · · · ∗ ∗ · · · · · · · · · ∗

. . .
...

...
...

∗ · · · ∗ ∗ · · · · · · · · · ∗
...

. . .
...

...
...

∗ · · · ∗ ∗ · · · · · · · · · ∗
∗ · · · ∗ ∗ · · · · · · · · · ∗
...

...
...

...
∗ · · · ∗ ∗ · · · · · · · · · ∗
1 0 · · · · · · · · · 0

. . .
...

...
1 0 · · · · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 4. kth step of second phase of the algorithm.

different procedures for computing the new pivot row must be adopted depending
on whether the rth row has already been moved at a previous step or not. When
this is done, we can perform pivoting by swapping the kth and the rth rows of the
kth column � of MC , the left generator GMC

, and the vectors t = (t1, . . . , tm+2n)T

and p. Pivoting also causes the auxiliary vectors d, δ, and v to be updated and,
in general, changes the (1, 1)-block from an identity into a generic upper triangular
matrix. Finally, Gauss reduction is carried out by modifying the generators of MC

and, again, updating d and δ.

In the second phase, the iteration index k ranges from m+1 to m+n (see Figures 4
and 5). This part of the algorithm shows some small differences with respect to the
first phase, due to the need of keeping account of the particular structure of the blocks
that are being modified. Notice also that, in this phase, pivoting must be restricted
to the first m + n rows of MC (see (5.1)).

If we denote by t
(k)
i and s

(k)
j the diagonal entries of the displacement matrices

of MC at the kth iteration, and by φ
(k)
i and ψ

(k)
j the columns of G∗

MC
and H∗

MC
at

the same iteration, then at the end of the process the displacement matrices and the
generators of the Schur complement Sm+n(MC) are given by

D1 = diag
(
t
(m+n)
m+n+1, . . . , t

(m+n)
m+2n

)
,

D2 = diag
(
s
(m+n)
m+n+1, . . . , s

(m+n)
2m+n

)
,

G∗
S =

[
φ

(m+n)
m+n+1 · · · φ

(m+n)
m+2n

]
,

H∗
S =

[
ψ

(m+n)
m+n+1 · · · ψ

(m+n)
2m+n

]
.

(5.3)

The above algorithm, at worst, involves 3γ(m + n)2 + (2m + n)n additions,
7
2 (γ + 1)(m + n)2 + (γ − 1)m(m + n) −m2 multiplications, and 1

2 (m + n)2 complex
modulus computations, γ being the displacement rank of MC , i.e., the dimension of
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for k = m + 1, . . . ,m + n
�k = dk−m

�n+k = 1
for i = k + 1, . . . , n + k − 1

�i =
φ∗

i ·ψk
ti−sk

find r such that |�r| = maxi=k,...,m+n |�i|
if r = k

if pk = k
uk = dk−m

for j = k + 1, . . . , 2m + n

uj =
φ∗

k·ψj

tk−sj

else
w = m + n + vk−m

uw = δk−m

for j = k, . . . , w − 1, w + 1, . . . , 2m + n

uj =
φ∗

k·ψj

tk−sj

else
if pr = r

w = r
ur = dr−m

else
w = m + n + vr−m

uw = δr−m

for j = k, . . . , w − 1, w + 1, . . . , 2m + n

uj =
φ∗

r ·ψj

tr−sj

dr−m =
φ∗

k·ψr
tk−sr

δr−m = δk−m

vr−m = vk−m

swap (�k, �r)
swap (φk,φr)
swap (tk, tr)
swap (pk, pr)

for i = k + 1, . . . , n + k
�i = �i/�k
φi = φi − �iφk

for i = k + 1, . . . ,m + n
di−m = di−m − �iui

δi−m = δi−m − �ium+n+vi−m

for j = k + 1, . . . , 2m + n
ψj = ψj −

uj

�k
ψk

Fig. 5. Second phase of the algorithm.

vectors φi and ψj in (5.2). This means that its complexity as measured in flops,1

considering 2 flops for a complex sum, 6 for a product, and 4 for each modulus, is

O
(
(27γ + 23)(m + n)2 + 6(γ − 1)m(m + n) + 2(2mn + n2 − 3m2)

)
.

This yields 143m2 + 284mn+ 133n2 flops when γ = 4, that is, when MC comes from
the Toeplitz system (3.2).

1By a flop we mean a real floating point operation of any kind.
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6. Computation of the least-squares solution. When A is a Toeplitz matrix,
by exploiting the factorizations reported in Table 1, we obtain the following expression
for the least-squares solution of (3.2):

xLS = (A∗A)−1A∗b = F∗
η,n(C∗C)−1C∗Fξ,mb = F∗

η,nSm+n(MC)Fξ,mb,(6.1)

which also shows the relation between the Schur complements of the two augmented
matrices MA and MC ,

Sm+n(MA) = F∗
η,nSm+n(MC)Fξ,m.

In (6.1), the products times the scaled Fourier matrices can be accomplished in FFT
time, while Sm+n(MC), stored by means of its displacement matrices (D1, D2) and
generators (GS , HS) (see (5.3)), is obtained by the algorithm exposed in the previous
section.

Letting S = Sm+n(MC), the matrix-vector product Sz, for any z ∈ C
m, can be

expressed as the Schur complement Sm(B), where

B =

[
−Im z
S 0

]
∈ C

(m+n)×(m+1).

The matrix B is Cauchy-like (with displacement rank 5 if we start from the Toeplitz
system (3.2)) as it satisfies the displacement equation

Δ1B −BΔ2 = GBH
∗
B ,

with

Δ1 = D2 ⊕D1, Δ2 = D2 ⊕ 0,

GB =

[
0 D2z
GS 0

]
, HB =

[
HS 0
0 1

]
,

so it is particularly convenient to evaluate xLS by the Schur algorithm. This compu-
tation can be performed by the standard version of the algorithm, which we do not
report here for the sake of brevity. Notice that this time, given the structure of B,
pivoting is not applicable.

Remark 6.1. The approach discussed above is particularly suited for the so-
lution of a set of least-squares problems sharing the same coefficients matrix A but
corresponding to different data vectors bi, i = 1, . . . ,K. In this situation, the Schur
complement Sm+n(MC) is computed only once, and then each of the solutions is evalu-
ated by (6.1). When just one linear system has to be solved, it may be more convenient
to consider the (m + 2n) × (m + n + 1) matrix

NA =

⎡
⎣
Im A 0
A∗ 0 A∗b
0 In 0

⎤
⎦

as xLS = Sm+n(NA).
We also note that the pseudoinverse A† may be computed as the Schur (m + n)-

complement of the augmented matrix
⎡
⎣
Im A −Im
A∗ 0 0
0 In 0

⎤
⎦ .
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This matrix shares with MA the same displacement structure. Its left generator is
GMA

, while the right generator is

H =

⎡
⎣

0 HA∗

HA 0
0 0

⎤
⎦ .

Our algorithm could be adapted to deal with this mosaic matrix, but there is no ap-
parent advantage in performing the computation on this matrix instead than on MA.

7. Numerical results. The algorithm described in the previous sections, which
in the following will be denoted TLLS (for Toeplitz-like least squares), has been im-
plemented in MATLAB [33] in two versions: with and without partial pivoting. We
start comparing its performance to two classical direct methods for the least-squares
solution of unstructured overdetermined linear systems, namely, the QR factorization
of the matrix A in (3.2), followed by the solution of the resulting triangular system,
and the solution of the normal equations by means of Cholesky factorization [1, 15].
This choice is motivated by the fact that we consider of primary importance to pre-
liminarily ascertain to which extent the structured approach is favorable with respect
to the standard solution methods as to stability, speed of computation, and storage
requirements.

Figure 6 shows a comparison between the theoretical computational complexity of
TLLS, Householder QR factorization (O(2n2(m − 1

3n))), and Cholesky factorization
(O(n2(m + 1

3n)), including the construction of ATA), with respect to the variation
of n, taking m = 2n and m = 10n. In the first case the new algorithm has a
lower complexity than both unstructured methods for n � 600, in the second for
n � 2000. These results were confirmed experimentally through the flops counter of
MATLAB 5 [32]. A comparison based on a time measurement is actually infeasible
since our implementation, being written in the MATLAB programming language, is
incomparably slower than the algorithms directly coded in the MATLAB kernel. This
hindrance will be overcome as soon as our program is translated into C language and
linked to MATLAB through the MEX (MATLAB executables) interface library [33].

It is clear that the complexity for Householder QR and Cholesky factorizations
is linear in m, while it is quadratic for TLLS. This means that for fixed n, when we
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Fig. 6. Comparison of computational complexity.
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increase m there will always be a point where QR and Cholesky factorizations are
more efficient than TLLS. Setting α = m

n , the complexities of Householder QR and
TLLS are, respectively,

n2

(
2nα− 2

3
n

)
and n2(143α2 + 284α + 133).

In Figure 7 we plot these two quantities in logarithmic scale, neglecting the common
factor n2, with respect to the variation of α and n. The graph confirms the predicted
behavior for the complexity, but, at the same time, it shows that the crossover grows
rapidly with n. For example, when n > 10000 the QR factorization can be more
efficient than TLLS only if m � 100n.

Regarding the storage needed by the TLLS method, which from this point of view
is obviously far more convenient than any unstructured approach, it requires order
m+ n floating point variables (the larger arrays used, i.e., the two generators of MA,
take 4(m + 2n) and 4(2m + n) complex variables, respectively).

To illustrate the accuracy of the algorithm, we report some results concerning the
solution in the least-squares sense of overdetermined Toeplitz linear systems

Ax = b,

where the right-hand side b corresponds to the exact solution e = (1, 1, . . . , 1)T . The
matrix A = (ai−j) belongs to a well-known class of Toeplitz test matrices, namely,
the KMS (Kac–Murdock–Szegő) matrices [24, 39]

ai−j = ρ|i−j|, i = 1, . . . ,m, j = 1, . . . , n,

depending on the parameter ρ ∈ (0, 1). These matrices are positive definite when
m = n and ill-conditioned when ρ  1.

Each test problem has been solved by the four methods considered, that is, the
TLLS algorithm, TLLS without pivoting, QR factorization, and the solution of the
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Fig. 8. Relative error for the KMS matrix: top row, ρ = 0.5; bottom row, ρ = 0.99; left column,
n = 500, 1000, . . . , 5000 and m = 2n; right column, n = 2000 and α = m

n
= 2, 3, . . . , 10.

normal equations by means of Cholesky factorization. To measure the accuracy of
the results, we adopted the relative error

‖e − x‖2

‖e‖2

between the computed solution x and the exact solution e.
Figure 8 shows the relative error corresponding to the KMS matrix with ρ = 0.5

or ρ = 0.99 (the condition numbers are about 9 and 3.7 · 104, respectively, when
m = n = 1000). The results in the left column are obtained by letting n range
from 500 to 5000 with m = 2n; in the right column we fixed n = 2000 and let
α = m

n = 2, 3, . . . , 10. The new algorithm does not appear to be very sensitive to
the changes in the dimension or to the “rectangularity” of the matrix A, i.e., the
ratio between the number of rows and columns. At the same time, as one would
expect, when the problem is well-conditioned the effect of pivoting is negligible and
the structured algorithm is slightly less accurate than the unstructured approaches.
On the contrary, when the conditioning of the problem gets worse, pivoting is essential
and the TLLS algorithm is more accurate than Cholesky and comparable with QR
factorization.

The influence of conditioning on the performance of the method is further inves-
tigated in the left graph of Figure 9, where the four methods are tested on a problem
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m = 4000, n = 2000, ρ = 0.5, 0.6, . . . , 0.9, 0.99, 0.999. On the right, influence of the parameter ϕ on
the performance of the method: m = 3000, n = 1000, ϕ∗ = 1

3
.

of dimension (m,n) = (4000, 2000) with ρ varying on the interval (0.5, 1) and the
condition number ranging from 9 to 2.5 · 106. Again, we observe that when the value
of ρ approaches 1, while all the methods lose accuracy because of ill-conditioning,
the effect of pivoting is more appreciable and the results furnished by TLLS and QR
factorization get closer.

In the right graph of Figure 9 we illustrate the effect on the quality of the results
of the parameter ϕ, which determines the displacement structure of the matrix A (see
(3.1) and (4.1)). In this case the TLLS method is applied with different values of ϕ to
a problem with (m,n) = (3000, 1000) and ρ = 0.99 (the condition number is 3.7 ·104).
The optimal value of ϕ, whose computation is described in section 4, is ϕ∗ = 1

3 , while
for ϕ = 0 or ϕ = 2

3 the Cauchy-like matrix C in which the matrix A is transformed
(see Table 1) is partially reconstructible and our method is not applicable. We see
that the relative errors increase when ϕ is near the two endpoints of the interval, while
the minimum is reached for ϕ  ϕ∗.

The 2-norm condition number which describes the sensitivity of the solution of
the least-squares problem minx ‖Ax − b‖ with respect to a perturbation in A is

κLS = κ(A) +
κ(A)2 tan θ

η
,

where κ(A) = ‖A‖ · ‖A†‖, η = ‖A‖·‖x‖
‖Ax‖ ∈ [1, κ(A)], and

θ = arccos
‖Ax‖
‖b‖ ∈

[
0,

π

2

]

is the angle between the right-hand side b and its projection Ax on the range of A [38,
Theorem 18.1]. The solution computed by Householder QR factorization, which is a
backward stable algorithm, is influenced by κLS , so it depends on the two parameters
θ and η. On the contrary, the solution computed by Cholesky factorization is af-
fected by the condition number for normal equations, that is, κ(A)2, independently on
θ and η.
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Fig. 10. Effect of the conditioning, resulting from nonzero residuals, on the relative error.
KMS matrix, m = 1500, n = 500, ρ = 0.99 (on the left) and ρ = 0.999 (on the right). The meaning
of θ is explained in the text.

To investigate the behavior of our algorithm to this respect, with a test matrix A
fixed, we construct a vector q orthogonal to the range of A by applying the modified
Gram–Schmidt orthogonalization method [1] to the augmented matrix [A|em], with
em = (1, . . . , 1)T ∈ R

m, selecting the last column of the result and normalizing it.
Then, for y = Aen, we compute b = y+ τq, letting τ take different values in order to
vary the angle θ between b and y while preserving the same solution en of the least-
squares problem. Figure 10 shows the relative error in the solution when A is the KMS
matrix with (m,n) = (1500, 500) and ρ = 0.99, 0.999 (the value of κ(A) is 3.3 · 104

and 1.1 · 106, respectively). In this test η  1 and we let the parameter τ vary so that
the angle θ ranges between 0 and 86 degrees. It is clear that the two nonstructured
methods behave as predicted. In fact, the error obtained by QR factorization grows
with θ and approaches the error coming from the normal equations, which is worse
uniformly in θ. The TLLS method appears to produce an error which is sensitive on θ
and, for ρ = 0.99, behaves essentially the same as QR. In the second case, where the
condition number of A is larger, TLLS is much less accurate than QR and comparable
with Cholesky, but the trend of the error is still remarkable.

This result, as well as the error graphs reported in Figures 8 and 9, suggests that
the TLLS method, even if formally equivalent to the solution of the normal equations,
does not inherit from them the bad behavior connected to the squaring of the condition
number. A possible explanation for the better performance of TLLS may consist of
the fact that it solves the normal equations implicitly without effectively computing
the matrix A∗A.

It would be desirable to compare the TLLS algorithm to other existing fast and
superfast methods. Unfortunately, almost no software based on the algorithms cited
in section 1 seems to be publicly available. The only computer program I was able
to get is about the method described in [40]. Marc Van Barel, in fact, was so kind to
send me copies of the MATLAB functions used to test this superfast algorithm.

Figure 11 shows the results obtained by applying TLLS and the superfast algo-
rithm to the solution of a linear system with a random Toeplitz matrix of dimension
m × n, with n = 2k, k = 5, . . . , 13, and m = 2n. The graphs suggest that even
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Fig. 11. Comparison of TLLS and a superfast method.

though the superfast algorithm is faster than TLLS for n > 29, at the same time it
appears to be less stable, at least on this example. This confirms the fact that the
choice of an algorithm cannot be an absolute decision, but it should be guided by the
peculiarities of each given problem (dimension, storage, required accuracy, need for
fast computation, etc.).

It must be stressed that the implementation of the superfast method is research
software, probably not fully optimized and not intended to be officially released, so
no real conclusion can be deduced from this numerical experiment. Moreover both
programs are widely based on for loops and written in the MATLAB programming
language, so that they are intrinsically slow. It should also be added that one or two
steps of iterative refinement could improve the accuracy of both of the algorithms
with low computational cost. More work would be required to implement these and
other methods in a compiled language and to perform a wide numerical simulation
on them.

8. Extensions and future work. The performance of the TLLS method for
the least-squares solution of overdetermined Toeplitz linear systems looks promis-
ing, as the numerical results show. The next step in its development is to imple-
ment the algorithm either in C or Fortran and to compare it with other fast and
superfast methods for structured least-squares problems. Moreover, the algorithm
could be easily modified to deal with matrices which have a displacement structure
different from Toeplitz-like, but which can be converted into Cauchy-like matrices
[13, 21].

In the future, we plan to ascertain if it is possible to improve the algorithm in terms
of accuracy and speed by using real transforms to convert a matrix from Toeplitz-like
to Cauchy-like, instead of complex ones [21]. To be able to solve problems of huge
dimension it would also be very important to study the application of total pivoting,
or at least an approximation of it which does not increase excessively the complexity
of the algorithm.

However, the extension which is of particular interest to us is the application to
Tikhonov regularization [37], that is, the solution of the minimum problem

min
x∈Rn

{
‖Ax − b‖2 + λ2‖Hx‖2

}
,(8.1)
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where A ∈ R
m×n, H ∈ R

p×n (m ≥ n ≥ p), and λ is a regularization parameter. In
fact, it has already been observed in [25] that the solution operator of (8.1) is the
Schur (m + n + p)-complement of the augmented matrix

⎡
⎢⎢⎣

Im 0 A 0
0 Ip λH 0
A∗ λH∗ 0 A∗

0 0 In 0

⎤
⎥⎥⎦

(the black lines highlight how the matrix is partitioned).
There are, anyway, other computations connected to Tikhonov regularization

which can be expressed as Schur complements. Generalized cross validation (GCV) [9]
is a technique used to estimate the optimal value of the regularization parameter. It
consists of minimizing the function

V (λ) =
1
m‖(I −A(λ))b‖2

[
1
m trace(I −A(λ))

]2 ,

where

A(λ) = A(A∗A + λ2H∗H)−1A∗

is called the influence matrix. The computation of the GCV function, which must be
repeated many times during the minimum search, is generally performed by employing
the generalized singular value decomposition (GSVD) of the matrix pair (A,H) [15],
but this approach cannot be applied when the dimensions of A are large. An alter-
native algorithm could be constructed by expressing A(λ) as the Schur (m + n + p)-
complement of

⎡
⎢⎢⎣

Im 0 A 0
0 Ip λH 0
A∗ λH∗ 0 A∗

0 0 A 0

⎤
⎥⎥⎦ .

Finally, in multiparameter regularization [3] one or more regularization terms are
added to the Tikhonov function, like in

min
x∈Rn

{
‖Ax − b‖2 + λ2‖Hx‖2 + μ2‖Kx‖2

}
,

with A ∈ R
m×n, H ∈ R

p×n, and K ∈ R
q×n. Again, the solution

x =
(
A∗A + λ2H∗H + μ2K∗K

)−1
A∗b

can be computed as the Schur (m + n + p + q)-complement of

⎡
⎢⎢⎢⎢⎣

Im 0 0 A 0
0 Ip 0 λH 0
0 0 Iq μK 0
A∗ λH∗ μK∗ 0 A∗b
0 0 0 In 0

⎤
⎥⎥⎥⎥⎦
.
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[24] M. Kac, W. L. Murdock, and G. Szegő, On the eigenvalues of certain Hermitian forms, J.
Rational Mech. Anal., 2 (1953), pp. 767–800.



748 G. RODRIGUEZ

[25] T. Kailath and J. Chun, Generalized displacement structure for block-Toeplitz, Toeplitz-block,
and Toeplitz-derived matrices, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 114–128.

[26] T. Kailath, S. Y. Kung, and M. Morf, Displacement ranks of matrices and linear equations,
J. Math. Anal. Appl., 68 (1979), pp. 395–407.

[27] T. Kailath and V. Olshevsky, Diagonal pivoting for partially reconstructible Cauchy-like
matrices, with applications to Toeplitz-like linear equations and to boundary rational ma-
trix interpolation problems, Linear Algebra Appl., 254 (1997), pp. 251–302.

[28] T. Kailath and A. H. Sayed, Displacement structure: Theory and application, SIAM Rev.,
37 (1995), pp. 297–386.

[29] T. Kailath and A. H. Sayed, eds., Fast Reliable Algorithms for Matrices with Structure,
SIAM, Philadelphia, PA, 1999.

[30] D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed.,
Addison-Wesley, Reading, MA, 1997.

[31] S. MacLane and G. Birkhoff, Algebra, 3rd ed., Chelsea, New York, 1988.
[32] MATLAB ver. 5.3, The MathWorks, Inc., Natick, MA, 1999.
[33] MATLAB ver. 7.1, The MathWorks, Inc., Natick, MA, 2005.
[34] V. Y. Pan, Structured Matrices and Polynomials: Unified Superfast Algorithms, Birkhäuser
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A SYMMETRY PRESERVING SINGULAR VALUE
DECOMPOSITION∗

MILI I. SHAH† AND DANNY C. SORENSEN†

Abstract. A reduced order representation of a large data set is often realized through a principal
component analysis based upon a singular value decomposition (SVD) of the data. The left singular
vectors of a truncated SVD provide the reduced basis. In several applications such as facial analysis
and protein dynamics, structural symmetry is inherent in the data. Typically, reflective or rota-
tional symmetry is expected to be present in these applications. In protein dynamics, determining
this symmetry allows one to provide SVD major modes of motion that best describe the symmetric
movements of the protein. In face detection, symmetry in the SVD allows for more efficient com-
pression algorithms. Here we present a method to compute the plane of reflective symmetry or the
axis of rotational symmetry of a large set of points. Moreover, we develop a symmetry preserving
singular value decomposition (SPSVD) that best approximates the given set while respecting the
symmetry. Interesting subproblems arise in the presence of noisy data or in situations where most,
but not all, of the structure is symmetric. An important part of the determination of the axis of
rotational symmetry or the plane of reflective symmetry is an iterative reweighting scheme. This
scheme is rapidly convergent in practice and seems to be very effective in ignoring outliers (points
that do not respect the symmetry).

Key words. singular value decomposition, symmetry constraints, large scale, principal compo-
nents, protein dynamics

AMS subject classifications. 15A18, 65F15

DOI. 10.1137/050646676

1. Introduction. Determining symmetry within a collection of spatially ori-
ented points is a problem that occurs in many fields including molecular biology and
face recognition analysis. In these applications, large amounts of data are generally
collected, and it is desirable to approximate this data with a compressed representa-
tion. In some applications, the data is known to obey certain symmetry conditions,
and it is profitable to preserve such symmetry in the compressed approximation. Tak-
ing advantage of symmetry leads to better modeling of physical processes as well as
more efficient storage and computational schemes.

For a given set of points S = {xi : 1 ≤ i ≤ m} in n-dimensional space, we form
an n ×m matrix X = [x1,x2, . . . ,xm]. The truncated singular value decomposition
(SVD) provides a low rank approximation to X and therefore also to the data set S. If
USVT = X is an SVD of X, then it is well known that the best rank r approximation
to X (in both the 2-norm and the Frobenius norm) is given by Xr = UrSrV

T
r , where

Ur,Vr represent the dominant r columns of U,V and Sr represents the dominant
r × r principal submatrix of S. Here we are concerned with preserving symmetry
relations present in the set S and hence in the matrix X. In particular, we desire
the best low rank approximation Xr that also exhibits the same symmetries as the
matrix X. This is accomplished by providing a symmetry preserving singular value
decomposition (SPSVD).
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We concentrate on determining two types of symmetry: rotational and reflective.
The computational schemes for calculating the best symmetric approximation of a
given set involve two steps for each case. For reflective symmetry, the first step
is to obtain the normal to an approximate plane of reflective symmetry, where the
normal is defined to be the unit vector perpendicular to a hyperplane for which the
given set can be split into two mirror image sets. For rotational symmetry, we first
determine an approximate axis of rotational symmetry about which the given set can
be rotated (2π/k degrees in three dimensions) and returned to the same set. Then,
in the second step, we find the best approximation to the given set that has the
appropriate symmetries with respect to the approximate plane of symmetry or axis
of rotation with the aid of the SPSVD.

For practical applications, we must consider noisy data sets. Thus, we need to
construct a normal vector or axis of rotation that diminishes the effects of outliers.
This is accomplished by creating an iterative reweighting scheme that minimizes de-
viation from symmetry in a weighted Frobenius norm. With our weighted normal or
axis of rotation, we build our SPSVD that preserves the respective symmetries as in
the nonweighted scheme.

We also provide a means to compute just the dominant portion (leading r terms)
of the SPSVD that is well suited to large scale computation. This computation
requires only matrix-vector products involving the point set represented as a matrix.
The ARPACK software [8] can be used in this large scale case. The computation
is no more expensive than constructing the leading terms of the SVD of the full set
of points without the symmetry constraint. Computational examples involving the
backbone of the HIV-1 protease molecule are presented here. These examples provide
trajectories that result in matrices of dimension 9000 by 10000. The computations
were performed on a multiprocessor cluster using the parallel P ARPACK version of
ARPACK.

There has been considerable research in the area of symmetry detection. Atal-
lah [1] constructs an O(n log n) algorithm that determines the line of reflective sym-
metry of a perfectly symmetric planar object by reducing the system to a permutation
problem. Optimizing a coefficient of symmetry is employed by Marola to determine
an axis of symmetry for planar images [9]. Zabrodsky, Peleg, and Avnir [19] employ
a continuous symmetry measure and apply it to finding reflective and rotational sym-
metries in chemistry. Kazhdan extends this idea to three-dimensional (3D) objects
by creating a continuous two-dimensional (2D) function that measures the invariance
of an object with respect to reflective symmetry about each plane that goes through
the object’s center of mass [4].

Many papers use the following fundamental properties of symmetry, which can
be found in [17, 10, 11], to determine reflective and rotational symmetry. In this
literature, the term “principal axes” refers to the eigenvectors of the correlation matrix
XXT of the set of points, i.e., the left singular vectors of X. The observations are the
following:

- Any plane of symmetry of a body is perpendicular to a principal
axis.
- Any axis of rotational symmetry of a body is a principal axis.

Minovic, Ishikawa, and Kato start with this idea and build an octree representation
to find symmetries of a 3D object [12]. Sun and Sherrah [16] begin by looking at the
extended Gaussian image of an object and then search along the principal axes for the
strongest symmetry measure. O’Mara and Owens [14] also search for the principal
axis with the largest symmetry measure. However, their symmetry measure is more
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refined, since it takes into effect intensity values. Colliot et al. [3] extend O’Mara and
Owens’ research by starting with the highest symmetry measure principal axis. Then
they optimize the axis of symmetry using the Nelder–Mead downhill simplex method.
They apply this method to facial recognition and brain scan applications.

The idea of a symmetric approximation to a set of data points has come up
in partial differential equations and in face detection. Aubry, Lian, and Titi prove
that any truncated approximation to a dynamical system must maintain its respec-
tive symmetries. They derive a method of truncation, based on proper orthogonal
decomposition, that obeys the symmetries of the original infinite-dimensional sys-
tem [2]. Smaoui and Armbruster present a way to symmetrize the eigenmodes of the
Karhunen–Loeve basis in a computationally efficient matter [15]. Kirby and Sirovich
[6, 5] present a symmetric approximation based on taking the average of the even and
odd (correctly oriented) symmetric faces. We prove here that taking the average gives
the best symmetric approximation (in the Frobenius norm) to the original data set,
and we generalize this result to give the best symmetric approximation to a set that
possesses k-fold rotational symmetry.

The folding method is employed by Zabrodsky, Peleg, and Avnir [20] to calculate
the best symmetric approximation to a set. This method produces an approximation
that is equivalent to ours. However, our proof indicates how to calculate an SPSVD
that gives the best low rank symmetric approximation to a set efficiently for large
scale matrices.

In this paper, we have assumed a correct pairing of symmetric points. In many
applications, such as molecular dynamics, this is a valid assumption. However, when
this is not true, there are methods to create a pairing of points that has the desired
symmetry properties. These methods make certain assumptions about the data set.
For example, in [1] Atallah assumes a perfectly symmetric 2D set and employs the
idea that reflectively symmetric points must be the same distance from the center
of the data. Zabrodsky, Peleg, and Avnir [20] make the assumption that the set of
rotationally symmetric points is ordered along a contour.

This paper is organized as follows. Section 2 defines perfect reflective and rota-
tional symmetry. Finding an optimal hyperplane of reflective symmetry for noisy data
is developed and analyzed in section 3, while choosing the axes of rotational symmetry
for noisy data is discussed in section 4. Finally, section 5 develops an SPSVD that
best approximates the given data set and provides an algorithm for directly comput-
ing the best low rank symmetry preserving approximation in a way that is suitable
for large scale computation. Computational results are presented in section 6.

Throughout the discussion, ‖ · ‖ shall denote the 2-norm and ‖ · ‖F shall represent
the Frobenius norm. The term smallest eigenvalue will refer to the algebraically
smallest eigenvalue of a symmetric matrix. All vectors are column vectors.

2. Perfect symmetry. In this section, we lay out the basic defining properties
of reflective and rotational symmetry. We also give analytic specifications of the
normal to a plane of reflection and the axis of rotational symmetry when the given
data set possesses exact symmetry relations.

2.1. Reflective symmetry. Recall that a hyperplane H is specified by a con-
stant γ and a vector w via H := {x : γ + wTx = 0}. The vector w is called the
normal to the plane. We say that a set of points S ⊂ R

n is reflectively symmetric with
respect to the hyperplane H if for every point s ∈ S there exists a point ŝ ∈ S such
that ŝ = s+ τw for some scalar τ with s+ τ

2w ∈ H. It is easily shown that the center
c ≡ 1

m

∑
s∈S s of the point set lies in the plane of symmetry, where m is the number
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of elements in S. A simple rigid translation of the point set will allow us to assume
that the center is at the origin c = 0 and hence also that γ = 0. These assumptions
will be made throughout this discussion. For simplicity, we shall also assume that no
points of S lie in the plane of symmetry.

The following lemma is an immediate consequence of the fact that for each s ∈ S
there is a reflected point ŝ = s + τw ∈ S.

Lemma 2.1. A set S is reflectively symmetric with respect to a hyperplane H
with unit normal w if and only if

S = (I − 2wwT )S.

Lemma 2.2. If S is reflectively symmetric about H, then the center c ∈ H.
If S is reflectively symmetric about H, we can arrange the points of S into two

sets represented as two (n× m
2 )-dimensional matrices X0 and X1 such that

X0 = (I − 2wwT )X1.

Moreover, there is no loss of generality in assuming that wTX0 > 0 and that wTX1 <
0 (elementwise).

2.2. Rotational symmetry. We say that a set of points S ⊂ R
n
⋂

{zTq = 0 :
z ∈ R

n} is k-fold rotationally symmetric about an axis q ∈ R
n if there exists an

n× n orthogonal matrix R(q) such that for every point s ∈ S there are exactly k− 1
distinct points s1, s2, . . . , sk−1 ∈ S with R(q)is = si for i = 1, 2, . . . , k − 1. We call q
the rotational axis of symmetry and R(q) the rotation matrix. Lemma 2.3 gives an
expression for the rotation matrix R(q).

Lemma 2.3. A set S is k-fold rotationally symmetric with respect to a rotational
axis q if and only if for i = 1, 2, . . . , k − 1

S = R(q)iS = (I − QGQT )iS,

where Q ∈ R
n×(n−1) with [q, Q] forming an orthogonal matrix, and I − G ∈

R
(n−1)×(n−1) is a rotation (hence orthogonal matrix) with (I − G)k = I.

Note that (R(q))k = (I − QGQT )k = I, and for n = 3, the matrix I2 − G is a
2 × 2 plane rotation through an angle of θ = 2π/k degrees.

If S is k-fold rotationally symmetric about q, we can arrange the points of S into
k sets represented as matrices X0,X1, . . . ,Xk−1 such that

Xi = (I − QGQT )iX0

for i = 1, 2, . . . , k − 1. Again, we will assume that the center c of the data is at the
origin. This can always be attained in general by a simple rigid translation of all the
points of S.

3. Optimal value of reflective w. Generally, in practice, the given set S is not
exactly symmetric with respect to any particular plane. However, we may think of
calculating a w that does the best possible job of specifying a plane that separates S
into two sets X0 and X1 (again represented as matrices) that are “nearly” symmetric
with respect to the plane.

It is possible to find an initial separation of S into X0 and X1 that are paired to
be nearly symmetric with respect to a plane determined by a calculated w. Methods
for this are discussed in [1]. However, for this discussion, we shall assume that a
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partitioning of S into X0 and X1 is given such that the columns of the two matrices
are correctly paired.

The specification of w may be expressed as an optimization problem

min
‖w‖=1

{‖X0 − WX1‖F : W = I − 2wwT }.(1)

Lemma 3.1. The solution w to the minimization problem (1) is the unit eigen-
vector corresponding to the smallest eigenvalue of the symmetric indefinite matrix

M = X0X
T
1 + X1X

T
0 .

Proof.

‖X0 − WX1‖2
F = tr{(X0 − X1)(X0 − X1)

T } + 4 tr{wwTX1(X0 − X1)
T }

+ 4 tr{(wwTX1)(wwTX1)
T }

= tr{(X0 − X1)(X0 − X1)
T } + 4wTX1(X0 − X1)

Tw

+ 4wT (X1X
T
1 )w

= tr{(X0 − X1)(X0 − X1)
T } + 4wT (X1X

T
0 )w

= tr{(X0 − X1)(X0 − X1)
T } + 2wT (X1X

T
0 + X0X

T
1 )w,

where we have used wTw = 1 and that tr{AB} = tr{BA}.
Clearly, this quantity is minimized when 2wT (X1X

T
0 + X0X

T
1 )w is minimized,

and this occurs precisely when w is the (unit norm) eigenvector corresponding to the
smallest eigenvalue of the symmetric matrix

M = X1X
T
0 + X0X

T
1 .

A weighting can be introduced into the minimization problem (1) which gives a
way to deemphasize anomalies in the supposed symmetry relation. In this case, we
must solve

min
‖w‖=1

{‖(X0 − WX1)D‖F : W = I − 2wwT },(2)

where D is a diagonal weighting matrix.
Lemma 3.2. The solution w to the minimization problem (2) is the unit eigen-

vector corresponding to the smallest eigenvalue of the symmetric indefinite matrix

MD = X0D
2XT

1 + X1D
2XT

0 .(3)

Proof. The proof is similar to the proof of Lemma 3.1.
We have devised an iterative reweighting scheme to construct a D that diminishes

the influence of outliers in the SPSVD. Given a guess z to the normal vector w, the

basic idea is to weight the ith column of X0 − WX1, i.e., x
(0)
i − (I − 2wwT )x

(1)
i ,

by the reciprocal of the norm of x
(0)
i − (I − 2zzT )x

(1)
i , where z is a unit vector. The

motivation is to penalize (give the smallest weight to) the pairs x0
j ,x

1
j that are farthest

from being symmetric with respect to z.
Let us define

F (z,w) =

m∑
i=1

(
fi(w)

fi(z)

)2

= ‖(X0 − WX1)D(z)‖2
F ,
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where fi(z) = ‖x(0)
i −(I−2zzT )x

(1)
i ‖ and D(z) = diag

{
fi(z)−1

}
. To find the optimal

normal with respect to this weighting, we choose w as the point that minimizes
‖(X0−WX1)D(z)‖F , as described in Lemma 3.2. Then the approximate w associated
with this weighting solves

min
‖w‖=1

F (z,w).(4)

This suggests an iterative reweighting scheme that will adjust the vector z to optimally
diminish the effect of outliers; begin with an initial guess z0 and iterate

zp+1 = arg min
‖w‖=1

F (zp,w), k = 0, 1, 2, . . . ,(5)

until ‖zp+1 − zp‖ is sufficiently small. Upon convergence, this fixed point iteration
will solve the max-min problem

max
‖z‖=1

{
min
‖v‖=1

F (z,v)

}
,(6)

as the following lemma indicates.
Lemma 3.3. If v = z is a fixed point of the minimization problem (4), then z is

a solution to the max-min problem (6), and F (z,v) = m.
Proof. Given z, ‖z‖ = 1,

min
‖v‖=1

m∑
i=1

(
fi(v)

fi(z)

)2

≤
m∑
i=1

(
fi(z)

fi(z)

)2

= m.

Hence,

max
‖z‖=1

{
min
‖v‖=1

F (z,v)

}
≤ m.

If v = z, then F (z,v) = F (z, z) = m. Therefore, any fixed point of the minimization
problem (4) is a solution to the max-min problem (6).

We have shown in the above lemma that a fixed point of iteration (5) solves
the max-min problem (6). Now we will show the existence of a fixed point to the
iteration (5) in Theorem 3.4.

Theorem 3.4. There is a point z∗ of unit norm such that

z∗ = arg min
‖w‖=1

F (z∗,w).

Proof. Let Mi = ‖x(0)
i − x

(1)
i ‖2I + 2(x

(0)
i x

(1)
i

T
+ x

(1)
i x

(0)
i

T
). For a given z, any w

that solves

min
‖w‖=1

F (z,w) = min
‖w‖=1

m∑
i=1

wTMiw

zTMiz

will also solve

min
‖w‖=1

Φ(z)F (z,w) = min
‖w‖=1

m∑
i=1

φi(z)wTMiw,
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where

Φ(z) =
m∏
i=1

zTMiz and φi(z) =

m∏
j=1
j �=i

zTMjz.

The function Φ(z) restricted to the unit n-sphere is a continuous function on a compact
set. Therefore, minz Φ(z) = Φ(z∗) is attained at some point z = z∗ on the unit sphere.

From Lagrange theory, we see that

∇Φ(z∗) = 2

m∑
i=1

φi(z∗)Miz∗ = 2z∗λ,

or, if we denote M(z) =
∑m

i=1 φi(z)Mi,

M(z∗)z∗ = z∗λ.

Now it is straightforward to show that an eigenvector corresponding to the smallest
eigenvalue of M(z∗) is also an eigenvector corresponding to the smallest eigenvalue of
MD in (3) with D = D(z∗). Therefore, it is sufficient to show that λ is the smallest
eigenvalue of M(z∗) to show that z∗ is a fixed point. The following argument will
establish this.

Due to the Kurush–Kuhn–Tucker first and second order necessary conditions [13],
for all w such that wT z∗ = 0, we must have

wT∇Φ(z∗) = wTM(z∗)z∗ = 0

and

wT
(
∇2Φ(z∗) − 2λI

)
w ≥ 0.(7)

Now

∇2Φ(z) = 2

m∑
i=1

φi(z)Mi + 2

m∑
i=1

Miz∇φi(z)T

and

∇φi(z) = ∇

⎛
⎜⎜⎝

m∏
j=1
j �=i

zTMjz

⎞
⎟⎟⎠

= ∇
(

Φ(z)

zTMiz

)

=
1

zTMiz
∇Φ(z) − 2Φ(z)

(zTMiz)2
Miz.

Therefore,

wT∇φi(z∗) = − 2Φ(z∗)

(z∗TMiz∗)2
wTMiz∗.(8)
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Substituting expression (8) into the formula for wT
(
∇2Φ(z∗)− 2λI

)
w in the second

order necessary conditions (7) gives

0 ≤ 2wTM(z∗)w − 4

(
wTMiz∗
z∗TMiz∗

)2

Φ(z∗) − 2λ

≤ 2(μ− λ),

where μ = wTM(z∗)w. Thus, λ ≤ μ for any eigenvalue μ of M(z∗). Since λ is the
smallest eigenvalue of M(z∗), we have established that a constrained minimizer z∗ of
Φ(z) satisfies z∗ = arg min‖w‖=1 F (z∗,w).

Remark. We have assumed in Theorem 3.4 that Φ(z) 	= 0. This is a reasonable

assumption, since the only way Φ(z) = 0 is if ‖x(0)
j ‖ = ‖x(1)

j ‖ for some pair (x
(0)
j ,x

(1)
j ).

Since we are dealing with noisy sets, it is unlikely that these norms are precisely equal
in practice. Nevertheless, we are considering equivalent reformulations that avoid this
difficulty altogether.
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Convergence of Iteration zk for 1000 Frames of HIV1 Protease

Fig. 1. Convergence of 1000 frames of HIV-1 protease using iteration (5).
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Fig. 2. Iterations showing that our weighting is a good choice. Notice how as the iterations
progress the normal converges to the correct solution, even in the presence of outliers (larger dots).
The smaller dots in the last frame show our best symmetric approximation to the original data set.

Convergence of the iterates zp produced by (5) is yet to be proven. However, the
convergence history shown in Figures 1 and 2 is typical, and iteration (5) seems to
be convergent in practice. Theorem 3.5 does at least establish that the sequence of
function values, Φ(zp), is monotonically decreasing and convergent.

Theorem 3.5. The sequence Φ(zp), with zp produced by iteration (5), is conver-
gent.
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Proof. In the proof of Theorem 3.4, we show that a constrained minimizer z∗ of

Φ(z) =

m∏
i=1

zTMiz =

m∏
i=1

‖x(0)
i − (I − 2zzT )x

(1)
i ‖2

is a fixed point to iteration (5). If we can show that Φ(zp), where zp satisfies itera-
tion (5), is a monotonically decreasing function, we will have proven that the sequence
Φ(zp), with zp produced by iteration (5), is convergent. Notice that

Φ(zp+1)

Φ(zp)
=

m∏
i=1

‖x(0)
i − (I − 2zp+1z

T
p+1)x

(1)
i ‖2

‖x(0)
i − (I − 2zpzTp )x

(1)
i ‖2

,

and zp+1 is chosen such that it minimizes the optimization problem (4); thus

m∑
i=1

‖x(0)
i − (I − 2zp+1z

T
p+1)x

(1)
i ‖2

‖x(0)
i − (I − 2zpzTp )x

(1)
i ‖2

≤
m∑
i=1

‖x(0)
i − (I − 2zpz

T
p )x

(1)
i ‖2

‖x(0)
i − (I − 2zpzTp )x

(1)
i ‖2

= m.

Since the geometric mean never exceeds the arithmetic mean,

[
m∏
i=1

‖x(0)
i − (I − 2zp+1z

T
p+1)x

(1)
i ‖2

‖x(0)
i − (I − 2zpzTp )x

(1)
i ‖2

](1/m)

≤ 1

m

m∑
i=1

‖x(0)
i − (I − 2zp+1z

T
p+1)x

(1)
i ‖2

‖x(0)
i − (I − 2zpzTp )x

(1)
i ‖2

≤ 1.

Thus,

m∏
i=1

‖x(0)
i − (I − 2zp+1z

T
p+1)x

(1)
i ‖2

‖x(0)
i − (I − 2zpzTp )x

(1)
i ‖2

≤ 1.

Hence, Φ(zp) is a monotonically decreasing sequence that is bounded below and is
therefore convergent.

We have compared the convergence of iteration (5) to a fixed point with the
modified compass search method [7] on an equivalent optimization problem:

min
‖z‖=1

‖z − v‖,(9)

where, as before, v is the eigenvector associated with the smallest eigenvalue of (3)
with D = diag(fi(z)−1). We have observed that, in general, iteration (5) converges
faster and more efficiently when compared to the compass search method. Also, more
accurate results are usually obtained with iteration (5).

4. Optimal value of rotational axis q. Recall that for a perfectly rotationally
symmetric set,

Xi = (I − QGQT )iX0,(10)

where the columns of [q, Q] form an orthogonal set. This specification suggests a
means to compute the axis of rotation.

Lemma 4.1. Suppose X0 has rank n and that G is nonsingular. Then q is an
axis of rotational symmetry if and only if

qT

[
(k − 1)X0 −

k−1∑
i=1

Xi

]
= 0.(11)
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Proof. First, note that if q is an axis of rotational symmetry, then qTQ = 0 must
hold, and thus

qTXi = qT (I − QGQT )iX0 = qTX0 for i = 1, 2, . . . , k,

which implies that (11) must hold.

From (10),

Xi = (I − QGQT )iX0

= (qqT + Q(I − G)QT )iX0

= (qqT + Q(I − G)iQT )X0.

Thus,

k−1∑
i=1

Xi =

(
(k − 1)qqT + Q

(
k−1∑
i=1

(I − G)i

)
QT

)
X0

= ((k − 1)qqT − QQT )X0 = kqqTX0 − X0,

since (I − G)k = I implies that
∑k−1

i=1 (I − G)i = −I when G is nonsingular. From
this, it follows that

(k − 1)X0 −
k−1∑
i=1

Xi = k(I − qqT )X0.

Now, suppose q̂ is any unit vector that satisfies (11) (in place of q). Since X0 is
full rank and q̂ satisfies (11),

0 = q̂T

[
(k − 1)X0 −

k−1∑
i=1

Xi

]
= kq̂T (I − qqT )X0

implies that q̂ = q(q̂Tq). Since both q and q̂ are unit length, it follows from Cauchy–
Schwarz that q̂ = ±q.

Remark. In R
3 the only way G can be singular is if it is identically 0, and since

we are assuming many points, it is also not unreasonable to assume that X0 has full
rank.

This gives a condition for calculating the axis of rotation, q, when the data is
exactly symmetric. However, in general, we are not given a perfectly symmetric
data set S. Therefore, we need to be able to specify an approximate rotational axis
q that best fits the data. To this end, we shall assume a partitioning of S into
X0,X1, . . . ,Xk−1 such that the columns of the matrices are correctly paired. Then
we can formulate the optimization problem

min
‖q‖=1

{∥∥∥∥∥q
T

[
(k − 1)X0 −

k−1∑
i=1

Xi

]∥∥∥∥∥
F

}
(12)

to specify our approximate rotational axis of symmetry q. Of course, we can charac-
terize q as follows.
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Fig. 3. Comparison of the projection of the original and perturbed points onto the y-z plane.

Lemma 4.2. The solution q to the minimization problem (12) is the unit eigen-
vector corresponding to the smallest eigenvalue of MMT , where

M = (k − 1)X0 −
k−1∑
i=1

Xi.(13)

Note that this characterization provides a computational mechanism that is ro-
bust in the presence of noise. An alternate specification of q suggested by Minovic
et al. is to consider the principal axis of the inertia matrix (correlation matrix) as-
sociated with the distinct eigenvalue for an initial guess to the rotational axes of
symmetry. The motivation for this is that with exact symmetry the inertia matrix
will have a distinct eigenvalue of multiplicity one and another eigenvalue of multiplic-
ity n − 1. However, in the presence of noise, these criteria may fail. For example,
consider the following 4-fold perfectly rotationally symmetric data set with respect to
q = [1, 0, 0]T :

X =

⎛
⎝

1 4 0 1 4 0 1 4 0 1 4 0
0 1 4 0 0 1 0 −1 −4 0 0 −1
0 0 1 0 −1 −4 0 0 −1 0 1 4

⎞
⎠

with eigenvalues 34.667, 36, 36 (or singular values 5.888, 6, 6) after centering. In this
case, we can clearly distinguish the distinct eigenvalue and get the corresponding cor-
rect axis. However, if we consider the SVD of X = USVT , where S = diag{σ1, σ2, σ3},
and perturb the data by

X + E = USVT + USEVT

with SE = diag{0,−(1 + ε)τ, τ}, where τ = (σ2 − σ3)/2 ≈ (6 − 5.888)/2 = 0.056 and
0 ≤ ε � 1, then the Minovic condition fails. To see this point, let ε = 0.001. Then the
residual norm between the original and approximated data is approximately 0.007,
which is well within the realm of experimental error in an application. Also, the data
points remain symmetric (see Figure 3), and the eigenvalues of the approximated
system become 35.330, 35.330, 36 (or singular values 5.944, 5.944, 6). However, the
eigenvector associated with the distinct eigenvalue (here 36) corresponds to the vector
[0, 0, 1]T . In contrast, our method clearly identifies the correct axis of symmetry.
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As with reflective symmetry, we can introduce a weighting scheme that minimizes
the influence of outliers in the supposed rotational symmetry relation:

min
‖q‖=1

{∥∥∥∥∥q
T

[
(k − 1)X0 −

k−1∑
i=1

Xi

]
D

∥∥∥∥∥
F

}
,(14)

where D is a diagonal weighting matrix. If such a weighting has been specified, then
we have the following lemma.

Lemma 4.3. The solution to the optimization problem (14) is the unit eigenvec-
tor q corresponding to the smallest eigenvalue of MD2MT , where M is defined as
in (13).

As in reflective symmetry, we have developed an iterative reweighting scheme to
specify the weighting matrix D of the minimization problem (14) that effectively
diminishes the influence of outliers in the final SPSVD approximation. Given a
guess z of unit length, the ith column of M is weighted by gi(z)−1, where gi(z) =∥∥zT [

(k − 1)x
(0)
i −

∑k
j=1 x

(j)
i

]∥∥. If we define

G(z,q) =

m∑
i=1

(
gi(q)

gi(z)

)2

=

∥∥∥∥∥q
T

[
(k − 1)X0 −

k−1∑
i=1

Xi

]
D(z)

∥∥∥∥∥
2

F

,

then the approximate q associated with this weighting solves

min
‖q‖=1

G(z,q).(15)

The motivation for this is to put greater weight on points that are more symmetric
with respect to z than points that are not. Then q is constructed to have the optimal
normal with respect to the weighting as described in Lemma 4.3. If q is not acceptable,
then z ← q, and the process is repeated until an acceptable q is found. This suggests
an iterative reweighting. Given an initial guess z0 to the axis of rotation, we iterate

zp+1 = arg min
‖q‖=1

G(zp,q)(16)

until ‖zp+1 − zp‖ is under a predetermined tolerance. A fixed point of iteration (16)
is the solution to the max-min problem

max
‖z‖=1

{
min
‖q‖=1

G(z,q)

}
,(17)

as the next lemma suggests.
Lemma 4.4. If q = z is a fixed point of the iteration (16), then q is a solution

to the max-min problem (17), and G(z,q) = m.
Proof. The proof is essentially the same as the proof of Lemma 3.3.
Moreover, we have the following theorem.
Theorem 4.5. There exists a fixed point to iteration (16).
Proof. The proof is essentially the same as the proof of Theorem 3.4.
We have also compared iteration (16) with the modified compass search method

on the equivalent optimization problem

min
‖z‖=1

‖z − q‖,(18)
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where q is the eigenvector associated with the smallest eigenvalue of MD2MT with
D = diag(gi(z)−1). We have observed that iteration (16) is generally more efficient
and produces more accurate fixed point solutions when compared to the compass
search method.

5. Best symmetric approximation to a set. To find the best reflective or
rotational symmetric approximation to a set, we can take advantage of the following
theorem. For reflective symmetry R = W and W2 = I, and in the case of rotational
symmetry R = R(q) and R(q)k = I.

Theorem 5.1. If

X =

⎛
⎜⎜⎜⎝

X0

X1

...
Xk−1

⎞
⎟⎟⎟⎠ ,

where

Rk−iXi = X0 + Ei,

and Rk = I, then

min
X̂i+1=RX̂i,
i=0,1,...,k−2

∥∥∥∥∥∥∥

⎛
⎜⎝

X0

...
Xk−1

⎞
⎟⎠−

⎛
⎜⎝

X̂0

...

X̂k−1

⎞
⎟⎠

∥∥∥∥∥∥∥

2

F

=
1

k

k−1∑
i=0

k−1∑
j=i+1

‖Ej − Rj−iEi‖2
F

and the SVD

USVT =

⎛
⎜⎝

X̂0

...

X̂k−1

⎞
⎟⎠

satisfies

U =
1√
k

⎛
⎜⎝

U0

...
Uk−1

⎞
⎟⎠ , S =

√
kS0, V = V0,

where

Ui = RiU0 for i = 0, 1, 2, . . . , k − 1,

and

U0S0V
T
0 =

1

k
(X0 + Rk−1X1 + Rk−2X2 + · · · + RXk−1).

Proof. The proof will consist of a sequence of straightforward lemmas. We begin
by assuming that we have perfect symmetry.
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Lemma 5.2. Suppose Ej = 0 for all j = 0, 1, 2, . . . , k − 1, and let

⎛
⎜⎜⎜⎝

X0

X1

...
Xk−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

U0

U1

...
Uk−1

⎞
⎟⎟⎟⎠SVT(19)

be the short form SVD of X. Then

Ui = RiU0,

where i = 0, 1, . . . , k − 1.
Proof. From (19), we have

Ui = XiVS−1,

where UT
0 U0 + UT

1 U1 + · · · + UT
k−1Uk−1 = I. Thus,

Ui = XiVS−1 = RiX0VS−1 = RiU0.

Therefore, when R is known, the SVD of a perfectly symmetric set may be ef-
ficiently computed by just taking the SVD of X0 and putting Ui = RUi−1, 1 ≤
i ≤ k − 1. Combining this fact with the following lemma leads to an algorithm for
calculating the best low rank approximation to a matrix that preserves symmetry.

Lemma 5.3. Let X0 = U0S0V
T
0 be the short form SVD of X0, where UT

0 U0 =
VT

0 V0 = I. Then
⎛
⎝

X0

:
X0

⎞
⎠ = USVT

is the SVD of the composite matrix, where

U =
1√
k

⎛
⎜⎝

U0

...
U0

⎞
⎟⎠ , S =

√
kS0, V = V0.

Proof. Clearly, UTU = I, and
⎛
⎜⎝

X0

...
X0

⎞
⎟⎠ =

⎛
⎜⎝

U0

...
U0

⎞
⎟⎠S0V

T
0 =

1√
k

⎛
⎜⎝

U0

...
U0

⎞
⎟⎠

√
kS0V

T
0

= USVT ,

which is indeed the SVD.
We are now ready to give the best low rank approximation that preserves sym-

metry for a noisy data set.
Lemma 5.4. Let Ẑ = 1

k (Z0 + Z1 + · · · + Zk−1). Then Z = Ẑ solves

min
Z

∥∥∥∥∥∥

⎛
⎝

Z0

:
Zk−1

⎞
⎠−

⎛
⎝

Z
:
Z

⎞
⎠
∥∥∥∥∥∥

2

F

.
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Proof. Consider

∥∥∥∥∥∥∥

⎛
⎜⎝

Z0

...
Zk−1

⎞
⎟⎠−

⎛
⎜⎝

Z
...
Z

⎞
⎟⎠

∥∥∥∥∥∥∥

2

F

= ‖Z0 − Z‖2
F + ‖Z1 − Z‖2

F + · · · + ‖Zk−1 − Z‖2
F ,

and note that

‖Zi − Z‖2
F = tr(ZT

i Zi) − 2 tr(ZT
i Z) + tr(ZTZ)

for i = 0, 1, 2, . . . , k − 1. Therefore,

∥∥∥∥∥∥

⎛
⎝

Z0

:
Zk−1

⎞
⎠−

⎛
⎝

Z
:
Z

⎞
⎠
∥∥∥∥∥∥

2

F

= tr

(
k−1∑
i=0

ZT
i Zi

)
− 2 tr

(
k−1∑
i=0

ZT
i Z

)
+ (k) tr(ZTZ).

However,

−2 tr

(
k−1∑
i=0

ZT
i Z

)
+ (k) tr(ZTZ) = −2 tr

⎛
⎝ 1√

k

(
k−1∑
i=0

Zi

)T √
kZ

⎞
⎠ + tr((

√
kZ)T (

√
kZ))

= − tr

(
1√
k

k−1∑
i=0

ZT
i

1√
k

k−1∑
i=0

Zi

)

+ tr

(
1√
k

k−1∑
i=0

ZT
i

1√
k

k−1∑
i=0

Zi

)

− 2 tr

⎛
⎝ 1√

k

(
k−1∑
i=0

Zi

)T √
kZ

⎞
⎠ + tr((

√
kZ)T (

√
kZ))

= −1

k
tr

(
k−1∑
i=0

ZT
i

k−1∑
j=0

Zj

)
+

∥∥∥∥∥
1√
k

k−1∑
i=0

Zi −
√
kZ

∥∥∥∥∥
2

F

.

The fact that trZT
i Zj = trZT

j Zi and some tedious bookkeeping will show that

tr

(
k−1∑
i=0

ZT
i Zi

)
− 1

k
tr

(
k−1∑
i=0

ZT
i

k−1∑
j=0

Zj

)
=

k − 1

k
tr

(
k−1∑
i=0

ZT
i Zi

)
− 2

k

k−1∑
i=0

k−1∑
j=i+1

tr(ZT
i Zj)

=
1

k

k−1∑
i=0

k−1∑
j=i+1

‖Zi − Zj‖2
F .

Hence,

∥∥∥∥∥∥∥

⎛
⎜⎝

Z0

...
Zk−1

⎞
⎟⎠−

⎛
⎜⎝

Z
...
Z

⎞
⎟⎠

∥∥∥∥∥∥∥

2

F

=
1

k

k−1∑
i=0

k−1∑
j=i+1

‖Zi − Zj‖2
F + k

∥∥∥∥∥
1

k

k−1∑
i=0

Zi − Z

∥∥∥∥∥
2

F

≥ 1

k

k−1∑
i=0

k−1∑
j=i+1

‖Zi − Zj‖2
F
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with equality if and only if

Z = Ẑ =
1

k

k−1∑
i=0

Zi.

These lemmas establish Theorem 5.1, since solving

min
X̂i+1=RX̂i

∥∥∥∥∥∥

⎛
⎝

X0

:
Xk−1

⎞
⎠−

⎛
⎝

X̂0

:

X̂k−1

⎞
⎠
∥∥∥∥∥∥

2

F

is equivalent to solving

min
X̂0

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝

X0

Rk−1X1

:
RXk−1

⎞
⎟⎟⎠−

⎛
⎜⎜⎝

X̂0

X̂0

:

X̂0

⎞
⎟⎟⎠

∥∥∥∥∥∥∥∥

2

F

because
⎛
⎜⎜⎜⎝

I
Rk−1

. . .

R

⎞
⎟⎟⎟⎠

is unitary. Therefore, by Lemma 5.4, X̂0 = 1
k

∑k−1
i=0 Rk−iXi, and

min
X̂i=RiX̂0

∥∥∥∥∥∥∥

⎛
⎜⎝

X0

...
Xk−1

⎞
⎟⎠−

⎛
⎜⎝

X̂0

...

X̂k−1

⎞
⎟⎠

∥∥∥∥∥∥∥

2

F

=
1

k

k−1∑
i=0

k−1∑
j=i+1

‖Ej − Rj−iEi‖2
F ,

where Rk−iXi = X0 + Ei.

6. Algorithms and computational results. The algorithmic structure for
both the reflective and the rotational SPSVD is the same. It consists of two major
steps:

1. Determine the normal w or the axis q for reflective or rotational symmetry,
respectively.

2. Compute the standard SVD

U0S0V
T
0 =

1

k
(X0 + Rk−1X1 + Rk−2X2 + · · · + RXk−1),

where R is a reflector determined by w or a rotation about the axis deter-
mined by q.

We seek the dominant (largest) singular values, and this can be done in a straight-
forward manner using the ARPACK software on a serial computer or P ARPACK on
a parallel system. Of course, one might question the use of ARPACK on dense prob-
lems. However, the timings shown in Figure 4 clearly verify that it is computationally
more efficient to calculate only the leading r terms (singular values) using ARPACK



A SYMMETRY PRESERVING SVD 765

0 2 4 6 8 10 12 14 16 18 2010
0

10
1

10
2

10
3

10
4

Regular vs. ARPACK for 20 Singular Vectors

Regular
ARPACK

Frames (x102)

T
im

e 
(s

ec
o

n
d

s)

Fig. 4. Comparison of calculating the largest 20 singular vectors of an HIV-1 protease trajectory
using ARPACK and a dense SVD solver.

instead of computing all of the singular values and then discarding n − r of them
for large scale matrices. One may either specify r or utilize a restarting scheme to
adjust r until σr ≥ tol ∗ σ1 > σr+1. The important computational point is that only
matrix-vector products of the form

u =
1

k
(X0 + Rk−1X1 + Rk−2X2 + · · · + RXk−1)v

are required, and this is slightly less work than is needed to compute the corresponding
standard SVD of X without the symmetry constraint.

6.1. SPSVD in protein dynamics. Given a dynamical system ẋ = f(x),
x(0) = x0, there are well-known techniques for dimension reduction based upon the
Gramian of the trajectory {x(t), t ≥ 0}. The technique is known as proper orthogonal
decomposition in computational fluid dynamics, as Karhunen–Loeve decomposition
in face recognition and detection, and as principal component analysis in molecular
dynamics. For a system with n-dimensional state vectors, the Gramian

P =

∫ ∞

0

x(τ)x(τ)T dτ

is an n×n symmetric positive (semi-)definite matrix (assuming it exists). The eigen-
system of P

P = US2UT

provides an orthogonal basis via the columns of U, and in this basis we have the
representation

x(t) = USv(t)

with the components of v(t) being mutually orthogonal L2(0,∞) functions. If the di-
agonal elements of the positive semidefinite diagonal matrix S decay rapidly (assuming
they are in decreasing order), then a reduced basis representation of the trajectory
may be obtained by discarding the trailing terms and considering the approximation



766 MILI I. SHAH AND DANNY C. SORENSEN

xr = UrSrvr(t), where the subscript r denotes the leading r columns and/or compo-
nents. This is usually approximated using snapshots consisting of values x(ti) of the
trajectory at discrete time points and forming the n×m matrix

X = [x(t1),x(t2), . . . ,x(tm)].

The SVD of X provides

X = USVT ≈ UrSrV
T
r ,

where

UTU = VTV = In, S = diag(σ1, σ2, . . . , σn)

with σ1 ≥ σ2 ≥ · · · ≥ σn. This is a direct approximation to the continuous derivation
if we consider

P ≈ 1

m
XXT =

1

m

∑
i

x(ti)x(ti)
T ,

where the approximation to P is given by a quadrature rule. Here we are concerned
with introducing symmetry constraints into this approximation when appropriate. In
molecular dynamics, there is often a known spatial structural symmetry for the state
variables, and the purpose of the constrained SVD approximation developed here
is to impose such symmetry constraints on the approximate trajectory through the
SPSVD.

This method has been implemented using P ARPACK on a Linux cluster with
6 dual-processor nodes consisting of 1600MHz AMD Athlon processors with 1GB
RAM per node and a 1GB/s Ethernet connection. The method was applied to com-
pute the leading 20 symmetric major modes for an HIV-1 protease molecule. The
molecule consists of 3120 atoms, and hence the state has 9360 degrees of freedom.
The molecular dynamics trajectory consisted of 10000 time steps (snapshots). This
resulted in the following:

1. The first 20 symmetric singular vectors took 244 secs.
This includes axis of rotation determination.

2. The first 20 standard singular vectors took 118 secs.
This may seem contradictory to the claim that the SPSVD should be as efficient

as regular SVD. However, the need to compute the axis of rotation significantly adds
to the run time. If more singular vectors are computed, the SPSVD indeed runs faster
than regular SVD.

1. The first 50 symmetric singular vectors took 312 secs.
This includes axis of rotation determination.

2. The first 50 standard singular vectors took 390 secs.
These computations were done for both reflective and rotational symmetry with

essentially the same computational time. The computation of the reflective normal
or the axis of rotation was included in both SPSVD approximations. As this normal/
axis determination is quite demanding, these computations indicate that obtaining
the leading terms of the SVD is comparable for both the symmetry preserving and
standard SVD cases. Moreover, both are well suited to the large scale setting when
P ARPACK is used.

It turns out that HIV-1 protease has a 2-fold rotational symmetry, and this as-
pect is preserved while providing good approximations to the full trajectory, as can
be seen in Figure 5. Additional visualizations are available at the web site http://
www.caam.rice.edu/∼sorensen/ under “recent talks.”
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l

Fig. 5. Comparison of SVD versus SPSVD. Notice the nice fit for all but the indicated region
and its symmetric counterpart.

6.2. Face recognition. Generalizations of techniques described here can be
used to orient faces once the plane of symmetry has been found. Once the correct
orientation is attained, the SPSVD can find the best symmetric approximation to the
face.

We notice that a face seems to have reflective symmetry through the vertical mid-
line of the face (through the center of the eyes, middle of the nose, etc.). Therefore,
if a face is correctly oriented, we have a reflectively symmetric data set of intensity
values. The left half of the face forms X0, while the right half gives us X1. Note that
the columns of X1 will have to be in reverse order to maintain correctly paired data
points with relation to X0. Then, using SPSVD, we know that our best symmetric
approximation will be formed by taking the average of the intensity levels of the left
and right half of the face, i.e., the best symmetric approximation

S = [A Â],

where A = 1
2 (X0 +X1) and Â is the matrix A with its columns in reverse order. The

SPSVD was applied to a series of newly synthesized, laser-scanned (Cyberware TM),
256 × 256 gray-scaled pixel heads without hair. The face database was provided by
the Max-Planck Institute for Biological Cybernetics in Tuebingen, Germany [18] (see
http://www.kyb.mpg.de/publications/pdfs/pdf541.pdf). An example of one of the
faces and its symmetric counterpart can be seen in Figure 6. The SPSVD gives a
good approximation to the original head, while the storage is essentially cut in half.
We should also note that the sudden decrease of the singular values in the SPSVD
occurs at an index that is approximately half that of the regular SVD (Figure 7).
This suggests that a lower rank approximation from the SPSVD could give a better
approximation to the original data set when compared to a regular low rank SVD
approximation.

7. Conclusion. This paper has described a mathematical formulation of a sym-
metry preserving singular value decomposition which has led to practical (parallel)
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(a) Regular SVD (b) Symmetric SVD

Fig. 6. Comparison of SVD versus SPSVD on faces.
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algorithms suitable for large scale computation. Criteria and methods were given
for the calculation of reflective normal and rotational axis of symmetry of objects in
R

n that are able to overcome problems with noisy data and outliers. The resulting
technique is able to compute the best low rank symmetry preserving approximation
to a given set.
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ON A GENERALIZED EIGENVALUE PROBLEM FOR
NONSQUARE PENCILS∗

DELIN CHU† AND GENE H. GOLUB‡

Abstract. In this paper a generalized eigenvalue problem for nonsquare pencils of the form
A − λB with A,B ∈ Cm×n and m > n, which was proposed recently by Boutry, Elad, Golub,
and Milanfar [SIAM J. Matrix Anal. Appl., 27 (2006), pp. 582–601], is studied. An algebraic
characterization for the distance between the pair (A,B) and the pairs (A0, B0) with the property
that for the pair (A0, B0) there exist l distinct eigenpairs of the form (A0−λkB0)vk = 0, k = 1, . . . , l,
is given, which implies that this distance can be obtained by solving an optimization problem over
the compact set {Vl : Vl ∈ Cn×l, V H

l Vl = I}. Furthermore, the distance between a controllable
descriptor system and uncontrollable ones is also considered, an algebraic characterization is obtained,
and hence a well-known result on the distance between a controllable linear time-invariant system
to uncontrollable ones is extended to the descriptor systems.

Key words. nonsquare pencil, generalized eigenvalue, descriptor systems
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1. Introduction. The generalized eigenvalue problem (A − λB)v = 0 with
A,B ∈ Cm×n and m > n for nonsquare pencil A − λB has attracted much at-
tention and has been treated from theoretical and numerical points of view; see
[1, 4, 6, 7, 9, 10, 11, 16, 17, 19]. Traditional methods for solving such nonsquare
generalized eigenvalue problem are expected to lead to no solutions in most cases.
Thus, we may search for the minimal perturbation on the pair (A,B) such that these
solutions are indeed possible. This consideration leads to the following problem.

Problem 1. Given A,B ∈ Cm×n and a positive integer l ≤ n, assume that
m > n. Find

μl = inf

⎧⎪⎪⎨
⎪⎪⎩
‖
[
A0 −A B0 −B

]
‖F :

⎛
⎜⎜⎝

A0, B0 ∈ Cm×n, A0vk = λkB0vk
λk ∈ C, vk ∈ Cn, k = 1, . . . , l

λk �= λj ∀1 ≤ k �= j ≤ l
rank

[
v1 · · · vl

]
= l

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

.

Very recently, Boutry, Elad, Golub, and Milanfar have treated two cases of Prob-
lem 1 in [4]. Starting with the case n = 1, they have shown that it leads to a closed
form solution. They then treated the case with n > 1 and l = 1. For this case they
proposed an efficient numerical algorithm and demonstrated its behavior. Finally,
they pointed out that Problem 1 is complicated and is still open.

In this work we focus on Problem 1. We will show that the infimum μl in Prob-
lem 1 can be obtained by solving an optimization problem over the compact set
{Vl : Vl ∈ Cm×l, V H

l Vl = I}, and hence Theorem 4 of [4] is extended to the general
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case 0 < l ≤ n. As a by-product, we also derive a formula for the distance between
controllable and uncontrollable descriptor systems of the form Eẋ = Ax+Bu, which
generalizes the well-known result in [3, 2, 8] on the distance between controllable and
uncontrollable linear systems of the form ẋ = Ax + Bu.

Throughout this paper, the following notation will be used:
• σi(M): the ith singular value of M ∈ Cm×n with decreasing order, viz.
σ1(M) ≥ σ2(M) ≥ · · · ≥ σmin{m,n}(M);

• MH : the conjugate transpose of M .

2. Main result. In this section we show that the infimum μl in Problem 1 can
be obtained by solving an optimization problem over the compact set {Vl : Vl ∈
Cn×l, V H

l Vl = I}. Our main result is the following theorem.
Theorem 1.

μl = min

⎧⎨
⎩

√√√√
min{m,2l}∑

i=l+1

σ2
i (
[
AVl BVl

]
) : Vl ∈ Cn×l, V H

l Vl = I

⎫⎬
⎭ .(1)

Proof. We prove Theorem 1 by the following three arguments.
Argument 1. Let A0, B0 ∈ Cm×n. If

{
A0vk = λkB0vk, λk ∈ C and vk ∈ Cn, k = 1, . . . , l,
rank

[
v1 · · · vl

]
= l and λk �= λj (∀1 ≤ k �= j ≤ l),

(2)

then

A0

[
v1 · · · vl

]
= B0

[
v1 · · · vl

]
⎡
⎢⎣

λ1

. . .

λl

⎤
⎥⎦ .

Let the unitary matrix V0 ∈ Cn×n be such that

[
v1 · · · vl

]
= V0

[
K
0

]
,(3)

where K ∈ Cl×l is nonsingular. Obviously, we have

A0V0

[
Il
0

]
= B0V0

[
Il
0

]
Λ0,

i.e.,

A0V0 =

[ l n− l

A
(1)
0 A

(2)
0

]
, B0V0 =

[ l n− l

B
(1)
0 B

(2)
0

]
,

A
(1)
0 = B

(1)
0 Λ0, Λ0 = K

⎡
⎢⎣

λ1

. . .

λl

⎤
⎥⎦K−1.

(4)

All eigenvalues of Λ0 are distinct because λk �= λj for all 1 ≤ k �= j ≤ l. Conversely, if

A0V0 =
[ l n− l

A
(1)
0 A

(2)
0

]
, B0V0 =

[ l n− l

B
(1)
0 B

(2)
0

]
, A

(1)
0 = B

(1)
0 Λ0,
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where V0 is unitary, all eigenvalues of Λ0 are distinct, and then we know that (2)
holds. Thus,

⎧⎪⎪⎨
⎪⎪⎩

(A0, B0) :

⎛
⎜⎜⎝

A0, B0 ∈ Cm×n, A0vk = λkB0vk
λk ∈ C, vk ∈ Cn, k = 1, . . . , l

λk �= λj ∀1 ≤ k �= j ≤ l
rank

[
v1 · · · vl

]
= l

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A0, B0) :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0, B0 ∈ Cm×n

A0V0 =
[
A

(1)
0 A

(2)
0

]
, A

(1)
0 ∈ Cm×l

B0V0 =
[
B

(1)
0 B

(2)
0

]
, B

(1)
0 ∈ Cm×l

A
(1)
0 = B

(1)
0 Λ0

V0 unitary
all eigenvalues of Λ0 are distinct

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Hence, we obtain that

μl = inf

⎧⎪⎪⎨
⎪⎪⎩
‖
[
A0 −A B0 −B

]
‖F :

⎛
⎜⎜⎝

A0, B0 ∈ Cm×n, A0vk = λkB0vk
λk ∈ C, vk ∈ Cn, k = 1, . . . , l

λk �= λj ∀1 ≤ k �= j ≤ l
rank

[
v1 · · · vl

]
= l

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

= inf

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖
[
A0 −A B0 −B

]
‖F :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0, B0 ∈ Cm×n

A0V0 =
[
A

(1)
0 A

(2)
0

]
, A

(1)
0 ∈ Cm×l

B0V0 =
[
B

(1)
0 B

(2)
0

]
, B

(1)
0 ∈ Cm×l

A
(1)
0 = B

(1)
0 Λ0

V0 ∈ Cn×n unitary
all eigenvalues of Λ0 are distinct

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= inf

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖
[
A0V0 −AV0 B0V0 −BV0

]
‖F :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0, B0 ∈ Cm×n

A0V0 =
[
A

(1)
0 A

(2)
0

]
, A

(1)
0 ∈ Cm×l

B0V0 =
[
B

(1)
0 B

(2)
0

]
, B

(1)
0 ∈ Cm×l

A
(1)
0 = B

(1)
0 Λ0

V0 ∈ Cn×n unitary
all eigenvalues of Λ0 are distinct

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.(5)

Next, for any unitary matrix V0 ∈ Cn×n, partition

V0 =
[ l n− l

Vl Vl

]
.
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We have from (5) that

μl = inf

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖
[
A

(1)
0 −AVl A

(2)
0 −AVl B

(1)
0 −BVl B

(2)
0 −BVl

]
‖F :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0, B0 ∈ Cm×n

A0V0 =
[
A

(1)
0 A

(2)
0

]

B0V0 =
[
B

(1)
0 B

(2)
0

]

A
(1)
0 = B

(1)
0 Λ0

A
(1)
0 , B

(1)
0 ∈ Cm×l

V0 unitary
all eigenvalues of Λ0 are distinct

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= inf

⎧⎪⎪⎨
⎪⎪⎩
‖
[
A

(1)
0 −AVl B

(1)
0 −BVl

]
‖F :

×

⎛
⎜⎜⎝

A
(1)
0 , B

(1)
0 ∈ Cm×l

Vl ∈ Cn×l, V H
l Vl = I

A
(1)
0 = B

(1)
0 Λ0

all eigenvalues of Λ0 are distinct

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

(by taking A
(2)
0 = AVl, B

(2)
0 = BVl)

= inf

⎧⎨
⎩‖

[
B

(1)
0 Λ0 −AVl B

(1)
0 −BVl

]
‖F :

×

⎛
⎝ B

(1)
0 ∈ Cm×l

Vl ∈ Cn×l, V H
l Vl = I

all eigenvalues of Λ0 are distinct

⎞
⎠
⎫⎬
⎭

= inf

⎧⎨
⎩‖

[
AVl BVl

]
−B

(1)
0

[
Λ0 I

]
‖F :

×

⎛
⎝ B

(1)
0 ∈ Cm×l

Vl ∈ Cn×l, V H
l Vl = I

all eigenvalues of Λ0 are distinct

⎞
⎠
⎫⎬
⎭ .

(6)

Argument 2. In (6), Λ0 must satisfy that all its eigenvalues are distinct. To
remove this constraint from (6), we denote

S1 := {Λ0 : Λ0 ∈ Cl×l}
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and

τl := inf

⎧⎨
⎩‖

[
AVl BVl

]
−B

(1)
0

[
Λ0 I

]
‖F :

⎛
⎝ B

(1)
0 ∈ Cm×l

Vl ∈ Cn×l, V H
l Vl = I

Λ0 ∈ S1

⎞
⎠
⎫⎬
⎭ .

Then we wish to show that μl = τl.
Since

{Λ0 : Λ0 ∈ Cl×l, all eigenvalues of Λ0 are distinct} ⊂ S1,

we have

μl ≥ τl.(7)

Conversely, for any ε > 0, let B
(1)
0 (ε) ∈ Cm×l, Vl(ε) ∈ Cn×l, and Λ0(ε) ∈ S1 with

V H
l (ε)Vl(ε) = I be such that

∣∣∣‖ [ AVl(ε) BVl(ε)
]
−B

(1)
0 (ε)

[
Λ0(ε) I

]
‖F − τl

∣∣∣ ≤ ε

2
.

Note that there exists a matrix ΔΛ0(ε) ∈ Cl×l satisfying the following:
(i) all eigenvalues of Λ0(ε) + ΔΛ0(ε) are distinct;
(ii) ‖ΔΛ0(ε)‖ is small enough such that

‖B(1)
0 (ε)‖F ‖ΔΛ0(ε)‖F ≤ ε

2
.

A simple calculation gives that∣∣∣‖ [ AVl(ε) BVl(ε)
]
−B

(1)
0 (ε)

[
Λ0(ε) + ΔΛ0(ε) I

]
‖F − τl

∣∣∣
≤

∣∣∣‖ [ AVl(ε) BVl(ε)
]
−B

(1)
0 (ε)

[
Λ0(ε) + ΔΛ0(ε) I

]
‖F

−‖
[
AVl(ε) BVl(ε)

]
−B

(1)
0 (ε)

[
Λ0(ε) I

]
‖F

∣∣∣
+

∣∣∣‖ [ AVl(ε) BVl(ε)
]
−B

(1)
0 (ε)

[
Λ0(ε) I

]
‖F − τl

∣∣∣
≤ ‖B(1)

0 (ε)ΔΛ0(ε)‖F +
ε

2

≤ ‖B(1)
0 (ε)‖F ‖ΔΛ0(ε)‖F +

ε

2

≤ ε

2
+

ε

2
= ε,

which yields

‖
[
AVl(ε) BVl(ε)

]
−B

(1)
0 (ε)

[
Λ0(ε) + ΔΛ0(ε) I

]
‖F ≤ τl + ε.

Thus,

μl = inf

⎧⎨
⎩‖

[
AVl BVl

]
−B

(1)
0

[
Λ0 I

]
‖F :

⎛
⎝ B

(1)
0 ∈ Cm×l

Vl ∈ Cn×l, V H
l Vl = I

all eigenvalues of Λ0 are distinct

⎞
⎠
⎫⎬
⎭

≤ ‖
[
AVl(ε) BVl(ε)

]
−B

(1)
0 (ε)

[
Λ0(ε) + ΔΛ0(ε) I

]
‖F

≤ τl + ε,
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and furthermore, by letting ε → 0 we get that

μl ≤ τl.(8)

Now we have from (7) and (8) that

μl = τl(9)

= inf

⎧⎨
⎩‖

[
AVl BVl

]
−B

(1)
0

[
Λ0 I

]
‖F :

⎛
⎝ B

(1)
0 ∈ Cm×l

Vl ∈ Cn×l, V H
l Vl = I

Λ0 ∈ S1

⎞
⎠
⎫⎬
⎭ .

Argument 3. For any Λ0 ∈ S1, let the QR factorization of
[

Λ0 I
]

be

[
Λ0 I

] [ P1 P̂1

P2 P̂2

]
=

[
0 Δ0

]
,

Δ0, P1, P2 ∈ Cl×l, Δ0 ∈ Cl×l is nonsingular.

Then it can be verified that

P1 is nonsingular.

Hence, we get by taking B
(1)
0 =

[
AVl BVl

] [
P̂1

P̂2

]
Δ−1

0 in (9) that

μl = inf

⎧⎨
⎩

∥∥∥∥∥∥
[
AVl BVl

] [ P1 P̂1

P2 P̂2

]
−B

(1)
0

[
0 Δ0

]
∥∥∥∥∥∥
F

:(10)

×

⎛
⎝ B

(1)
0 ∈ Cm×l

Vl ∈ Cn×l, V H
l Vl = I

Λ0 ∈ S1

⎞
⎠
⎫⎬
⎭

= inf

⎧⎨
⎩
∥∥∥∥
[
AVl BVl

] [ P1

P2

]∥∥∥∥
F

:

⎛
⎝

Vl ∈ Cn×l, V H
l Vl = I[

P1

P2

]
∈ S2

⎞
⎠
⎫⎬
⎭ ,

where

S2 :=

{[
P1

P2

]
: P1, P2 ∈ Cl×l, PH

1 P1 + PH
2 P2 = I, P1 is nonsingular

}
.

Obviously, (10) is an optimization problem over the compact set

{Vl : Vl ∈ Cn×l, V H
l Vl = I}

and noncompact set S2. To simplify (10), we have to eliminate the noncompact set
S2. Because the smallest compact set containing S2 is

S3 :=

{[
P1

P2

]
: P1, P2 ∈ Cl×l, PH

1 P1 + PH
2 P2 = I

}
,

now we consider S3 and show that the set S2 in (10) can be replaced by S3. To do
so, we define

νl := inf

⎧⎨
⎩
∥∥∥∥
[
AVl BVl

] [ P1

P2

]∥∥∥∥
F

:

⎛
⎝

Vl ∈ Cn×l, V H
l Vl = I[

P1

P2

]
∈ S3

⎞
⎠
⎫⎬
⎭ .
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Since S2 ⊂ S3, we know

μl ≥ νl.(11)

On the other hand, for any 1 > ε > 0, let
[
P1(ε)

P2(ε)

]
∈ S3 and Vl(ε) ∈ Cn×l with

V H
l (ε)Vl(ε) = I be such that

∥∥∥∥νl −
[
AVl(ε) BVl(ε)

] [ P1(ε)
P2(ε)

]∥∥∥∥
F

≤ ε

2
.(12)

Denote the cosine-sine decomposition (CSD) [14] of
[
P1(ε)

P2(ε)

]
by

P1(ε) = U1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
. . .

ck
0

. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
U3,

P2(ε) = U2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1

. . .

sk
1

. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
U3,

where U1, U2, and U3 are unitary, 0 ≤ k ≤ l, and

0 < ci ≤ 1, 0 ≤ si < 1, c2i + s2
i = 1, i = 1, . . . , k.

Set

ΔP1(ε) = U1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
. . .

0
η

. . .

η

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
U3,

ΔP2(ε) = U2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
. . .

0 √
1 − η2 − 1

. . . √
1 − η2 − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
U3,



ON A GENERALIZED EIGENVALUE PROBLEM 777

where η is small enough that

0 < η < 1, η
√

2l ‖
[
A B

]
‖F ≤ ε

2
.

We have

P1(ε) + ΔP1(ε) is nonsingular,

[
P1(ε) + ΔP1(ε)
P2(ε) + ΔP2(ε)

]
∈ S2,

and ∥∥∥∥
[

ΔP1(ε)
ΔP2(ε)

]∥∥∥∥
F

≤ η
√

2l, ‖
[
A B

]
‖F

∥∥∥∥
[

ΔP1(ε)
ΔP2(ε)

]∥∥∥∥
F

≤ ε

2
.

Consequently, we obtain
∣∣∣∣νl −

∥∥∥∥
[
AVl(ε) BVl(ε)

] [ P1(ε) + ΔP1(ε)
P2(ε) + ΔP2(ε)

]∥∥∥∥
F

∣∣∣∣

≤
∣∣∣∣νl −

∥∥∥∥
[
AVl(ε) BVl(ε)

] [ P1(ε)
P2(ε)

]∥∥∥∥
F

∣∣∣∣

+

∣∣∣∣
∥∥∥∥
[
AVl(ε) BVl(ε)

] [ P1(ε)
P2(ε)

]∥∥∥∥
F

−
∥∥∥∥
[
AVl(ε) BVl(ε)

] [ P1(ε) + ΔP1(ε)
P2(ε) + ΔP2(ε)

]∥∥∥∥
F

∣∣∣∣

≤ ε

2
+

∥∥∥∥
[
AVl(ε) BVl(ε)

] [ ΔP1(ε)
ΔP2(ε)

]∥∥∥∥
F

≤ ε

2
+ ‖

[
AVl(ε) BVl(ε)

]
‖F

∥∥∥∥
[

ΔP1(ε)
ΔP2(ε)

]∥∥∥∥
F

≤ ε

2
+ ‖

[
A B

]
‖F

∥∥∥∥
[

ΔP1(ε)
ΔP2(ε)

]∥∥∥∥
F

(since V H
l (ε)Vl(ε) = I)

≤ ε

2
+

ε

2
= ε,

i.e.,
∥∥∥∥
[
AVl(ε) BVl(ε)

] [ P1(ε) + ΔP1(ε)
P2(ε) + ΔP2(ε)

]∥∥∥∥
F

≤ ν1 + ε,

which together with (10) and the fact
[
P1(ε)+ΔP1(ε)

P2(ε)+ΔP2(ε)

]
∈ S2 means that

μl ≤
∥∥∥∥
[
AVl(ε) BVl(ε)

] [ P1(ε) + ΔP1(ε)
P2(ε) + ΔP2(ε)

]∥∥∥∥
F

≤ νl + ε.

Because 0 < ε < 1 can be arbitrarily small, we must have

μl ≤ νl.(13)

Therefore, we get from (11) and (13) that

μl = νl = inf

⎧⎨
⎩
∥∥∥∥
[
AVl BVl

] [ P1

P2

]∥∥∥∥
F

:

⎛
⎝

Vl ∈ Cn×l, V H
l Vl = I[

P1

P2

]
∈ S3

⎞
⎠
⎫⎬
⎭
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= inf

⎧⎨
⎩

√√√√
min{m,2l}∑

i=l+1

σ2
i (
[
AVl BVl

]
) : Vl ∈ Cn×l, V H

l Vl = I

⎫⎬
⎭

= min

⎧⎨
⎩

√√√√
min{m,2l}∑

i=l+1

σ2
i (
[
AVl BVl

]
) : Vl ∈ Cn×l, V H

l Vl = I

⎫⎬
⎭

(since the set {Vl : Vl ∈ Cn×l, V H
l Vl = I} is compact).

Equivalently, (1) holds.
Corollary 2.

μn =

√√√√
min{m,2n}∑

i=n+1

σ2
i (
[
A B

]
).

Proof. By Theorem 1 we have

μn = min

⎧⎨
⎩

√√√√
min{m,2n}∑

i=n+1

σ2
i (
[
AVn BVn

]
) : Vn ∈ Cn×n, V H

n Vn = I

⎫⎬
⎭

= min

⎧⎨
⎩

√√√√
min{m,2n}∑

i=n+1

σ2
i

([
A B

] [ Vn 0
0 Vn

])
: Vn ∈ Cn×n, V H

n Vn = I

⎫⎬
⎭

= min

⎧⎨
⎩

√√√√
min{m,2n}∑

i=n+1

σ2
i (
[
A B

]
) : Vn ∈ Cn×n, V H

n Vn = I

⎫⎬
⎭

(
since

[
Vn 0
0 Vn

]
is unitary

)

=

√√√√
min{m,2n}∑

i=n+1

σ2
i (
[
A B

]
).

Corollary 2 indicates clearly that the formula (1) can be simplified significantly
when l = n. In the following we rederive Theorems 2 and 4 of [4].

Corollary 3.

μ1 = min{σ2(
[
Av Bv

]
) : v ∈ Cn, ‖v‖2 = 1}

= inf

{
‖(A− λB)v‖2√

1 + |λ|2
: v ∈ Cn, ‖v‖2 = 1, λ ∈ C

}
.(14)

Consequently, if n = 1, A = a, and B = b, then

μ1 = inf

{
‖a− λb‖2√

1 + |λ|2
: λ ∈ C

}
.(15)

Proof. By Theorem 1 we have

μ1 = min{σ2(
[
Av Bv

]
) : v ∈ Cn, ‖v‖2 = 1}.
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Furthermore, because l = 1, we have S2 = { 1√
1+|λ|2

[ 1

−λ
] : λ ∈ C}; thus, using (10)

we have that

μ1 = inf

{
‖
[
Av Bv

] [ 1
−λ

]
(1 + |λ|2)−1/2‖F : v ∈ Cn, ‖v‖2 = 1, λ ∈ C

}

= inf

{
‖(A− λB)v‖2√

1 + |λ|2
: v ∈ Cn, ‖v‖2 = 1, λ ∈ C

}
.

It is possible that the infimum μl in Problem 1 is not attainable and any pencil
achieving this infimum has no l distinct eigenvalues but has eigenvalues at infinity, as
shown by the following example.

Example 1.
1 Let

A =

[
0
1

]
, B =

[
0.1
0

]
.

Then according to Corollary 2,

μ1 = 0.1.

This infimum cannot be attained by any pencil (A0, B0) which has a finite eigenvalue.
In other words, all pencils (A0, B0) achieving this infimum have no finite eigenvalue
but have an eigenvalue at infinity.

The pencil (A0, B0) has no eigenvalues at infinity if B0 is of full column rank.
Hence, naturally we may also add the additional constraint rank(B0) = n to Problem 1
and consider the following related problem.

Problem 2. Given A,B ∈ Cm×n and a positive integer l ≤ n. Assume that
m > n. Find

μ̂l = inf

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
‖
[
A0 −A B0 −B

]
‖F :

⎛
⎜⎜⎜⎜⎝

A0, B0 ∈ Cm×n, rank(B0) = n,
A0vk = λkB0vk

λk ∈ C, vk ∈ Cn, k = 1, . . . , l
λk �= λj ∀1 ≤ k �= j ≤ l
rank

[
v1 · · · vl

]
= l

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

The following result indicates that the infimum μl in Problem 1 and the infimum
μ̂l in Problem 2 are the same.

Theorem 4.

μ̂l = μl.

Proof. It is trivial that

μl ≤ μ̂l,(16)

so we need only to show that μ̂l ≤ μl.
For any ε > 0, let A0, B0 ∈ Cm×n satisfying

A0vk = λkB0vk, λk ∈ C, λk �= λj ∀1 ≤ k �= j ≤ l,

1This interesting example is provided by an anonymous referee.
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and

vk ∈ Cn, rank
[
v1 · · · vl

]
= l

be such that

∣∣μl − ‖
[
A−A0 B −B0

]
‖F

∣∣ ≤ ε

2
.

Same as Argument 1, let the QR factorization of
[
v1 · · · vl

]
be given by (3),

then (4) holds. Next, let the QR factorization of B
(1)
0 be

B
(1)
0 = U0

[
B11

0

]
,

where U0 is unitary and B11 ∈ Cl×l. Then we have using (4) that UH
0 A0V0 and

UH
0 B0V0 are of the forms

UH
0 A0V0 =

[
B11Λ0 A12

0 A22

]
, UH

0 B0V0 =

[
B11 B12

0 B22

]

since there always exist ΔB11 ∈ Cl×l and ΔB22 ∈ C(m−l)×(n−l) such that

rank(B11 + ΔB11) = l, rank(B22 + ΔB22) = n− l,

and

‖ΔB11‖F ≤ ε

4
(1 + ‖Λ0‖F )−1, ‖ΔB22‖F ≤ ε

4
.

Denote

ΔA0 = U0

[
ΔB11Λ0 0

0 0

]
V H

0 , ΔB0 = U0

[
ΔB11 0

0 ΔB22

]
V H

0 .

Then the pencil (A0 + ΔA0, B0 + ΔB0) satisfies

rank(B0 + ΔB0) = n, (A0 + ΔA0)vk = λk(B0 + ΔB0)vk, k = 1, . . . , l,(17)

‖
[

ΔA0 ΔB0

]
‖F =

∥∥∥∥
[

ΔB11Λ0 0 ΔB11 0
0 0 0 ΔB22

]∥∥∥∥
F

≤ ‖ΔB11‖F (1 + ‖Λ0‖F ) + ‖ΔB22‖F
≤ ε

2
,(18)

and

∣∣μl − ‖
[
A− (A0 + ΔA0) B − (B0 + ΔB0)

]
‖F

∣∣(19)

≤
∣∣μl − ‖

[
A−A0 B −B0

]
‖F

∣∣
+

∣∣‖ [ A−A0 B −B0

]
‖F − ‖

[
A− (A0 + ΔA0) B − (B0 + ΔB0)

]
‖F

∣∣
≤ ε

2
+ ‖

[
ΔA0 ΔB0

]
‖F

≤ ε

2
+

ε

2
= ε.
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Because (17) holds and (19) implies

‖
[
A− (A0 + ΔA0) B − (B0 + ΔB0)

]
‖F ≤ μl + ε,

we obtain

μ̂l ≤ ‖
[
A− (A0 + ΔA0) B − (B0 + ΔB0)

]
‖F ≤ μl + ε.

Note that ε can be arbitrarily small, so, we must have

μ̂l ≤ μl.(20)

Hence, Theorem 4 follows directly from (16) and (20).
According to the proofs of Theorems 1 and 4, once the infimum μl is computed,

for any 1 > ε > 0, we can always find an O(ε)-optimal pencil (A0, B0) in the sense
that (A0, B0) has l distinct eigenvalues, rank(B0) = n (so (A0, B0) has no eigenvalues
at infinity), and

‖
[
A−A0 B −B0

]
‖F ≤ μl + 2ε.

Such a pencil can be obtained by the following procedure:
• Let Vl =

[
v1 · · · vl

]
with V H

l Vl = I solve (1), i.e.,

μl =

√√√√
min{m,2l}∑

i=l+1

σ2
i (
[
AVl BVl

]
).

Step 1. Compute the SVD of
[
AVl BVl

]
to get matrix [P1

P2
] such that

[
P1

P2

]
∈ S3, μl =

√√√√
min{m,2l}∑

i=l+1

σ2
i (
[
AVl BVl

]
)

=

∥∥∥∥
[
AVl BVl

] [ P1

P2

]∥∥∥∥
F

.

– If P1 is singular, then similar to the construction of [ΔP1(ε)
ΔP2(ε)

] in Argu-

ment 3 we construct [ΔP1

ΔP2
] such that

P1 + ΔP1 is nonsingular, ‖
[
A B

]
‖F

∥∥∥∥
[

ΔP1

ΔP2

]∥∥∥∥
F

≤ ε

2
.

Set

P1 := P1 + ΔP1, P2 := P2 + ΔP2.

We have
∣∣∣∣μl −

∥∥∥∥
[
AVl BVl

] [ P1

P2

]∥∥∥∥
F

∣∣∣∣ ≤
ε

2
,

∥∥∥∥
[
AVl BVl

] [ P1

P2

]∥∥∥∥
F

≤ μ1 +
ε

2
.
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Step 2. Let [P1

P2

P̂1

P̂2
] be unitary. Since P1 is nonsingular, we know by using the

CSD [14] of [P1

P2

P̂1

P̂2
] that P̂2 is also nonsingular. Then define

Δ0 := P̂−1
2 , Λ0 = Δ0P̂1, B

(1)
0 =

[
AVl BVl

] [ P̂1

P̂2

]
Δ−1

0 .

We have∥∥∥∥
[
AVl BVl

] [ P1

P2

]∥∥∥∥
F

= ‖
[
AVl BVl

]
−B

(1)
0

[
Λ0 I

]
‖F .

– If all eigenvalues of Λ0 are not distinct, similar to Argument 2, we
compute ΔΛ0 such that all eigenvalues of Λ0 + ΔΛ0 are distinct and

‖B(1)
0 ‖F ‖ΔΛ0‖F ≤ ε

2 . Set

Λ0 := Λ0 + ΔΛ0.

Now, all eigenvalues of Λ0, denoted by λ1, . . . , λl, are distinct and

‖
[
AVl BVl

]
−B

(1)
0

[
Λ0 I

]
‖F ≤ μl + ε.

Step 3. Let

V0 :=
[
Vl Vl

]

be unitary. Define

A0 =
[
B

(1)
0 Λ0 AVl

]
V H

0 , B0 =
[
B

(1)
0 BVl

]
V H

0

if rank(B0) < n. Then similar to the proof of Theorem 4, we construct ΔA0

and ΔB0 such that (17) and (18) hold. Set

A0 := A0 + ΔA0, B0 := B0 + ΔB0.

For the pencil (A0, B0) above, we have

rank(B0) = n, A0vk = λkB0vk, k = 1, . . . , l,

and

‖
[
A−A0 B −B0

]
‖F = ‖

[
AVl BVl

]
−B

(1)
0

[
Λ0 I

]
‖F ≤ μl + 2ε.

Example 2. Let’s consider Example 1 again. For any 1 > ε > 0, by using the
procedure above, we obtain an O(ε)-optimal pencil

(A0, B0) =

⎛
⎝
[

− ε
40

√
1 − ε2

16

1 − ε2

16

]
,

⎡
⎣

ε2

160

− ε
4

√
1 − ε2

16

⎤
⎦
⎞
⎠ .

It can be verified that (A0, B0) has a finite eigenvalue and

‖
[
A−A0 B −B0

]
F
≤ 0.1 + 2ε = μ1 + 2ε.

3. Distance between controllable and uncontrollable descriptor sys-
tems. In this section we apply the idea in proving Theorem 1 to the distance problem
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between controllable and uncontrollable descriptor systems, which is defined as fol-
lows.

Problem 3. Given a descriptor system of the form

Eẋ = Ax + Bu,(21)

where E,A ∈ Cn×n, B ∈ Cn×p, E is singular. Assume that system (21), or equiva-
lently the triplet (E; A, B), is controllable, i.e.,

rank
[
αA− βE B

]
= n ∀(α, β) ∈ C2\(0, 0).

Find

μ(E; A, B) = inf

{
‖
[
E0 − E A0 −A B0 −B

]
‖F :

(
E0, A0 ∈ Cn×n, B0 ∈ Cn×p

(E0; A0, B0) is uncontrollable

)}
.

μ(E; A, B) above is called the distance between controllable system (21) and the set
of uncontrollable descriptor systems.

The distance between controllable and uncontrollable linear systems has been an
interesting problem in the past two decades; see [2, 3, 5, 8, 12, 13, 15, 18]. When
E = I is supposed not to be perturbed, it was shown in [8] that

μ(A,B) := inf

{
‖
[
A−A0 B −B0

]
‖F :

(
A0 ∈ Cn×n, B0 ∈ Cn×p

(I;A0, B0) is uncontrollable

)}

= inf{σn(
[
λI −A B

]
) : λ ∈ C}.(22)

When E is singular, some upper and lower bounds for μ(E; A, B) were given in [20, 21].
In this section we study μ(E; A, B). Our purpose is to extend (22) to μ(E; A, B).

Lemma 5. Given E0, A0 ∈ Cn×n and B0 ∈ Cn×p. The following statements are
equivalent:

(i) The triplet (E0;A0, B0) is uncontrollable.
(ii) There exist (α, β) ∈ C2\(0, 0) and v ∈ Cn with v �= 0 such that

vH
[
αA0 − βE0 B0

]
= 0.

(iii) There exist unitary matrix

V =

[
vH

VH

]
}1
}n− 1

and (α, β) ∈ C2\(0, 0) such that

V E0 =

[
eH0
EH
0

]
}1
}n− 1

, V A0 =

[
aH0
AH

0

]
}1
}n− 1

,(23)

V B0 =

[
0
BH

0

]
}1
}n− 1

, αaH0 = βeH0 .

Proof. The proof is trivial and thus is omitted.
We are ready now to present our main result in this section.
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Theorem 6. Given a controllable descriptor system (21) with E,A ∈ Cn×n,
B ∈ Cn×p. Then

μ(E; A, B) = min
{
σn(

[
E B

]
), inf

{
σn

([
A−λE√
1+|λ|2

B
])

: λ ∈ C
} }

.(24)

Proof. According to Lemma 5, the following relation holds:

{(E0, A0, B0) : E0, A0 ∈ Cn×n, B0 ∈ Rn×p, (E0;A0, B0) is uncontrollable} = S4∪S5

(25)

with

S4 =

{
(E0, A0, B0) : E0, A0 ∈ Cn×n, B0 ∈ Rn×p,

V E0 =

[
0
EH
0

]
}1
}n− 1

, V A0 =

[
aH0
AH

0

]
}1
}n− 1

,

V B0 =

[
0
BH

0

]
}1
}n− 1

, V =

[
vH

VH

]
}1
}n− 1

is unitary

}
,

S5 =

{
(E0, A0, B0) : E0, A0 ∈ Cn×n, B0 ∈ Rn×p,

V E0 =

[
eH0
EH
0

]
}1
}n− 1

, V A0 =

[
aH0
AH

0

]
}1
}n− 1

,

V B0 =

[
0
BH

0

]
}1
}n− 1

, V =

[
vH

VH

]
}1
}n− 1

is unitary, aH0 = λeH0 , λ ∈ C

}
.

As a direct result of (25) we have

μ(E; A, B)

= inf{‖
[
E0 − E A0 −A B0 −B

]
‖F : (E0, A0, B0) ∈ S4 ∪ S5}

= min{inf{‖
[
E0 − E A0 −A B0 −B

]
‖F : (E0, A0, B0) ∈ S4},

inf{‖
[
E0 − E A0 −A B0 −B

]
‖F : (E0, A0, B0) ∈ S5} }.(26)

Now we consider

inf{‖
[
E0 − E A0 −A B0 −B

]
‖F : (E0, A0, B0) ∈ S4}

and

inf{‖
[
E0 − E A0 −A B0 −B

]
‖F : (E0, A0, B0) ∈ S5}

separately.
First we have

inf{‖
[
E0 − E A0 −A B0 −B

]
‖F : (E0, A0, B0) ∈ S4}

= inf

⎧⎨
⎩‖

[
V E0 − V E V A0 − V A V B0 − V B

]
‖F :

⎛
⎝

(E0, A0, B0) ∈ S4

with V =

[
vH

VH

]
}1
}n− 1

unitary

⎞
⎠
⎫⎬
⎭
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= inf

⎧⎪⎪⎨
⎪⎪⎩

∥∥∥∥
[

−vHE aH0 − vHA −vHB
EH
0 − VHE AH

0 − VHA BH
0 − VHB

]∥∥∥∥
F

:

⎛
⎜⎜⎝

E0,A0 ∈ Cn×(n−1)

B0 ∈ Cp×(n−1), a0 ∈ Cn

V =

[
vH

VH

]
}1
}n− 1

unitary

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

= inf{‖
[
−vHE −vHB

]
‖F : v ∈ Cn, ‖v‖2 = 1}⎛

⎜⎜⎝by taking

⎧⎪⎪⎨
⎪⎪⎩

EH
0 = VHE

AH
0 = VHA

BH
0 = VHB

aH0 = vHA

⎞
⎟⎟⎠

= inf{‖vH
[
E B

]
‖F : v ∈ Cn, ‖v‖2 = 1}

= σn(
[
E B

]
).(27)

Next, we know

inf{‖
[
E0 − E A0 −A B0 −B

]
‖2
F : (E0, A0, B0) ∈ S5}

= inf

⎧⎨
⎩‖

[
V E0 − V E V A0 − V A V B0 − V B

]
‖2
F :

⎛
⎝

(E0, A0, B0) ∈ S5

with V =

[
vH

VH

]
}1
}n− 1

unitary

⎞
⎠
⎫⎬
⎭

= inf

⎧⎪⎪⎨
⎪⎪⎩

∥∥∥∥
[

eH0 − vHE aH0 − vHA −vHB
EH
0 − VHE AH

0 − VHA BH
0 − VHB

]∥∥∥∥
2

F

:

⎛
⎜⎜⎝

E0,A0 ∈ Cn×(n−1), B0 ∈ Cp×(n−1)

e0, a0 ∈ Cn, aH0 = λeH0 , λ ∈ C

V =

[
vH

VH

]
}1
}n− 1

unitary

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

= inf

⎧⎪⎪⎨
⎪⎪⎩

∥∥∥∥
[

eH0 − vHE λeH0 − vHA −vHB
EH
0 − VHE AH

0 − VHA BH
0 − VHB

]∥∥∥∥
2

F

:

⎛
⎜⎜⎝

E0,A0 ∈ Cn×(n−1), B0 ∈ Cp×(n−1),
e0 ∈ Cn, λ ∈ C

V =

[
vH

VH

]
}1
}n− 1

unitary

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

= inf

{
‖
[
eH0 − vHE λeH0 − vHA vHB

]
‖2
F :

(
e0 ∈ Cn, λ ∈ C

v ∈ Cn, ‖v‖2 = 1

)}
(28)

⎛
⎝by taking

⎧⎨
⎩

EH
0 = VHE

AH
0 = VHA

BH
0 = VHB

⎞
⎠ .
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Note that

Q(λ) :=
1√

1 + |λ|2

[
I λI
λ̄I −I

]
∈ C2n×2n

is unitary for any λ ∈ C. Here λ̄ is the complex conjugate of λ. Thus,

inf{‖
[
E0 − E A0 −A B0 −B

]
‖2
F : (E0, A0, B0) ∈ S5}

= inf

{∥∥∥∥
[
eH0 − vHE λeH0 − vHA vHB

] [ Q(λ) 0
0 I

] ∥∥∥∥
2

F

:

(
e0 ∈ Cn, λ ∈ C
v ∈ Cn, ‖v‖2 = 1

)}

= inf

{∥∥∥∥
[

(1+|λ|2)eH
0
−(vHE+λ̄vHA)√
1+|λ|2

vHA−λvHE√
1+|λ|2

vHB

] ∥∥∥∥
2

F

:

(
e0 ∈ Cn, λ ∈ C
v ∈ Cn, ‖v‖2 = 1

)}

= inf

{∥∥∥∥
[

vHA−λvHE√
1+|λ|2

vHB

] ∥∥∥∥
2

F

:

(
λ ∈ C

v ∈ Cn, ‖v‖2 = 1

)}

(
by taking eH0 =

vHE + λ̄vHA

1 + |λ|2

)

= inf

{∥∥∥∥vH
[

A−λE√
1+|λ|2

B
] ∥∥∥∥

2

F

:

(
λ ∈ C

v ∈ Cn, ‖v‖2 = 1

)}

= inf

{
σ2
n

([
A−λE√
1+|λ|2

B
])

: λ ∈ C

}
,

or equivalently

inf{‖
[
E0 − E A0 −A B0 −B

]
‖F : (E0, A0, B0) ∈ S5}(29)

= inf

{
σn

([
A−λE√
1+|λ|2

B
])

: λ ∈ C

}
.

Therefore, (24) follows directly from (26), (27), and (29).

4. Conclusions. In this paper we have considered the nonsquare generalized
eigenvalue problem and obtained algebraic characterizations for Problems 1 and 3 in
Theorems 1 and 6, respectively. The numerical algorithms for solving (1) are still
under investigation. Since

inf

{
σn

([
A−λE√
1+|λ|2

B
])

: λ ∈ C

}

is quite similar to inf{σn(
[
A− λI B

]
) : λ ∈ C}, some existing algorithms in

[5, 12, 15, 18] for computing μ(A,B) = inf{σn(
[
A− λI B

]
) : λ ∈ C} can be
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extended for computing μ(E;A,B) based on the formula (24). However, because the

factor
√

1 + |λ|2 is in the denominator of

inf

{
σn

([
A−λE√
1+|λ|2

B
])

: λ ∈ C

}
,

such extensions are not trivial, and some numerical investigations should be done. We
leave this topic to interested readers.
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[6] J. W. Demmel and B. Kågström, Computing stable eigendecompositions of matrix pencils,
Linear Algebra Appl., 88/89 (1987), pp. 139–186.
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A SCHUR–NEWTON METHOD FOR THE MATRIX pTH ROOT
AND ITS INVERSE∗

CHUN-HUA GUO† AND NICHOLAS J. HIGHAM‡

Abstract. Newton’s method for the inverse matrix pth root, A−1/p, has the attraction that it
involves only matrix multiplication. We show that if the starting matrix is c−1I for c ∈ R+ then the
iteration converges quadratically to A−1/p if the eigenvalues of A lie in a wedge-shaped convex set
containing the disc {z : |z − cp| < cp}. We derive an optimal choice of c for the case where A has
real, positive eigenvalues. An application is described to roots of transition matrices from Markov
models, in which for certain problems the convergence condition is satisfied with c = 1. Although the
basic Newton iteration is numerically unstable, a coupled version is stable and a simple modification
of it provides a new coupled iteration for the matrix pth root. For general matrices we develop a
hybrid algorithm that computes a Schur decomposition, takes square roots of the upper (quasi-)
triangular factor, and applies the coupled Newton iteration to a matrix for which fast convergence is
guaranteed. The new algorithm can be used to compute either A1/p or A−1/p, and for large p that
are not highly composite it is more efficient than the method of Smith based entirely on the Schur
decomposition.

Key words. matrix pth root, principal pth root, matrix logarithm, inverse, Newton’s method,
preprocessing, Schur decomposition, numerical stability, convergence, Markov model, transition ma-
trix

AMS subject classifications. 65F30, 15A18, 15A51
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1. Introduction. Newton methods for computing the principal matrix square
root have been studied for almost fifty years and are now well understood. Since
Laasonen proved convergence but observed numerical instability [25], several Newton
variants have been derived and proved numerically stable, for example by Higham
[13], [15], Iannazzo [18], and Meini [27]. For matrix pth roots, with p an integer
greater than 2, Newton methods were until recently little used, for two reasons: their
convergence in the presence of complex eigenvalues was not well understood and the
iterations were found to have poor numerical stability. The subtlety of the question of
convergence is clear from the scalar case, since the starting values for which Newton’s
method for zp−1 = 0 converges to some pth root of unity form fractal Julia sets in the
complex plane for p > 2 [28], [30], [33]. Nevertheless, Iannazzo [19] has recently proved
a new convergence result for the scalar Newton iteration and has thereby shown how
to build a practical algorithm for the matrix pth root.

Throughout this work we assume that A ∈ C
n×n has no eigenvalues on R

−, the
closed negative real axis. The particular pth root of interest is the principal pth
root (and its inverse), denoted by A1/p (A−1/p), which is the unique matrix X such
that Xp = A (X−p = A) and the eigenvalues of X lie in the segment { z : −π/p <
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arg(z) < π/p }. We are interested in methods both for computing A1/p and for
computing A−1/p.

We briefly summarize Iannazzo’s contribution, which concerns Newton’s method
for Xp − A = 0, and then turn to the inverse Newton iteration. Newton’s method
takes the form

Xk+1 =
1

p

[
(p− 1)Xk + X1−p

k A
]
, X0A = AX0.(1.1)

Iannazzo [19] shows that Xk → A1/p quadratically if X0 = I and each eigenvalue of
A belongs to the set

S = { z ∈ C : Re z > 0 and |z| ≤ 1 } ∪ R
+,(1.2)

where R
+ denotes the open positive real axis. Based on this result, he obtains the

following algorithm for computing the principal pth root.
Algorithm 1.1 (matrix pth root via Newton iteration [19]). Given A ∈ C

n×n

with no eigenvalues on R
− this algorithm computes X = A1/p using the Newton

iteration.
1 B = A1/2

2 C = B/‖B‖ (any norm)

3 Use the iteration (1.3) to compute X=C2/p (p even) or X=
(
C1/p

)2
(p odd).

4 X ← ‖B‖2/pX
The iteration used in the algorithm is a rewritten version of (1.1):

Xk+1 = Xk

(
(p− 1)I + Mk

p

)
, X0 = I,

Mk+1 =

(
(p− 1)I + Mk

p

)−p

Mk, M0 = A,

(1.3)

where Mk ≡ X−p
k A. Iannazzo shows that, unlike (1.1), this coupled form is numeri-

cally stable.
Newton’s method can also be applied to X−p−A = 0, for which it takes the form

Xk+1 =
1

p

[
(p + 1)Xk −Xp+1

k A
]
, X0A = AX0.(1.4)

The iteration has been studied by several authors. R. A. Smith [34] uses infinite
product expansions to show that Xk converges to an inverse pth root of A if the
initial matrix X0 satisfies ρ(I−Xp

0A) < 1, where ρ denotes the spectral radius. Lakić
[26] reaches the same conclusion, under the assumption that A is diagonalizable, for
a family of iterations that includes (1.4). Bini,1 Higham, and Meini take X0 = I and
prove convergence of the residuals I−Xp

kA to zero when ρ(I−A) < 1 (see Lemma 2.1
below) as well as convergence of Xk to A−1/p if A has real, positive eigenvalues and
ρ(A) < p + 1 [4]. They also show that (1.4) has poor numerical stability properties.
In none of these papers is it proved to which inverse pth root the iteration converges
when ρ(I − Xp

0A) < 1. The purpose of our work is to determine a larger region of
convergence to A−1/p for (1.4) and to build a numerically stable algorithm applicable
to arbitrary A having no eigenvalues on R

−.

1The authors of [4] were unaware of the papers of Lakić [26] and R. A. Smith [34], and Lakić
appears to have been unaware of Smith’s paper.
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In section 2 we present convergence analysis to show that if the spectrum of A is
contained in a certain wedge-shaped convex region depending on a parameter c ∈ R

+

then quadratic convergence of the inverse Newton method with X0 = c−1I to A−1/p

is guaranteed—with no restrictions on the Jordan structure of A. In section 3 we con-
sider the practicalities of choosing c and implementing the inverse Newton iteration.
We derive an optimal choice of c for the case where A has real, positive eigenval-
ues, and we prove a finite termination property for a matrix with just one distinct
eigenvalue. A stable coupled version of (1.4) is noted, and by a simple modification
a new iteration is obtained for A1/p. For general A we propose a hybrid algorithm
for computing A−1/p or A1/p that precedes application of the Newton iteration with
a preprocessing step, in which a Schur reduction to triangular form is followed by the
computation of a sequence of square roots. An interesting and relatively unexplored
application of pth roots is to Markov models; in section 4 we discuss this application
and show that convergence of the inverse Newton iteration is ensured with c = 1 in
certain cases. Numerical experiments are presented in section 5, wherein we derive
a particular scaling of the residual that is appropriate for testing numerical stability.
Section 6 presents our conclusions.

Finally, we mention some other reasons for our interest in computing the inverse
matrix pth root. The pth root arises in the computation of the matrix logarithm by
the inverse scaling and squaring method. This method uses the relation log(A) =
p logA1/p, where p is typically a power of 2, and approximates logA1/p using a Padé
approximant [6], [22, App. A]. Since log(A) = −p logA−1/p, the inverse pth root can
equally well be employed. The inverse pth root also appears in the matrix sector
function, defined by sectp(A) = A(Ap)−1/p (of which the matrix sign function is
the special case with p = 2) [23], [31], and in the expression A(A∗A)−1/2 for the
unitary polar factor of a matrix [12], [29]. For scalars a ∈ R the inverse Newton
iteration is employed in floating point hardware to compute the square root a1/2 via
a−1/2 × a, since the whole computation can be done using only multiplications [7],
[21]. The inverse Newton iteration is also used to compute a1/p in arbitrarily high
precision in the MPFUN and ARPREC packages [1], [2], [3]. Our work will be useful
for computing matrix pth roots in high precision—a capability currently lacking in
MATLAB’s Symbolic Math Toolbox (Release 14, Service Pack 3).

2. Convergence to the inverse principal pth root. We begin by recalling
a result of Bini, Higham, and Meini [4, Prop. 6.1].

Lemma 2.1. The residuals Rk = I −Xp
kA from (1.4) satisfy

Rk+1 =

p+1∑
i=2

aiR
i
k,(2.1)

where the ai are all positive and
∑p+1

i=2 ai = 1. Hence if 0 < ‖R0‖ < 1 for some
consistent matrix norm then ‖Rk‖ decreases monotonically to 0 as k → ∞, with
‖Rk+1‖ < ‖Rk‖2.

In the scalar case, Lemma 2.1 implies the convergence of (1.4) to an inverse pth
root when ‖R0‖ < 1, and we will use this fact below; the limit is not necessarily the
inverse principal pth root, however. R. A. Smith [34] shows likewise that ‖R0‖ < 1
implies convergence to an inverse pth root for matrices. Note that the convergence
of Xk in the matrix case does not follow immediately from the convergence of Rk in
Lemma 2.1. Indeed, when ‖R0‖ < 1, the sequence of pth powers, {Xp

k}, is bounded
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Fig. 2.1. The region E for p = 4. The solid line marks the disk of radius 1, center 0, whose
interior is D.

since Xp
k = (I − Rk)A

−1, but the boundedness of {Xk} itself does not follow when
n > 1.

Our aim in this section is to show that for an appropriate range of X0 the Newton
iterates Xk converge to A−1/p. We begin with the scalar case. Thus, for a given
λ ∈ C \ R

− we wish to determine for which x0 ∈ C the iteration

xk+1 =
1

p

[
(p + 1)xk − xp+1

k λ
]

(2.2)

yields λ−1/p, the principal inverse pth root of λ, which we know lies in the segment

{ z : −π/p < arg(z) < π/p }.(2.3)

We denote by D = { z : |z| < 1 } the open unit disc and by D its closure. Let

E = conv{D,−p} \ {−p, 1},

where conv denotes the convex hull. Figure 2.1 depicts E for p = 4. The next result
is a restatement of [34, Thm. 4].

Lemma 2.2. For iteration (2.2), if 1 − xp
0λ ∈ E then 1 − xp

1λ ∈ D.
The following result generalizes the scalar version of [4, Prop. 6.2] from x0 = 1 to

x0 > 0 and the proof is essentially the same.
Lemma 2.3. Let λ ∈ R

+. If x0 ∈ R
+ and 1 − xp

0λ ∈ (−p, 1) then the sequence
{xk} defined by (2.2) converges quadratically to λ−1/p.

We will also need the following complex mean value theorem from [9]. We denote
by Re(z) and Im(z) the real and imaginary parts of z ∈ C and define the line

L(a, b) = { a + t(b− a) : t ∈ (0, 1) }.

Lemma 2.4. Let Ω be an open convex set in C. If f : Ω 
→ C is an analytic
function and a, b are distinct points in Ω then there exist points u, v on L(a, b) such
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that

Re

(
f(b) − f(a)

b− a

)
= Re(f ′(u)), Im

(
f(b) − f(a)

b− a

)
= Im(f ′(v)).

The next result improves Lemma 2.3 by extending the region of allowed 1 − xp
0λ

from the interval (−p, 1) to the convex set E in the complex plane.

Lemma 2.5. Let λ ∈ C \ R
− and let x0 ∈ R

+ be such that 1 − xp
0λ ∈ E. Then

the iterates xk from (2.2) converge quadratically to λ−1/p.

Proof. By Lemma 2.2 we have 1 − xp
1λ ∈ D. It then follows from the scalar

version of Lemma 2.1 that xk converges quadratically to x(λ), an inverse pth root of
λ (see the discussion after Lemma 2.1). We need to show that x(λ) = λ−1/p. There
is nothing to prove for p = 1, so we assume p ≥ 2.

For any λ ∈ R
+ with 1 − xp

0λ ∈ (−p, 1) we know from Lemma 2.3 that x(λ) =
λ−1/p. Intuition suggests that x(λ) is a continuous function of λ. Since the principal
segment (2.3) is disjoint from the other p− 1 segments it then follows that for each λ
with 1−xp

0λ ∈ E, x(λ) must be the inverse of the principal pth root. We now provide
a rigorous proof of x(λ) = λ−1/p. (Once this is proved, the continuity of x(λ) as a
function of λ follows.)

We write x0 = 1/c. Then 1 − xp
0λ ∈ (−p, 1) becomes λ ∈ (0, (p + 1)cp), and

1 − xp
0λ ∈ E is the same as λ ∈ Ec, where

Ec = conv
{
{ z : |z − cp| ≤ cp }, (p + 1)cp

}
\ { 0, (p + 1)cp }.

We rewrite Ec in polar form:

Ec = { (r, θ) : 0 < r < (p + 1)cp, −θr ≤ θ ≤ θr },

where the exact expression for θr ≡ θ(r) is unimportant. We fix δ ∈ (0, 1) and define
the compact set

Ec,δ = { (r, θ) : δcp ≤ r ≤ (p + 1 − δ)cp, −θr ≤ θ ≤ θr }.

We will prove that x(λ) is in the segment (2.3) for each λ ∈ Ec,δ. This will yield
x(λ) = λ−1/p for λ ∈ Ec, since δ can be arbitrarily small. More precisely, for each
fixed r ∈ [δcp, (p + 1 − δ)cp], we will show that x(λ) is in the same segment for each
λ on the arc given in polar form by

Γr = { (r, θ) : −θr ≤ θ ≤ θr }.

This will complete the proof, since we already know that x(λ) is in the segment (2.3)
when θ = 0. Thus we only need to show that there exists ε > 0 such that for all
a, b ∈ Γr with |a − b| < ε, x(a) and x(b) are in the same segment. To do so, we
suppose that for all ε > 0 there exist a, b ∈ Γr with |a − b| < ε such that x(a) is in
segment i and x(b) is in segment j �= i, and we will obtain a contradiction.

Let a and b be any such pair for a suitably small ε to be chosen below. Let x̃(b)
be the inverse pth root of b in segment i. Then |x(b) − x̃(b)| is at least the distance
between two neighboring inverse pth roots of b, i.e.,

|x(b) − x̃(b)| ≥ 2r−1/p sin
π

p
=: 4η.
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Also, we have, by Lemma 2.4,

|x(a) − x̃(b)| ≤
√

2 sup
ξ∈L(a,b)

∣∣∣∣−
1

p
ξ−1/p−1

∣∣∣∣ |a− b| ≤
√

2

p

(r
2

)−1/p−1

|a− b|

when |a− b| ≤
√

3r. Therefore

|x(a) − x̃(b)| ≤ η

when |a− b| ≤ min{
√

3r, p√
2
( r2 )1/p+1η} =: ε1.

For every λ ∈ Ec,δ ⊂ Ec, we have 1−xp
0λ ∈ E. Thus 1−xp

1λ ∈ D by Lemma 2.2.
Since Ec,δ is compact, the set { 1−xp

1λ : λ ∈ Ec,δ } is a compact subset of D. Therefore
there is constant δ1 ∈ (0, 1), independent of λ, such that |1 − xp

1λ| ≤ 1 − δ1.
Now, for the iteration (2.2) with λ ∈ Γr, Lemma 2.1 implies

|1 − xp
kλ| ≤ |1 − xp

1λ|2
k−1 ≤ (1 − δ1)

2k−1

for k ≥ 1. So

|(xk − r1)(xk − r2) · · · (xk − rp)| = |xp
k − λ−1| ≤ 1

r
(1 − δ1)

2k−1

,

where r1, r2, . . . , rp are the pth roots of λ−1. Let

|xk − rs| = min
1≤j≤p

|xk − xj |.

Then

|xk − rs| ≤ r−1/p(1 − δ1)
2k−1/p =: η1.

The iteration (2.2) is given by xk+1 = g(xk), where

g(x) =
1

p

[
(p + 1)x− xp+1λ

]
.

Note that for all x with |x− rs| ≤ η1,

|x− rj | ≤ |rs| + |rj | + η1 = 2r−1/p + η1, j �= s,

and

|g′(x)| =
p + 1

p
|1 − xpλ| =

p + 1

p
r|(x− r1)(x− r2) · · · (x− rp)|

≤ p + 1

p
rη1(2r

−1/p + η1)
p−1.

We now take a sufficiently large k, independent of λ, such that η1 ≤ η and
p+1
p rη1(2r

−1/p + η1)
p−1 ≤ 1

2 . Then, by Lemma 2.4,

|xk+1 − rs| = |g(xk) − g(rs)| ≤
√

2

2
|xk − rs|

and hence |xk+m − rs| ≤ (
√

2
2 )m|xk − rs| for all m ≥ 0. Thus xi → rs as i → ∞ and

|xk − rs| ≤ η1 ≤ η. It follows that rs = x(λ) and |xk(λ) − x(λ)| ≤ η, where we write
xk(λ) for xk to indicate its dependence on λ. In particular, we have

|xk(a) − x(a)| ≤ η, |xk(b) − x(b)| ≤ η.
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Now

|xk(a) − xk(b)| = |(xk(a) − x(a)) + (x(a) − x̃(b)) + (x̃(b) − x(b)) + (x(b) − xk(b))|
≥ |x̃(b) − x(b)| − |xk(a) − x(a)| − |x(a) − x̃(b)| − |x(b) − xk(b)|
≥ 4η − η − η − η = η.

On the other hand, for the chosen k, xk(λ) is a continuous function of λ on
the compact set Γr and is therefore uniformly continuous on Γr. Thus there exists
ε ∈ (0, ε1) such that for all a, b ∈ Γr with |a − b| < ε, |xk(a) − xk(b)| < η. This is a
contradiction since we have just shown that for any ε ∈ (0, ε1), |xk(a) − xk(b)| ≥ η
for some a, b ∈ Γr with |a− b| < ε. Our earlier assumption is therefore false, and the
proof is complete.

We are now ready to prove the convergence of (1.4) in the matrix case. The
iterations (1.4) and (2.2) have the form Xk+1 = g(Xk, A) and xk+1 = g(xk, λ), re-
spectively, where g(x, t) is a polynomial in two variables. We will need the following
special case of Theorem 4.16 in [11].

Lemma 2.6. Let g(x, t) be a rational function of two variables. Let the scalar
sequence generated by xk+1 = g(xk, λ) converge superlinearly to f(λ) for a given λ and
x0. Then the matrix sequence generated by Xk+1 = g(Xk, J(λ)) with X0 = x0I, where
J(λ) is a Jordan block, converges to a matrix X∗ with diag(X∗) = diag(f(J(λ))).

We now apply Lemmas 2.5 and 2.6 with x0 = 1/c and f(λ) = λ−1/p, where c > 0
is a constant.

Theorem 2.7. Let A ∈ C
n×n have no eigenvalues on R

−. For all p ≥ 1, the
iterates Xk from (1.4) with X0 = 1

c I and c ∈ R
+ converge quadratically to A−1/p if

all the eigenvalues of A are in the set

E(c, p) = conv
{
{ z : |z − cp| ≤ cp }, (p + 1)cp

}
\ { 0, (p + 1)cp }.

Proof. Since X0 is a multiple of I the Xk are all rational functions of A. The
Jordan canonical form of A therefore enables us to reduce the proof to the case of
Jordan blocks J(λ), where λ ∈ E(c, p). Using Lemmas 2.5 and 2.6 we deduce that Xk

has a limit X∗ that satisfies X−p
∗ = A and has the same eigenvalues as A−1/p. Since

A−1/p is the only inverse pth root having these eigenvalues, X∗ = A−1/p. Now

Xk+1 −A−1/p =
1

p

[
(p + 1)Xk(A

−1/p)p − p(A−1/p)p+1 −Xp+1
k

]
A

=
1

p

[
−(Xk −A−1/p)2

p∑
i=1

iXp−i
k (A−1/p)i−1

]
A,

and hence we have

‖Xk+1 −A−1/p‖ ≤ ‖Xk −A−1/p‖2 · p−1‖A‖
p∑

i=1

i‖Xp−i
k ‖‖A(1−i)/p‖,

which implies that the convergence is quadratic.
Recall that the convergence results summarized in section 1 require ρ(I−Xp

0A) <
1 and do not specify to which root the iteration converges. When X0 = c−1I this
condition is maxi |λi − cp| < cp, where Λ(A) = {λ1, . . . , λn} is the spectrum of A.
Theorem 2.7 guarantees convergence to the inverse principal pth root for Λ(A) lying
in the much larger region E(c, p). The actual convergence region, determined exper-
imentally, is shown together with E(c, p) in Figure 2.2 for c = 1 and several values
of p.
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Fig. 2.2. Regions of λ ∈ C for which the inverse Newton iteration (2.2) with x0 = 1 converges
to λ−1/p. The dark shaded region is E(1, p). The union of that region with the lighter shaded points
is the experimentally determined region of convergence. The solid line marks the disk of radius 1,
center 1. Note the differing x-axis limits.

3. Practical algorithms. Armed with the convergence result in Theorem 2.7,
we now build two practical algorithms applicable to arbitrary A ∈ C

n×n having no
eigenvalues on R

−. Both preprocess A by computing square roots before applying
the Newton iteration, one by computing a Schur decomposition and thereby working
with (quasi-) triangular matrices.

We take X0 = c−1I, where the parameter c ∈ R
+ is at our disposal. Thus, to

recap, the iteration is

Xk+1 =
1

p

[
(p + 1)Xk −Xp+1

k A
]
, X0 =

1

c
I.(3.1)

Note that scaling X0 through c is equivalent to fixing X0 = I and scaling A: if
Xk(X0, A) denotes the dependence of Xk on X0 and A then

Xk(c
−1I, A) = c−1Xk(I, c

−pA).

We begin, in the next section, by considering numerical stability.

3.1. Coupled iterations. The Newton iteration (3.1) is usually numerically
unstable. Indeed, the iteration can be guaranteed to be stable only if the eigenvalues
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of A satisfy [4]

1

p

∣∣∣∣∣p−
p∑

r=1

(
λi

λj

)r/p
∣∣∣∣∣ ≤ 1, i, j = 1:n.

This is a very restrictive condition on A. However, by introducing the matrix Mk =
Xp

kA, the iteration can be rewritten in the coupled form

Xk+1 = Xk

(
(p + 1)I −Mk

p

)
, X0 =

1

c
I,

Mk+1 =

(
(p + 1)I −Mk

p

)p

Mk, M0 =
1

cp
A.

(3.2)

When Xk → A−1/p we have Mk → I. This coupled iteration was suggested, and its
unconditional stability noted, by Iannazzo [19]. In fact, (3.2) is a special case of a
family of iterations of Lakić [26], and stability of the whole family is proved in [26].

Since the Xk in (3.2) are the same as those in the original iteration, their residuals
Rk satisfy Lemma 2.1. Since Mk = I − Rk and Mk → I, the Rk are errors for the
Mk.

Note that by setting Yk = X−1
k we obtain from (3.2) a new coupled iteration for

computing A1/p:

Yk+1 =

(
(p + 1)I −Mk

p

)−1

Yk, Y0 = cI,

Mk+1 =

(
(p + 1)I −Mk

p

)p

Mk, M0 =
1

cp
A.

(3.3)

If A1/p is wanted without computing any inverses then A1/p can be computed from
(3.2) and the formula A1/p = A(A−1/p)p−1 used (cf. (1.3)).

3.2. Algorithm not requiring eigenvalues. We now outline an algorithm
that works directly on A and does not compute any spectral information. We begin
by taking the square root twice by any iterative method [15]. This preprocessing
step brings the spectrum into the sector arg z ∈ (−π/4, π/4). The nearest point
to the origin that is both within this sector and on the boundary of E(c, p) is at a
distance cp

√
2. Hence the inverse Newton iteration in the form (3.2) can be applied

to B = A1/4 with c ≥ (ρ(B)/
√

2)1/p. If ρ(B) is not known and cannot be estimated
then we can replace it by the upper bound ‖B‖, for some norm. This corresponds
with the scaling used by Iannazzo in Algorithm 1.1 for A1/p. A disadvantage of using
the norm is that for nonnormal matrices ρ(B) � ‖B‖ is possible, and this can lead
to much slower convergence, as illustrated by the following example.

We use the inverse Newton iteration to compute B−1/2, where B =
[
ε
0

1
ε

]
and

ε � 1. If we use c = (‖B‖1/
√

2)1/2, the convergence will be very slow, since for the
eigenvalue ε, r0(ε) = 1 − x2

0ε ≈ 1 −
√

2ε. If we use c = (ρ(B)/
√

2)1/2, then we have
r0(ε) = 1 −

√
2 and the convergence will be fast (modulo the nonnormality). The

best choice of c for this example, however, is c = ε1/2. For this c we have immediate
convergence to the inverse square root: X1 = B−1/2. This finite convergence behavior
is a special case of that described in the next result.

Lemma 3.1. Suppose that A ∈ C
n×n has a positive eigenvalue λ of multiplicity

n and that the largest Jordan block is of size q. Then for the iteration (3.1) with
c = λ1/p we have Xm = A−1/p for the first m such that 2m ≥ q.
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Proof. Let A have the Jordan form A = ZJZ−1. Then R0 = I − Xp
0A =

Z(I − 1
λJ)Z−1. Thus Rq

0 = 0. By Lemma 2.1, Rm = (R0)
2m

h(R0), where h(R0) is a
polynomial in R0. Thus Rm = 0 if 2m ≥ q.

As for the complexity of iteration (3.2), the benchmark with which to compare is
the Schur method for the pth root of M. I. Smith [33]. It computes a Schur decomposi-
tion and obtains the pth root of the triangular factor by a recurrence, with a total cost
of (28+(p−1)/3)n3 flops. The cost of one iteration of (3.2) is about 2n3(2+ θ log2 p)
flops, where θ ∈ [1, 2], assuming that the pth power in (3.2) is evaluated by binary
powering [10, Alg. 11.2.2]. Since at least four iterations will typically be required,
unless p is large (p ≥ 200, say) it is difficult for (3.2) to be competitive in its opera-
tion count with the Schur method. However, the Newton iterations are rich in matrix
multiplication and matrix inversion, and on a modern machine with a hierarchical
memory these operations are much more efficient relative to a Schur decomposition
than their flop counts suggest. For special matrices A, such as the strictly diagonally
dominant stochastic matrices arising in the Markov model application in section 4,
we can apply (3.2) and (3.3) with c = 1 without any preprocessing, which makes this
approach more efficient.

3.3. Schur–Newton algorithm. We now develop a more sophisticated algo-
rithm that begins by computing a Schur decomposition A = QRQ∗ (Q unitary, R
upper triangular). The Newton iteration is applied to a triangular matrix obtained
from R, thereby greatly reducing the cost of each iteration. We begin by considering
the choice of c, exploiting the fact that the spectrum of A is now available.

We consider first the case where the eigenvalues λi of A are all real and positive:
0 < λn ≤ · · · ≤ λ1. Consider the residual rk(λ) = 1 − xp

kλ, and note that

rk+1(λ) = 1 − 1

pp
(1 − rk(λ))(p + rk(λ))p.(3.4)

Recall from Lemmas 2.1 and 2.2 that if r0 ∈ E, or equivalently λ ∈ E(c, p), then |r1| <
1 and |ri+1| ≤ |ri|2 for i ≥ 1. For c large enough, the spectrum of A lies in E(c, p)
and convergence is guaranteed. However, if c is too large, then r0(λn) = 1− ( 1

c )
pλn is

extremely close to 1; r1(λn) is then also close to 1, by (3.4), and the convergence for
the eigenvalue λn is very slow. On the other hand, if c is so small that ( 1

c )
pλ1 is close

to (but still less than) p + 1, then r0(λ1) = 1 − ( 1
c )

pλ1 is close to −p, and, by (3.4),
r1(λ1) is very close to 1. Ideally we would like to choose c to minimize maxi |r1(λi)|.

Lemma 3.2. Let A have real, positive eigenvalues, 0 < λn ≤ · · · ≤ λ1 and
consider the residual rk(λ) = 1 − xp

kλ. For any c ∈ R
+ such that

−p < r0(λ1) ≤ r0(λ2) ≤ · · · ≤ r0(λn) < 1,(3.5)

we have 0 ≤ rj(λi) < 1 for j ≥ 1 and i = 1:n, and

r̂j := max
1≤i≤n

rj(λi) = max
(
rj(λ1), rj(λn)

)
.

Moreover, for all j ≥ 1, r̂j is minimized when

c =

(
α1/pλ1 − λn

(α1/p − 1)(p + 1)

)1/p

, α =
λ1

λn
,(3.6)

if λ1 > λn. If λ1 = λn then r̂j = 0 for all j ≥ 0 for c = λ
1/p
n .
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Table 1

Values of f(α, p) for some particular α and p.

α 2 5 10 50 100

p = 2 0.0852 0.3674 0.5883 0.8877 0.9403
p = 5 0.0690 0.3109 0.5190 0.8452 0.9125

p = 10 0.0635 0.2902 0.4915 0.8247 0.8979
p = 1000 0.0580 0.2688 0.4618 0.7999 0.8795

Proof. For each eigenvalue λ, we have, by (3.4), rk+1(λ) = f(rk(λ)) with f(x) =
1 − 1

pp (1 − x)(p + x)p. Since f ′(x) = p+1
pp x(p + x)p−1, f(x) is decreasing on (−p, 0]

and increasing on [0, 1), and since f(−p) = f(1) = 1 and f(0) = 0 it follows that
0 ≤ f(x) < 1 on (−p, 1). The first part of the result follows immediately. Since f(x)
is increasing on [0, 1), r̂j is minimized for all j ≥ 1 if and only if r̂1 is minimized. If
λ1 > λn it is easily seen that r̂1 is minimized when r1(λ1) = r1(λn), i.e.,

λ1 (p + 1 − λ1/c
p)

p
= λn (p + 1 − λn/c

p)
p
,

from which we find that c is given by (3.6). It is straightforward to verify that for
this c, (3.5) holds. The formula (3.6) is not valid when λ1 = λn. However, we have

lim
λ1→λn

c = lim
α→1

(
α1+1/p − 1

α1/p − 1

λn

p + 1

)1/p

= λ1/p
n .

Note that when λ1 = λn, r0(λ1) = r0(λn) = 0 for c = λ
1/p
n . Therefore r̂j = 0 for all

j ≥ 0.
When λ1 > λn, a little computation shows that the minimum value of r̂1, achieved

for c in (3.6), is

f(α, p) = 1 − α
(p + 1)p+1

pp
(α− 1)p(α1/p − 1)

(α1+1/p − 1)p+1
.

Numerical experiments suggest that f(α, p) is increasing in α for fixed p, and decreas-
ing in p for fixed α. Moreover, it is easy to show that limα→1+ f(α, p) = 0. Some
particular values of f(α, p) are given in Table 1. From the table, we can see that
the values of f(α, p) are not sensitive to p but are sensitive to α. It is advisable to
preprocess the matrix A to achieve α ≤ 2, since f(α, p) is then safely less than 1 and
rapid convergence can be expected.

We develop the idea of preprocessing in the context of general A with possibly non-
real eigenvalues. Suppose the eigenvalues are ordered |λn| ≤ · · · ≤ |λ1|. A convenient
way to reduce χ(A) := |λ1|/|λn| is to take k1 square roots of the triangular matrix R
in the Schur form, which can be done using the method of Björck and Hammarling [5],
or that of Higham [14] if R is real and quasi-triangular. Since χ(A) = χ(R) ≤ κ2(R),
in IEEE double precision arithmetic we can reasonably assume that χ(R) ≤ 1016, and

then k1 ≤ 6 square roots are enough to achieve χ(R1/2k1
) ≤ 2. Write p = 2k0q where

q is odd. If q = 1, R1/p can be computed simply by k0 square roots. If q ≥ 3, we
will take a total of max(k0, k1) square roots, compute the qth root by the Newton
iteration, and finish with k1 − k0 squarings if k1 > k0. Taking k1 > k0 is justified
by the operation counts if it saves just one iteration of the Newton process, because
for triangular matrices the cost of a square root and a squaring is at most half of the
cost of one Newton iteration. When R has nonreal eigenvalues we will increase k1, if
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necessary, so that the matrix B = R1/2k1
to which we apply the Newton iteration has

spectrum in the sector arg z ∈ (−π/8, π/8); in general we therefore require k1 ≥ 3.

Then we take c = (μ1+μn

2 )1/q, where μi = |λi|1/2
k1

. For any eigenvalue μ of B we
have 2

3 ≤ ( 1
c )

q|μ| ≤ 4
3 , since μ1/μn ≤ 2, and thus |1 − ( 1

c )
qμ| ≤ |1 − 4

3e
iπ
8 | ≈ 0.56. So

the convergence of (3.2) is expected to be fast.

We now present our algorithm for computing the (inverse) principal pth root of
a general A. We state the algorithm for real matrices, but an analogous algorithm is
obtained for complex matrices by using the complex Schur decomposition.

Algorithm 3.3. Given A ∈ R
n×n with no eigenvalues on R

− this algorithm
computes X = A1/p or X = A−1/p, where p = 2k0q with k0 ≥ 0 and q odd.

1 Compute a real Schur decomposition A = QRQT .
2 if q = 1
3 k1 = k0

4 else

5 Choose k1 ≥ k0 such that |λ1/λn|1/2
k1 ≤ 2,

where the eigenvalues of A are ordered |λn| ≤ · · · ≤ |λ1|.
6 end
7 If the λi are not all real and q �= 1, increase k1 as necessary so that

arg
(
λ

1/2k1

i

)
∈ (−π/8, π/8) for all i.

8 Compute B = R1/2k1
by k1 invocations of the method of Higham [14] for the

square root of a quasi-triangular matrix. If q = 1, goto line 21.

9 Let μ1 = |λ1|1/2
k1

, μn = |λn|1/2
k1

.
10 if the λi are all real
11 if μ1 �= μn

12 determine c by (3.6) with λ1, λn, p in (3.6) replaced by μ1, μn, q
13 else

14 c = μ
1/q
n

15 end
16 else

17 c =
(
μ1+μn

2

)1/q
18 end

19 Compute

{
X = B−1/q by (3.2), if A−1/p required,
X = B1/q by (3.3), if A1/p required.

20 X ← X2k1−k0
(repeated squaring).

21 X ← QXQT

The cost of the algorithm is about

(
28 +

2

3
(k1 + k2) −

(
1

3
+

k2

2

)
k0 +

k2

2
log2 p

)
n3 flops,

where we assume that k2 iterations of (3.2) or (3.3) are needed (the cost per iteration
is the same for both for triangular matrices, except on the first iteration, where (3.2)
requires n3/3 fewer flops because X1 does not require a matrix multiplication). When
k0 = 0, k1 = 3, and k2 = 4, for example, the flop count becomes (322

3 + 2 log2 p)n
3,

while the count is always (28 + p−1
3 )n3 for Smith’s method. Note, however, that the

computational work can be reduced for Smith’s method if p is not prime by applying
the method over the prime factors of p (this is not beneficial for Algorithm 3.3).
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Our algorithm is slightly more expensive than Smith’s method if p is small or highly
composite, but it is much less expensive than Smith’s method if p is large and has a
small number of prime factors.

Algorithm 3.3 can be modified to compute A1/p in a different way: by computing
X = B−1/q in line 19 and replacing line 21 with X ← QX−1QT , which is implemented
as a multiple right-hand-side triangular solve followed by a matrix multiplication.
The modified line 21 costs the same as the original, so the cost of the algorithm is
unchanged. We will call this variant Algorithm 3.3a.

A key feature of Algorithm 3.3 is that it applies the Newton iteration to a (quasi-)
triangular matrix—one that has been “preconditioned” so that few iterations will be
required. This can be expected to improve the numerical properties of the iteration,
not least because for triangular matrices inversion and the solution of linear systems
tend to be more accurate than the conventional error bounds suggest [16, Chap. 8].

4. An application to Markov models. Let P (t) be a transition matrix for a
time-homogeneous continuous-time Markov process. Thus P (t) is a stochastic matrix:
an n× n real matrix with nonnegative entries and row-sums 1. A generator Q of the
Markov process is an n×n real matrix with nonnegative off-diagonal entries and zero
row-sums such that P (t) = eQt. Clearly, Q must satisfy eQ = P ≡ P (1). If P has
distinct, real positive eigenvalues then the only real logarithm, and hence the only
candidate generator, is the principal logarithm, logP . In general, a generator may or
may not exist, and if it exists it need not be the principal logarithm of P [32].

Suppose a given transition matrix P ≡ P (1) has a generator Q = logP . Then Q
can be used to construct P (t) at other times, through P (t) = exp(Qt). For example,
if P is the transition matrix for the time period of one year then the transition matrix
for a month is P (1/12) = e

1
12 logP . However, it is more direct and efficient to compute

P (1/12) as P 1/12, thus avoiding the computation of a generator. Indeed, the standard
inverse scaling and squaring method for the principal logarithm of a matrix requires
the computation of a matrix root, as noted in section 1. Similarly, the transition
matrix for a week can be computed directly as P 1/52.

This use of matrix roots is suggested by Waugh and Abel [35], mentioned by
Israel, Rosenthal, and Wei [20], and investigated in detail by Kreinin and Sidelnikova
[24]. The latter authors, who are motivated by credit risk models, address the prob-
lems that the principal root and principal logarithm of P may have the wrong sign
patterns; for example, the root may have negative elements, in which case it is not a
transition matrix. They show how to optimally adjust these matrices to achieve the
required properties, a process they term regularization. Their preferred method for
obtaining transition matrices for short times is to regularize the appropriate matrix
root.

Transition matrices arising in the credit risk literature are typically strictly di-
agonally dominant [20], and such matrices are known to have at most one generator
[8]. For any strictly diagonally dominant stochastic matrix P , Gershgorin’s theorem
shows that every eigenvalue lies in one of the disks |z − aii| ≤ 1 − aii, and we have
aii > 0.5, so the spectrum lies in E(1, p) and the convergence of (3.2) and (3.3) (with
A = P ) is guaranteed with c = 1. Note, however, that faster convergence is possible
by choosing c < 1 when P has eigenvalues close to 0. For c = 1, it is easy to see that
Xke = e and Mke = e for each k ≥ 0. Thus all approximations to P 1/p obtained
from (3.2) and (3.3) have unit row sums, though they are not necessarily nonnegative
matrices.
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To illustrate, consider the strictly diagonally dominant stochastic matrix [35]

P =

⎡
⎣

0.6 0.3 0.1
0.2 0.7 0.1
0.1 0.1 0.8

⎤
⎦ .

Suppose we wish to compute P (1/12) and P (1/52). After (for example) four iterations
of (3.3) with c = 1 we obtain (to four decimal places)

p =
1

12
: X =

⎡
⎣

0.9518 0.0384 0.0098
0.0253 0.9649 0.0098
0.0106 0.0089 0.9805

⎤
⎦ , ‖X12 − P‖F = 4.7 × 10−7

and

p =
1

52
: X =

⎡
⎣

0.9886 0.0092 0.0023
0.0060 0.9917 0.0023
0.0025 0.0021 0.9954

⎤
⎦ , ‖X52 − P‖F = 2.5 × 10−7,

and both matrices are stochastic to the working precision of about 10−16. Note
that such a computation, requiring just matrix multiplication and the solution of
multiple right-hand side linear systems, is easily carried out in a spreadsheet, which
is a computing environment used by some finance practitioners.

In summary, Markov models provide an application of matrix roots that is little
known to numerical analysts, and the Newton iterations (3.2) and (3.3) for computing
these roots are well suited to the application.

5. Numerical experiments. We present some numerical experiments to com-
pare the behavior of Algorithm 1.1, Algorithm 3.3, and the Schur method of Smith
[33]. First, we need to develop appropriate residual-based measures of numerical
stability for pth roots and inverse pth roots.

Let X̃ = X + E be an approximation to a pth root X of A ∈ C
n×n. Then

X̃p = A +
∑p−1

i=0 XiEXp−1−i + O(‖E‖2). An obvious residual bound is ‖A− X̃p‖ ≤
p‖X‖p−1‖E‖ + O(‖E‖2). While this bound is satisfactory for p = 2 [14], for p ≥ 3 it
can be very weak, since ‖Xi‖ ≤ ‖X‖i can be an arbitrarily weak bound. Therefore
we use the vec operator, which stacks the columns of a matrix into one long column,
and the Kronecker product [17, Chap. 4] to write

vec(A− X̃p) = −
(

p−1∑
i=0

(
Xp−1−i

)T ⊗Xi

)
vec(E) + O(‖E‖2).

For the 2-norm, it follows that

‖A− X̃p‖F ≤ ‖E‖F
∥∥∥∥
p−1∑
i=0

(
Xp−1−i

)T ⊗Xi

∥∥∥∥
2

+ O(‖E‖2
F )

is a sharp bound, to first order in E. If we suppose that ‖E‖F ≤ ε‖X‖F , then

‖A− X̃p‖F
‖X‖F

∥∥∑p−1
i=0

(
Xp−1−i

)T ⊗Xi
∥∥

2

≤ ε + O(ε2).
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We conclude that if X̃ is a correctly rounded approximation to a pth root X̃ of A in
floating point arithmetic with unit roundoff u, then we expect the relative residual

ρA(X̃) :=
‖A− X̃p‖

‖X̃‖
∥∥∑p−1

i=0

(
X̃p−1−i

)T ⊗ X̃i
∥∥

to be of order u, where for practical purposes any norm can be taken. Therefore
ρA(X̃) is the appropriate residual to compute and compare with u. In [4] and [19]

the scaled residual ‖A− X̃p‖/‖A‖ was computed; this makes the interpretation of the

numerical results therein difficult when the denominator of ρA(X̃) is not of the same
order as ‖A‖.

For an approximate inverse pth root X̃ ≈ A−1/p the situation is more complicated,
as there is no natural residual. Criteria can be based on AX̃p− I, X̃pA− I, or indeed
X̃iAX̃p−i − I for any i = 0: p, as well as X̃−p −A and X̃p −A−1. Since they reduce
to the pth root case discussed above, we will use the latter two residuals, which
lead to the relative residuals ρA(X̃−1) and ρA−1(X̃). We compute the inverses in
high precision to ensure that errors in the inversion do not significantly influence the
computed residuals.

Iterations (3.2) and (3.3) can be terminated when ‖Mk−I‖ is less than a suitable
tolerance (nu in our experiments). This test has negligible cost and has proved to
be reliable when used within Algorithm 3.3. In Algorithm 1.1 square roots were
computed using the Schur method [14].

Our computational experience on a wide variety of matrices is easily summa-
rized. The Schur method invariably produces a computed X̂ ≈ A1/p with ρA(X̂) ≈ u,

and ρA−1(X̂−1) is usually of order u but occasionally much larger. When computing

A−1/p, Algorithm 3.3 usually produces an X̂ with ρA(X̂−1) order u, but occasion-
ally this residual is a couple of orders of magnitude larger. When computing A1/p,
Algorithms 3.3 and 3.3a invariably yield ρA(X̂) ≈ u.

We describe MATLAB tests with two particular matrices and p = 5. The first
matrix is gallery(’frank’,8)^5, where the Frank matrix is upper Hessenberg and
has real eigenvalues, the smaller of which are ill conditioned. The second matrix is
a random nonnormal 8 × 8 matrix constructed as A = QTQT , where Q is a random
orthogonal matrix and T , is in real Schur form with eigenvalues αj±iβj , αj = −j2/10,
βj = −j, j = 1:n/2 and (2j, 2j + 1) elements −450. The infinity norm is used in
evaluating ρ. The results are summarized in Tables 2 and 3. The values for k0,
k1, and the number of iterations are the same for Algorithms 3.3 and 3.3a. For
the Frank matrix, ρA(X̂−1) � u but for the pth root approximation obtained using
Algorithms 3.3 and 3.3a the residual is of order u. The five iterations required by the
iterative phase of Algorithm 3.3 are typical. Both matrices reveal two weaknesses of
Algorithm 1.1: it can require many iterations, making it significantly more expensive
than the Schur method, and it can suffer from instability, as indicated by the relative
residuals.

6. Conclusions. Our initial aim in this work was to strengthen existing con-
vergence results for Newton’s method for the inverse pth root. The analysis has led
us to develop a hybrid algorithm—employing a Schur decomposition, matrix square
roots, and two coupled versions of the Newton iteration—that computes either A1/p

or A−1/p. The new algorithm performs stably in practice and it is more efficient
than the Schur method of Smith for large p that are not highly composite. Although
the Newton iterations for A1/p and A−1/p have until recently rarely been used for
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Table 2

Results for Frank matrix. p = 5, ‖A‖2 = 4.3 × 106, ‖A1/p‖2 = 2.4 × 101, ‖A−1/p‖2 = 1.0 × 104.

Schur Inverse Newton Newton (Alg. 1.1)

X̂ ≈ A1/p X̂ ≈ A−1/p, Ŷ ≈ A1/p (Alg. 3.3) X̂ ≈ A1/p

Ẑ ≈ A1/p (Alg. 3.3a)

ρA(X̂) = 1.5e-16 ρA(X̂−1) = 2.5e-13 ρA(X̂) = 1.8e-14

ρ
A−1 (X̂−1) = 1.8e-7 ρ

A−1 (X̂) = 1.8e-7 ρ
A−1 (X̂−1) = 1.8e-7

ρA(Ŷ ) = 8.2e-15

ρA(Ẑ) = 9.8e-16
k0 = 0, k1 = 6; 5 iterations 19 iterations

Table 3

Results for random nonnormal matrix. p = 5, ‖A‖2 = 4.5 × 102, ‖A1/p‖2 = 9.2 × 105,
‖A−1/p‖2 = 1.0 × 106.

Schur Inverse Newton Newton (Alg. 1.1)

X̂ ≈ A1/p X̂ ≈ A−1/p, Ŷ ≈ A1/p (Alg. 3.3) X̂ ≈ A1/p

Ẑ ≈ A1/p (Alg. 3.3a)

ρA(X̂) = 3.6e-18 ρA(X̂−1) = 5.0e-18 ρA(X̂) = 3.1e-12

ρ
A−1 (X̂−1) = 4.1e-18 ρ

A−1 (X̂) = 9.7e-19 ρ
A−1 (X̂−1) = 1.6e-11

ρA(Ŷ ) = 1.5e-18

ρA(Ẑ) = 5.4e-18
k0 = 0, k1 = 3; 5 iterations 21 iterations

p > 2, our work and that of Iannazzo [19] shows that these iterations are valuable
practical tools and that general-purpose algorithms can be built around them based
on understanding of their convergence properties.
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[26] S. Lakić, On the computation of the matrix k-th root, Z. Angew. Math. Mech., 78 (1998),
pp. 167–172.

[27] B. Meini, The matrix square root from a new functional perspective: Theoretical results and
computational issues, SIAM J. Matrix Anal. Appl., 26 (2004), pp. 362–376.

[28] H.-O. Peitgen, H. Jürgens, and D. Saupe, Fractals for the Classroom. Part Two: Complex
Systems and Mandelbrot Set, Springer-Verlag, New York, 1992.

[29] B. Philippe, An algorithm to improve nearly orthonormal sets of vectors on a vector processor,
SIAM J. Alg. Discrete Methods, 8 (1987), pp. 396–403.

[30] M. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise, W. H.
Freeman, New York, 1991.

[31] L. S. Shieh, Y. T. Tsay, and C. T. Wang, Matrix sector functions and their applications to
system theory, IEE Proc., 131 (1984), pp. 171–181.

[32] B. Singer and S. Spilerman, The representation of social processes by Markov models, Amer.
J. Sociology, 82 (1976), pp. 1–54.

[33] M. I. Smith, A Schur algorithm for computing matrix pth roots, SIAM J. Matrix Anal. Appl.,
24 (2003), pp. 971–989.

[34] R. A. Smith, Infinite product expansions for matrix n-th roots, J. Austral. Math. Soc., 8 (1968),
pp. 242–249.

[35] F. V. Waugh and M. E. Abel, On fractional powers of a matrix, J. Amer. Statist. Assoc., 62
(1967), pp. 1018–1021.



SIAM J. MATRIX ANAL. APPL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 805–821

REDUCING THE TOTAL BANDWIDTH OF A SPARSE
UNSYMMETRIC MATRIX∗

J. K. REID† AND J. A. SCOTT†

Abstract. For a sparse symmetric matrix, there has been much attention given to algorithms
for reducing the bandwidth. As far as we can see, little has been done for the unsymmetric matrix
A, which has distinct lower and upper bandwidths l and u. When Gaussian elimination with row
interchanges is applied, the lower bandwidth is unaltered, while the upper bandwidth becomes l+u.
With column interchanges, the upper bandwidth is unaltered, while the lower bandwidth becomes
l + u. We therefore seek to reduce min(l, u) + l + u, which we call the total bandwidth. We compare
applying the reverse Cuthill–McKee algorithm to A+AT , to the row graph of A, and to the bipartite
graph of A. We also propose an unsymmetric variant of the reverse Cuthill–McKee algorithm. In
addition, we have adapted the node-centroid and hill-climbing ideas of Lim, Rodrigues, and Xiao to
the unsymmetric case. We have found that using these to refine a Cuthill–McKee-based ordering can
give significant further bandwidth reductions. Numerical results for a range of practical problems are
presented and comparisons made with the recent lexicographical method of Baumann, Fleischmann,
and Mutzbauer.

Key words. matrix bandwidth, sparse unsymmetric matrices, Gaussian elimination, Cuthill–
McKee algorithm
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1. Introduction. If Gaussian elimination is applied without interchanges to an
unsymmetric matrix A = {aij} of order n, each fill-in takes place between the first
entry of a row and the diagonal or between the first entry of a column and the diagonal.
It is therefore sufficient to store all the entries in the lower triangle from the first entry
in each row to the diagonal and all the entries in the upper triangle from the first
entry in each column to the diagonal. This simple structure allows straightforward
code using static data structures to be written. We will call the sum of the lengths of
the rows the lower profile and the sum of the lengths of the columns the upper profile.

We will also use the term lower bandwidth for l = maxaij �=0(i − j) and the term
upper bandwidth for u = maxaij �=0(j− i). For a symmetric matrix, these are the same
and are called the semibandwidth. A particularly simple data structure is available
by taking account of only the bandwidths l and u. If row interchanges are used for
stability reasons during the factorization, it may be readily verified that the lower
bandwidth remains l but the upper bandwidth may increase to l + u. With column
interchanges (or row interchanges applied while factorizing AT ), the upper bandwidth
is unaltered, while the lower bandwidth becomes l+u. We may therefore always have
one triangular factor of bandwidth min(l, u) and the other of bandwidth l + u. Thus
we seek to reduce min(l, u) + l + u, which we call the total bandwidth.

Many algorithms for reducing the bandwidth of a sparse symmetric matrix A have
been proposed in the literature, most of which make extensive use of the adjacency
graph G of the matrix. This is an undirected graph that has a node for each row (or
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column) of the matrix, and node i is a neighbor of node j if aij (and by symmetry aji)
is an entry (nonzero) of A. An important and well-known example of an algorithm
that uses G is that of Cuthill and McKee [2]. The main aim of this paper is to consider
how variants of the Cuthill–McKee algorithm can be used to order an unsymmetric
matrix for small total bandwidth.

In some circumstances, reordering the matrix and then using a band solver will
be the method of choice for solving large sparse linear systems. However, in many
situations it is more appropriate to use other sparse direct methods. In this study, we
concentrate solely on the reduction of the bandwidth of unsymmetric matrices and
do not address the question of when a band solver is the best choice.

The rest of this paper is organized as follows. We begin (in section 2) by com-
menting on the importance of reordering a matrix to block form prior to applying a
bandwidth reduction algorithm. In section 3, we briefly describe the Cuthill–McKee
algorithm and the variant that reverses the order (RCM). Then, in section 4, we dis-
cuss three undirected graphs that can be associated with an unsymmetric matrix A
and that can be reordered using RCM. We then propose in section 5 an unsymmet-
ric variant of RCM. In section 6, we look at modifying the hill-climbing algorithm
of Lim, Rodrigues, and Xiao [10] to improve a given ordering, and in section 7, we
propose a variant of the node-centroid algorithm of [10] for the unsymmetric case. In
section 8, we discuss the recently published algorithm of Baumann, Fleischmann, and
Mutzbauer [1] for reducing the bandwidth of an unsymmetric matrix. In section 9,
we use our proposed algorithms to reorder a set of matrices that arise from a range of
practical problems; we report the total bandwidths before and after reordering, and
we summarize our findings in section 10.

2. The block triangular form. In the symmetric case, it may be possible to
preorder the matrix A to block diagonal form

⎡
⎢⎢⎢⎢⎣

A11

A22

A33

A44

. . .

⎤
⎥⎥⎥⎥⎦
.(2.1)

In this case, each block may be permuted to band form, and the overall matrix is a
band matrix; the profile is the sum of the profiles of the blocks, and the bandwidth
is the greatest bandwidth of a block.

The unsymmetric case is not so straightforward because we need also to exploit
the block triangular form

⎡
⎢⎢⎢⎢⎣

A11

A21 A22

A31 A32 A33

A41 A42 A43 A44

. . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎦
,(2.2)

where the blocks All, l = 1, 2, . . . , N , are all square. A matrix that can be permuted
to this form with N > 1 diagonal blocks is said to be reducible; if no block triangular
form other than the trivial one with a single block (N = 1) can be found, the matrix is
irreducible. The advantage of the block triangular form (2.2) is that the corresponding
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set of equations Ax = b may be solved by the block forward substitution

Aiixi = bi −
i−1∑
j=1

Aijxj , i = 1, 2, . . . , N.(2.3)

There is no fill in the off-diagonal blocks, which are involved only in matrix-by-vector
multiplications. It therefore suffices to permute each diagonal block Aii to band form.
We will take the upper and lower profiles to be the sums of the upper and lower profiles
of the diagonal blocks, and the upper and lower bandwidths to be the greatest of the
upper and lower bandwidths of the diagonal blocks.

3. The Cuthill–McKee algorithm. The Cuthill–McKee algorithm is a well-
known and successful algorithm for reducing the bandwidth of a symmetric matrix
of order n. It does this for a given starting node s by relabeling the nodes of the
adjacency graph G in order of increasing distance from s. The algorithm is outlined
in Figure 1. Here the degree of a node i is defined as the number of its neighbors. If
G has more than one component, the procedure is repeated from a starting node in
each component.

Algorithm Cuthill–McKee.

Label s as node 1; l1 = {s}; i = 1
do k = 2, 3, . . . until i = n

lk = {}
do for each v ∈ lk−1 in label order

do for each neighbor u of v that has not been labeled,
in order of increasing degree

add u to lk; i = i + 1; label u as node i
end do

end do
end do

Fig. 1. Cuthill–McKee ordering algorithm.

Ordering the nodes in this way groups them into “level sets,” that is, nodes at the
same distance from the starting node. Since nodes in level set lk can have neighbors
only in level sets lk−1, lk, and lk+1, the reordered matrix is block tridiagonal with
blocks corresponding to the level sets. It is therefore desirable that the level sets be
small, which is likely if there are many of them. The size of the largest level set is
called the width of the level structure. The width and number of level sets (height of
the level structure) are dependent on the choice of the starting node s. Algorithms
for finding a good starting node are usually based on finding a pseudodiameter (pair
of nodes that are a maximum distance apart or nearly so). Much effort has gone into
efficiently finding a pseudodiameter; see, for example, [7] and [12] and the references
therein. The modified Gibbs Poole Stockmeyer (MGPS) algorithm of Reid and Scott
[12] is outlined in Figure 2. For efficiency, the test on w(r) may be performed during
the formation of the level set structure so that the structure can be discarded as soon
as a large value of w(r) is found. In the inner loop, the choice of 5 nodes was made
on the basis of numerical experimentation.

George [6] found that the profile may be reduced if the Cuthill–McKee ordering is
reversed (the bandwidth is unchanged). The reverse Cuthill–McKee (RCM) algorithm
and variants of it remain in common use. For example, an implementation is available
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Algorithm MGPS.

Construct G and choose a starting node s of smallest degree
Form the level structure rooted at s, of height h(s) and width w(s)
outer: do

wleast = ∞
inner: do for up to 5 nodes r of the final level set that are not

neighbors, in order of increasing degree
Form the level set structure rooted at r,
of height h(r) and width w(r)
if w(r) ≥ wleast cycle inner
if h(r) > h(s) then

s = r; cycle outer
end if
e = r; wleast = w(r);

end do inner
exit outer

end do outer
Pseudodiameter is defined by the pair (s, e).

Fig. 2. Modified Gibbs Poole Stockmeyer algorithm.

within MATLAB as the function symrcm, and RCM is included as an option within
the package MC60 from the mathematical software library HSL [8]. We note that
both these implementations apply RCM directly to the supplied matrix A, without
attempting to first reorder the matrix to block diagonal form (2.1).

4. Undirected graphs for unsymmetric matrices. In this section, we con-
sider three adjacency graphs that can be associated with an unsymmetric matrix A.
In each case, we employ the RCM algorithm to reduce the semibandwidth of the
graph, and this permutation is then used to reorder A.

4.1. Using A + AT . For a matrix whose structure is nearly symmetric, an
effective strategy is to find a symmetric permutation that reduces the bandwidth of
the structure of the symmetric matrix A+AT . The MATLAB function symrcm applies
RCM to the adjacency graph of A + AT . If the symmetric permutation is applied
to A, the lower and upper bandwidths are no greater than the semibandwidth of the
permuted A+AT . Of course, the same algorithm may be applied to a matrix that is
far from symmetric, and the same results apply, but the effectiveness is uncertain. It
is likely to be helpful to permute A to make it more symmetric. We will judge this
by its symmetry index, that is, the number of off-diagonal entries aij for which aji is
also an entry, divided by the total number of off-diagonal entries. Permuting a large
number of off-diagonal entries onto the diagonal reduces the number of unmatched
off-diagonal entries, which in turn generally increases the symmetry index (see, for
example, [5], [9]).

Note that most algorithms for preordering the matrix to block triangular form
(2.2) begin with a permutation that places entries on the diagonal. Thus, in this case,
permuting entries onto the diagonal is not available as a strategy for improving the
symmetry index.

4.2. Bipartite graph. The bipartite graph of A, which we will denote by Gbipart,
has a node for each row and a node for each column, and row node i and column node
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j are neighbors if aij is an entry. It is straightforward to see that Gbipart is actually
the adjacency graph of the 2n× 2n symmetric matrix

Â =

[
0 A
AT 0

]
.(4.1)

Starting the Cuthill–McKee algorithm with any node of Gbipart, the level sets are
alternately sets of rows and sets of columns. If we start from a row node and perform
the corresponding symmetric permutation on the matrix (4.1), we find the matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 A11

AT
11 0 AT

21

A21 0 A22

AT
22 0 AT

32

A32 0 A33

AT
33 0 AT

34

. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(4.2)

where Alm is the submatrix of A corresponding to the rows of row level set l and
columns of column level set m.

If we permute the rows of A by the row level sets and the orderings within them,
and permute the columns by the column level sets and the orderings within them, we
find the block bidiagonal form

⎡
⎢⎢⎢⎢⎣

A11

A21 A22

A32 A33

A43 A44

. . . . . .

⎤
⎥⎥⎥⎥⎦
,(4.3)

which is also the submatrix of (4.2) consisting of block rows 1, 3, . . . and block columns
2, 4, . . . . We illustrate with a small reordered example in Figure 3. Here there are
four row level sets, of sizes 1, 3, 2, 2, and three column level sets, of sizes 3, 2, 3.

× × ×
× × ×

× × ×
× ×

× × × ×
× × ×

× ×
× ×

Fig. 3. A matrix with rows and columns reordered using the permutations obtained by applying
Cuthill–McKee to its bipartite graph.

This example has entries on the whole of the diagonal, which will not necessarily
be the case. However, if the matrix is structurally nonsingular, the diagonal will
always intersect each of the blocks. This is because the leading k columns must be of
full structural rank and similarly for the leading k rows.

The semibandwidth of the reordered matrix (4.2) is at most one less than the
largest sum of the sizes of two adjacent level sets, that is, one less than the largest
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sum of the sizes of a row level set and an adjacent column level set. The corresponding
results for the reordered unsymmetric matrix (4.3) are that the lower bandwidth is
at most one less than the sum of the sizes of two adjacent column level sets and the
upper bandwidth is at most one less than the sum of the sizes of two adjacent row
level sets. Note, however, that all these bounds are pessimistic; they do not take
into account the ordering of the nodes within each level set (and RCM does well in
this respect) and, in the case (4.3), of the position of the matrix diagonal within the
blocks.

4.3. Row graph. Another alternative is to consider the row graph [11] of A,
which is defined to be the adjacency graph of the symmetric matrix AAT , where
matrix multiplication is performed without taking cancellations into account (so that,
if a coefficient of AAT is zero as a result of numerical cancellation, it is still considered
to be an entry). The nodes of the row graph correspond to the rows of A, and nodes i
and j (i �= j) are neighbors if and only if there is at least one column k of A for which
aik and ajk are both entries. The row graph has been used by Scott [13], [14] to order
the rows of unsymmetric matrices prior to solving the linear system using a frontal
solver. We can obtain an ordering for the rows of A by applying the RCM algorithm
to AAT . This will ensure that rows with entries in common are nearby; that is, the
first and last entry of each column will not be too far apart. If the columns are now
ordered according to their last entry, the lower bandwidth will be small and the upper
bandwidth will not be large.

A potential disadvantage of computing and working with the pattern of AAT is
that it can be costly in terms of time and memory requirements. This is because AAT

may contain many more entries than A. It fails completely if A has a full column
(AAT is full), but such a matrix cannot be permuted to have small lower and upper
bandwidths.

5. Unsymmetric RCM. Any reordering within a Cuthill–McKee level set of
section 4.2 will alter the positions of the leading entries of the columns of a submatrix
Aii or the rows of a submatrix Aji, j = i+1. It will make exactly the same change to
the profile of the matrix (4.2) as it does to the sum of the upper and lower profiles of
the matrix (4.3). If it reduces the bandwidth of the matrix (4.2), it will reduce either
the upper or lower bandwidth of the matrix (4.3); however, the converse is not true:
It might reduce the upper or lower bandwidth of the matrix (4.3) without reducing
the bandwidth of the matrix (4.2). It follows that it may be advantageous for band-
width reduction to develop a special-purpose code for the unsymmetric case, rather
than giving the matrix (4.1) to a general-purpose code for reducing the bandwidth
of a symmetric matrix. We have developed a prototype unsymmetric bandwidth re-
duction code of this kind. Our algorithm is based on the MGPS algorithm outlined
in Figure 2. As in the bipartite approach discussed in section 4.2, we use the adja-
cency graph Gbipart so that the level sets alternate between a set of rows and a set of
columns, but our unsymmetric algorithm bases its decisions on the total bandwidth
of the unsymmetric matrix A rather than on the bandwidth of the matrix (4.2). Our
algorithm is given in Figure 4.

The profile and bandwidth are likely to be reduced if the rows of each level set
are ordered according to their leading entries. This happens automatically with the
Cuthill–McKee algorithm and was done for the example in Figure 3.

Reversing the Cuthill–McKee ordering may reduce the profile. It is reduced if
the column index of the trailing entry in a row is lower than the column index of the
trailing entry in an earlier row. There is an example in block A22 of Figure 3.
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Algorithm Unsymmetric RCM.

Construct Gbipart and choose a starting node s of smallest degree
Apply Cuthill–McKee from s, finding height h(s) and total bandwidth t(s)
tleast = ∞; hmost = 1
outer: do

inner: do for up to 5 nodes r of the final level set that are not neighbors,
in order of increasing degree

Apply Cuthill–McKee from r, finding height h(r)
and total bandwidth t(r)
if t(r) > tleast cycle inner
if t(r) < tleast or h(r) > h(s) then

e = s; s = r; tleast = t(r); hmost = h(s); cycle outer
end if

end do inner
exit outer

end do outer
Order using the Cuthill–McKee ordering from e
Reverse the order

Fig. 4. Unsymmetric RCM ordering algorithm.

0 × ×
× 0 0 ×
× 0 0 × ×

× 0 0 0 × × ×
× 0 0 0 ×
× 0 0 0 ×

× 0 0 0
× × × 0 0 0
× 0 0 0

Fig. 5. A symmetric matrix ordered by Cuthill–McKee.

6. Hill climbing to improve a given ordering. In this and the next section,
we consider algorithms that are not based on level sets in a graph and are therefore
completely different.

Lim, Rodrigues, and Xiao [10] propose a hill-climbing algorithm for reducing the
semibandwidth of a symmetric matrix. An entry aij in a matrix A with semiband-
width b is called critical if |i−j| = b. For each critical entry aij in the lower-triangular
part, an interchange of i with k < i or j with k > j is sought that will reduce the
number of critical entries. For example, a94 is critical in Figure 5, and the semiband-
width is reduced from 5 to 4 by interchanging column 4 with column 5 and row 4
with row 5. As a column is moved backwards, its first entry is moved away from the
diagonal, while its last entry is moved nearer. If the distance of the first entry from
the diagonal is d, we can therefore limit the choice of k to the range j < k < j + b− d
since we want d+ k− j to be smaller than the bandwidth b. Similarly, if the distance
of the last entry in row i from the diagonal is l, we limit the choice of k to the range
i−b+l < k < i. Each interchange while the semibandwidth is b reduces the number of
critical entries by one. If the number of critical entries becomes zero, we recommence
the algorithm for semibandwidth b− 1 and continue until none of the critical entries
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for the current semibandwidth can be interchanged to reduce their number. The al-
gorithm is summarized as Figure 6. Note that this hill-climbing algorithm cannot
increase the semibandwidth.

Algorithm HC (symmetric).

outer: do
Form the set Vc of critical nodes
do until Vc is empty

if there are nodes u ∈ Vc and v /∈ Vc such that
swapping u and v leaves both noncritical then
swap u and v and remove u from Vc

else
exit outer

end if
end do

end do outer

Fig. 6. Hill climbing algorithm for symmetric matrices.

We have adapted this idea to reduce the lower and upper bandwidths of an un-
symmetric matrix. If the lower bandwidth is l and the upper bandwidth is u, we call
an entry aij in the lower triangle for which i − j = l a critical lower entry, and an
entry aij in the upper triangle for which j − i = u a critical upper entry. We have
found it convenient to alternate between making row interchanges while the column
permutation is fixed and making column interchanges while the row permutation is
fixed. While making row interchanges to reduce the number of critical upper entries,
we seek to exchange a row i containing a critical upper entry with another row so that
the number of critical upper entries is reduced by one while the lower bandwidth is
not increased. If the distance between the leading entry in the row and the diagonal
is d, we limit our search to rows in the range i− l+d ≤ k < i. For example, we do not
exchange rows 3 and 4 in Figure 3, since this would increase the lower bandwidth.

Similarly, while making row interchanges to reduce the number of critical lower
entries, we seek to exchange a row i containing a critical lower entry with another
row so that the number of critical lower entries is reduced by one while the upper
bandwidth is not increased. The row hill-climbing algorithm is outlined in Figure 7.
Column hill climbing is analogous, using column interchanges to first reduce the upper
bandwidth as much as possible and then to reduce the lower bandwidth as much as
possible.

One complete iteration of our hill-climbing algorithm for unsymmetric matrices
consists of row hill climbing followed by column hill climbing. We continue until a
complete iteration fails to reduce one of the bandwidths or the total number of critical
entries. This is illustrated in Figure 8.

7. Node centroid ordering. The hill-climbing algorithm of the previous sec-
tion is essentially a local search and is very dependent on the initial order that it is
given. To generate other initial orderings, Lim, Rodrigues, and Xiao [10] propose an
algorithm that they call “node-centroid.” For the graph of a symmetric matrix, they
define Nλ(i) to be the set of neighbors j of node i for which the distance |i − j| is
at least λb, where b is the semibandwidth and λ ≤ 1 is a parameter for which they
recommend a value of 0.95. They refer to such neighbors as λ-critical. w(i) is then
defined as the average node index over i∪Nλ(i), and the nodes are ordered by increas-
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Algorithm HC (row).

rows: do
Form the set Vu of rows that contain a critical upper entry
do until Vu is empty

if there are rows u ∈ Vu and v /∈ Vu such that swapping leaves both
noncritical and does not increase the lower bandwidth then

swap u and v and remove u from Vu

else
exit rows

end if
end do

end do rows
cols: do

Form the set Vl of columns that contain a critical lower entry
do until Vl is empty

if there are columns u ∈ Vu and v /∈ Vu such that swapping leaves
both noncritical and does not increase the upper bandwidth then
swap u and v and remove u from Vl

else
exit cols

end if
end do

end do cols

Fig. 7. Row hill climbing algorithm for unsymmetric matrices.

Algorithm HC (unsymmetric).

do while lower bandwidth, upper bandwidth, or
number of critical entries is reduced

call HC(row)
call HC(column)

end do

Fig. 8. Hill climbing for unsymmetric matrices.

ing w(i). This will tend to move a row with a λ-critical entry in the lower triangle
but no λ-critical entry in the upper triangle forward; hopefully, its new leading entry
will be nearer the diagonal than the old one was, and its trailing entry will not have
moved out so much that it becomes critical. Similar arguments apply to a row with
a λ-critical entry in the upper triangle but no λ-critical entry in the lower triangle,
which will tend to be moved back. The algorithm is outlined in Figure 9.

Lim, Rodrigues, and Xiao [10] apply a sequence of major steps, each of which
consists of two iterations of node centroid ordering followed by one iteration of hill
climbing, as illustrated in Figure 10. The decision to perform hill climbing after two
steps of the node-centroid algorithm was taken on the basis of numerical experimenta-
tion. Using a Cuthill–McKee-type initial ordering with a random starting node, Lim,
Rodrigues, and Xiao [10] report encouraging results for the DWT set of symmetric
problems from the Harwell–Boeing Sparse Matrix Collection [4].

We have adapted this idea to the unsymmetric case by again alternating between
permuting the rows while the column permutation is fixed and permuting the columns
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Algorithm NC (symmetric).

choose λ ≤ 1.
do i = 1, n

w(i) = i; c(i) = 1; form Nλ(i)
do for each j ∈ Nλ(i)

w(i) = w(i) + j; c(i) = c(i) + 1
end do
w(i) = w(i)/c(i)

end do
sort entries of w into increasing order
reorder nodes in accord with the sorted sequence.

Fig. 9. Node centroid algorithm for symmetric matrices.

Algorithm NCHC (symmetric).

choose an initial ordering
do while semibandwidth is reduced

call NC(symmetric)
call NC(symmetric)
call HC(symmetric)

end do

Fig. 10. Node centroid plus hill climbing for symmetric matrices.

while the row permutation is fixed. Suppose that the lower bandwidth is l and the
upper bandwidth is u. While permuting the rows, only the leading and trailing
entries of the rows are relevant, since they will still have these properties after the
row permutation. If the leading or trailing entry of row i is λ-critical, it is desirable
to move the row. If its leading entry is in column li and its trailing entry is in column
ui, the gap between the upper band and the trailing entry is u + i− ui, and the gap
between the lower band and the leading entry is li − (i − l) = li − i + l. If we move
the row forward to become row i+ δ, the gaps become u+ i+ δ−ui and li− i− δ+ l.
If l > u, it would seem desirable to make the gap at the trailing end greater than the
gap at the leading end. We choose a parameter α > 1 and aim for the gap at the
trailing end to be α times greater than the gap at the leading end; that is,

u + i + δ − ui = α(li − i− δ + l)(7.1)

or

δ =
(ui − i− u) + α(li − i + l)

1 + α
.(7.2)

Similar calculations for l = u and l < u lead us to conclude that a desirable position
for the row is given by the equation

w(i) =

⎧⎪⎪⎨
⎪⎪⎩

i + (ui−i−u)+α(li−i+l)
1+α if l > u,

i + (ui−i−u)+(li−i+l)
2 if l = u,

i + α(ui−i−u)+(li−i+l)
1+α if l < u.

(7.3)

For other rows, we set w(i) = i. We sort the rows in increasing order of w(i), i =
1, 2, . . . , n. This is summarized in Figure 11. In our numerical experiments (see
section 9), we found that a suitable value for α is 2.



REDUCING THE TOTAL BANDWIDTH 815

Algorithm NC (row).

choose λ ≤ 1 and α > 1.
compute l, u.
if (l > u) then

β = 1/(1 + α); γ = α/(1 + α)
else if (l < u) then

β = α/(1 + α); γ = 1/(1 + α)
else

β = 1/2; γ = 1/2
end if
do i = 1, n

w(i) = i
compute li, ui

if ui − i > λu or i− li > λl then
w(i) = i + β ∗ (ui − i− u) + γ ∗ (li − i + l)

end if
end do
sort entries of w into increasing order
reorder rows in accord with the sorted sequence.

Fig. 11. Node centroid algorithm for ordering the rows of an unsymmetric matrix.

Similar considerations apply to ordering the columns of the matrix with the row
order fixed. We apply a sequence of major steps, each consisting of two iterations
of the node-centroid row ordering followed by row hill climbing, then two iterations
of the node-centroid column ordering followed by column hill climbing. We continue
until the total bandwidth ceases to decrease. This is illustrated in Figure 12. We
found in our numerical experiments that it is sufficient to limit the number of cycles
of the do loop to 10.

Algorithm NCHC (unsymmetric).

choose an initial ordering
do

call NC(row)
call NC(row)
call HC(row)
if total bandwidth not reduced exit
call NC(column)
call NC(column)
call HC(column)
if total bandwidth not reduced exit

end do

Fig. 12. Node centroid plus hill climbing for unsymmetric matrices.

8. Relaxed double ordering. Before presenting numerical results for our pro-
posed algorithm, in this section we briefly discuss the recently published algorithm of
Baumann, Fleischmann, and Mutzbauer [1] for reducing the bandwidth of an unsym-
metric matrix. The sparsity pattern of the matrix is represented by a (0,1)-matrix,
that is, a matrix which is the same as the original matrix except that each nonzero
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entry is replaced by 1. Each row and column of the (0,1)-matrix then defines a binary
number. The algorithm proceeds by alternating between ordering the rows in decreas-
ing order and ordering the columns in decreasing order. The authors [1] show that
this converges to a limit and call it a “double ordering.” Following reverse Cuthill–
McKee, they reverse the converged ordering. Since only the leading entries of the
rows or columns affect the bandwidths and profiles, we have implemented an efficient
variant in which no attempt is made to order the rows or columns with the same
leading entry. We call this a relaxed double ordering (RDO). Results for the RDO
algorithm are included in section 9.

Unfortunately, there are huge numbers of double orderings, and Baumann, Fleis-
chmann, and Mutzbauer [1] have no strategy for choosing a good one. For example, a
Cuthill–McKee ordering produces a relaxed double ordering regardless of the starting
node, since the leading entries of the rows (or columns) form a monotonic sequence.
There is scope for the double ordering to reduce the profile of an RCM ordering, but
our experience is that the improvement is slight and is often at the expense of the
bandwidths (see section 9.2).

9. Numerical experiments. In this section, we first describe the problems that
we use for testing the algorithms discussed in this paper and then present numerical
results.

Table 9.1

The test problems; see text for details.

Identifier Order Number of Symmetry
entries index

4cols† 11770 43668 0.0159
10cols† 29496 109588 0.0167
bayer01 57735 277774 0.0002
bayer03 6747 56196 0.0031
circuit 3 12127 48137 0.7701
ethylene-1† 10673 80904 0.2973
extr1 2837 11407 0.0042
g7jac200sc 59310 837936 0.0323
fidapm11 22294 623554 1.0000
hydr1 5308 23752 0.0041
impcol d 425 1339 0.0567
jan99jac020sc 6774 38692 0.0037
lhr71c 70304 1528092 0.0015
mark3jac140 64089 399735 0.0740
poli large 15575 33074 0.0035
radfr1 1048 13299 0.0537
rdist1 4134 94408 0.0588
sinc15 11532 568526 0.0138
Zhao2 33861 166453 0.9225

9.1. Test problems. The test problems are listed in Table 9.1. Each arises
from a real engineering or industrial application. Problems marked with a † are
chemical process engineering problems that were supplied to us by Mark Stadtherr
of the University of Notre Dame. The remaining problems are available through
the University of Florida Sparse Matrix Collection [3]. Most of the test problems
were chosen on the grounds of being highly unsymmetric, because working with the
symmetrized matrix A + AT will be satisfactory for near-symmetric matrices. We
include two (nearly) symmetric matrices to illustrate this. We have chosen problems
of different sizes since, in our experience, for some users it is not just the very large
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Table 9.2

Details of the block triangular form for our test problems. n1 and n2 are the numbers of 1 × 1
and 2 × 2 blocks; n>2 is the number of larger blocks; noff is the total number of entries in the
off-diagonal blocks. For the largest diagonal block Akk, m is the order, me is the number of entries,
avg is the average number of entries per row, si is the symmetry index, and mekk is the number of
entries in AkkA

T
kk.

Identifier n1 n2 n>2 noff Largest block Akk

m me avg si mekk
4cols 0 0 1 0 11770 43668 3.71 0.0159 210026
10cols 0 0 1 0 29496 109588 3.72 0.0167 527124
bayer01 8858 0 3 28228 48803 240222 4.92 0.0812 1236678
bayer03 1772 2 6 19575 4776 33555 7.02 0.1066 252236
circuit 3 4520 0 1 9593 7607 34024 4.47 0.5579 76178
ethylene-1 2137 0 7 12865 8336 65375 7.84 0.3000 203920
extr1 424 0 1 464 2413 10519 4.35 0.0935 34118
fidapm11 0 0 1 0 22294 623554 28.0 1.0000 4067228
g7jac200sc 0 0 1 0 59310 837936 14.1 0.0323 6377172
hydr1 968 0 6 1420 2370 11738 4.95 0.0730 47946
impcol d 226 0 1 551 199 562 2.82 0.0275 1350
jan99jac020sc 0 0 1 0 6774 38692 5.71 0.00376 603720
lhr71c 7038 0 28 95912 7663 173683 22.7 0.07396 2877995
mark3jac140 0 0 1 0 64089 399735 6.24 0.4225 773752
poli large 15450 12 4 17266 90 286 3.18 0.1633 680
radfr1 97 0 1 969 951 12233 12.9 0.4751 34032
rdist1 198 0 1 3959 3936 90251 22.9 0.4821 280538
sinc15 652 0 1 24343 10880 543531 50.0 0.2615 11063488
Zhao2 0 0 1 0 33861 166453 4.92 0.9225 549692

problems that are important: In their applications they must repeatedly factorize
and solve many small or medium-sized problems efficiently, and so spending time and
effort on getting a good ordering is essential.

In Table 9.2, we give details of the block triangular form for each of our test
matrices. We note that 4cols, 10cols, fidapm11, g7jac200sc, jan99jac020sc,
mark3jac140, and Zhao2 are irreducible, while a number of problems (including
rdist1 and circuit 3) have only one block of order greater than 1. Most of the
remaining problems have fewer than 10 blocks of order greater than 1. As expected,
the matrix AkkA

T
kk contains many more entries than Akk. We also note that, for

the reducible examples, the symmetry index of Akk is usually larger than that of the
original matrix.

9.2. Test results. We first present results for applying the HSL [8] implementa-
tion of the RCM algorithm (MC60) to the following matrices: (i) A+AT ; (ii) B+BT ,
where B = PA is the permuted matrix after employing the HSL routine MC21 to put
entries on the diagonal; (iii) AAT ; (iv) the matrix Â given by (4.1); and (iv) Unsym-
metric RCM code (this is column 8, which is headed A). The total bandwidth for each
ordering and for the initial ordering is given in Table 9.3. Results are also given for
the RDO algorithm (section 8). A blank entry in the B + BT column indicates that
the matrix A has no zeros on the diagonal, and in these cases, MC21 is not applied. We
see that for some problems applying MC21 prior to the reordering with RCM can sig-
nificantly reduce the bandwidths, but narrower bandwidths are achieved by working
with either the row graph (AAT ) or the bipartite graph (Â) or using the unsymmetric
RCM. For many of our test examples, the RDO orderings are poorer. However, they
are often a significant improvement on the initial ordering, and for a small number of
problems (notably radfr1a and rdist1) RDO produces good orderings.
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Table 9.3

The total bandwidth for the RDO and RCM ordering algorithms.

Identifier Initial RDO RCM

A + AT B + BT AAT Â A
4cols 11770 4768 846 460 565 541
10cols 29496 13855 1052 546 572 557
bayer01 57735 45332 52201 4117 2232 2236 2331
bayer03 6747 3660 6747 1074 651 651 612
circuit 3 12127 10979 12127 12127 10441 11157 11324
ethylene-1 10664 8301 7797 5114 5093 5306
extr1 2837 1610 2575 298 171 169 169
fidapm11 19515 3315 3189 3299 3211 3202
g7jac200sc1 44611 22822 41198 19554 20384 19248
hydr1 5308 2726 5308 559 337 334 324
impcol d 425 153 241 219 123 117 102
jan99jac020s 6774 4708 6264 5016 4891 5885
lhr71c 58291 18181 27064 5802 3620 3771 3893
mark3jac140 6825 12126 6550 6106 6112 6159
poli large 15575 6400 15575 6381 6316 5995
radfr1a 1048 95 970 142 71 98 147
rdist1 4134 195 3421 336 223 215 175
sinc15 11532 9686 11532 11532 11036 9623 10833
Zhao2 33861 33861 1476 1464 1476 565

Table 9.4

The total bandwidth for the HC, NCHC, RDO, and RCM ordering algorithms applied to the
diagonal blocks of the block triangular form.

Identifier Initial HC NCHC RDO RCM

A + AT AAT (+RDO) Â A
4cols 11770 5134 3281 4768 846 460 (1001) 565 504
10cols 29496 13801 6530 13855 1052 546 (1600) 572 528
bayer01 48803 48860 22394 34581 3483 1768 (3056) 1823 1776
bayer03 4776 4792 2279 3617 740 527 (547) 500 506
circuit 3 7607 7607 3698 4776 1903 1330 (1394) 1321 1297
ethylene-1 8336 8336 3540 4967 323 179 (432) 184 230
extr1 2413 2413 1114 1660 240 145 (266) 149 148
fidapm11 19515 7168 3880 3315 3189 3299 (3987) 3211 3240
g7jac200sc 44611 16548 16149 22822 41198 19554 (19279) 20384 19248
hydr1 2370 2370 1151 1640 198 129 (112) 134 129
impcol d 199 194 133 70 98 79 (82) 67 59
jan99jac020s 6774 6478 4046 4708 6264 5016 (5321) 4891 5652
lhr71c 7663 7663 2911 5135 991 741 (2173) 727 720
mark3jac140 6825 5055 5857 12126 6550 6106 (8846) 6112 6123
poli large 90 85 59 84 90 90 (79) 84 77
radfr1a 621 186 98 132 130 88 (93) 85 93
rdist1 341 129 120 155 346 188 (193) 189 192
sinc15 10880 10880 9195 10880 10880 10491 (10880) 10880 10880
Zhao2 33861 33861 14015 33861 1471 1454 (2196) 1467 1424

Table 9.4 shows the effect of applying the ordering algorithms to the diagonal
blocks of the block triangular form (2.2). As already noted, the construction of
the block triangular form ensures that there are no zeros on the diagonal, so we do
not preorder using MC21. Apart from this, the algorithms featured in Table 9.3 are
featured here too. We also show results for the hill-climbing algorithm (HC) and hill-
climbing plus the node-centroid algorithm (NCHC). For the node-centroid algorithm
we have experimented with using values of λ in the range [0.8, 1] and values of α in
the range [1.5, 2.5]. Our experience was that the bandwidths were not very sensitive
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Table 9.5

The total bandwidth after hill climbing and the node-centroid algorithm. All are applied to the
diagonal blocks of the block triangular form.

Identifier RCM + HC RCM + NCHC

A + AT AAT Â A A + AT AAT Â A
4cols 718 435 549 481 502 395 458 443
10cols 902 498 553 479 625 448 462 447
bayer01 3241 1739 1742 1756 2243 1659 1675 1659
bayer03 668 446 445 452 411 381 384 377
circuit 3 1715 1228 1227 1123 1356 1065 1074 1095
ethylene-1 271 172 173 216 174 169 162 203
extr1 190 119 120 131 130 115 119 116
fidapm11 3154 3261 3183 3156 3123 3336 3286 3085
g7jac200sc 37042 19244 19782 18660 22290 17383 17451 17530
hydr1 133 101 101 120 89 91 91 89
impcol d 66 61 56 55 50 51 49 52
jan99jac020s 5758 4258 4401 5190 3883 3665 3249 3953
lhr71c 862 626 598 576 540 572 557 540
mark3jac140 6192 6035 6044 6053 5951 5959 5946 5978
poli large 56 70 70 66 54 50 61 52
radfr1a 57 63 72 76 58 58 57 58
rdist1 148 133 156 158 123 121 124 119
sinc15 10880 8819 10880 10880 7428 8866 10648 8097
Zhao2 1471 1454 1467 1420 1473 1446 1462 1442

to the precise choice of λ, and for most examples 0.85 gave results that were within
three percent of the best. For α, we found that a value of 2 gave slightly narrower
bandwidths than either 1.5 or 2.5. We therefore used λ = 0.85 and α = 2.

In Table 9.4 we have highlighted the narrowest bandwidths and those within three
percent of the narrowest. As expected, the larger symmetry index for the diagonal
blocks of the block triangular form results in an improvement in the performance
of RCM applied to A + AT , but it is still better to use the other RCM variants.
There appears to be little to choose between RCM applied to the row graph, RCM
applied to the bipartite graph, and our Unsymmetric RCM algorithm; for some of
the examples, each produces the narrowest total bandwidth. In general, combining
hill-climbing with the node-centroid algorithm is better than using hill-climbing alone,
but this is not guaranteed. For a small number of problems (including pol large and
rdist1), the NCHC ordering has the smallest total bandwidth, but for many of the
test examples it gives results that are significantly poorer than the RCM variants.

To see whether RDO can be successfully used to refine our RCM orderings, we
have experimented with running RDO after RCM applied to AAT ; the results are
in parentheses in Table 9.4 in the column headed AAT (+RDO). For a number of
problems (including poli large) the bandwidth is reduced, but for others the results
are much worse (for example, 4cols and bayer01). Indeed, using RDO after RCM
can be worse than using RDO on the original ordering (for example, jan99jac020s
and rdist1). This illustrates that RDO is extremely sensitive to the initial ordering,
and our findings lead us not to recommend its use.

In Table 9.5, we present results for applying the different RCM variants to the
block triangular form, followed by applying either hill climbing alone (denoted by
RCM + HC) or the node-centroid algorithm plus hill climbing (denoted by RCM +
NCHC). Again, the narrowest total bandwidths (and those within three percent of
the narrowest) are highlighted. Comparing the results in columns 2–5 of Table 9.5
with the corresponding results in Table 9.4, we see that hill climbing (which never
increases the total bandwidth) can significantly improve the RCM orderings. However,
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Table 9.6

The best and worse total bandwidths using the given ordering and nine random permutations.

Identifier RCM + NCHC

A + AT AAT Â A
4cols [457,570] [384,456] [385,463] [380,460]
10cols [575,625] [448,463] [445,462] [438,461]
bayer01 [1963,2243] [1659,1680] [1665,1694] [1655,1682]
bayer03 [410,463] [380,400] [374,401] [368,397]
circuit 3 [1298,1356] [1033,1105] [1041,1159] [969,1106]
ethylene-1 [169,184] [156,169] [158,169] [157,211]
extr1 [119,134] [114,127] [114,131] [114,125]
fidapm11 [3119,3288] [3205,3336] [3172,3290] [3085,3252]
g7jac200sc [18849,22290] [16793,18132] [16460,18516] [16396,17827]
hydr1 [89,98] [89,93] [89,92] [88,93]
impcol d [50,57] [43,56] [42,54] [46,52]
jan99jac020s [3396,4107] [3257,3665] [3230,3724] [3209,3953]
lhr71c [540,633] [555,600] [554,578] [506,700]
mark3jac140 [5951,7385] [5909,5959] [5946,6062] [5941,6011]
poli large [49,55] [50,59] [55,66] [49,53]
radfr1a [56,62] [58,58] [58,62] [58,61]
rdist1 [120,127] [121,126] [121,125] [119,125]
sinc15 [6903,8652] [7752,8866] [8265,11532] [7413,8523]
Zhao2 [1473,2055] [1446,1467] [1453,1464] [1442,1521]

looking also at columns 6–9, it is clear that for all problems except fidapm11 and
Zhao2 (the two nearly symmetric problems), the smallest bandwidths are achieved
by using RCM + NCHC. For problems with an unsymmetric sparsity structure, the
largest improvements resulting from using the node-centroid algorithm are to the
orderings obtained using RCM applied to A + AT ; for some problems (including
the bayer examples and lhr71c) the reductions resulting from including the node-
centroid algorithm are more than 30 percent. However, for many of our unsymmetric
examples, one of the other variants generally produces orderings with a smaller total
bandwidth.

Finally, we note that for a small number of problems, none of our proposed
algorithms was successful in significantly reducing the bandwidth. In particular, we
were not able to reorder the problems g7jac200sc, jan99jac020s, mark3jac140, and
sinc15 to have a small bandwidth. We are not able to predict a priori which problems
we are able to reorder to have a small bandwidth using our algorithms.

9.3. The effect of random initial permutations. Finally, we tried applying
the algorithms after applying random row and column permutations to the given
matrix ordering. The results are shown in Table 9.6. It is indeed the case that
better total bandwidths can often be found in this way, which points the way towards
finding better algorithms. Meanwhile, if many problems with the same structure
are to be solved (so that the cost of reordering may be amortized over the repeated
factorizations), it may be worthwhile to perform such random permutations and take
the best resulting ordering. The conclusion that we drew from Table 9.5, that there
is little to help us choose between the algorithms of the final three columns, is true
here too.

10. Concluding remarks. We have considered algorithms for reducing the
lower and upper bandwidths l and u of an unsymmetric matrix A, focusing on the
total bandwidth, which we have defined as l + u + min(l, u), because this is relevant
for the storage and work when sets of banded linear equations are solved by Gaussian
elimination.
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The least satisfactory results came from working with the lexicographical method
of Baumann, Fleischmann, and Mutzbauer [1] and with the pattern of A + AT , al-
though for unsymmetrically structured matrices the use of the unsymmetric node-
centroid algorithm plus hill climbing dramatically improved the results of applying
the reverse Cuthill–McKee ordering to A + AT . For the majority of our test prob-
lems, we achieved good results by applying the RCM algorithm to the matrices AAT

(whose graph is the row graph) and
[

0 A
AT 0

]
(whose graph is the bipartite graph). Our

unsymmetric variant of RCM gave comparable results. The results were improved by
preordering A to block triangular form and applying one of these three RCM-based
algorithms to the blocks on the diagonal. The rest of the matrix is used unaltered.
The bandwidths were further reduced using our unsymmetric node-centroid and hill-
climbing algorithms.

In general, the time taken to reorder an unsymmetric matrix using our algorithms
is significantly less than the time required to subsequently factorize the matrix. How-
ever, since the codes used to generate the numerical results presented in this paper
are prototypes, we have not reported the reordering times. In the future, we plan to
include carefully designed efficient implementations of our new algorithms within the
mathematical software library HSL [8].

Acknowledgments. We are grateful to Iain Duff of the Rutherford Appleton
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this paper, and to the anonymous referees for their suggestions.
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1. Introduction. There are several means that interpolate the geometric and
arithmetic means; see [9], [13], and [14]. One that attracts many researchers is the
so-called Heinz mean Hα(a, b) given by

Hα(a, b) =
a1−αbα + aαb1−α

2
for 0 ≤ α ≤ 1.

Notice that H0(a, b) = H1(a, b) = a+b
2 is the arithmetic mean and H 1

2
(a, b) =

√
ab is

the geometric mean.
In 1951, Heinz [8], in his study of perturbation theory of operators, proved that

for the operator norm ‖.‖, given A,B positive definite, for any X, that

‖A 1
2XB

1
2 ‖ ≤ 1

2
‖A1−αXBα + AαXB1−α‖ ≤ 1

2
‖AX + XB‖.(1)

In 1993, Bhatia–Davis [1] proved that if A, B, and X are n by n matrices with A and
B positive semidefinite, then for every unitarily invariant norm |||.|||,

|||A 1
2XB

1
2 ||| ≤ 1

2
|||A1−αXBα + AαXB1−α||| ≤ 1

2
|||AX + XB|||.(2)

Another mean, which is of interest mainly in chemical engineering, statistics, and
thermodynamics, is the logarithmic mean defined as

L(a, b) =
a− b

log a− log b
=

∫ 1

0

atb1−tdt, (a ≥ 0, b ≥ 0).

It is well known that

G(a, b) ≤ L(a, b) ≤ A(a, b).(3)

In 1999, Hiai–Kosaki [10] obtained the following refinement of the inequality (2) show-
ing:

|||A 1
2XB

1
2 ||| ≤

∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ 1

0

AtXB1−tdt

∣∣∣∣
∣∣∣∣
∣∣∣∣ ≤

1

2
|||AX + XB|||,(4)
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called the arithmetic-logarithmic-geometric (A-L-G) inequality.

After seeing inequalities (2) and (4) it is hard not to be curious about the re-
lationship between the Heinz and logarithmic means. This was our motivation to
investigate this problem.

Assume M(a, b), N(a, b) are symmetric homogeneous means on (0,∞) × (0,∞).
M is said to strongly dominate N , in notation M � N , if and only if the matrix

[
M(λi, λj)

N(λi, λj)

]

i,j=1,...,n

is positive semidefinite for any λ1, . . . , λn > 0 with any size n (see [11] for more de-
tails). Note that the inequality M � N is stronger than the usual order M ≤ N .
In [10], Hiai–Kosaki gave an example showing this. Another example was later ob-
tained by Bhatia [4]. Moreover, if A is a positive semidefinite matrix with eigenvalues
λ1, λ2, . . . , λn, then M � N is equivalent to the operator norm inequality

|||M(A,A) ◦X||| ≤ |||N(A,A) ◦X|||,

where ◦ is the Schur–Hadamard or the entrywise product, and M(A,A) is the matrix
whose ij entry is M(λi, λj).

Schur’s theorem asserts that the Schur–Hadamard product of two positive ma-
trices is positive. Two matrices A and B are said to be congruent if B = S∗AS for
some nonsingular matrix S. If A is positive, then so is every matrix congruent to
it. A complex-valued function f on R is said to be positive definite if the matrix
[f(xi − xj)] is positive semidefinite for all choices of points {x1, x2, . . . , xn} ⊂ R and
all n = 1, 2, . . . . Another interesting result that we are going to use is the well-known
theorem of Bochner (see [12] for more details) which asserts that a function f in L1(R)

is positive definite if and only if its Fourier transform f̂(ξ) ≥ 0, for almost all ξ. When
calculating Fourier transforms, we ignore constant factors, since the only property of
f̂ we use is whether it is nonnegative almost everywhere.

In this paper we first present a necessary and sufficient condition for the strong
domination of the Heinz mean by the logarithmic mean. This follows from the fol-
lowing theorem, which may be of independent interest, on the positive definiteness
of functions; see [2], [3], [4], [5], [6], and [11] for other results on positive definiteness
of functions. Second, using a standard result on a norm of the Schur multiplier, we
derive norm inequalities extending results given by Bhatia–Davis and Hiai–Kosaki on
A-L-G mean matrix inequalities.

2. Main results. Theorem 1. Let

f(x) =
x cosh(βx)

sinh(x)
.

Then f is positive definite if and only if − 1
2 ≤ β ≤ 1

2 .

The following formulas are known from [7] and we provide the proofs for com-
pleteness and the reader’s convenience.

Lemma 1. For |β| < 1, we have

∫ ∞

0

sinh(βx)

sinh(x)
cos(ξx)dx =

π sin(βπ)

2(cosh(ξπ) + cos(βπ))
,(5)
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∫ ∞

0

cosh(βx)

sinh(x)
sin(ξx)dx =

π sinh(ξπ)

2(cosh(ξπ) + cos(βπ))
.(6)

Proof. To compute the above integrals we use the method of residues. We proceed
in two steps.

Step 1. Let us consider the complex valued function

φ(z) =
sinh(βz)

sinh(z)
eiξz.

Then φ has poles at the points zk = ikπ, for k = ±1,±2, . . . . Now, consider the
contour integral

∫
Γ
φ(z)dz, where Γ is the rectangle with vertices at (−R, 0), (R, 0),

(R, iπ), and (−R, iπ) described counterclockwise, with an indentation γr : z = reiθ +
iπ, for 0 ≥ θ ≥ −π, so as to avoid the pole at iπ. Since there are no singularities of
the integrand inside Γ, we obtain by Cauchy’s theorem for analytic functions

∫ R

−R

φ(x)dx +

∫ π

0

φ(R + iy)idy +

∫ r

R

φ(x + iπ)dx +

∫
γr

φ(z)dz

+

∫ −R

−r

φ(x + iπ)dx +

∫ 0

π

φ(−R + iy)idy = 0.

Using the estimation lemma, we obtain along the two vertical lines

∣∣∣∣
∫ π

0

φ(R + iy)idy

∣∣∣∣ → 0 and

∣∣∣∣
∫ 0

π

φ(−R + iy)idy

∣∣∣∣ → 0 as R → ∞.(7)

By Jordan’s lemma, we get

lim
r→0

∫
γr

φ(z)dz = i(−π − 0)(−i sin(βπ)e−ξπ = −π sin(βπ))e−ξπ.(8)

On the other hand, using the identities

sinh(a± ib) = sinh(a) cos(b) ± i cosh(a) sin(b),

we obtain

∫ r

R

φ(x + iπ)dx = e−ξπ

∫ R

r

eiξx

sinh(x)
[sinh(βx) cos(βπ) + i cosh(βx) sin(βπ)]dx

and

∫ −R

−r

φ(x + iπ)dx = e−ξπ

∫ R

r

e−iξx

sinh(x)
[sinh(βx) cos(βπ) − i cosh(βx) sin(βπ)]dx.

Combining the two above identities and using Euler’s formula, we obtain after
simplifications

∫ r

R

φ(x + iπ)dx +

∫ −R

−r

φ(x + iπ)dx = e−ξπ

{
cos(βπ)

∫ R

r

sinh(βx)

sinh(x)
(2 cos(ξx))dx

+i sin(βπ)

∫ R

r

cosh(βx)

sinh(x)
(2i sin(ξx))dx

}
.
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Using
∫ R

−R

φ(x)dx =

∫ R

−R

sinh(βx)

sinh(x)
cos(ξx)dx

= 2

∫ R

0

sinh(βx)

sinh(x)
cos(ξx)dx

and taking r → 0 then after that R → ∞, we obtain

2

∫ ∞

0

sinh(βx)

sinh(x)
cos(ξx)dx + e−ξπ

{
2 cos(βπ)

∫ ∞

0

sinh(βx)

sinh(x)
cos(ξx)dx

− 2 sin(βπ)

∫ ∞

0

cosh(βx)

sinh(x)
sin(ξx)dx− π sin(βπ)

}
= 0.(9)

Step 2. Similarly as in Step 1, we may consider the complex valued function

Ψ(z) =
cosh(βz)

sinh(z)
eiξz.

Then Ψ has poles at zk = ±ikπ, where k = 0, 1, 2, . . . . Consider the contour integral∫
Γ

Ψ(z)dz, where Γ is the same contour as in Step 1 with two indentations γr1 : z =

reiθ + iπ, for 0 ≥ θ ≥ −π, so as to avoid the pole at iπ, and γr2 : z = reiθ, for
0 ≥ θ ≥ −π, so as to avoid the pole at 0. By applying Cauchy’s theorem, we obtain

∫ −r2

−R

Ψ(x)dx +

∫
γr2

Ψ(z)dz +

∫ R

r2

Ψ(x)dx +

∫ π

0

Ψ(R + iy)idy

+

∫ r1

R

Ψ(x + iπ)dx +

∫
γr1

Ψ(z)dz +

∫ −R

−r1

Ψ(x + iπ)dx

+

∫ 0

π

Ψ(−R + iy)idy = 0.

By Jordan’s lemma, we get in Step 1

lim
r1→0

∫
γr1

Ψ(z)dz = i(−π − 0)(− cos(βπ)e−ξπ) = iπ cos(βπ)e−ξπ

and

lim
r2→0

∫
γr2

Ψ(z)dz = i(−π − 0)(cosh(0)e0) = −iπ.

After similar arguments as in Step 1, with some small changes, by taking limits
as r2 → 0, r1 → 0 and R → ∞, successively, we get

2i

∫ ∞

0

cosh(βx)

sinh(x)
sin(ξx)dx + e−ξπ

{
2i cos(βπ)

∫ ∞

0

cosh(βx)

sinh(x)
sin(ξx)dx

+ 2i sin(βπ)

∫ ∞

0

sinh(βx)

sinh(x)
cos(ξx)dx + iπ cos(βπ)

}
− iπ = 0.(10)

Let I =
∫∞
0

sinh(βx)
sinh(x) cos(ξx)dx, and J =

∫∞
0

cosh(βx)
sinh(x) sin(ξx)dx. Then (9) and (10) can

be written, successively, as
{

(2 + 2e−ξπ cos(βπ))I − 2e−ξπ sin(βπ)J − π sin(βπ)e−ξπ = 0
(2 + 2e−ξπ cos(βπ))J + 2e−ξπ sin(βπ)I + π cos(βπ)e−ξπ − π = 0.
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Solving the above system for I and J , we obtain the desired results.
Proof of Theorem 1. Using Bochner’s theorem, the positive definitenesss of the

function f can be reduced to showing that the Fourier transform f̂(ξ) is positive.
Since f is an even function, its Fourier transform is given by

f̂(ξ) = 2

∫ ∞

0

x cosh(βx)

sinh(x)
cos(ξx)dx.

The differentiation of the formula (5) in Lemma 1 with respect to β gives

∫ ∞

0

x cosh(βx)

sinh(x)
cos(ξx)dx =

π

2

π cos(βπ)[cosh(ξπ) + cos(βπ)] − sin(βπ)(−π sin(βπ))

(cosh(ξπ) + cos(βπ))2

=
π2[1 + cos(βπ) cosh(ξπ)]

2(cosh(ξπ) + cos(βπ))2
.

So,

f̂(ξ) =
π2[1 + cos(βπ) cosh(ξπ)]

(cosh(ξπ) + cos(βπ))2
.

Consequently, if −1
2 ≤ β ≤ 0, then f̂(ξ) ≥ 0. Since φ is even in β, the result follows

for −1
2 ≤ β ≤ 1

2 .
Corollary 1. For any a, b ≥ 0, we have

Hν(a, b) << L(a, b) if and only if
1

4
≤ ν ≤ 3

4
.(11)

Corollary 2. Let A,B be any positive matrices. Then for any matrix X and
for ν, 1

4 ≤ ν ≤ 3
4 , we have

|||AνXB1−ν + A1−νXBν ||| ≤ 2

∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ 1

0

AtXB1−tdt

∣∣∣∣
∣∣∣∣
∣∣∣∣(12)

for every unitarily norm |||.|||.
Proof of Corollary 1. We proceed in two steps.
Step 1. By definition, Hν(a, b) << L(a, b) if

vij =

[
Hν(λi, λj)

L(λi, λj)

]

i,j=1,...,n

is positive semidefinite. Put λi = exi and λj = exj , with xi, xj ∈ R. Then

vij =
1

2
e

xi
2

⎛
⎜⎝e(2ν−1)(

xi−xj
2 ) + e(2ν−1)(

xj−xi
2 )

e
xi
2 ( e

xi−xj
2 −e

xj−xi
2

xi−xj
)e

xj
2

⎞
⎟⎠ e

xj
2 .

Thus the matrix [vij ] is congruent to one with entries

(
xi−xj

2 ) cosh(β(
xi−xj

2 ))

sinh(
xi−xj

2 )
,
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where β = 2ν − 1. Hence, the matrix [vij ] is positive semidefinite if and only if the
function

f(x) =
x cosh(βx)

sinh(x)

is positive definite.
Step 2. By Theorem 1, f(x) is positive definite if and only if − 1

2 ≤ β ≤ 1
2 , which

is equivalent to the condition 1
4 ≤ ν ≤ 3

4 .
Remark 1. The inequality M << N could, in general, be strictly stronger than

the usual inequality M ≤ N . That means not every inequality between means of
positive numbers leads to a corresponding inequality for positive matrices as shown
by the following simple example. For a, b > 0 we have

Hα(a, b) ≤ L(a, b) if and only if
1 − 1√

3

2
≤ α ≤

1 + 1√
3

2
.(13)

In fact, by taking a = ex and b = ey and using Taylor series, it is easy to see that
Hα(a, b) ≤ L(a, b) if and only if

cosh

(
(2α− 1)

(
x− y

2

))
≤

sinh(x−y
2 )

x−y
2

.

Let t = x−y
2 , and β = 2α− 1. Then after simplification

1 +
β2t2

2!
+

β4t4

4!
+ · · · ≤ 1 +

t2

3!
+

t4

5!
+ · · · .

This is true only if β2 ≤ 1
3 , which leads to the desired result.

Proof of Corollary 2. First assume A = B. Since the norms involved are unitarily
invariant, we may suppose that A is diagonal with entries λ1, λ2, . . . , λn. Then we
have

AνXA1−ν + A1−νXAν = Y ◦
(∫ 1

0

AtXA1−tdt

)
,

where Y is the matrix with entries

yij =
2Hν(λi, λj)

L(λi, λj)
.

A well-known result on the Schur multiplier norm (see [12, Theorem 5.5.18 and The-
orem 5.5.19]) says that if Y is any positive semidefinite matrix, then for all matrix X,

|||Y ◦X||| ≤ max
i

{yii}|||X|||, for every unitarily invariant norm.(14)

By Corollary 1, Y is a positive semidefinite matrix. Applying (14), we obtain

|||AνXA1−ν + A1−νXAν ||| ≤ 2

∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ 1

0

AtXA1−tdt

∣∣∣∣
∣∣∣∣
∣∣∣∣ .(15)

Now, we use the usual trick replacing A and X in the inequality (15) by the 2 by 2

matrices
( A 0

0 B

)
and

( 0 X
0 0

)
. This gives us the desired inequality (12).
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Remark 2. Given a, b > 0. A natural question arises as to whether the reverse
inequality L(a, b) << Hν(a, b) is valid.

For ν = 0, 1 we have L(a, b) << Hν(a, b) (which is exactly the second part of (4)).
On the other hand,

L(a, b) ≤ Hν(a, b)

cannot be true for ν ∈ (0, 1) due to the fact that f(x) = sinh(x)
x cosh((2ν−1)x) goes to infinity

as x → ±∞. So, f cannot be positive definite.
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ASYMPTOTICALLY OPTIMAL LOWER BOUNDS FOR THE
CONDITION NUMBER OF A REAL VANDERMONDE MATRIX∗
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Abstract. Lower bounds on the condition number min κp(V ) of a real Vandermonde matrix
V are established in terms of the dimension n or n and the largest absolute value among all nodes
that define the Vandermonde matrix. All bounds here are asymptotically sharp, similar to those
in Beckermann (Numer. Math., 85 (2000), pp. 553–577), but bounds here are sharper and cover
more cases. Also, qualitative behaviors of min κp(V ), as well as nearly optimally conditioned real
Vandermonde matrices, as functions of the largest absolute value among all nodes are obtained.

Key words. optimal condition number, Vandermonde matrix, Chebyshev polynomials
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1. Introduction. Given n numbers α1, α2, . . . , αn called nodes, the associated
Vandermonde matrix is defined as

V
def
=

⎛
⎜⎜⎜⎝

1 1 · · · 1
α1 α2 · · · αn

...
...

. . .
...

αn−1
1 αn−1

2 · · · αn−1
n

⎞
⎟⎟⎟⎠ .(1.1)

It is perhaps one of the best known structured matrices, arising from polynomial
interpolation and others [3]. It is invertible if all nodes αj are distinct, i.e., αi �= αj

for i �= j (Vandermonde matrices are also notoriously known to be ill-conditioned [13,
p. 428], [10]). Its condition number can become arbitrarily large, even for modest n.
This is not surprising because moving one node arbitrarily close to another will make
V arbitrarily close to a singular matrix. Therefore the question of importance about
V is not how bad a Vandermonde matrix V can be but rather what one can hope for
at best from V as far as its condition number is concerned.

Although V is well defined no matter if all or some of αj are real or complex, this
paper is confined to real Vandermonde matrix V only, i.e., all αj are real. Throughout
this paper, some notation is exclusively reserved for one assignment, including V and

its nodes αj and αmax
def
= maxj |αj |, along with many others in Table 1.1. Vsym is one

of those V whose nodes are real symmetric with respect to 0, i.e., αi + αn−i+1 = 0.
The major objective of this paper is to bound the �p-condition number κp(V ) =

‖V ‖p‖V −1‖p from below in terms of n or n and αmax. Asymptotically optimal bounds
have been established. By asymptotically optimal bounds we mean those that will give

ρ ≡ asymptotic speed
def
= lim

n→∞
[minκp(V )]

1/n
(1.2)
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α
max

min κ
p
(V)

0 α
opt

=O(1)

Fig. 1.1. Qualitative behaviors of minαj κp(V ) and minαj≥0 κp(V ) as αmax varies.

exactly, where min is taken over some prescribed subset or the entire set of real
Vandermonde matrices. This is done through establishing bounds like

c1n
d1 ≤ minκp(V )/ ρn ≤ c2n

d2 ,(1.3)

written for short as minκp(V ) = On(ρn), where c1, c2, d1, and d2 are constants.
Particular attention will be given to the case p = ∞. In a sense, considering p = ∞
is sufficient because of the exponential growth of κ∞(V ) and because

n−2/pκp(V ) ≤ κ∞(V ) ≤ n2/pκp(V ),(1.4)

and thus all κp(V ) have the same asymptotic speed. Nonetheless, whenever it is
possible to establish sharper bounds on κp(V ) directly instead of indirectly through
bounds on κ∞(V ) combined with (1.4), we shall go for the sharper ones.

In the past, Gautschi and his coauthor had systematically studied the condition
number estimations in [6, 7, 8, 9, 11], where various condition number bounds in
terms of the nodes αj have been established, as well as bounds in terms of the dimen-
sion n only. In [11] two lower bounds in terms of n were obtained for positive nodes
(αj ≥ 0) and real symmetric nodes (αj + αn+1−j = 0). However, bounds in [11] are
far from asymptotically optimal. It is Beckermann [2] in 2000 (see also [1]) who ob-
tained asymptotically optimal condition number estimations for all real Vandermonde
matrices for the first time.

This paper is based on the technical report [17] which was written before the
author came across Beckermann’s landmark paper [2]. But we have more detailed
and refined analysis and cover more cases, and tighter lower and upper bounds, too.
Specifically, the major differences are as follows.

1. We obtain a qualitative plot in Figure 1.1 which shows how minαj κp(V ) and
minαj≥0 κp(V ) subject to a fixed αmax behave qualitatively as functions of
αmax. What Figure 1.1 says is that initially as αmax increases, both minαj

κp(V )
and minαj≥0 κp(V ) decrease until at αmax = αopt when global minimums of
κp(V ) are reached, and then they start climbing again. Notice αopt may be
different for the two cases, but αopt = O(1) in both cases.
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2. We consider minκp(V ) under various constraints: (1) all αj ∈ R, (2) all
αj ≥ 0, (3) αmax = δ or αmax ≤ δ (δ ≤ 1 or δ > 1), with or without assuming
all αj ≥ 0. Essentially only the first two cases were considered in [2], but not
the third one which itself has many subcases and is conceivably important
in practice. Suppose that we seek polynomial approximations to functions
by interpolation on [α, β]. For the approximations to be any good, most
likely, the nodes must be distributed over the entire interval, and in particular
minαj ≈ α and β ≈ maxj αj . This will make αmax ≈ max{|α|, |β|}.

3. Our lower and upper bounds are tighter: we have d2 − d1 = 1 always in
(1.3) for minκp(V ) over real αj or nonnegative αj ≥ 0 (see Remarks 5.1).
Although Theorem 4.1 for the same purpose in [2] is for p = 2, it was remarked
that bounds for the �p-condition number can also be achieved similarly with1

d2 − d1 = 2 − 1/p. Our bounds for p = ∞ can be even tighter. In fact, for
p = ∞ the approach by Beckermann [2] would give d2 − d1 = 2, while our
best results in later sections give d2−d1 =

√
2/4, and therefore smaller upper

over low bound ratios for large n; see Tables 5.1 and 6.1.
4. Also for p = ∞, we have results that give d1 = d2 = 0 for αmax ≤ δ or for

αmax ≤ δ and all αi ≥ 0, where δ ≤ 1 is given, while no results as such2 were
presented in [2]; see Tables 5.1 and 6.1. Both in [2] and here it is obtained
exactly

ρ = 1 +
√

2 for min
αi

κp(V ), and ρ = (1 +
√

2 )2 for min
αi≥0

κp(V ).

It is worth mentioning that despite its notorious ill-conditioning, there is a way to
compute its singular value decomposition to highly relative accuracy [5, 15], and
sometimes very accurate solutions to Vandermonde linear systems [3, 13].

Although our study here does not yield optimally conditioned V , i.e., V that
achieve minκp(V ), it does, however, conclude what nearly optimally conditioned V
are for various cases:

1. For nodes in [−β, β] or for nodes in [α, β] with 0 = α < β (also true for 0 < α;
see [17]), subject to αmax = β, a nearly optimally conditioned V is the one
defined with the translated Chebyshev nodes in a slightly larger interval (so
that αmax = β).

2. If all αj are allowed to vary freely along the entire real line, a nearly optimally
conditioned V is the one defined with Chebyshev nodes (for which αmax =
cos π

2n ≈ 1).
3. If all αj are forced nonnegative but otherwise free, a nearly optimally con-

ditioned V is the one defined with the translated Chebyshev nodes in the
interval [α, β] = [0, 1].

Those nearly optimally conditioned V are truly by the word “nearly.” That is to say
they are just nearly optimal but may not be optimal, according to those few optimally
conditioned V computed in [8] under the condition that the optimal V is unique
(for any fixed n). Beckermann [2, Theorem 4.1] also implied other nearly optimal
conditioned V for the case αi ∈ R or the case αi ≥ 0. In particular, Beckermann
[1, Theorem 5.9] established that the optimal nodes for minαj≥0 κ1(V ) subject to

αmax = γ are αj+1 = (1 + cos jπ
n−1 )γ/2 for 0 ≤ j ≤ n− 1.

1V in [2] is V T here.
2As pointed out by an anonymous referee, it is possible to derive asymptotically optimal lower

bounds for minκ2(V ) for −1 ≤ α ≤ αj < β ≤ 1, using the result about Krylov matrices given in [2,
Remarks 3.4 and 3.5], but it was not done explicitly there.
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Table 1.1

Special notation.

V , αj , αmax Vandermonde matrix V , its n nodes, and αmax = maxj |αj |;
Vsym V with symmetric nodes: αj + αn+1−j = 0;
[α, β] the interval that contains all nodes αj ; see (3.1);
ω, τ real parameters and whenever there is [α, β] in the context,

they are defined by (3.2);
Tn(t), Tn(x;ω, τ) Chebyshev polynomial, its translation Tn(x/ω + τ);

θj , tj θj = 2j−1
2n

π, and tj = cos θj : zeros of Tn(t), defined by (4.1);
xj xj = ω(tj − τ): zeros of Tn(x;ω, τ), defined by (4.2);
ajn ≡ ajn(ω, τ) coefficients of Tn(x;ω, τ) defined by (2.4);

Sn,p(ω, τ)

(∑n

j=0
|ajn|p

)1/p

defined by (2.5).

The rest of this paper is organized as follows. A cornerstone of our study is the
use of the absolute sums of coefficients of translated Chebyshev polynomials of the
first kind. They are defined and computed for a symmetric interval or a nonnegative
interval in section 2. Section 3 proves a general lower bound on κp(V ) with nodes
restricted to a given interval [α, β]. Upper bounds on minκp(V ) are obtained by the
computations for V with the translated Chebyshev nodes. This is done in section 4.
Section 5 derives various asymptotically optimal bounds with or without fixing αmax,
while section 6 considers the case when all αj ≥ 0. Finally, section 7 draws a few
concluding remarks.

Notation. We shall stick to the global assignments in Table 1.1, unless otherwise
explicitly stated. 1 ≤ p ≤ +∞ and p′ is defined by 1/p + 1/p′ = 1. R is the set of
real numbers. �ξ� is the smallest integer that is no less than ξ. For two sequences
of numbers an and bn: an ∼ bn means an/bn → 1 as n → +∞; an = O(bn) means
c1 ≤ an/bn ≤ c2 for constants c1 and c2; an = On(bn) means c1n

d1 ≤ an/bn ≤ c2n
d2

for constants c1, c2, d1, and d2. In this paper, both an and bn grow exponentially in
n, and thus the hidden factors ndi in an = On(bn) are less significant compared to
the exponential growth. For notational convenience, by minj , and minαj

or min over
some constraints on αj , we mean that j runs from 1 to n.

2. Coefficients of Chebyshev polynomials. The nth Chebyshev polynomial
of the first kind is

Tn(t) = cos(n arccos t) for |t| ≤ 1,(2.1)

=
1

2

(
t +
√
t2 − 1

)n
+

1

2

(
t−
√

t2 − 1
)n

for |t| ≥ 1.(2.2)

Given real parameters ω and τ , the nth translated Chebyshev polynomial is defined by

Tn(x;ω, τ)
def
= Tn(x/ω + τ).(2.3)

Here and in the rest of this paper Tn is overloaded with distinctions according to its
argument(s). It can be seen that Tn(x;ω, τ) is a polynomial of degree n in x. Write

Tn(x;ω, τ) = annx
n + an−1nx

n−1 + · · · + a1nx + a0n,(2.4)

where ajn ≡ ajn(ω, τ) are functions of ω and τ which, wherever referenced, are all
either clear from the context or explicitly stated. Define

Sn,p(ω, τ)
def
=

⎛
⎝

n∑
j=0

|ajn|p
⎞
⎠

1/p

,(2.5)
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a function of ω and τ , too. Successful computation of Sn,p(ω, τ) is crucial to our later
development. But, in its generality, an explicit formula for Sn,p(ω, τ) is hard to find.
Nevertheless, we still manage to find formulas for Sn,1(ω, τ) for two different cases
τ = 0 and |τ | ≥ 1.

Theorem 2.1.

1. Sn,1(ω, 0) = |Tn(ι/ω)|, where ι =
√
−1 is the imaginary unit. Thus3

Sn,1(ω, 0) = |Tn(ι/ω)| ∼ 1

2

(
1

|ω| +

√
1 +

1

|ω|2

)n

.

2. For |τ | ≥ 1,

Sn,1(ω, τ) = Tn

(
1

|ω| + |τ |
)

∼ 1

2

⎡
⎣
(

1

|ω| + |τ |
)

+

√(
1

|ω| + |τ |
)2

− 1

⎤
⎦
n

.

For any other p, we may use the inequalities

(n + 1)−1/p′
Sn,1(ω, τ) ≤Sn,p(ω, τ)≤ Sn,1(ω, τ),(2.6)

�(n + 1)/2�−1/p′
Sn,1(ω, 0) ≤Sn,p(ω, 0)≤ Sn,1(ω, 0),(2.7)

to get bounds on Sn,p. Both (2.6) and (2.7) can be proved by using Hölder inequality

m∑
j=1

|ξjζj | ≤

⎛
⎝

m∑
j=1

|ξj |p
⎞
⎠

1/p⎛
⎝

m∑
j=1

|ζj |p
′

⎞
⎠

1/p′

(2.8)

and the fact that
(∑m

j=1 |ξj |p
)1/p

is decreasing in p [12, Lemma 1.1].

Theorem 2.2. Let an > 0 and δ = a
1/n
n . If an ∼ cnμ for constant c > 0 and μ,

then

2Sn,1(δ, 0) ∼ (1 +
√

2 )n

(cnμ)
1/

√
2
, 2Sn,1(δ/2, 1) ∼ (1 +

√
2 )2n

(cnμ)
1/

√
2
.(2.9)

Proof. We will prove more general results: if (ln an)/n → 0 as n → ∞, then

2Sn,1(δ, 0) ∼ (1 +
√

2 )n

a
1/

√
2

n

, 2Sn,1(δ/2, 1) ∼ (1 +
√

2 )2n

a
1/

√
2

n

.(2.10)

Since an ∼ cnμ implies (ln an)/n → 0 as n → ∞, we have (2.9) from (2.10).
The second asymptotical relation in (2.10) follows from the first one because

Sn,1(δ/2, 1) = |Tn(1 + 2δ−1)| = |T2n(ι/
√
δ)| = S2n(

√
δ, 0)

upon noticing that Tn(2t2 − 1) = T2n(t), and
√
δ = a

1/(2n)
n . We shall now prove the

first relation in (2.10). Notice that ln δ−1 ∼ −(ln an)/n ≡ ε ⇒ δ−1 ∼ 1 + ε to get

δ−1 +
√

1 + δ−2 ∼ 1 + ε +
√

2 (1 + ε/2) = (1 +
√

2)(1 + ε/
√

2).

3Going through the proofs in [17], one may see that Theorem 2.1 is valid for complex ω as well.
But for the purpose of this paper, ω is real.
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Therefore

ln [2Sn,1(δ, 0)] ∼ n ln
(
δ−1 +

√
1 + δ−2

)

∼ n
[
ln(1 +

√
2) + ε/

√
2
]

= ln(1 +
√

2 )n − (ln an)/
√

2,

which gives the first asymptotical relation in (2.10).

3. A general lower bound on condition numbers of Vandermonde ma-
trices. Given 1 ≤ p ≤ ∞, the �p-norm of vector u = (μ1, μ2, . . . , μn)T is defined

as ‖u‖p =
(∑n

j=1 |μj |p
)1/p

, and ‖u‖∞ = limp→∞ ‖u‖p = maxj |μj |. The associated

�p-operator norm of an m× n matrix A is defined as ‖A‖p = maxu 	=0 ‖Au‖p/‖u‖p. It
can be proved that ‖A‖p = ‖AT ‖p′ , upon noticing that

‖A‖p = max
u 	=0,v 	=0

|vTAu|
‖v‖p′‖u‖p

,

where 1/p+1/p′ = 1 (see also [16]). Superscript “ ·T ” takes the transpose of a matrix
or a vector.

We shall start by establishing a general lower bound on κp(V ) for

α ≤ min
j

αj ≤ max
j

αj ≤ β.(3.1)

The case α = β is of no interest because then V is of rank 1 and thus κp(V ) = +∞
(unless n = 1). There are many ways to realize (3.1), and it is tempting to always
let α = minj αj and β = maxj αj , but that may not always be possible for theorems

that require −α = β. Recall ω and τ defined by (3.2), and let αmax
def
= maxj |αj |. Set

ω =
β − α

2
> 0, τ = −β + α

β − α
.(3.2)

The linear transformation t = x/ω+τ maps x ∈ [α, β] one-to-one and onto t ∈ [−1, 1].
Lemma 3.1.

max{n, nαn−1
max} ≥ ‖V ‖p ≥ max{n1/p′

, αn−1
max},(3.3)

‖V −1‖p ≥ Sn−1,p′(ω, τ)

n1/p′ ≥

⎧⎪⎪⎨
⎪⎪⎩

(
n

�n/2�

)1/p
Sn−1,1(ω, 0)

n
if −α = β,

Sn−1,1(ω, τ)

n
always.

(3.4)

Proof. Let ej be the jth column of the n× n identity matrix. Then

‖V ‖p = ‖V T ‖p′ ≥
{

‖V T e1‖p′ = n1/p′
,

‖V T en‖p′ ≥ αn−1
max .

This yields the second inequality in (3.3). The known formulas for ‖ · ‖1 and ‖ · ‖∞
[4, page 22] yield ‖V ‖1, ‖V ‖∞ ≤ max{n, nαn−1

max} and now use [14, page 29]

‖V ‖p ≤ ‖V ‖1/p′

∞ ‖V ‖1/p
1
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to arrive at the first inequality in (3.3).
We now show (3.4). Let v be the vector of the coefficients of Tn−1(x;ω, τ) ≡

Tn−1(x/ω + τ), i.e., v = (a0,n−1 a1,n−1 · · · an−1,n−1)
T
. Then

V T v = (Tn−1(α1/ω + τ) Tn−1(α2/ω + τ) · · · Tn−1(αn/ω + τ))
T
,

which yields ‖V T v‖p′ ≤ n1/p′
because |Tn−1(x/ω+τ)| ≤ 1 for x ∈ [α, β]. We therefore

have

‖V −1‖p = ‖V −T ‖p′ ≥ ‖v‖p′

‖V T v‖p′
≥ Sn−1,p′(ω, τ)

n1/p′ .

This is the first inequality in (3.4). Use it, together with (2.6) and (2.7), to get the
second inequality.

Theorem 3.2.

κp(V ) ≥ max

{
Sn−1,p′(ω, τ),

αn−1
maxSn−1,p′(ω, τ)

n1/p′

}
(3.5)

≥ max

{
Sn−1,1(ω, τ)

n1/p
,
αn−1

maxSn−1,1(ω, τ)

n

}
.(3.6)

Proof. This theorem is an immediate consequence of Lemma 3.1.
This is the most general theorem of this paper for a lower bound on κp(V ). It is its

various applications combined with results in section 4 that lead to many interesting
asymptotically optimal lower bounds. There are at least two different ways to apply
Theorem 3.2 to any given V :

1. Take α = minj αj and β = maxj αj and then compute the right-hand side
of (3.5) or (3.6). But unless α ≥ 0 or −α = β, we may have to compute
Sn−1,1(ω, τ) by its definition (2.5) because no explicit formula has yet been
found. In this case, both α and β are nodes of V .

2. Take −α = β = αmax (and thus ω = αmax and τ = 0) and then use the
explicit formula for Sn−1,1(αmax, 0) to compute the right-hand side of (3.6).
In this case, one of α and β is guaranteed to be a node for V .

Remark 3.1. The lower bounds in [2] were essentially obtained as follows. Let

ω = ηαmax. It follows from ‖V ‖p ≥ maxj ‖V ej‖p =
(∑n−1

j=0 αjp
max

)1/p

and (3.4) that

n1/p′
κp(V ) ≥

⎛
⎝

n−1∑
j=0

αjp
max

⎞
⎠

1/p

Sn−1,p′(ω, τ).

But Sn−1,p′(ω, τ) =
(∑

j |ω−jaj n−1(1, τ)|p′
)1/p′

. By Hölder inequality (2.8), we have

n1/p′
κp(V ) ≥

∑
j η

−j |aj n−1(1, τ)| = Sn−1,1(η, τ) which gives

κp(V ) ≥ Sn−1,1(η, τ)/n1/p′
.(3.7)

In the case of [2], p = p′ = 2, either η = 1 and τ = 0 or η = 1/2 and τ = −1. This is
a pretty decent bound, but it partially collapses the interval information, unlike (3.5)
and (3.6) which form the basis for us to eventually arrive at the qualitative behaviors
in Figure 1.1.
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4. Vandermonde matrices with translated Chebyshev nodes. The zeros
of Tn(t) are called

Chebyshev nodes: tj = cos θj, θj = 2j−1
2n π (1 ≤ j ≤ n),(4.1)

and the zeros of the translated Chebyshev polynomial Tn(x;ω, τ) as in (2.3) are called

translated Chebyshev nodes: xj = ω(tj − τ) (1 ≤ j ≤ n).(4.2)

This section, inspired by Gautschi [7], computes κ∞(V ) for V with the translated
Chebyshev nodes for the case −α = β and the case 0 ≤ α < β. But we are still unsure
how to deal with the general case α < 0 < β, −α �= β. Recall ω and τ defined in
(3.2).

First we compute ‖V ‖∞ for V with αj = xj = ω(cos θj − τ). This is relatively
easy. By [8, Theorem 2.1],

‖V ‖∞ = max

⎧⎨
⎩n,

n∑
j=1

|αj |n−1

⎫⎬
⎭ = max

{
n, ωn−1Λn(τ)

}
,(4.3)

where

Λn(τ)
def
=

n∑
j=1

| cos θj − τ |n−1.(4.4)

It can be seen that Λn(−τ) = Λn(τ). In [17, Appendix B], the following asymptotical
behaviors

Λn(0) ∼
√

2n

π
, Λn(1) ∼

√
n

π
2n−1.(4.5)

were obtained. With (4.5), we have the following theorem.
Theorem 4.1. Let αj = xj (1 ≤ j ≤ n) as in (4.2) with (3.2). Then

‖V ‖∞ ∼ max

{
n,

√
2n

π
ωn−1

}
∼ max

{
n,

√
2n

π
αn−1

max

}
for −α = β > 0,

‖V ‖∞ ∼ max

{
n,

√
n

π
βn−1

}
∼ max

{
n,

√
n

π
αn−1

max

}
for 0 = α < β.

In both cases −α = β or 0 = α < β,
∑n

j=1 |xj |n−1 = O(
√
nαn−1

max). But will this
also be true for arbitrary interval [α, β]? We do not know.

We now estimate ‖V −1‖∞ with translated Chebyshev nodes. It is made possible
by Gautschi’s formulas for ‖V −1‖∞ for V with symmetric nodes or with nonnegative
nodes [7]. We have the following theorem.

Theorem 4.2 (see [17]). Let αj = xj (1 ≤ j ≤ n) as in (4.2) with (3.2). Then

ωmin

{
1,

1 + ω

1 + ω2

}
1

n
≤ ‖V −1‖∞
Sn,1(ω, 0)

≤ ωmax

{
1,

1 + ω

1 + ω2

}
33/4

2n
for −α = β > 0,(4.6)

β−α
2 cos π

2n

n
(
1 + β+α

2

) ≤ ‖V −1‖∞
Sn,1(ω, τ)

≤ β − α

2n
√

(1 + β)(1 + α)
for 0 = α < β,(4.7)
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where the first inequality in (4.6) is valid for n ≥ 3 only. Note also that V is a Vsym

when −α = β.
Theorem 4.2 says that for V with translated Chebyshev nodes on [α, β], if −α = β

or 0 ≤ α < β or α < β ≤ 0, then

n‖V −1‖∞
Sn,1(ω, τ)

= O(1).(4.8)

(The case [α, β] for α < β ≤ 0 can be turned into [−β,−α], a case that is covered by
Theorem 4.2.) But what happens when α < 0 < β and −α �= β? Is (4.8) still true?
We conjecture it would be, but do not have any proof for now.

Theorem 4.3. Let αj = xj (1 ≤ j ≤ n) as in (4.2) with (3.2). Then

min
−α=β

κ∞(V ) ≤ 33/4

2
βopt Sn,1(βopt, 0) ∼ 33/4

2

(
2

π

)√
2/4

(1 +
√

2 )n

2n
√

2/4
for −α = β > 0,

min
0=α<β

κ∞(V ) ≤
β+

opt

2
√

1 + β+
opt

Sn,1(β
+
opt/2, 1) ∼

√
2 (1 +

√
2)2n

4(nπ)
√

2/4
for 0 = α < β,

where βopt ≡ ωopt = (n/Λn(0))
1/(n−1) ∼ 1 and β+

opt/2 ≡ ω+
opt = (n/Λn(1))

1/(n−1) ∼
1/2.

Proof. A proof can be found in [17], and the asymptotic relations can be achieved
by applying Theorem 2.2.

5. Condition numbers for V with αi ∈ [α, β] and −α = β. In this section,
we shall establish lower and upper bounds on

minκp(V ) subject to · · ·
αj ∈ R αmax ≤ δ or αmax = δ

Theorems 5.3, 5.3′ Theorems 5.4, 5.4′

where for each type of minimization we have two versions of bounds—one for all p
(Theorems 5.3 and 5.4) and one just for p = ∞ (Theorems 5.3′ and 5.4′, sharper at
least asymptotically than by just setting p = ∞ in the other version).

Lemma 5.1.

1. In |ω|, Sn,p(ω, τ) is decreasing, while |ω|nSn,p(ω, τ) is increasing.
2. ωSn,1(ω, 0) is decreasing in ω if ω ≤ max{

√
n− 1,

√
2} or n is odd.

Proof. For item 1, we notice that [Sn,p(ω, τ)]p is a polynomial in |ω|−p while
[|ω|nSn,p(ω, τ)]p is a polynomial in |ω|p. Item 2 is proved in [17].

Lemma 5.2.

κp(V ) ≥ max

{
Sn−1,p′(αmax, 0),

αn−1
maxSn−1,p′(αmax, 0)

n1/p′

}
(5.1)

=

{
Sn−1,p′(αmax, 0) if αmax ≤ n1/[p′(n−1)],

αn−1
maxSn−1,p′(αmax, 0)

/
n1/p′

if αmax > n1/[p′(n−1)].
(5.2)

Proof. Apply Theorem 3.2 to the case −α = β = αmax (and thus ω = αmax and
τ = 0) to get (5.1). By Lemma 5.1, the first quantity within max{· · ·} in (5.1) is
decreasing in αmax, while the second one is increasing in αmax. Therefore the right-
hand side of (5.1) achieves its minimum when the two are equal, i.e., n1/p′

= αn−1
max ,

which yields (5.2).
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Theorem 5.3.

Sn−1,p′(n1/[p′(n−1)], 0) ≤ min
αj

κp(V ) ≤ min
αj

κp(Vsym) ≤ n1/p 33/4

2
Sn,1(1, 0).(5.3)

Proof. The right-hand side of (5.1), as a function of αmax, achieves its minimum
at αmax = n1/[p′(n−1)]. That gives the first inequality. The second inequality is
true because {Vsym} is a subset of all Vandermonde matrices. We now prove the
third one. To this end, consider V = Vsym with Chebyshev nodes tj as in (4.1).
Then ‖V ‖p ≤ n by (3.3). Apply Theorem 4.2 to the case −α = β = 1 = ω to get

‖V −1‖∞ ≤ 33/4

2 · n−1Sn,1(1, 0) and then to get

‖V −1‖p ≤ n1/p‖V −1‖∞ ≤ n1/p 33/4

2
· n−1Sn,1(1, 0).

So for this Vsym, κp(Vsym) ≤ n1/p 33/4

2 · Sn,1(1, 0), as needed.
We include minαj

κp(Vsym) in (5.3) mainly because Vandermonde matrices with
symmetric nodes were heavily studied by Gautschi [7, 8] and Gautschi and Ingese [11].
Moreover, assuming that the optimally conditioned V is unique, Gautschi [8] showed
that the optimally conditioned V must have symmetric nodes.

Remark 5.1. Upon using (3.7) with η = 1 and τ = 0, we have

Sn−1,1(1, 0)/n1/p′ ≤ min
αj

κp(V ) ≤ n1/p 33/4

2
Sn,1(1, 0),(5.4)

which differs from (5.3) only in the leftmost inequalities. The left inequality in (5.4)
is due to [2] for p = 2, and it is less sharp than the left inequality in (5.3) at least for
p = ∞ because, by Theorem 2.2,

Sn−1,1(n
1/(n−1), 0) ∼ (1 +

√
2)n−1

2n1/
√

2
,

Sn−1,1(1, 0)

n
∼ (1 +

√
2)n−1

2n
.

Even so, for any 1 ≤ p ≤ ∞, the ratio of the upper bound in (5.4) over the lower

bound is n 33/4

2 , and it gives minαj κp(V ) a lower and upper bound like (1.3) with
d2 − d1 = 1, while similar lower and upper bounds in [2] for the same purpose are
with d2 − d1 = 2 − 1/p.

The third inequality in (5.3) was proved by simply picking a special V with
Chebyshev nodes. This turns out to be good enough, as we shall see later, in yielding
the correct asymptotic speed in our notation On, but it does not produce the best
possible factor nd hidden in the notation. For p = ∞, however, a tighter upper bound
is possible by using the V with the translated Chebyshev nodes in [−βopt, βopt], where

βopt = (n/Λn(0))
1/(n−1)

as in Theorem 4.3. Of course, one may use this V for all p, but
doing so will not only lead to a more complicated bound but also the resulted bound
may not be much better due to more complicated estimation of ‖V ‖p. For this reason,
we shall state a sharper version of Theorem 5.3 for p = ∞ only as a consequence of
Theorem 4.3. The upper bound in (5.5) is sharper because of 1 ∼ βopt > 1 and item 2
in Lemma 5.1.

Theorem 5.3′. Let βopt = (n/Λn(0))
1/(n−1)

with Λn(1) defined by (4.4). Then

Sn−1,1(n
1/(n−1), 0) ≤ min

αj

κ∞(V ) ≤ min
αj

κ∞(Vsym) ≤ 33/4

2
βopt Sn,1(βopt, 0).(5.5)
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In what follows, we shall establish theorems that are in the same spirit as Theo-
rems 5.3 and 5.3′, but with αmax subject to a constraint.

Theorem 5.4. Let δ > 0 and set δ′ = δ/ cos π
2n . If δ ≤ 1, then

Sn−1,p′(δ, 0) ≤ min
αmax≤δ

κp(V ) ≤ min
αmax=δ

κp(V ) ≤ n1/p (
√

2 + 1)33/4

4
δ′ Sn,1(δ

′, 0).(5.6)

If δ > 1, then

δn−1Sn−1,p′(δ, 0)

np′ ≤ min
αmax=δ

κp(V ) ≤ n1/p 33/4
[
cos π

2n

]n−1

2
(δ′)nSn,1(δ

′, 0),(5.7)

Sn−1,p′(n1/[p′(n−1)], 0) ≤ min
αmax≤δ

κp(V ) ≤ n1/p 33/4

2
· Sn,1(1, 0).(5.8)

Inequalities (5.6), (5.7), and (5.8) remain valid with V replaced by Vsym.
Proof. (1) Observe that {V : αmax = δ} ⊂ {V : αmax ≤ δ} to get the middle

inequality in (5.6).
(2) Lemma 3.1 also implies that

κp(V ) ≥
{

Sn−1,p′(ω, τ) if αmax ≤ 1,

αn−1
maxSn−1,p′(ω, τ)

/
n1/p′

if αmax > 1
(5.9)

upon noticing that ‖V ‖p ≥ n1/p′
if αmax ≤ 1, and ‖V ‖p ≥ αn−1

max if αmax > 1. Apply
it to the case −α = β = αmax ≤ δ ≤ 1 (and thus ω = αmax and τ = 0) to obtain
κp(V ) ≥ Sn−1,p′(αmax, 0) ≥ Sn−1,p′(δ, 0) by Lemma 5.1. This gives the first inequality
in (5.6).

(3) Apply (5.9) to the case −α = β = δ = αmax to obtain the first inequality in
(5.7).

(4) Take −α = β = δ/ cos π
2n = δ′, and αj = xj (1 ≤ j ≤ n), the translated

Chebyshev nodes as in (4.2). Then

τ = 0, αmax = max |αj | = β cos
π

2n
= δ, δ ≤ ω = β = δ′.

Theorem 4.2 says that for the V with those nodes

‖V −1‖∞
Sn,1(ω, 0)

≤ ωmax

{
1,

1 + ω

1 + ω2

}
33/4

2n
≤

⎧⎪⎪⎨
⎪⎪⎩

δ′
(
√

2 + 1)33/4

4n
if δ ≤ 1,

δ′
33/4

2n
if δ ≥ 1,

where we have used

max
ω>0

{
1,

1 + ω

1 + ω2

}
=

1 + ω

1 + ω2

∣∣∣∣
ω=

√
2−1

=

√
2 + 1

2
, max

ω≥1

{
1,

1 + ω

1 + ω2

}
= 1.(5.10)

Now employ ‖V ‖p ≤ n if δ ≤ 1, ‖V ‖p ≤ nδn−1 if δ ≥ 1, and ‖V −1‖p ≤ n1/p‖V −1‖∞
to get the last inequalities in (5.6) and in (5.7).

(5) A proof of (5.8) can be done in the same way as for Theorem 5.3.
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(6) Finally, when V is replaced by Vsym, the first inequalities in (5.6), (5.7),
and (5.8) still hold. The middle inequality in (5.6) also remains valid. The last
inequalities in (5.6), (5.7), and (5.8) hold because they all were proved by bounding
some κp(Vsym).

There are stronger versions of (5.7) and (5.8) for p = ∞, too, just as we did for
Theorem 5.3.

Theorem 5.4′. Let δ > 1 and set δ′ = δ/ cos π
2n . Then

δn−1Sn−1,1(δ, 0)

n
≤ min

αmax=δ
κ∞(V ) ≤ 33/4

2

max{n,Λn(0)(δ′)n−1}
n

δ′ Sn,1(δ
′, 0),(5.11)

Sn−1,1(n
1/(n−1), 0) ≤ min

αmax≤δ
κ∞(V ) ≤ 33/4

2
ω1 Sn,1(ω1, 0),(5.12)

where ω1 = min{δ′, (n/Λn(0))
1/(n−1)}. It can be seen that ω1 = (n/Λn(0))

1/(n−1)
for

n sufficiently large. Inequalities (5.11) and (5.12) remain valid with V replaced by
Vsym.

Proof. Only the second inequalities in (5.11) and (5.12) need proofs. For (5.11),
it follows from the proof of Theorem 5.4, upon using ‖V ‖∞ = max{n, ωn−1Λn(0)}
which for large n is proportional to

√
n δn−1, better than ‖V ‖∞ ≤ nδn−1. The second

inequality in (5.12) is obtained by minimizing

33/4

2

max {nα′
max Sn,1(α

′
max, 0),Λn(0)(α′

max)
nSn,1(α

′
max, 0)}

n

subject to αmax ≤ δ, where α′
max = αmax/ cos π

2n . This minimization is solved by
noticing Lemma 5.1, which says the first quantity within max{· · ·} is decreasing in
αmax when αmax ≤ max{

√
n− 1,

√
2}, while the second one is increasing in αmax.

That ω1 = (n/Λn(0))
1/(n−1)

for n sufficiently large is due to (n/Λn(0))
1/(n−1) ∼

(2π/n)
1/[2(n−1)] ∼ 1.

We shall now investigate the tightness of the upper and the lower bounds we
have established so far, as well as the asymptotical speeds of κp(V ) minimized over a
certain set of Vandermonde matrices. For this purpose, Li [17] obtained Table 5.1 for
the asymptotical behaviors of the ratios of the upper bounds over the corresponding
lower bounds. This table is for p = ∞. (For any other p, Sn−1,p′ in the lower bounds
will have to be weakened by using (2.7) so as to apply the same lines of arguments in
[17].)

Given that Sn,1(δ, 0) goes to +∞ exponentially as n → +∞, our upper bounds
and the lower bounds in Theorems 5.3, 5.3′, 5.4, and 5.4′ are very tight. These bounds,
together with Lemma 5.1, lead to the qualitative behavior of minαj κp(V ) as αmax

varies, depicted in Figure 1.1. Examining how we got the upper bounds by these
inequalities, we conclude that

For a fixed αmax, a nearly optimally conditioned V is the one with
the translated Chebyshev nodes on the symmetric interval that is
slightly larger than [−αmax, αmax] (so that ±αmax are part of the
nodes).

(5.13)

In addition to Table 5.1, Li [17] also obtained the following corollary on the
asymptotical speeds of minκ∞(V ) as functions of n for various cases.
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Table 5.1

Ratios of the upper bounds over the lower bounds for p = ∞.

minκ∞(V ) subject to · · · Ratio (asymptotically dominant term) Ineq.

αj ∈ R
(1+

√
2)33/4

2
× n1/

√
2 (5.3)

(1+
√

2)33/4

2

(
2
π

)√2/4 × n
√

2/4 (5.5)

αmax ≤ δ or αmax = δ for δ ≤ 1 (1+
√

2)33/4

2
(1 +

√
δ2 + 1 ) × n0 (5.6)

αmax = δ for δ > 1 33/4

2
(1 +

√
δ2 + 1 ) × n1 (5.7)

33/4

2

√
π
2
(1 +

√
δ2 + 1 ) × n1/2 (5.11)

αmax ≤ δ for δ > 1 (1+
√

2)33/4

2
× n1/

√
2 (5.8)

(1+
√

2)33/4

2

(
2
π

)√2/4 × n
√

2/4 (5.12)

Corollary 5.5. Let δ > 0. We have

min
αj

κ∞(V ) = On

(
(1 +

√
2 )n
)
,(5.14)

min
αmax≤δ

κ∞(V ), min
αmax=δ

κ∞(V )= O
(
(δ−1 +

√
1 + δ−2 )n

)
for δ ≤ 1,(5.15)

min
αmax=δ

κ∞(V )= On

(
(1 +

√
1 + δ2 )n

)
for δ > 1,(5.16)

min
αmax≤δ

κ∞(V )= On

(
(1 +

√
2 )n
)

for δ > 1.(5.17)

Equations (5.14)–(5.17) remain valid with V replaced by Vsym.
This is a very informative corollary; for example,

min
αmax≤1/2

κ∞(V ), min
αmax=1/2

κ∞(V ) = O
(
(2 +

√
5 )n
)
,

min
αmax=2

κ∞(V ) = On

(
(1 +

√
5 )n
)
.

It is worth mentioning that (5.15) is in terms of O, while all other equations in
Corollary 5.5 are in terms of On.

6. Condition numbers for V with αi ∈ [α, β] and 0 ≤ α < β. Notice
that the case α < β ≤ 0 can be turned into this case by reversing the signs of all αj

while leaving ‖V ‖p and ‖V −1‖p unchanged. So the results in what follows apply to
the case α < β ≤ 0 as well after minor modifications. We shall present lower and
upper bounds on

minκp(V ) subject to · · ·
αj ≥ 0 αj ≥ 0, αmax ≤ δ or αmax = δ

Theorems 6.2, 6.2′ Theorems 6.3, 6.3′

Most developments here are parallel to those in the previous section. Proofs share
similar lines of arguments as well and thus will be omitted. Also omitted here are
various results for the case 0 < α < β, except (6.1) below. The interested reader may
find omitted proofs and results in [17].
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Lemma 6.1. Suppose that all αj ≥ 0, and let α = minj αj and β = maxj αj.
Then

κp(V ) ≥ max
{
Sn−1,p′(ω, τ), αn−1

maxSn−1,p′(ω, τ)
/
n1/p′

}
(6.1)

≥ max
{
Sn−1,p′ (αmax/2, 1) αn−1

maxSn−1,p′ (αmax/2, 1)
/
n1/p′

}
(6.2)

=

{
Sn−1,p′ (αmax/2, 1) if αmax ≤ n1/[p′(n−1)],

αn−1
maxSn−1,p′ (αmax/2, 1)

/
n1/p′

if αmax > n1/[p′(n−1)].
(6.3)

Theorem 6.2.

Sn−1,p′

(
n1/[p′(n−1)]

/
2, 1
)
≤ min

αj≥0
κp(V ) ≤ n1/p

√
2

4
Sn,1(1/2, 1).(6.4)

Theorem 6.2′. Let β+
opt = 2 (n/Λn(1))

1/(n−1)
with Λn(1) defined by (4.4). Then

Sn−1,1

(
n1/(n−1)

/
2, 1
)
≤ min

αj≥0
κ∞(V ) ≤

β+
opt

2
√

1 + β+
opt

Sn,1(β
+
opt/2, 1).(6.5)

Theorem 6.3. Let δ > 0, and let δ′ = [2/(1 + c)]δ ≥ δ, where c = cos π
2n . If

δ < 1, then

Sn−1,p′(δ/2, 1) ≤ min
0≤αj≤δ

κp(V ) ≤ min
0≤αj ,αmax=δ

κp(V ) ≤ n1/pδ′

2
√

1 + δ′
Sn,1(δ

′/2, 1).(6.6)

If δ > 1, then

δn−1Sn−1,p′(δ/2, 1)

n1/p′ ≤ min
0≤αj ,αmax=δ

κp(V ) ≤
(

1 + c

2

)n−1
n1/p(δ′)n

2
√

1 + δ′
Sn,1(δ

′/2, 1),

(6.7)

Sn−1,p′

(
n1/[p′(n−1)]

2
, 1

)
≤ min

0≤αj≤δ
κp(V ) ≤ n1/p

√
2

4
Sn,1(1/2, 1).(6.8)

Theorem 6.3′. Let δ > 1, and let δ′ = [2/(1 + c)]δ ≥ δ, where c = cos π
2n . Then

δn−1Sn−1,1(δ/2, 1)

n
≤ min

0≤αj ,αmax=δ
κ∞(V ) ≤ max{n, 2−(n−1)Λn(1)(δ′)n−1}

n
(6.9)

× δ′

2
√

1 + δ′
Sn,1(δ

′/2, 1),

Sn−1,1

(
n1/(n−1)/2, 1

)
≤ min

0≤αj≤δ
κ∞(V ) ≤ δ1

2
√

1 + δ1
Sn,1(δ1/2, 1),(6.10)

where δ1 = min{δ′, 2 (n/Λn(1))
1/(n−1)}. It can be seen that δ1 = 2 (n/Λn(1))

1/(n−1)

for n sufficiently large.
Table 6.1 from [17] lists the asymptotically dominant terms for the ratios of the

upper bounds over the lower bounds. The conclusion is that these bounds are very
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Table 6.1

Ratios of the upper bounds over the lower bounds for p = ∞ and nonnegative nodes.

minκ∞(V ) subject to · · · Ratio (asymptotically dominant term) Ineq.

αj ≥ 0 4+3
√

2
4

× n1/
√

2 (6.4)

√
2

4
π
√

2/4 × n
√

2/4 (6.5)

0 ≤ αj , αmax = δ or ≤ δ for δ ≤ 1 (1+
√

1+δ )2

2
√

1+δ
× n0 (6.6)

0 ≤ αj , αmax = δ for δ > 1 (1+
√

1+δ )2

2
√

1+δ
× n1 (6.7)

(1+
√

1+δ )2

2
√

1+δ
1
π

× n1/2 (6.9)

0 ≤ αj , αmax ≤ δ for δ > 1 4+3
√

2
4

× n1/
√

2 (6.8)

√
2

4
π
√

2/4 × n
√

2/4 (6.10)

tight. These bounds, together with Lemma 5.1, lead to the qualitative behavior of
minαj≥0 κ∞(V ) as αmax varies, depicted in Figure 1.1. Also, proofs in [17] yield

For a fixed αmax, a nearly optimally conditioned V is the one with
the translated Chebyshev nodes on an interval slightly larger than
[0, αmax] (so that αmax is a node).

(6.11)

As was pointed out in section 1, optimal nodes with respect to minαj≥0 κ1(V ) subject
to αmax = γ were obtained by [1, Theorem 5.9].

Corollary 6.4. Let 0 < δ. We then have

min
0≤αj≤δ

κ∞(V ), min
0≤αj ,αmax=δ

κ∞(V ) = O
([

δ−1/2 + 1 +
√

1 + δ−1
]2n)

for δ ≤ 1,

min
0≤αj ,αmax=δ

κ∞(V ) = On

(
(1 +

√
1 + δ )2n

)
for δ > 1,

min
0≤αj≤δ

κ∞(V ) = On

(
(3 + 2

√
2 )n
)

for δ > 1,

min
αj≥0

κ∞(V ) = On

(
(3 + 2

√
2 )n
)
.

7. Concluding remarks. We have obtained a series of lower and upper bounds
on the optimal condition number minκp(V ) of real Vandermonde matrices. These
bounds are proved to be asymptotically optimal, except possibly the one in Theo-
rem 3.2 in the case when interval [α, β] is not one of the following three kinds: (1)
symmetrical (−α = β), (2) nonnegative (α = 0), (3) nonpositive (β = 0). Asymptot-
ically optimal bounds have been established for the case α > 0 and the case β < 0
(too [17]).

Our results led us to deduce the qualitative behaviors of optimally conditioned
Vandermonde matrices as the largest absolute value αmax of all nodes varies, as shown
in Figure 1.1 at the beginning of this paper. Our proofs yielded nearly optimally
conditioned Vandermonde matrices in various circumstances.

Similar bounds, though unclear about their asymptotical optimality, have been
established, too, for confluent Vandermonde matrices [18].
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FILTERED CONJUGATE RESIDUAL-TYPE ALGORITHMS WITH
APPLICATIONS∗

YOUSEF SAAD†

Abstract. It is often necessary to filter out an eigenspace of a given matrix A before performing
certain computations with it. The eigenspace usually corresponds to undesired eigenvalues in the
underlying application. One such application is in information retrieval, where the method of latent
semantic indexing replaces the original matrix with a lower-rank one using tools based on the singular
value decomposition. Here the low-rank approximation to the original matrix is used to analyze
similarities with a given query vector. Filtering has the effect of yielding the most relevant part of
the desired solution while discarding noise and redundancies in the underlying problem. Another
common application is to compute an invariant subspace of a symmetric matrix associated with
eigenvalues in a given interval. In this case, it is necessary to filter out eigenvalues that are not in
the interval of the wanted eigenvalues. This paper presents a few conjugate gradient–like methods to
provide solutions to these types of problems by iterative procedures which utilize only matrix-vector
products.

Key words. conjugate residual, conjugate gradient, polynomial filtering, principal component
analysis, interior eigenvalues
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1. Introduction. A number of applications in science and engineering require
filtering, a process by which a matrix A is replaced by a function φ(A), where the filter
function φ has the desirable property of filtering out certain unwanted eigenvalues.
For example, this arises when computing the vector Akb, where Ak is a rank-k ap-
proximation to A, and b a certain vector. Typically, Ak is the rank-k approximation
that is the closest to A in the 2-norm sense, and it can be obtained from the singular
value decomposition (SVD) of A. These methods include the techniques based on
principal component analysis (PCA), such as, for example, latent semantic indexing
(LSI); see [6].

Classical methods based on the SVD consist of approximating A by a rank-k ma-
trix obtained by retaining only the k largest singular values in the SVD. For example,
if A = UΣV T is the SVD of A, where U and V are unitary and Σ is diagonal, then
methods based on PCA replace A by Ak = UΣkV

T , where Σk is obtained from Σ by
setting all singular values σi < σk to zero. This truncated SVD (TSVD) technique
amounts to replacing Ab by s(A)b, where s(λ) is a step function that has value 1 for
λ ≥ σk and zero for λ < σk. An obvious limitation of the SVD-based approach is its
excessive computational cost for large matrices since in principle, at least, a complete
SVD factorization of A is required.

Another important use of filtering is when computing large invariant subspaces.
Here, one can think of a Lanczos-type procedure applied to the matrix p(A) instead
of A, where p is a low-degree polynomial. This approach has been successfully used
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0 βα 0 α β α β0

Fig. 1. Low-pass (left), middle-pass (center), and high-pass (right) filter functions.

in an application related to quantum mechanics [4], where large invariant subspaces
associated with the lowest part of the spectrum are required. A rationale and some
details on this approach are given in section 3. An emphasis is placed on invariant
subspaces associated with middle eigenvalues, as this was not covered in [4].

The algorithms to be described in the next sections are based on polynomial
filtering. Typically, a smooth “base filter” φ is selected, and then a sequence of least-
squares polynomial approximations to this base function is constructed, from which a
sequence of approximate solutions is extracted. One of the main goals of this paper is
to express these approximations in a form which resembles the well-known conjugate
gradient (CG) or conjugate residual (CR) algorithms. The algorithms to be described
can be used to compute solutions of various problems in numerical linear algebra. As
an example, by selecting the filter function φ to be the exponential function, the
algorithms will yield a method for computing approximations to exp(A)b.

2. Polynomial filtering. Given a filter function φ, a symmetric matrix A, and a
vector b, the problem addressed in this paper is to formulate algorithms for computing
approximations of the form p(A)b to the filtered vector φ(A)b, where p is a polynomial.
Specifically, we are interested in CG-type algorithms for finding “best” approximations
to φ(A)b.

This paper considers only three cases for the filter function φ: (a) A high-pass
filter function, (b) a low-pass filter, and (c) a middle-pass filter. These three cases are
illustrated in Figure 1. A high-pass (low-pass) filter function is one that is close to 1
for large (resp., small) eigenvalues and close to zero for small (resp., large) eigenvalues.
A middle-pass filter is close to 1 for eigenvalues in a certain interval of the spectrum
and close to zero elsewhere.

Consider a low-pass filter φ. We seek to approximate φ(A)b by vectors of the
form ρ(A)b, where ρ is a polynomial. We will assume that φ(0) = 1 so that ρ can be
sought to also satisfy ρ(0) = 1. Thus the polynomial is selected to be in the form

ρ(λ) = 1 − λs(λ).(1)

In fact, ρ has the form of residual polynomials used in standard iterative methods
such as the CG iteration. We will still often use the term “residual” polynomial for
ρ, noting that there is not really a linear system to solve. We would like to minimize,
for a certain norm ‖.‖w, the difference

‖φ(A)b− ρ(A)b‖w(2)

over all polynomials ρ of degree ≤ k, such as ρ(0) = 1.
The solution corresponding to the case of a high-pass filter can be trivially ob-

tained from that of a low-pass filter. When ψ is a high-pass filter, then we can
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minimize ‖(1 − ψ) − ρ(λ)‖w, where now φ ≡ 1 − ψ is a low-pass filter. The best
approximation to ψ is 1 − ρ(λ) = λs(λ), and therefore the vector As(A)b, where ρ
minimizes (2), will be the desired solution in this case.

In summary, given a low-pass filter function φ, we seek s so that ‖φ(λ) − (1 −
λ s(λ))‖w is small—as measured by a certain norm w. The polynomial ρ(λ) = 1 −
λs(λ) approximates the filter φ. This will also yield the minimum for ‖(1 − φ) −
λ s(λ)‖w with respect to λs(λ). The focus is now on the λs(λ), and the same process
makes this polynomial close to the function

ψ ≡ 1 − φ(3)

a high-pass filter, which we will refer to as the dual filter to φ. The case of the middle-
pass filter, which will be addressed in detail in section 3.1, resembles the case of the
high-pass filter since the filter function is such that φ(0) = 0.

There are many applications of filtering. Low-pass filters are of interest when
computing invariant subspaces associated with all eigenvalues ≤ α. For example, the
Lanczos algorithm can be used on the matrix ρ(A), where ρ is a low-degree polynomial
with the property that ρ(λ) is small for λ > α. This can be generalized to other
situations, and thus in fact eigenspaces associated with eigenvalues located in arbitrary
sub-intervals of the spectrum can be computed with the help of filtering. Filtering
can also be used to solve highly ill-conditioned linear systems by regularization, but
this is not considered in this paper.

An important application is in information retrieval, where one seeks to compute
a matrix-vector product Akb, where Ak is a low-rank approximation to A. Here A is
not necessarily a square matrix, and we wish to find an approximation of Ab which is
accurate in the dominant singular space. This is the situation in LSI, apart from the
fact that it is the transpose of A that is considered instead of A. If A = UΣV T is the
SVD of A, then calculating a solution of the form Aφ(ATA)b, we find that

Aφ(ATA)b = (UΣV T )V φ(ΣTΣ)V T b

= UΣφ(ΣTΣ)V T b.

The requirement is that Σφ(ΣTΣ) be close to Σ for large σi’s and close to zero for
small σi’s. So this situation can be handled by a low-pass filter. In [19], a method
of this type was used by exploiting expansions of the desired polynomial in a basis of
orthogonal polynomials.

2.1. Polynomial filters. In this section, we focus on the problem of filtered
iterations. We begin with some notation as well as a rationale for the approach to
be taken. We consider a CG-like (actually CR-like) method which uses an arbitrary
inner product of functions. The main reason why we seek to write the solution al-
gorithm by exploiting the CR/CG framework is that we already know some of the
good algorithmic properties of these methods. In particular, the solution and residual
vectors are available at each step, and the solution vector at step k is easily updated
from the solution vector at step k−1. The numerical properties of the algorithms are
also well understood, both in practice and in theory.

Recall that the approximate solution vector obtained at the jth step of a Krylov
subspace method is of the form x0 + sj(A)r0, where sj is a polynomial of degree ≤ j.
The corresponding residual vector is ρj+1(λ) = 1 − λsj(λ). This polynomial is of
degree j + 1. It has value 1 at λ = 0, and it approximates a low-pass filter function
ψ.
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2.2. CR algorithms in polynomial spaces. In the standard CR algorithm,
the solution polynomial sj minimizes ‖(I − As(A))r0‖2 over all polynomials s of
degree ≤ j. This is nothing but a discrete least-squares norm when expressed in the
eigenbasis. Indeed, if the eigenexpansion of r0 is r0 ≡

∑n
i=1 ωiui, then

‖(I −As(A))r0‖2 =

[
n∑

i=1

ω2
i (1 − λis(λi))

2

]1/2

≡ ‖1 − λs(λ)‖w.

It is possible to write a CR-like algorithm which minimizes ‖1 − λs(λ)‖w for any
2-norm associated with a (proper) inner product over polynomial spaces:

〈p, q〉w .

The generic algorithm is given below for reference.
Algorithm 2.1. Formal conjugate residual algorithm.

0. Compute r0 := b−Ax0, p0 := r0π0 = ρ0 = 1
1. Compute λπ0

2. For j = 0, 1, . . . , until convergence Do:
3. αj := 〈ρj , λρj〉w/〈λπj , λπj〉w
4. xj+1 := xj + αjpj
5. rj+1 := rj − αjApj ρj+1 = ρj − αjλπj

6. βj := 〈ρj+1, λρj+1〉w/〈ρj , λρj〉w
7. pj+1 := rj+1 + βjpj πj+1 := ρj+1 + βjπj

8. Compute λπj+1

9. EndDo
It is easy to show that the residual polynomial ρj generated by this algorithm

minimizes ‖ρ(λ)‖w among all polynomials of the form ρ(λ) = 1 − λs(λ), where s is
any polynomial of degree ≤ j − 1. In other words, ρj minimizes ‖ρ(λ)‖w among all
polynomials ρ of degree ≤ j such that ρ(0) = 1. It is also easy to show that the
polynomials λπj are orthogonal to each other; i.e., 〈πi, πj〉 = 0 for i �= j.

Proposition 2.1. The solution vector xj+1 computed at the jth step of Algo-
rithm 2.1 is of the form xj+1 = x0 + sj(A)r0, where sj is the jth degree polynomial

sj(λ) = α0π0(λ) + · · · + αjπj(λ).(4)

The polynomials πj and the residual polynomials ρj+1(λ) satisfy the following orthog-
onality relations:

〈λπj(λ), λπi(λ)〉w = 〈λρj(λ), ρi(λ)〉w = 0 for i �= j.(5)

In addition, the residual polynomial ρj+1 = 1−λsj(λ) minimizes ‖1−λs(λ)‖w among
all polynomials s of degree ≤ j.

A formal proof is not necessary, but one can exploit the analogy with the usual CR
algorithm. In CR (see, e.g., [24]), it is known that the vectors Apj are orthogonal to
each other. Writing a member of the affine Krylov subspace x0+Kj as x = x0+s(A)r0,
where the degree of s is ≤ j, the vectors rj+1 minimize the 2-norm of all residuals
b−Ax = r0 −As(A)r0 for x in x0 + Kj .

It is useful to comment on implementation aspects. In the usual CR algorithm
(see [24]) we would compute Apj+1 in line 8 using the relation which follows from
line 7,

Apj+1 = Arj+1 + βjApj ,
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in order to avoid an additional matrix-vector product. The vector Arj+1 is computed
after line 5 (and saved for the next step to get αj+1), and Apj+1 is then obtained
from it using the above formula. Generally, this needs to be done in the situation
when the computation of the scalar αj in line 3 requires the vector Apj as well as the
vector Arj . In the very first step, p and r are the same, so computing Ap0 in line
1 will suffice. Thereafter, it is necessary to compute Arj (before line 3) and update
Apj+1, as was just explained. This strategy is not necessary here because the updates
and computations of polynomials require relatively few operations.

We would like to modify the algorithm shown above in order to incorporate fil-
tering. As it is written the algorithm does not lend itself to filtering. Indeed, filtering
amounts to minimizing some norm of φ(λ)−(1−λs(λ)), where φ is the filter function,
and one must remember that φ(A)v may be practically difficult to evaluate for a given
vector v. In particular, φ(A)r0 may not be available.

We omit the discussion of CG-type iterations—but it is clear that a CG algorithm
in polynomial space can also be written. The residual polynomials will be orthogonal,
while the πjs will be conjugate (〈λπj , πi〉w = 0 for i �= j).

2.3. Filtered CR polynomial iterations. Given a certain filter function φ,
the method to be described in this section consists of finding an approximate solution
xj whose residual polynomial ρj(λ) approximates the function φ, in the least-squares
sense. Throughout this section, we consider the dual viewpoint, which is that we are
given a high-pass filter ψ which is close to zero for λ near zero and close to 1 for
large eigenvalues. To make the computation tractable, the function ψ will be chosen
to be a piecewise continuous function, though this is not an essential requirement.
This will be discussed in more detail in section 2.5. In mathematical terms, we seek
a polynomial sj(λ) such that

‖ψ(λ) − λsj(λ)‖w = min
s ∈ Pj

‖ψ(λ) − λs(λ)‖w.(6)

Here Pj represents the space of polynomials of degree ≤ j, and the w-norm is associ-
ated with an inner product of the form

〈p, q〉w =

∫ β

0

p(λ)q(λ)w(λ)dλ.

Note that the left bound of the interval is taken to be zero without loss of generality.
For the sake of clarity, the discussion of the choice of the weight function is deferred
to a later section. For now, all that needs to be said is that w is selected primarily to
enable an easy computation of an inner product of any two functions involved in the
algorithms, without resorting to numerical integration.

The condition for the polynomial sj to be the solution to (6) is that

〈ψ(λ) − λsj(λ), λq(λ)〉w = 0 ∀q ∈ Pj .

In order to construct the sequence of approximate solutions, we can generate the
sequence of polynomials of the form λπj which are orthogonal. The sequence satisfies
a three-term recurrence, and the approximation can be directly expressed in this basis.
This was the approach taken in [11, 19].

As a slight alternative, we can try to proceed as in the CR algorithm by updating
sj from sj−1 as

sj(λ) = sj−1(λ) + αjπj(λ).(7)
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The scalar αj can be obtained by expressing the condition that ψ(λ) − λsj(λ) is
orthogonal to λπj(λ), or 〈ψ(λ) − λsj(λ), λπj(λ)〉w = 0, which, with the use of (7),
leads to

αj =
〈ψ(λ) − λsj−1(λ), λπj(λ)〉w

〈λπj(λ), λπj(λ)〉w
.(8)

The orthogonality of the set {λπi} can be exploited to observe that λsj−1(λ) is or-
thogonal to λπj . In the end the above expression simplifies to

αj =
〈ψ(λ), λπj(λ)〉w
〈λπj(λ), λπj(λ)〉w

.(9)

This is a different expression from that obtained from the usual CR algorithm. How-
ever, it is possible to express it differently, and this will be explored later for a different
algorithm.

After αj is computed in this manner, we proceed to update the solution xj and
the residual vector rj+1 as in steps 4 and 5 of Algorithm 2.1. The polynomial ρj+1

is also updated accordingly. Next, we must compute πj+1. In the usual CG and CR
algorithms, πj+1 is computed in the form πj+1(λ) = ρj+1(λ) + βjπj(λ), but this will
not work here because such an expression exploits the orthogonality of ρj+1 against all
λπi’s with i ≤ j, which is no longer satisfied. Instead, we could just use a Stieljes-type
procedure of the form

βj+1πj+1(λ) = λπj(λ) − ηjπj(λ) − βjπj(λ).

Note that −αjλπj(λ) = ρj+1(λ)− ρj(λ), and so, if we need the leading coefficients of
πj+1 and ρj+1 to be the same, we can use the formula

πj+1(λ) = −αj [λπj(λ) − ηjπj(λ) − βjπj−1(λ)](10)

and select the scalars ηj and βj to make λπj+1 orthogonal to both λπj and λπj−1.
Assume by induction that the λπi(λ)’s are orthogonal for i ≤ j. Then, we find that

ηj =
〈λ2πj , λπj〉w
〈λπj , λπj〉w

and βj =
〈λ2πj , λπj−1〉w
〈λπj−1, λπj−1〉w

.

Algorithm 2.2. Minimal pseudoresidual algorithm.
0. Compute r0 := b−Ax0, p0 := r0 π0 = ρ0 = 1
1. Compute λπ0, λ2π0

2. For j = 0, 1, . . . , until convergence Do:

3. αj :=
〈ψ,λπj〉w

〈λπj ,λπj〉w
4. xj+1 := xj + αjpj
5. rj+1 := rj − αjApj ρj+1 = ρj − αjλπj

6. ηj :=
〈λ2πj ,λπj〉w
〈λπj ,λπj〉w βj :=

〈λ2πj ,λπj−1〉w
〈λπj−1,λπj−1〉w

7. pj+1 := −αj [Apj − ηjpj − βjpj−1] πj+1 := −αj [λπj − ηjπj − βjπj−1]
8. Compute λπj+1, λ

2πj+1

9. EndDo
This approach is a slight variation of the one presented in [11, 19]. The main

difference is that the algorithms in [11, 19] focus on the solution polynomial instead
of the residual polynomial; i.e., they do not explicitly compute or exploit residual
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polynomials. However, the two algorithms are mathematically equivalent. Note that
when ψ(λ) ≡ 1, the algorithm should give the same iterates (and same auxiliary
vectors) as those of Algorithm 2.1 in exact arithmetic.

The polynomials λπj are orthogonal by construction. On the other hand, the
residual polynomials ρj do not satisfy any orthogonality relation, but optimality im-
plies that 〈ψ − λsj(λ), λπi〉w = 0 for i ≤ j, so we have (recall that φ ≡ 1 − ψ)

〈φ− ρj+1, λπi〉w = 0, i ≤ j.

2.4. Corrected CR algorithm. We now consider an alternative implementa-
tion of the above algorithm, which can be viewed as a corrected version of the standard
CR algorithm. The derivation is based on the following observation. After line 5 of
Algorithm 2.2, the residual vector rj+1 is no longer used. This particular residual
vector is not all that useful since a convergence test cannot employ it. It would have
been more meaningful to compute [ψ(A) − As(A)]b, but this is not practically com-
putable. Therefore, instead of rj we can generate another residual polynomial which
will help obtain the pi’s: the one that would be obtained from the actual CR algorithm,
i.e., the same r vectors as those of Algorithm 2.1. It is interesting to note that with
this sequence of residual vectors, which will be denoted by r̃j , it is easy to generate
the directions pi, which are the same for both algorithms. So the idea is straightfor-
ward: obtain the auxiliary residual polynomials ρ̃j that are those associated with the
standard CR algorithm and exploit them to obtain the πi’s in the same way as in the
CR algorithm. The polynomials λπj are orthogonal, and therefore the expression of
the desired approximation is the same. The algorithm is described next where now
ρ̃j is the polynomial associated with the auxiliary sequence r̃j .

Algorithm 2.3. Filtered conjugate residual polynomials algorithm.
0. Compute r̃0 := b−Ax0, p0 := r̃0 π0 = ρ̃0 = 1
1. Compute λπ0

2. For j = 0, 1, . . . , until convergence Do:
3. α̃j := 〈ρ̃j , λρ̃j〉w/〈λπj , λπj〉w
4. αj := 〈ψ, λπj〉w/〈λπj , λπj〉w
5. xj+1 := xj + αjpj
6. r̃j+1 := r̃j − α̃jApj ρ̃j+1 = ρ̃j − α̃jλπj

7. βj := 〈ρ̃j+1, λρ̃j+1〉w/〈ρ̃j , λρ̃j〉w
8. pj+1 := r̃j+1 + βjpj πj+1 := ρ̃j+1 + βjπj

9. Compute λπj+1

10.EndDo
It is remarkable that the only difference between this and generic CR-type al-

gorithm (see, e.g., Algorithm 2.1) is that the updates to xj+1 use a coefficient αj

different from that of the update to the vectors r̃j+1. Observe that the residual vec-
tors r̃j obtained by the algorithm are just auxiliary vectors that do not correspond to
the original residuals rj = b−Axj . Needless to say, these residuals, the rj ’s, can also
be generated after line 5 (or 6) from rj+1 = rj−αjApj . Depending on the application,
it may be necessary to include these computations.

Proposition 2.2. The solution vector xj+1 computed at the jth step of Algo-
rithm 2.3 is of the form xj+1 = x0 + sj(A)r0, where sj is the jth degree polynomial:

sj(λ) = α0π0(λ) + · · · + αjπj(λ).(11)

The polynomials πj and the auxiliary polynomials ρ̃j(λ) satisfy the orthogonality re-
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lations,

〈λπj(λ), λπi(λ)〉w = 〈λρ̃j(λ), ρ̃i(λ)〉w = 0 for i �= j.(12)

In addition, the filtered residual polynomial ψ−λsj(λ) minimizes ‖ψ−λs(λ)‖w among
all polynomials s of degree ≤ j − 1.

Proof. The first observation is that the polynomials ρ̃j and πj are identical with
the polynomials ρj and πj of Algorithm 2.1, so the orthogonality property (12) is
trivially satisfied. The relation (4) uses scalars αj that are different from those de-
noted by α̃j of the sequence ρ̃j . From this relation, we have that ψ − λsj(λ) =

ψ −
∑j

i=0 αiλπi(λ). By the optimality condition, the best polynomial is obtained
when the scalars αi satisfy the relation 〈ψ − λsj(λ), λπi(λ)〉w = 0, for i = 1, . . . , j.
Exploiting (11) and the orthogonality of the system {λπi}i=0,...,j , this yields

αj = 〈ψ, λπj〉w / 〈λπj , λπj〉w.

It is worth exploring the formula (9), which defines the scalars αj , a little further.
In the standard CR algorithm, the expression (8) is modified by exploiting orthogo-
nality relations to lead to the standard expression of line 3 of Algorithm 2.1. However,
this is no longer possible here, essentially because the polynomial sj−1 in (9) uses the
scalar αi’s (formula (11)), and there are no orthogonality relations satisfied with the
corresponding residual polynomials ρj . It is, however, possible to express the scalar

αj as a modification to the scalar α̃j . Indeed, define s̃j ≡
∑j

i=0 α̃iπi, which is the
solution polynomial of Algorithm 2.1, and observe that 〈λs̃j−1, λπj〉w = 0, because
λπj is orthogonal to all polynomials λqi for polynomials qi of degree i ≤ j − 1. Then,
we can rewrite the numerator of (9) as

〈ψ, λπj〉w = 〈ψ−λs̃j−1, λπj〉w = 〈(ψ−1)+1−λs̃j−1, λπj〉w = 〈ρ̃j , λπj〉w−〈1−ψ, λπj〉w .

Since ρ̃j and πj have the same leading coefficient, by exploiting orthogonality we read-
ily obtain the relation 〈ρ̃j , λπj〉w = 〈ρ̃j , λρ̃j〉w, which yields the following alternative
formula for αj :

αj = α̃j −
〈1 − ψ, λπj〉w
〈λπj , λπj〉w

.(13)

The only merit of this expression, as a substitute for (9), is that it clearly establishes
Algorithm 2.3 as a “corrected version” of the standard Algorithm 2.1. In the special
situation when ψ ≡ 1, αi = α̃i, and the two algorithms coincide as expected.

2.5. The base filter function. The solutions computed by the algorithms just
seen are based on generating polynomial approximations to a certain base filter func-
tion φ. In the following, we will consider a low-pass filter φ. As was already mentioned,
it is generally not a good idea to use as φ the step function

φ(t) =

{
1, t < τ0,

0, t ≥ τ0.

This is because this function is discontinuous, and approximations to it by high-
degree polynomials will exhibit very wide oscillations, known as Gibbs oscillations. It
is preferable to take as a “base” filter, i.e., the filter which is ultimately approximated
by polynomials, a smooth function such as the one on the left side of Figure 1.
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The base filter function can be a piecewise polynomial consisting of two parts:
a function which decreases smoothly from 1 to 0 when λ increases from 0 to τ0,
and the constant function zero in the interval [τ0, β]. Alternatively, the function can
consist of three parts, one on each of the intervals [0, τ0], [τ0, τ1], and [τ1, β], with
0 < τ0 < τ1 < β. It will begin with the constant value 1 in the interval [0, τ0],
then decrease smoothly from 1 to 0 in the second interval [τ0 τ1], and finally take
the constant value 0 in [τ1, β]. The second part of the function (the first part for
the first scenario) bridges the values 0 and 1 by a smooth function and was termed a
“bridge function” in [11]. In what follows we focus on obtaining bridge functions for
the generic case, i.e., for an interval [τ0, τ1].

A systematic way of generating base filter functions is to use bridge functions ob-
tained from Hermite interpolation. The bridge function is an interpolating polynomial
(in the Hermite sense) depending on two integer parameters m0,m1, and denoted by
Θ[m0,m1], which satisfies the following conditions:

Θ[m0,m1](τ0) = 1, Θ′
[m0,m1]

(τ0) = · · · = Θ
(m0)
[m0,m1]

(τ0) = 0,

Θ[m0,m1](τ1) = 0, Θ′
[m0,m1]

(τ1) = · · · = Θ
(m1)
[m0,m1]

(τ1) = 0.
(14)

Thus, Θ[m0,m1] has degree m0 +m1 + 1, m0, and m1 define the degree of smoothness
at the points τ0 and τ1, respectively.

Such polynomials can be easily determined by the usual finite difference tables in
the Hermite sense. To find a closed form for the polynomials Θ[m0,m1] it is useful to
change variables in order to exploit symmetry. We map the variable onto the interval
[−1, 1] and shift the function down by 1/2. If the corresponding function is denoted
by η, then the above conditions become

η(−1) = 1/2, η(+1) = −1/2,
η(i)(−1) = 0 for i = 1, . . . ,m0, η(i)(+1) = 0 for i = 1, . . . ,m1 .

The derivative function η′ can be expressed as η′(t) = c (1 − t)m1(1 + t)m0 , and as a
result we have a closed form expression of η(t):

η(t) =
1

2
−

∫ t

−1
(1 − s)m1(1 + s)m0 ds

∫ 1

−1
(1 − s)m1(1 + s)m0 ds

.(15)

The first and second derivatives of η are

η′(t) = − (1 − t)m1(1 + t)m0

∫ 1

−1
(1 − s)m1(1 + s)m0 ds

, η′′(t) =

[
m1

1 − t
− m0

1 + t

]
η′(t).(16)

Thus there is an inflexion point at

t =
m0 −m1

m0 + m1
.

Since the maximum absolute value of the derivative is required for the convergence
analysis, it will be useful to determine it. The derivative is negative and decreases
from its value at the point −1 to a certain minimum, reached at the inflexion point,
and then it increases from there to its final value at the point 1. The peak value and
an approximation to it are given by the following lemma.
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Lemma 2.3. The maximum absolute value of the derivative of the function η in
the interval [−1, 1] is given by

η′max =
m0 + m1 + 1

2

mm1
1 mm0

0

(m0 + m1)m0+m1 ×
(

m0

m0+m1

) .(17)

For large values of m0 and m1, the maximum derivative is approximately

η′max ≈ m0 + m1

2
√

2π

√
1

m0
+

1

m1
.(18)

Proof. The integral in the denominator of η in (16) can be computed by successive
integration by parts to be

∫ 1

−1

(1 − s)m1(1 + s)m0 ds =
m1!m0!

(m0 + m1)!
× 2m0+m1+1

m0 + m1 + 1
.

Evaluating the negative derivative −η′ at the inflexion point yields

η′max =

(2m1)
m1 (2m0)

m0

(m0+m1)m0+m1

m1!m0!
(m0+m1)!

× 2m0+m1+1

m0+m1+1

=
m0 + m1 + 1

2

mm1
1 mm0

0

(m0 + m1)m0+m1 ×
(

m0

m0+m1

) ,

which is the first result. This can be rewritten as

η′max =
m0 + m1 + 1

2

m
m0
0

m0!
× m

m1
1

m1!

(m0+m1)m0+m1

(m0+m1)!

.

Using Sterling’s formula m! ≈
√

2πm (m/e)m yields (18), after simplifications.
This result must now be translated into the original interval [τ0, τ1]. The function

Θ (indices m0,m1 are omitted) and its derivative in terms of η and η′ are

Θ(λ) =
1

2
+ η

(
2
λ− τ0
τ1 − τ0

− 1

)
, Θ′(λ) =

2

τ1 − τ0
η′
(

2
λ− τ0
τ1 − τ0

− 1

)
,

and so

Θ′
max =

2

τ1 − τ0
η′max .

As an example of a bridge function, the case when m0 = m1 = 2 yields

η(t) =
−15

16
×
(
t− 2

t3

3
+

t5

5

)
,

which, for the interval [0, α], translates into the function

Θ[2,2](t) =
1

2
− 15

16

(
2
t

α
− 1

)
+

5

8

(
2
t

α
− 1

)3

− 3

16

(
2
t

α
− 1

)
.5

Similarly, for m0 = m1 = 3 we find

Θ[3,3](t) =
1

2
− 35

32

(
2
t

α
− 1

)
+

35

32

(
2
t

α
− 1

)3

− 21

32

(
2
t

α
− 1

)5

+
5

32

(
2
t

α
− 1

)
.7
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Fig. 2. Left: Base filter φ defined on two intervals: Θ[4,4] in [0, 2] and zero in [2, 8]; Right: its
polynomial approximation of degree 15.
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Fig. 3. Left: Base filter φ defined on two intervals: Θ[10,2] in [0, 2] and zero in [2, 8]. Right:
Its polynomial approximation of degree 15.

As was seen, the ratio m1

m0
determines the localization of the inflexion point. The

polynomial can be made to decrease rapidly from one to zero in a small interval by
taking high-degree polynomials, but this has the effect of slowing down convergence
toward the desired filter, as it tends to cause undesired oscillations.

Two examples of filter functions are shown in Figures 2 and 3. A third example,
shown in Figure 4, shows a situation where three intervals are used. In the first
interval [0, 1.7] and third interval [2.3, 8], the filter takes the constant values 1 and 0,
respectively. In the middle interval [1.7, 2.3], φ is defined by the Hermite polynomial
Θ[5,5] in [1.72.3]. This time we plot a higher-degree polynomial approximation to
φ to show the quality of the resulting polynomial. For higher-degree polynomials
(say 80) there is no visible difference between the base filter φ and its polynomial
approximation. We also computed many other polynomials using Legendre weights
in each interval instead of Chebyshev weights and, in all cases, saw no significant
difference.

2.6. The weight function w. Denoting the l subintervals of [0, β] by [τi−1, τi],
i = 1, . . . , l, we define the inner product on each subinterval (τl−1, τl), using Chebyshev
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Fig. 4. Left: Dual base filter φ defined on three intervals: 1 in [0, 1.7], Θ[5,5] in [1.7, 2.3], and
0 in [2.3, 8]. Right: Its polynomial approximation of degree 70.

weights:

〈ψ1, ψ2〉τl−1,τl =

∫ τl

τl−1

ψ1(t)ψ2(t)√
(t− τl−1)(τl − t)

dt.

Then the inner product on the interval [0, β] ≡ [τ0, τ1] ∪ [τ1, τ2] · · · ∪ [τl−1, τl] is
defined as a weighted sum of the inner products on the smaller intervals,

〈ψ1, ψ2〉w =

l∑
i=1

μi

∫ τi

τi−1

ψ1(t)ψ2(t)√
(t− τi−1)(τi − t)

dt.(19)

For example, for two intervals the weight function is defined as

〈ψ1, ψ2〉w = μ1

∫ α

0

ψ1(t)ψ2(t)√
t(α− t)

dt + μ2

∫ β

a

ψ1(t)ψ2(t)√
(t− α)(β − t)

dt.(20)

The μi’s can be chosen to emphasize or deemphasize specific subintervals. In most of
our tests we took the μi to be either equal to the constant 1 or to the inverse of the
width of each subinterval. Note that we can also use Legendre polynomials, or in-
deed any other orthogonal polynomials, instead of Chebyshev polynomials. We found
very little difference in performance (convergence) between Legendre and Chebyshev
polynomials.

The issue of obtaining orthogonal polynomials from sequences of orthogonal poly-
nomials on other intervals was addressed in [12] and [22]. One of the main problems
is to avoid numerical integration. In [22] this was achieved by expanding the desired
functions in a basis of Chebyshev polynomials on each of the subintervals. Note that
the expansions are redundant—but cost is not a major issue. Let ς(l) be the mapping
which transforms the interval [τl−1, τl] into [−1, 1]:

ς(l)(λ) =
2

τl − τl−1
λ− τl + τl−1

τl − τl−1
.

Denote by Ci the ith degree Chebyshev polynomial of the first kind on [−1, 1], and
define

C
(l)
i (λ) = Ci

(
ς(l)(λ)

)
, i ≥ 0.



FILTERED CONJUGATE RESIDUAL-TYPE ALGORITHMS 857

When all polynomials are expanded in the above Chebyshev bases on each inter-
val, then all operations involved in Algorithms 2.1, 2.2, and 2.3 are easily performed
with the expansion coefficients. Thus, adding and scaling two expanded polynomials
is a trivial operation. Consider now inner products of two polynomials. Recall that

on each interval the scaled and shifted Chebyshev polynomials (C
(l)
k )k∈N constitute

an orthogonal basis since

〈C(l)
i , C

(l)
j 〉τl−1,τl =

⎧⎨
⎩

0 if i �= j,
π if i = j = 0,
π
2 if i = j �= 0.

As a result, if two polynomials ψ1, ψ2 are expanded in the above Chebyshev bases for
each interval, the inner products (19) of these polynomials are trivially obtained from
their expansion coefficients in the bases.

The only remaining operation to consider is that of multiplying a polynomial by
λ (e.g., line 9 of Algorithm 2.3). A polynomial ψ expanded in the Chebyshev bases
can easily be multiplied by the variable λ, by exploiting the following relations:

λ C
(l)
i (λ) =

τl − τl−1

4
C

(l)
i+1(λ) +

τl + τl−1

2
C

(l)
i (λ) +

τl − τl−1

4
C

(l)
i−1(λ), i ≥ 1,

λ C
(l)
0 (λ) =

τl − τl−1

2
C

(l)
1 (λ) +

τl + τl−1

2
C

(l)
0 (λ).

These formulations come from the recurrences obeyed by Chebyshev polynomials:
2tCi(t) = Ci+1(t) + Ci−1(t) for i > 0, and tC0(t) = C1(t).

2.7. Convergence. It is desirable to know how fast the polynomial ρj converges
to the low-pass filter function φ. Convergence results of this type utilize uniform norm
results. We will restrict ourselves to a simple result derived from the Jackson theorems;
see [7]. A common notation adopted in the theory of approximation of functions is
the following. For a given continuous function f , define the degree of approximation
of f by

En(f) = min
p ∈ Pn

‖f − p‖∞,

where ‖g‖∞ is the infinity norm of a continuous function g, on the interval [α, β],

‖g‖∞ = max
t∈ [α β]

|g(t)| .

The Weierstrass theorem states that any continuous function f can be uniformly
approximated by polynomials [7]. In particular this means that limn→∞ En(f) =
0. In the early 1900s, Jackson proved a number of theorems which give further
information on this convergence. The following is the third of the Jackson theorems.
Another definition is needed before stating the theorem: The modulus of continuity
of a bounded function f on an interval [α, β] is defined as

ωf (δ) = sup
|t1−t2| ≤δ

|f(t1) − f(t2)|.(21)

Theorem 2.4 (Jackson’s theorem III). For all functions f ∈ C[0 2π],

En(f) ≤ ωf

(
π

n + 1

)
.(22)
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See [7] for proofs and additional details. For an arbitrary interval [α, β] the above
theorem translates into

En(f, [α, β]) ≤ ωf

(
β − α

2(n + 1)

)
.(23)

Applying the above result to base filter functions is easy.
Lemma 2.5. Let the base filter function φ be the spline function constructed as

φ(t) =

⎧⎨
⎩

1 for t ∈ [0, τ0),
Θ[m0,m1] for t ∈ [τ0, τ1),
0 for t ∈ [τ1, β].

Then,

ωφ(δ) ≤ 2η′max

τ1 − τ0
δ,

where η′max is given by (17) and is approximated by (18) for large values of m0,m1.
Substituting this result into Jackson’s theorem, we obtain the following bound.
Proposition 2.6. Let φ be the base filter function defined in Lemma 2.5. Then,

En(φ) ≤ β η′max

(n + 1)(τ1 − τ0)
,(24)

where η′max is given by (17) and is approximated by (18) for large values of m0,m1.
The above result is about convergence in the ∞-norm. Obtaining a result for

the L-2-norm with the weight function w is straightforward and standard because the
norms are related to each other in a simple way. Specifically, the following is easily
shown:

‖g‖w ≤ K‖g‖∞ with K = ‖1‖w.

For example, if we have l intervals and the μi’s are equal to 1 in (19), then K =
√
l π.

3. Applications and extensions. Polynomial filtering has many applications
in numerical linear algebra and related areas. In fact, we can argue that the number of
these applications is likely to increase because of the growing need to solve problems
in reduced dimensions and to apply various forms of PCA. In [19], we have considered
the use of polynomial filters in information retrieval. The paper [18] exploits similar
ideas for the problem of eigenfaces. Here we examine a few other applications which
may also benefit from polynomial filtering. Though we will show a few supporting
experiments shortly, the ideas are exposed here only to describe the rationale and the
concepts, and some of these ideas will be further explored in forthcoming articles.

3.1. Computing a large invariant subspace. In this section we show how
polynomial filtering can be used to compute large invariant subspaces of symmetric
real (or Hermitian complex) matrices. Specifically, the following problem is addressed:
Compute all eigenvalues of A located in a certain subinterval of the spectrum along
with associated eigenvectors.

The simplest form of this problem is to compute all eigenvalues of A that are
≤ τ . It can be assumed that an upper bound β for the spectrum is available, and,
without loss of generality, that all eigenvalues are ≥ 0. Consider this case first. One
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solution to the problem is to use the Lanczos algorithm for the matrix q(A), where
q is a low-pass filter polynomial such that q(λ) ≈ 1 for 0 ≤ λ ≤ τ and q(λ) ≈ 0
for τ < λ ≤ β. To reduce cost, the polynomial should not be of high degree. What
might happen with this approach is that the Lanczos procedure will quickly produce
a good invariant subspace associated with the largest eigenvalues of q(A). If enough
steps are taken, then clearly this subspace should include the desired subspace, which
could be easily extracted by a simple Rayleigh–Ritz projection. The main point is
that a shorter basis is required because the Lanczos algorithm will converge faster,
and this will lead to a much lower cost due to much less expensive orthogonalization
steps. Indeed, it was observed in [4] that, for large invariant subspaces, the high cost
of orthogonalization far outweighs the additional cost of the matrix-vector products
with p(A). This comes with the added benefit of using less memory.

The procedure described above can be enhanced by filtering the initial vector of
the Lanczos procedure. The reason why this could be useful is the observation that
if v has a zero component with respect to λi > τ , then since q(λi) is close to zero,
the components of the Lanczos vectors will also remain close to zero throughout the
algorithm. We can use a high-degree polynomial to filter the initial vector and then
a low-degree polynomial for the inner loop of the Lanczos procedure. Initial results
show that this process works as predicted and may lead to good savings in time when
compared with standard approaches.

Next we provide a motivation for this approach based on an application from
quantum mechanics (for details, see [4]) and then explore in detail the case of interior
eigenvalues.

3.2. Motivation. In electronic structures calculations one is faced with the
problem of computing an orthogonal basis of the invariant subspace associated with
the k lowest eigenvalues of a Hamiltonian matrix. This particular problem was the
original motivation for this work. The Hamiltonian is (real) symmetric. A major
difficulty with these calculations is that the dimension k of the subspace can be quite
large. A typical example would be that k = 1, 000 and that n, the dimension of the
matrix, is n ≈ 1, 000, 000. Methods based on standard restarted Lanczos procedures
tend to suffer from the need to save a very large set of basis vectors as well as from
the need for a very large number of costly restarts and reorthogonalizations. An
alternative considered recently is to forego the restarts and not focus on individual
eigenvectors; see, e.g., [4]. This approach is usually faster than the implicit restarted
version of Lanczos, but it may require the use of secondary storage as the Lanczos
basis can be quite large.

As an illustration consider a hypothetical situation where, for example, m = 2000
Lanczos vectors are required by a standard Lanczos procedure to compute a subspace
of dimension k = 100. The cost of orthogonalization will be 0.5m2 × n, which is
2 × 106 × n operations. In contrast, if polynomial filtering is used in the manner
described earlier and if only 200 vectors are needed, the new cost will 104 × n plus
the additional cost of matrix-vector products. If degree 10 polynomials are used and
the matrix has, say, 13 nonzero entries per row, then this additional cost is roughly
200 ∗ 10 ∗ 13n = 26000n. So the total adds up to ≈ 36, 000n operations versus
2, 000, 000n. Of course this example is hypothetical and somewhat extreme, but it
underscores the unacceptable cost of orthogonalization for large bases. One may
argue that a much smaller basis might be needed for the restarted Lanczos method.
Though the situation is generally difficult to analyze, the point remains that restarting
is expensive because eigenvectors are repeatedly (implicitly) computed. It is not the
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Fig. 5. Illustration of the procedure to set up the intervals and the base filter function ψ. The
polynomial shown is the polynomial which results from approximating ψ with the choice of τ1, . . . , τ4.

goal of this paper to compare these approaches. This is done in another article [4],
where these comparisons are undertaken for realistic problems arising from electronic
structures calculations.

3.2.1. Interior invariant subspaces. A case not considered in [4] is the sit-
uation of interior eigenvalues. Though the overall scheme is not too different from
that of the computation of the smallest or largest eigenvalues, a few difficulties arise
which make the scheme somewhat more complex. One of the main difficulties lies
in the selection of the (dual) base filter ψ. Suppose we want all eigenvalues in the
subinterval [η, μ] ⊂ [0 β]. To construct the base filter ψ we will need to subdivide
the interval [0, β] into five subintervals, [0, β] ≡ [τ0, τ1] ∪ [τ1, τ2] ∪ · · · ∪ [τ4, τ5],
with 0 = τ0 < τ1 < τ2 < τ3 < τ4 < τ5 = β. In the intervals [τ0 τ1] and [τ4 τ5], the
function ψ takes the value 0. In the central interval, [τ2, τ3], the function ψ has value
1. The other two intervals bridge the values 0 and 1, and so the global function ψ is
continuous and sufficiently smooth.

We would like to use the Lanczos algorithm on the matrix p(A), where p(λ) =
λs(λ) is the polynomial approximation to the filter ψ. In order not to miss eigenvalues
in the desired interval it is essential that p(λi) be larger than p(λk) for each λi ∈ [η, μ]
and λk /∈ [η μ]. Because of the likely imbalance between the left and right branches
of the polynomial, it is not easy to guarantee this without an iterative process for
selecting the intervals and ψ. The goal of the iterative process is to guarantee that
p(μ) = p(η) and that all eigenvalues inside the interval [η, μ] will be mapped to the
largest eigenvalues of p(A). To achieve this, a bisection algorithm is applied, whereby
τ2, τ3 are changed until the relation p(μ) = p(η) is approximately satisfied. A few
details on this procedure follow. The discussion is illustrated in Figure 5.

Initially, the values of τ1 and τ4 are fixed so that τ1 = ν − δ and τ4 = μ + δ for a
certain δ (our code uses δ = 0.05 ∗ (μ− ν)). Then what is left is to determine τ2, τ3.
These are set to be of the form τ2 = c− h and τ3 = c+ h, where h is a small fraction
of the interval width (our code uses h = (τ4 − τ1)/10). This means that the desired
“plateau” interval for p is chosen to be of the form [τ2, τ3] = [c− h, c + h], where h
is fixed and c is to be found. Now the only unknown left is c, which is determined by
bisection so that the resulting p satisfies p(η) = p(μ).

The figure reveals another potential problem. Recall that the goal is to use the
Lanczos algorithm with the matrix p(A). In order to be able to stop the iteration, it
is necessary to know whether the required eigenvalues have converged. Following [4],
this is done without computing eigenvectors, but by only considering the tridiagonal
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matrix Tm generated from the Lanczos iteration. If the sum of those eigenvalues of
Tm which correspond to the wanted eigenvalues of A has converged, then the process
is stopped. These eigenvalues are p(λi) for λi ∈ [ν, μ]. This stopping criterion is
modeled after the one in [4], where the restricted trace (sum of desired eigenvalues)
has an important physical meaning (total energy) and is therefore the proper quantity
to monitor for convergence. In the smallest / largest eigenvalues case, the situation is
simple: the eigenvalues p(λi) of Tm corresponding to the desired λi are (in general) the
largest eigenvalues of Tm. This facilitates the test. For the case of interior eigenvalues
and middle-pass filters, the situation is not as straightforward. Figure 5 illustrates
this, since there are points λ at the right of τ4 whose values p(λ) are larger than some
values p(λ) for λ inside the interval [ν, μ]. We handle this by a heuristic iterative
procedure. Once the value of c has been obtained by bisection, it is necessary to check
whether the following condition is satisfied:

sup
λ∈[0, ν)∪(μ, β]

|p(λ)| < min
λ∈[ν, μ]

|p(λ)| .

If this is not satisfied, then the interval [τ1, τ4] is expanded by doubling the value of
δ. At the same time h is halved, leading to a shrinking of the plateau interval [τ2, τ3].
The process is then repeated until a satisfactory interval is found. In addition to this,
the function which determines the interval also returns the maximum value, say γ, of
p(λ) outside the interval [ν, μ] so as to recognize which eigenvalues λ of A do belong
to the desired interval [ν, μ]: If the eigenvalue p(λ) is > γ, then λ must belong to
[ν, μ]. Note that λ is not available; only p(λ) is.

The main point of the above discussion is that the polynomials are easy to use,
and it is inexpensive to work with them, so some careful preprocessing can be done
to ensure that the correct eigenspace is computed.

In the following algorithm, p0 denotes the “prefilter” polynomial, while p is the
filter polynomial used in the iteration. Typically, the prefilter polynomial is of high
degree (e.g., 200), while the internal polynomial is of low degree (e.g., 20).

Algorithm 3.1. Filtered Lanczos.
Input: Matrix A ∈ R

n×n, starting vector q1, ‖q1‖2 = 1, scalar m,
Interval of desired eigenvalues [ν, μ]
Degrees of prefilter and filter polynomials

Output: Eigenvalues of A in interval [ν, μ] + eigenvector basis.
0. Call getIntv to obtain good intervals and base filter.
1. Set β1 = 0, q0 = 0
2. If prefilter degree is > 0 then prefilter initial vector q1 := p0(A)q1, q1 = q1/‖q1‖2

3. for i = 1, . . . ,m
4. wi = p(A)qi − βiqi−1

5. αi =< wi, qi >
6. wi = wi − αiqi
7. βi+1 = ‖wi‖2

8. if (βi+1 == 0) then stop

9. qi+1 = wi/βi+1

10. Let Ti = tridiag(βi, αi, βi+1).
11. Compute eigenvalues and eigenvectors of Ti. Sort decreasingly.
12. Let nev = number of eigenvalues λ�

j of Ti such that λ�
j > γ.

13. Compute si =
∑

λ�
j
>γ λ

�
j

14. if (|si − si−1| < |si−1| ∗ tol) then break
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15.end
16.For j = 1 : nev+2 do :
17. compute Ritz vectors zj of Ti.

18. If λ̃j = (Azj , zj) /∈ [ν, μ] reject λ̃j , zj
19.end

A few comments are in order. The function getIntv referenced in line 0 is the
heuristic procedure discussed above, which carefully determines the five subintervals
of [0, β] and the initial filter ψ. It returns in particular the scalar γ used in line 12,
which is such that if p(λ) > γ, then λ ∈ [ν, μ]. In line 16, we compute nev+2 Ritz
pairs instead of nev as a safeguard only. The test in the next lines will keep only the
required eigenvalues. The eigenvalues λ�

j are eigenvalues of Ti, and they approximate
eigenvalues of p(A). The convergence test in lines 13–14 need not be executed at each
step (this is an O(i2) process); we can instead perform it at regular intervals. Finally,
it is clear that it is essential to include some form or reorthogonalization. In [4] we
used partial reorthogonalization.

3.3. Computing f(A)v. The procedures described earlier compute approxi-
mations to φ(A)v, where φ is a specific spline function on up to five intervals. There
is, of course, no reason why one should be limited to spline functions which approx-
imate filters. The approach can be extended to other situations where a vector of
the form f(A)v is to be computed. The problem of approximating f(A)v has been
extensively studied (see, e.g., [25, 23, 5, 16, 15]), though the attention was primarily
focussed on the case when f is analytic (e.g., f(t) = exp(t)). Problems which involve
noncontinuous functions, such as the step function or the sign function, can also be
important. The approach described in this paper can be trivially extended to the
case where φ is a general spline function. One can certainly imagine situations where
a certain vector f(A)v is to be evaluated, where f is some complex function known
through an accurate piecewise polynomial approximation. The framework developed
in this paper is ideally suited for handling this situation. The only extensions required
are to increase the number of intervals (which is now ≤ 5) and to define ψ in each of
these intervals by the polynomials of the spline function.

Another interesting application is when approximating ψ(A), where ψ is the sign
function. Computing the sign function of a matrix has important applications in
QMC (quantum chromo dynamics); see, e.g., [13]. In this case we need to use three
intervals, for example, [a− d−], [d− d+], [d+ a+], where d−, a− are negative and d+, a+

are positive. The difficulty here is to compute estimates for the interior values d− and
d+.

3.4. Estimating the number of eigenvalues in an interval. The most com-
mon way to compute the number of eigenvalues inside an interval is to exploit the
Sylvester inertia theorem and the LDLT factorization [14]. However, for large matri-
ces this is not always practically feasible, or it may be too expensive.

It is sometimes useful to obtain a rough idea of the number of eigenvalues of a
Hermitian matrix that are located inside a given interval. This information can be
used, for example, for the case when the smallest k eigenvalues of A must be computed
by using a form of polynomial filtering. In this situation an interval [0, τ ] must be
found which contains these k eigenvalues. A guess for τ can be given and then refined
by answering the question: How many eigenvalues are located on the left of τ?

One possible solution to this can be provided by the Lanczos procedure. One
can simply run the Lanczos algorithm without reorthogonalization (the Cullum–
Willoughby algorithm; see [8]) or with partial reorthogonalization and record the
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number nτ of all eigenvalues below τ of the tridiagonal matrix Tm obtained from the
Lanczos algorithm. When this number stabilizes (i.e., all eigenvalues below τ con-
verge), then nτ will represent the desired number. The problem with this approach
is that it may be very expensive when the number nτ is large.

A rough approximation of nτ can be easily obtained from statistical arguments,
using polynomial filtering. This technique is an adaptation of methods described
elsewhere for estimating the trace of certain operators; see, for example, [17, 21, 3].
Consider a low-pass polynomial filter such as the one shown in Figure 4, and an
arbitrary vector v of 2-norm unity. Expand the vector v in the eigenbasis as

v =

n∑
i=1

ξiui,

and consider the inner product of v with p(A)v:

(v, p(A)v) =

nτ∑
i=1

ξ2
i p(λi) +

n∑
i=nv+1

ξ2
i p(λi).

If the polynomial p is selected so that it is close to 1 on [0, τ ] and to 0 in (τ, β],
then clearly the second sum in the above expression should be close to zero, and the
first close to the sum

∑nτ

i=1 ξ
2
i . If the vector v is a random vector, then the ξi’s are

unbiased, and therefore the ratio
∑nτ

i=1 ξ
2
i /

∑n
i=1 ξ

2
i should be close to nτ/n. In the

end we can estimate nτ by

nτ ≈ n× (v, p(A)v).(25)

Of course, a unique sample may not be good enough, and several trials should be
taken and the results averaged. The numerical experiments sections explore this
approach a little further. It should be emphasized that, as is always the case, it is
expensive to obtain an accurate answer by statistical methods in general. Accordingly,
this approach may be useful only when a rough estimate of nτ is wanted and other
methods cannot be considered. Two appealing features of the method are its exclusive
reliance on matrix-vector products and its highly parallel nature.

4. Numerical tests. Applications of filtered polynomial iterations to informa-
tion retrieval and face recognition have been reported elsewhere [18, 19]. In addition,
the use of these ideas for computing large eigenspaces has recently been successfully
exploited; see [4]. Section 4.2 explores this further.

The goals of the tests discussed in this section are (a) to examine the convergence
of the process, (b) to show and compare a few of the techniques discussed earlier for
computing invariant subspaces, and (c) to demonstrate the use of polynomial filtering
for approximating inertia of shifted matrices (see section 3.4).

All tests were performed with Matlab on a Linux workstation (running Debian)
and equipped with two 1.7 GHz Xeon processors (with 256kB cache) and 1 GB of
main memory.

4.1. Convergence. In this test we generate a matrix obtained from the dis-
cretization of a Laplacian using centered differences on a 25 × 15 mesh. We then
compute the vector v, which has all components equal to 1 in the eigenbasis; i.e., v is
the sum of all the (normalized) eigenvectors. This vector is then filtered with a chosen
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low-pass base filter φ, and we plot ‖φ(A)v − (I − Ask−1(A))v‖2 for k = 1, . . . , 200.
This is referred to as the “filtered residual.” The low-pass filter is selected as follows:

φ(t) =

⎧⎨
⎩

1 for t ∈ [0, τ0),
Θ[m0,m1] for t ∈ [τ0, τ1),
0 for t ∈ [τ1, β].

(26)

A first run used the values m0 = m1 = 10, β = 8, τ0 = 1.9, τ1 = 2.1, and the second
used the same values for m0, m1, and β, and changed τ0, τ1 to τ0 = 1.8, τ1 = 2.2. The
plot in Figure 6 shows three curves. The first two show the progress of the filtered
residual norm for the two runs (solid line and dashed line, respectively). The third
one (dash-dot) shows the coefficient in the right-hand side of (24) corresponding to
the first test case (m0 = m1 = 10, β = 8, τ0 = 1.9). Here, η′max is estimated by (18),
where for m0 = m1 = 10 we find that η′max ≈

√
m0/π. So the third curve shows

exactly the sequence

8
√

10/π

0.4 ∗ (i + 1)
, i = 1, . . . , 200.

Two observations can be made. The first is that for the second run, the behavior
is not at all predicted by the bounds. It has an exponential character not seen in
the bounds obtained in section 2.7. The second observation is the big difference in
convergence between two seemingly close situations. If the middle interval increases
in width, we can get very fast convergence. However, note that taking a wide middle
interval may yield a function that is not desirable from other viewpoints; i.e., there
may be situations when this interval must be taken to be small. In information
retrieval this is not critical [19]. When computing invariant subspaces, on the other
hand, it is undesirable to have a wide gap since it will include eigenvalues that need
to be eliminated by some other means.
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Fig. 7. Convergence of a filtered Lanczos iteration for computing all eigenvalues of a Laplacian
of dimension 891, located in the interval [2.5, 3].

4.2. Computing invariant subspaces. Polynomial filtering can be helpful in
the situation when a large invariant subspace associated with all eigenvalues in a
given interval is to be computed. In [4] we have shown how the method can be
applied to realistic problems arising from electronic structures. The problem there is
that of computing an invariant subspace associated with the smallest eigenvalues of
a large symmetric real matrix. The ideas used in [4] follow closely those sketched in
section 3.1. For matrices such as those that arise in electronic structures, the method
works well because the invariant subspace is quite large, and this causes methods
which rely too much on orthogonalization to become excessively expensive. This little
fact, which has not been adequately addressed by researchers in numerical methods,
is well-known to researchers in the physics community. By reducing the frequency
as well as the cost of orthogonalization, one can reduce the overall cost dramatically.
Thus, a strategy based on polynomial filtering combined with the inexpensive “partial
reorthogonalization” resulted in gains close to a factor of 12 in some cases (see [4])
relative to standard existing codes such as ARPACK [20].

Since the case corresponding to the smallest (or largest) eigenvalues has already
been covered in detail in [4], we will illustrate next the case of interior eigenvalues.
This case is just as important, because there is currently a lack of good algorithms
for dealing with it.

In the experiments which follow, we consider a model problem arising from a
Laplacian matrix. The matrix corresponds to the discretization of the Laplacian on
an (nx + 2) × (ny + 2) grid including boundary points. After applying zero Dirichlet
boundary conditions, we obtain a matrix of dimension n = nxny.

In the first test, we take nx = 27, ny = 33. This results in a matrix of dimension
n = 891. We would like to compute all eigenvalues of A in the interval [ν, μ] = [2.5, 3].
As it turns out, there are 60 eigenvalues in this interval. We ran three tests with a
different degree of the filter polynomial: degree 20, 25, and 35. We did not apply
prefiltering. The base filter function uses bridge functions of the form Θ[10,10]. The
boundaries for the various intervals defining the base filter function were set up as
described in section 3.1. The same initial vector for the Lanczos iteration was used
for all three runs, and it was generated randomly. Algorithm 3.1 was run with tol=
1.e− 10. The plots in Figure 7 show the error measure |si − si−1|/|si−1| used in lines
13–14 of Algorithm 3.1 to test convergence. These error rates are plotted against the
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Table 1

Number of Lanczos steps and sum of final eigenvalue errors as expressed by (27) for the filtered
Lanczos procedure using three different filtering polynomials..

Degrees 20 25 35
Lancz. steps 190 157 120
Error-sums 6.77e-12 4.631e-12 5.570e-11

Table 2

Number of Lanczos steps and sum of final eigenvalue errors as expressed by (27) for the fil-
tered Lanczos procedure using two different filtering polynomials. The matrix is a 3-D Laplacian of
dimension n = 10, 051.

Degrees 75 80
Lancz. steps 364 270
Error-sums 5.684e-14 1.430e-13

number of Lanczos steps (left figure) and against the total number of matrix-vector
products (matvecs; right side).

As expected, the number of Lanczos steps decreases as the degree of the polyno-
mial increases. In the case of degree 35, the procedure requires 120 Lanczos steps to
compute all 60 eigenvalues. This good performance comes at the cost of 35 matvecs
with A per Lanczos step. This amounts to 175n operations per Lanczos steps for
the matvec, and the total number of matvecs with A is 4200. For the lower degree
of 20, we now need 190 steps, so we need a total of 3800 matvecs. Though this is
lower than with the degree 35, the comparison favors the higher degree if the cost of
orthogonalization is taken into account (a full reorthogonalization is performed). The
total number of matvecs may appear to be quite high. However, the alternative of
running the Lanczos algorithm to compute eigenvalues from the first to the last one
in the interval may be much more costly for realistic cases because of the cost of or-
thogonalization. This was demonstrated for the computation of smallest eigenvalues
in a realistic computation in [4].

In order to verify that the code run does not miss eigenvalues we printed the
errors

∑
λi ∈ [ν, μ]

min
j

|λ̃j − λi|,(27)

where the λ̃j are the approximate Ritz values computed in lines 16–18 of Algo-
rithm 3.1. These are printed in Table 1 along with the number of Lanczos steps
required for convergence.

The next test proceeds along the same lines but considers a more difficult problem.
We take a three-dimensional (3-D) Laplacian with nx = 23, ny = 23, and nz =
19, leading to a problem of size n = 10, 051. The eigenvalues of A are located in
the interval [0, 12], so to make the problem more challenging we try to compute
eigenvalues around the middle of the interval. Specifically, we seek to compute all
eigenvalues in the interval [ν, μ] = [6.25, 6.30]. There are 53 eigenvalues of A in
this interval. This particular example will require higher-degree polynomials than
the smaller example seen above to reach convergence in a small number of Lanczos
steps. We take polynomials of degrees 75 and 100. For the filter function the bridge
functions are of the form Θ[25,15]. Results similar to the ones seen above are shown in
Figure 8 and Table 2.
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Fig. 8. Convergence of a filtered Lanczos iteration for computing all eigenvalues of a Laplacian
of dimension 10, 051 located in the interval [6.25, 6.30].

It is interesting to ask the question: What are the alternatives to this approach
for solving this problem? In this case, the best known method is to use a shift-and-
invert technique, whereby the Lanczos procedure is applied to (A− σI)−1. However,
factoring the matrix A−σI can be quite expensive, especially for 3-D problems of this
type and when considering the fact that the matrix is highly indefinite. For very large
3-D problems factorization may not even be a feasible option. The other alternative
is to employ a Lanczos-type procedure to compute a large number of eigenvalues until
those of interest are reached. Orthogonalization and the need to keep a large basis
will be two serious problems for large matrices. Polynomial filtering can be attempted
in such cases. An approach of this type was suggested in [2, 1] in an algorithm which
exploits implicit restarts. The IRBL code (Matlab) presented in [2] uses Leja points
for the purpose of acceleration, instead of the least-squares polynomials used in this
paper. The other major difference is that IRBL is a block algorithm.

Another idea that is similar in spirit to the one described in this paper is presented
in [10]. There, a polynomial is constructed by compounding a quadratic polynomial
with a higher degree Chebyshev polynomial in order to obtain a desired filter. In fact,
the paper [10] explores several other methods for computing interior eigenvalues. For
their problem, called the Anderson model of localization, the authors found that the
best approach is the Cullum–Willoughby [8] technique based on the Lanczos algorithm
without reorthogonalization. The problem in [10] is somewhat different from the one
addressed here in that the number of eigenvalues/ eigenvectors computed is relatively
small (all tests were with five eigenpairs).

As pointed out in [10] and elsewhere (see, e.g., [26]), the potential difficulty with
any polynomial filtered approach is the high cost of the procedure if large-degree poly-
nomials are required. Though we do not offer comparisons with competing methods,
we can say that polynomial filtered Lanczos procedures are likely to be superior to
competing techniques in some situations. Specifically, they may offer the best alter-
native in situations when (a) a large number of eigenvalues and eigenvectors must be
computed, (b) matrix-vector products are not expensive, and (c) there are not too
many eigenvalues around the interval boundaries ν, μ. Condition (a) is based on the
observation that when the subspace is large the cost of the eigenvalue calculation is
dominated by orthogonalization. The result is that a big part of this cost can be
traded off with filtering, which leads to fewer steps in the Lanczos algorithm. Condi-
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Fig. 9. Pattern of matrix bcspwr09 (Left) and stochastic estimate of its number of negative
eigenvalues (right).

tion (b) will ensure that convergence will be reached without resorting to a polynomial
of too high a degree.

4.3. Estimating the number of eigenvalues in an interval. This section
reports on a test with the stochastic estimator of the inertia of a shifted matrix, i.e.,
the number of eigenvalues of a matrix that are below a certain number α. Section 3.4
suggested a simple algorithm for this calculation for the case when a rough estimate
of this number is wanted.

For this test we took a matrix from the Harwell–Boeing collection [9], namely the
matrix bcspwr09. This matrix is of size n = 1, 723 and has nnz = 6, 511 nonzero
entries. The sparsity pattern of the matrix is shown on the left side of Figure 9.
This matrix has all its eigenvalues in the interval [−3.117 . . . , 5.971 . . .]. The question
one may ask is: How many eigenvalues are negative? The correct answer is 512.
We shifted everything by 3.2 (so A becomes A + 3.2I) and we sought the number
of eigenvalues of the shifted matrix that are below α = 3.2. A dual filter ψ using
three intervals, defined as in (26), was used with the parameters: m0 = m1 = 10.
The interval bounds given were 0, τ0 = 3.15, τ1 = 3.25, β = 6. The degree of the
polynomial used was m = 20.

The right side of Figure 9 shows a test with 50 runs (each using a polynomial of
degree 20 and a different unit random vector v). The number nα reported for given
k in the x-axis is simply the average of the numbers given by formula (25) over all
previous k tests:

nα(k) =
n

k
×

k∑
i=1

(vi, p(A)vi).

The small circles in the figure are the values of n × (vi, p(A)vi) obtained from each
(single) sample. The dashed horizontal line represents the correct answer, which is
512. Notice that there are a few outliers, e.g., the smallest single estimate obtained
was close to 428 and the largest close to 590, but the average over several runs quickly
converges to a reasonable estimate. So after 30 runs (a total of 600 matrix-vector
products), a fairly good estimate is reached.
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5. Conclusion. Polynomial filtering is a useful and versatile tool in computa-
tional linear algebra. It is most appealing in situations where rough solutions to
various matrix problems are sought. We have shown a few such applications, and
hinted at others, where approximations to the matrix problem are sought which are
restricted to be in a small space.

Apart from the methods related to low-rank approximations mentioned above,
polynomial filtering has also been tried in the past with limited success in the more
traditional areas of matrix computations, for example for the problem of precondi-
tioning. Polynomial filtering is not a panacea, but it can play a significant role in
specific cases. Perhaps the most important of these is the computation of large in-
variant subspaces. A successful use of polynomial filters in a realistic application has
already been reported elsewhere [4].

There are many other potential uses of polynomial filtering in numerical linear
algebra which remain to be explored. Many computations require the solution of
least-squares systems with regularization. We also hinted at the problem of computing
f(A)b when f is a spline function, which can itself be an approximation to an arbitrary
function.
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Abstract. This paper deals with a multilevel construction of hierarchical matrix approximations
to the inverses of finite element stiffness matrices. Given a sequence of discretizations A�x� = f�,
� = 0, . . . , n, where A0x0 = f0 denotes the coarse grid problem, we will compute A−1

0 exactly and
then use interpolation to obtain an H-matrix approximation A−H

�+1 from the approximate H-matrix
inverse A−H

� on the next coarser grid. We develop an exact interpolation scheme for the inverse of
tridiagonal matrices as they appear in the finite element discretization of one-dimensional differen-
tial equations. We then generalize this approach to two spatial dimensions where these efficiently
computed approximations to the inverse may serve as preconditioners in iterative solution methods.
We illustrate this approach with some numerical tests for convection-dominated convection-diffusion
problems.
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1. Introduction. In a series of papers, the technique of hierarchical matrices—
H-matrices for short—has been introduced [4, 8, 10, 11]. H-matrices provide an in-
expensive but sufficiently accurate approximation to fully populated matrices as they
appear in boundary element methods. In finite element methods, it is the inverse
of the stiffness matrix which is fully populated. An H-matrix approximation can be
computed and stored in almost linear complexity, i.e., O(n logαs n) with moderate pa-
rameter α [3]; the constants, however, in these complexity estimates are rather large
(they easily lie in the hundreds!). They depend on the structure of the involved H-
matrices and have been computed exactly in [8]. In this paper, we will introduce an
efficient interpolation-based approach to compute these approximate inverses: Given
a sequence of discretizations A�x� = f�, � = 0, . . . , n, where A0x0 = f0 denotes
the coarse grid problem, we will compute A−1

0 exactly and then use interpolation
to obtain an H-matrix approximation A−H

�+1 from the approximate H-matrix inverse

A−H
� on the next coarser grid. We develop an exact interpolation scheme for the in-

verses of tridiagonal matrices as they appear in the finite element discretization of
one-dimensional differential equations. The inverse of a tridiagonal matrix has been
studied extensively in several papers in the past. A review of this topic is given in [15]
for symmetric matrices, and some results for the inverses of nonsymmetric tridiagonal
matrices can be found in [16] and the references therein. These results motivate data-
sparse approximations to the exact inverse, which can be used as preconditioners in
iterative methods [6, 20]. We then generalize this approach to two spatial dimensions
and use these efficiently computed approximations to the inverse as preconditioners
in iterative solution methods (e.g., BiCGstab).
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The remainder of this paper is structured as follows: In section 2, we provide
a brief introduction to the construction and arithmetic of H-matrices. Section 3
deals with the multilevel construction of H-matrices for one-dimensional problems. In
section 4, the generalization to two-dimensional problems is developed, and section 5
concludes this paper with some numerical results.

2. A brief introduction to H-matrices. In this section, we introduce the
main concepts of H-matrices to the extent of which they are required for the remainder
of this paper. For more detailed introductions, we refer the reader to [4, 8, 10, 11]
and the references therein.

An H-matrix approximation to a given (dense) matrix is obtained by replacing
certain blocks of the matrix by matrices of a low rank k, stored in so-called Rk-
format, as will be further explained below. Given such an H-matrix, the standard
matrix operations such as matrix-vector multiplication, matrix-matrix addition and
multiplication, as well as (approximate) matrix inversion can be defined for this H-
matrix format. Whereas these (H-)matrix operations yield only approximations, they
can be performed in almost optimal complexity, i.e., O(n logα n) with moderate pa-
rameter α. The construction of H-matrices is reviewed in subsection 2.1, and their
arithmetic is reviewed in subsection 2.2.

2.1. Construction of H-matrices. The formal definition of an H-matrix de-
pends on appropriate hierarchical partitionings of the index set and also of the prod-
uct index set, which are organized in (block) cluster trees, as defined next. Instead of
fixed partitionings, these trees will provide hierarchies of partitionings, which gives a
hierarchical matrix its name.

Definition 2.1 (cluster tree). Let I be a finite index set and let TI = (V,E)
be a tree with vertex set V and edge set E. For a vertex v ∈ V we define the set of
successors of v as S(v) := {w ∈ V | (v, w) ∈ E}. The tree TI is called a cluster tree
of I if its vertices consist of subsets of I and satisfy the following conditions:

1. I ∈ V is the root of TI and v ⊂ I, v �= ∅ for all v ∈ V .

2. For all v ∈ V there holds either S(v) = ∅ or v =
⋃̇

w∈S(v)w.
In the following, we identify V and TI , i.e., we write v ∈ TI instead of v ∈ V. The
nodes v ∈ V are called clusters.

For regular grids one can construct the cluster tree TI in a cardinality balanced
way, i.e., an index cluster is divided into a certain number of successors of approxi-
mately the same size with respect to the number of indices [10, 12]. In this paper we
restrict our attention to the case of two (or no) sons per cluster, which is the easiest
with respect to the analysis and implementation. For locally refined grids, the results
from [8] indicate that the cardinality balanced clustering is not optimal with respect
to the complexity of adaptive H-matrix updates. Instead, one can use a geometrically
balanced approach as described in [9], which is used in the remainder of this paper. In
the case of regular grids, however, both approaches yield very similar if not identical
results.

A simple example for the construction of a cluster tree is given in Figure 2.1.
In this example, the geometrically and cardinality balanced approaches result in the
same cluster tree. Here, the regular grid Ωh contains 64 vertices, i.e., I = {1, . . . , 64}
(assuming continuous, piecewise linear elements). The index set is subdivided into
two subsets of size 32 each along the middle vertical line. The resulting subsets are
both subdivided horizontally, resulting in a total of four subsets of size 16. This
process is continued until 64 subsets (or clusters) of size 1 are obtained.



MULTILEVEL HIERARCHICAL MATRIX 873

{1,...,16}{17,...,32}{33,...,48}{49,...,64}  

{1,...,32} {33,...,64}

I={1,2,...,64}

Cluster treeΩh

1

64

1 64

A=

H−matrix

... ... ... ... ... ... ......

Corresponding block clusters/matrix partitions 

Fig. 2.1. A mesh Ωh (top left), a corresponding cluster tree (top right), the resulting hierarchy
of matrix partitions (bottom left), and an example of an H-matrix (bottom right).

Definition 2.2 (leaf, predecessor, level, depth). Let TI be a cluster tree. The
set of leaves of the tree TI is L(TI) = {v ∈ TI | S(v) = ∅}. The uniquely determined
predecessor (father) of a nonroot vertex v ∈ TI is denoted by F(v). The levels of the
tree TI are defined by

T
(0)
I := {I}, T

(�)
I := {v ∈ TI | F(v) ∈ T

(�−1)
I } for � ∈ N,

and we write level(v) = � if v ∈ T
(�)
I . The depth of T is defined as d(T ) := max{� ∈

N ∪ {0} | T (�)
I �= ∅}.

For any cluster tree TI there holds I =
⋃̇
{v | v ∈ L(TI)}, i.e., the set of leaves

yields a partition of the index set I. A hierarchy of block partitionings of the product
index set I× I is based upon a cluster tree TI and is organized in a block cluster tree.

Definition 2.3 (block cluster tree). Let TI be a cluster tree of the index set I. A

cluster tree TI×I is called a block cluster tree (based upon TI) if for all v ∈ T
(l)
I×I there

exist s, t ∈ T
(l)
I such that v = s× t. The nodes v ∈ TI×I are called block clusters.

Analogously to the cluster tree, for any block cluster tree TI×I there holds I×I =⋃̇
{v | v ∈ L(TI×I)}, i.e., the leaves of the block cluster tree provide a block partition

of the product index set I × I.
The objective is to construct a block cluster tree from a given cluster tree such

that the leaves (of the block cluster tree) correspond to (preferably large) matrix
blocks with “smooth” data that can be approximated by low rank matrices in the
following Rk-matrix representation.

Definition 2.4 (Rk-matrix representation). Let k, n,m ∈ N ∪ {0}. Let M ∈
R

n×m be a matrix of at most rank k. A representation of M in factorized form

M = ABT , A ∈ R
n×k, B ∈ R

m×k,(2.1)

with A and B stored in full matrix representation, is called an Rk-matrix representa-
tion of M , or, in short, we call M an Rk-matrix.

If the rank k is small compared to the matrix size given by n and m, we obtain
considerable savings in the storage and work complexities of an Rk-matrix compared



874 SABINE LE BORNE

to a full matrix, i.e., (m+n)k versus mn memory cells (or flops). Such a representa-
tion has also been used, e.g., in [19], where it is referred to as “skeleton.”

In the following construction, we build a block cluster tree iteratively by starting
from I × I and refining the block clusters if they do not satisfy a certain admissibil-
ity condition. The choice of the admissibility condition depends on the underlying
continuous problem (i.e., the elliptic partial differential equation, in particular its asso-
ciated Green’s function) and shall ensure that all admissible blocks allow a sufficiently
accurate Rk-approximation. A typical admissibility condition for uniformly elliptic
problems, which we will refer to as the standard or strong admissibility condition, is
as follows:

Adms(s× t) = TRUE ⇐⇒ min(diam(s),diam(t)) ≤ η dist(s, t).(2.2)

Here, “diam” and “dist” denote the Euclidean diameter/distance of the (union of the)
supports of the basis functions with indices in s, t, respectively. In some cases (e.g.,
one-dimensional problems), the weaker admissibility condition

Admw(s× t) = TRUE ⇐⇒ s �= t(2.3)

turns out to be sufficient [13]. A given cluster tree together with an admissibility
condition allows the following canonical construction of a block cluster tree:

Let the cluster tree TI be given. We define the block cluster tree TI×I by
root(T ) := I × I, and each vertex s× t ∈ T has the set of successors

S(s× t) :=

⎧⎨
⎩

∅ if s× t admissible,
∅ if min{#s,#t} ≤ nmin,
{s′ × t′ | s′ ∈ S(s), t′ ∈ S(t); } otherwise.

(2.4)

The parameter nmin ensures that blocks do not become too small where the
matrix arithmetic of a full matrix is more efficient than any further subdivision. It is
typically set such that 10 ≤ nmin ≤ 100. The leaves of a block cluster tree obtained
through this construction will be used in the definition of an H-matrix.

Definition 2.5 (H-matrix). Let k, nmin ∈ N ∪ {0}, and let n := #I be the
number of indices in an index set I. The set of H-matrices induced by a block cluster
tree T := TI×I with blockwise rank k and minimum block size nmin is defined by

H(T, k) := {M ∈ R
n,n | ∀s× t ∈ L(T ) : rank(M |s×t) ≤ k or min{#s,#t} ≤ nmin}.

A matrix M ∈ H(T, k) is said to be given in H-matrix representation if the blocks
M |s×t with rank(M |s×t) ≤ k are in Rk-matrix representation and the remaining blocks
with min{#s,#t} ≤ nmin are stored as full matrices.

An example for the block structure of an H-matrix constructed with the weak
admissibility condition (2.3) is shown in Figure 2.1 (bottom right). Both the accuracy
and (storage) complexity of an H-matrix approximation to a given matrix depend on
the construction of an appropriate cluster tree, i.e., a hierarchy of index set partition-
ings. Details regarding approximation errors for blocks that satisfy the admissibility
condition, i.e., for blocks that have a (relatively) large distance compared to their
diameters, as well as storage requirements for full, Rk-, and H-matrices, are given in
[8]. The intuitive objective in the construction of a cluster tree, given the standard
admissibility condition (2.2), is to partition the index set into clusters of vertices that
are geometrically far from each other. As a result, relatively large blocks become
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admissible and we obtain an accurate H-matrix approximation that is inexpensive to
store (i.e., almost linear complexity).

Whereas the classical H-matrix uses a fixed rank for the Rk-blocks, it is possible
to replace it by variable (or adaptive) ranks in order to enforce a desired accuracy
within the individual blocks. In particular, for a given admissible block s× t, we set
the rank k of the corresponding matrix block M |s×t as follows:

k(M |s×t) := min{k′ | σk′ ≤ δσ1},(2.5)

where σ0 ≥ σ1 ≥ · · · denote the singular values of M |s×t, and 0 < δ < 1 denotes
the desired relative accuracy within each block. Numerical tests have shown that
adaptive ranks are typically superior to fixed ranks, especially when applied to singu-
larly perturbed problems [14]. A related idea where variable ranks have been assigned
depending on the hierarchy level (see Definition 2.2) was also pursued in [19].

2.2. Arithmetic of H-matrices. Given two H-matrices A,B ∈ H(T, k) based
on the same block cluster tree T , i.e., with the same block structure, the exact sum
or product of these two matrices will typically not belong to H(T, k). In the case of
matrix addition, we have A + B ∈ H(T, 2k); the rank of an exact matrix product is
less obvious. We will use a truncation operator T H

k←k′ to define the H-matrix addition
C := A⊕H B and H-matrix multiplication C := A⊗H B, where again C ∈ H(T, k).

A truncation of a rank k′ matrix R to rank k < k′ is defined as the best approxi-
mation with respect to the Frobenius (or spectral) norm in the set of rank k matrices.
In the context of H-matrices, we use such truncations for all admissible (rank k)
blocks. Using truncated versions of the QR-decomposition and singular value decom-
position, the truncation of a rank k′ matrix R ∈ R

n,m (given in the form R = ABT ,
where A ∈ R

n,k′
and B ∈ R

m,k′
) to a lower rank can be computed with complexity

O(5(k′)2(n + m) + 23(k′)3); further details are provided in [8].

We then define the H-matrix addition and multiplication as follows:

A⊕H B = T H
k←2k(A + B);

A⊗H B = T H
k←k′(AB),

where k′ ≤ c(p+1)k is the rank of the exact matrix product, c denotes some constant
(which depends on the block cluster tree T ), and p denotes the depth of the tree (see
Definition 2.2). Estimates show that the H-matrix addition and multiplication have
almost optimal complexity and are provided in [8] along with efficient implementations
of these operations.

The approximate H-matrix addition and multiplication permit the explicit com-
putation of an approximate matrix inverse in H-matrix format. One possible approach
to construct an H-inverse is defined recursively in the block structure which results
from the block cluster tree (see Figure 2.1): An approximation to the exact inverse

(
A11 A12

A21 A22

)−1

=

(
A−1

11 + A−1
11 A12S

−1A21A
−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

)
,(2.6)

with Schur complement S = A22 − A21A
−1
11 A12, is computed by replacing the exact

matrix multiplication, addition, and inversion on the coarser levels by H-arithmetic
[10]. Other approaches to compute an approximate inverse may be based on Newton-
like iterations.
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3. Multilevel H-matrices for one-dimensional problems. In this section
we deal with the H-matrix representation of the matrix inverse of a tridiagonal stiffness
matrix representing a discretized one-dimensional (convection-diffusion) differential
equation. In particular, we will prove that the exact H-matrix representation of a fine
grid inverse A−1

h may be obtained by interpolation from the coarse grid inverse A−1
H .

3.1. General setting. In a one-dimensional setting, an (upwind) discretization
of the convection-diffusion equation leads to a tridiagonal matrix. Its exact inverse
can be represented in H-matrix format as shown in the following.

Theorem 3.1. Let A be an irreducible and nonsingular tridiagonal n×n matrix.
Its exact inverse A−1 can be represented as an H-matrix using the weak admissibility
condition (2.3) and rank 1 representations in the admissible blocks. The exact storage
of the inverse matrix amounts to (1 + 2 log2 n)n in the case n = 2p.

Proof. The weak admissibility condition produces an H-matrix format for A−1

where the diagonal blocks are successively subdivided until 1× 1 blocks are obtained
on the diagonal, as illustrated in Figure 3.1.

I2,0

2,1I

2,2I

2,3I

I 2,0 I2,1 I2,32,2II0,0

I0,0

I I1,0

I

I 1,1

1,1

1,0

Fig. 3.1. H-matrix structure for weak admissibility.

The theorem follows directly from a result on the inverses of tridiagonal matrices
[7, 5] which states that A is tridiagonal if and only if there exist four sequences ui, vi,
xi, and yi where uivi = xiyi for all i such that A−1 =: C = (cij) is given by

cij =

{
uivj : i ≤ j,
xiyj : i > j.

(3.1)

For the storage requirements of an H-matrix with a format as illustrated in Figure
3.1, see Lemma 3.1 in [10].

Theorem 3.1 has already been stated in the first paper that appeared on H-
matrices [10], however, with a different proof. We will use the representation (3.1)
together with a matrix-coefficient-based interpolation scheme that has previously been
used in the construction of generalized hierarchical bases [2] and wavelets.

We will analyze the case of a one-dimensional constant coefficient boundary value
problem, giving rise to a constant coefficient tridiagonal stiffness matrix AH when
discretized using some finite element or finite difference approximation on a uniform
mesh of meshwidth H. The terms of the sequences ui, vi, xi, yi can be associated with
the geometric vertex locations, as illustrated in Figure 3.2 (top).

Let AH = tridiag [aH , cH , bH ] be the tridiagonal matrix that arises from a dis-
cretization on the coarse mesh with meshwidth H, and let uc

i , v
c
i , x

c
i , y

c
i be the four

sequences for the representation of A−1
H as in (3.1). The superscript “c” indicates that

these are the sequences representing the coarse grid inverse matrix.
Let Ah = tridiag [ah, ch, bh] be the tridiagonal matrix that arises from a discretiza-

tion on the regularly refined mesh with meshwidth h = H/2. In the following, we

will show that the four sequences uf
i , vfi , xf

i , yfi for the representation of the fine grid
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Fig. 3.2. One-dimensional coarse and refined grids and associated sequences.

inverse A−1
h can be obtained through interpolation of the terms of the corresponding

coarse sequences.

Let n = 1/H − 1 denote the number of coarse grid vertices. We compute the fine

grid sequences uf
i and vfi by interpolation for the interior fine grid points,

uf
2i = uc

i , uf
2i+1 = θuc

i + ϑuc
i+1, i = 1, . . . , n− 1,(3.2)

vf2i = vci , vf2i+1 = ϑvci + θvci+1, i = 1, . . . , n− 1,(3.3)

uf
2n = uc

n, vf2n = vcn,(3.4)

and extrapolation for the first and last fine grid points,

uf
1 = θextu

c
1 + ϑextu

c
2, uf

2n+1 = θ̃extu
c
2n−2 + ϑ̃extu

c
2n,(3.5)

vf1 = ϑ̃extv
c
1 + θ̃extv

c
2, vf2n+1 = ϑextv

c
2n−2 + θextv

c
2n.(3.6)

In an analogous fashion, we interpolate (and extrapolate) the terms of the se-

quences xc
i , y

c
i to obtain xf

i , y
f
i .

The interpolation coefficients θ, ϑ and the extrapolation coefficients θext, ϑext,
θ̃ext, ϑ̃ext are problem-dependent and will be computed from the corresponding (fine
grid) matrix entries in Ah; details will be given in the subsequent application to the
one-dimensional convection-diffusion equation.

3.2. Application to the one-dimensional convection-diffusion equation.
As an example, we consider the one-dimensional convection-diffusion equation −(u′ +
βu)′ = f on an interval I, with Dirichlet boundary conditions and constant β. In the
case of a Scharfetter–Gummel discretization [1] on a uniform mesh, the resulting
tridiagonal matrix has entries

ah = −B(−βh)

h
,(3.7)

bh = −B(βh)

h
,(3.8)

ch =
B(βh) + B(−βh)

h
(= −ah − bh),(3.9)
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where B(·) denotes the Bernoulli function B(x) = x
ex−1 . For this case, we choose

interpolation factors

θ = ϑ̃ = −bh
ch

=
B(βh)

B(−βh) + B(βh)
=

1 − eβh

1 − e2βh
,(3.10)

θ̃ = ϑ = −ah
ch

= 1 − θ.(3.11)

These are the same coefficients we get by calculating θ from u(x + h) = θu(x) +
(1− θ)u(x+ 2h) and making the interpolation exact for functions of the form u(x) =
αe−βx + γ, i.e., for the fundamental solution of the homogeneous equation. For the
extrapolation, we set the coefficients to

θext =
e3βh − 1

e2βh − 1
, ϑext = 1 − θext,(3.12)

θ̃ext =
e−βh − 1

e2βh − 1
, ϑ̃ext = 1 − θ̃ext.(3.13)

Again, these are the same coefficients we get by calculating θext and θ̃ext from u(x−
h) = θextu(x) + (1 − θext)u(x + 2h) and u(x + h) = θ̃extu(x − 2h) + (1 − θ̃ext)u(x),
respectively, and making the extrapolations exact for the fundamental solution of the
homogeneous equation. Next we will prove that our interpolation scheme yields the
exact sequences for the inverse matrix on the next finer grid.

Theorem 3.2. Let AH = tridiag(aH , cH , bH) be the coarse grid tridiagonal stiff-
ness matrix with entries aH , bH , cH as in (3.7), (3.8), and (3.9), respectively, and let
uc
i , v

c
i , x

c
i , y

c
i be the sequences that represent the inverse A−1

H as in (3.1). Let Ah =
tridiag(ah, ch, bh) be the fine grid tridiagonal stiffness matrix with entries ah, bh, ch.
Using the interpolation coefficients (3.10), (3.11) as well as extrapolation coefficients

(3.12), (3.13) to obtain the fine sequences uf
i , v

f
i , x

f
i , y

f
i from the coarse sequences

uc
i , v

c
i , x

c
i , y

c
i , we will produce the exact sequences for the inverse stiffness matrix A−1

h

for the fine grid, i.e.,

(A−1
h )ij =

{
uf
i v

f
j : i ≤ j,

xf
i y

f
j : i > j.

We will need the following auxiliary results to prove Theorem 3.2.
Lemma 3.3. Let f(β, h) := h−1B(βh), where B(x) = x

ex−1 denotes the Bernoulli
function. Then there holds

f(β, 2h) =
f(β, h)2

f(β, h) + f(−β, h)
.

Proof.

f(β, 2h) = (2h)−1B(2βh) =
β

e2βh − 1
=

βeβh(e−βh − 1)2

eβh(e2βh − 1)(e−βh − 1)2

=
β(eβh − 1)(e−βh − 1)

(eβh − 1)2[(e−βh − 1) − (eβh − 1)]
=

h−1 βh
eβh−1

· βh
eβh−1

βh
eβh−1

− βh
e−βh−1

=
f(β, h)2

f(β, h) + f(−β, h)
.
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Corollary 3.4. The following relationships hold between matrix entries aH , cH ,
bH of the coarse grid stiffness matrix and ah, ch, bh of the fine grid stiffness matrix:

aH = −a2
h

ch
, bH = −b2h

ch
, cH =

a2
h + b2h
ch

,(3.14)

ah = (e−βh + 1)aH , bh = (eβh + 1)bH .(3.15)

Proof. The proof of (3.14) follows directly by applying Lemma 3.3:

aH = −f(−β, 2h) = − f(−β, h)2

f(−β, h) + f(β, h)
= − a2

h

−ah − bh
= −a2

h

ch
,

and analogously for bH , cH . The relationship in (3.15) follows from the direct calcu-
lation

aH = −B(−2βh)

2h
= − −2βh

2h(e−2βh − 1)
=

βh

h
· 1

(e−βh − 1)(e−βh + 1)
=

ah
e−βh + 1

,

which may be shown analogously for bH .
Proof of Theorem 3.2. Let C = (cij) with

cij =

{
uf
i v

f
j : i ≤ j,

xf
i y

f
j : i > j,

be the matrix with entries computed from the fine, interpolated sequences. We will
show that C · Ah = I, where I denotes the identity matrix. For a complete proof,
we need to distinguish the following three cases: (a) i < j (upper diagonal entries
involving sequences ui, vi); (b) i > j + 1 (lower diagonal entries involving sequences
xi, yi); (c) i = j or i = j + 1 (entries on or directly below the diagonal involving all
four sequences). In the following, ei denotes the ith unit vector.

Case (a). Let i < j. We need to show that eTi CAhej = 0. If j is even, i.e., j = 2j̃,
and 3 < j < 2n− 1, then

eTi CAhej = vi(u
f
j−1bh + uf

j ch + uf
j+1ah)

= vi

(
(θuc

j̃−1
+ ϑuc

j̃
)bh + uc

j̃
ch + (θuc

j̃
+ ϑuc

j̃+1
)ah

)

(3.10),(3.11),(3.14)
= vi

⎛
⎜⎜⎝uc

j̃−1
bH + uc

j̃

−2ahbh + c2h
ch︸ ︷︷ ︸
cH

+uc
j̃+1

aH

⎞
⎟⎟⎠

= 0

since uc
j̃

are the terms of the sequence in the representation of the exact inverse of

AH . If j is odd, i.e., j = 2j̃ + 1, and j < 2n + 1, then there holds

eTi CAhej = vi(u
f
j−1bh + uf

j ch + uf
j+1ah)

= vi

(
uc
j̃
bh + (θuc

j̃
+ ϑuc

j̃+1
)ch + uc

j̃+1
ah

)

= vi

(
uc
j̃
bh +

(
−bh
ch

uc
j̃
+

−ah
ch

uc
j̃+1

)
ch + uc

j̃+1
ah

)

= 0.
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In the cases j = 2, j = 2n, and j = 2n + 1, we need to use interpolation as well as
extrapolation. We will show that (CAh)12 = 0; the other two cases can be shown in
a similar way.

eT1 CAhe2 = v1(u
f
1bh + uf

2ch + uf
3ah)

(3.5),(3.12)
= vi ((θextu

c
1 + (1 − θext)u

c
2)bh + uc

1ch + (uc
1θ + uc

2ϑ)ah)

= vi (u
c
1(θextbh + ch + θah) + uc

2((1 − θext)bh + ϑah))

= 0

since

θextbh + ch + θah = θextbh + (−ah − bh) + θah

=

(
1 − e3βh

1 − e2βh
− 1

)
bh + (θ − 1)ah︸ ︷︷ ︸

−aH

=
e2βh − e3βh

1 − e2βh

βh

h(eβh − 1)
+

βH

H(e−βH − 1)
= 0

and

(1 − θext)bh + ϑah = − (θextbh − bh + (1 − θ)ah)

= − (θextbh + ch + θah) = 0.

Case (b). This case can be proven analogous to Case (a) by replacing the se-
quences ui, vi by xi, yi, respectively.

Case (c). If i = j is even, i.e., i = 2̃i, then there holds

(CAh)i,i = xf
i y

f
i−1bh + vfi u

f
i ch + vfi u

f
i+1ah

= xc
ĩ
(θyc

ĩ−1
+ (1 − θ)yĩ)bh + uc

ĩ
vc
ĩ
ch + vc

ĩ
(θuc

ĩ
+ (1 − θ)uĩ+1)ah

= xc
ĩ
yc
ĩ−1

bH − ahbh
ch

xc
ĩ
yc
ĩ

+ uc
ĩ
vc
ĩ
ch − ahbh

ch
vc
ĩ
uc
ĩ
+ vc

ĩ
uc
ĩ+1

aH

(3.14)
= xc

ĩ
yc
ĩ−1

bH + uc
ĩ
vc
ĩ
ch + vc

ĩ
uc
ĩ+1

aH

= (CHAH)ĩ,̃i = 1,

where we used uivi = xiyi in the fourth equality above. (uivi = xiyi follows from
the proof of Theorem 3.1.) If i = j is odd, we need to distinguish three subcases
i = j = 1, i = j = 2̃i + 1 for 1 ≤ ĩ < n and i = j = 2n + 1. These proofs are similar
to those above and are omitted.

In the case of β = 0, this example becomes the self-adjoint Laplace problem
−u′′ = f with Dirichlet boundary conditions. Here, the interpolation coefficients are
given by

θ = ϑ =
1

2
,

and the extrapolation coefficients are

θext =
3

2
, ϑext = −1

2
.
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For this particular case, the sequences ui, vi that represent the inverse stiffness matrix
are known explicitly due to the fact that the exact inverse A−1

H is of the form (see
also [16])

A−1
H = H2

⎛
⎜⎜⎜⎜⎜⎜⎝

n n− 1 · · · 2 1
n− 1 2(n− 1) · · · 4 2

...
...

. . .
...

2 4
. . . n− 1

1 2 · · · n− 1 n

⎞
⎟⎟⎟⎟⎟⎟⎠

,

i.e., its entries can be directly computed as

(
A−1

H

)
ij

=

{
uivj if i ≥ j,(
A−1

H

)
ji

if j > i,
(3.16)

where

ui = H(n− i + 1) and vj = Hj.(3.17)

In the general case of β �= 0, an alternative proof of Theorem 3.2 can be given
based on the following nice property of the Scharfetter–Gummel discretization: Here,
the entries of the inverse A−1 are the values of the Green’s function of the correspond-
ing differential operator (with Dirichlet boundary conditions) taken on the mesh. In
particular, for

G(x, y) =

{
x(1−y)B(β)

B(β−βy)B(βx) : x ≤ y,
y(1−x)B(−β)

B(βx−β)B(−βy) : x > y,

one may show that (A−1)ij = G(ih, jh) [18]. Setting ui = ih
B(βih) , vj = (1−jh)B(β)

B(β−βjh) ,

xi = (1−ih)B(−β)
B(βih−β) , and yj = jh

B(−βjh) yields the four sequences required in (3.1). Then

the proof is completed by noting that these sequences are of the form ui = f(ih),
where f(x) = αe−βx + γ are fundamental solutions of the homogeneous equation, for
which the interpolation is made exact.

4. Multilevel H-matrices for two-dimensional problems. A generalization
of the interpolation approach to several spatial dimensions is relatively straightforward
at least from the standpoint of how to construct the low rank (Rk-)blocks of the fine
grid inverse. This can be done by interpolation as in the one-dimensional case, at least
if the fine grid clustering is adjusted to the coarse grid clustering, as will be explained
in detail later. In the higher-dimensional case, however, we will not be able to produce
an exact fine grid inverse from a coarse grid inverse. This is due to the unknown values
on the boundaries of the blocks (clusters), which will typically lead to a residual at
these boundaries and therefore prevent the construction of an arbitrarily accurate
approximation of the inverse. These approximate inverses that are inexpensive to
construct, however, still provide good preconditioners for Krylov subspace methods for
a variety of model problems. In the remainder of this section, we will construct the fine
grid cluster tree from the coarse grid cluster tree in subsection 4.1. In subsection 4.2,
we will generalize the interpolation scheme for one-dimensional problems to compute
prolongations of the Rk-blocks of the inverse of the coarse stiffness matrix to obtain
the respective Rk-blocks for the inverse of the fine matrix. Subsection 4.3 deals with
the computation of inadmissible, full matrix blocks and a subsequent “correction”
step for the previously computed Rk-blocks.



882 SABINE LE BORNE

4.1. Multilevel cluster tree construction. In order to apply a clusterwise
prolongation scheme, we can no longer construct the cluster tree for the fine grid
indices independently of the cluster tree for the coarse grid indices. In fact, we will
construct the fine grid cluster tree from the geometric fine grid information (coor-
dinates of vertex locations) and the coarse grid cluster tree. Whereas the standard
cluster tree construction (see Figure 2.1 for an illustration) starts from the root (which
is the full index set I), we will begin with the construction of the leaves of the fine
cluster tree and then construct all coarser levels by appropriate unions of clusters.

Let Tc denote the coarse cluster tree, and let L(Tc) = {vc1, vc2, . . . , vcm} denote the

m leaves of this tree with labels vci . We now construct m leaf clusters vfi of the fine
cluster tree as follows:

1. If a (fine grid) vertex x corresponds to a coarse grid vertex, then x ∈ vfi ⇐⇒
x ∈ vci .

2. If a (fine grid) vertex x results from refinement of the edge between coarse
grid vertices y and z, then
(a) if y and z both correspond to degrees of freedom (i.e., are not on the

boundary), then x ∈ vfi OR x ∈ vfj where y ∈ vci and z ∈ vcj ;

(b) if only y but not z corresponds to a degree of freedom, then x ∈ vfi
where y ∈ vci ;

(c) if neither y nor z correspond to degrees of freedom, then x ∈ vfi where

vfi is a fine grid cluster that contains at least one neighbor of x in the
fine grid.

We note that the fine grid vertices are not associated with clusters in a uniquely
determined way. For example, if a (fine grid) vertex x results from the refinement of
the edge between coarse grid vertices y and z which belong to different coarse grid
clusters, then x is (randomly) inserted into one of the corresponding fine grid clusters.
The construction of fine leaf clusters is illustrated by a simple example in Figure 4.1.
Here, case 2(a) applies, e.g., to vertex 39, which results from refinement of the edge
between vertices 6 and 7, which both belong to cluster vc2. Thus vertex 39 has to be

placed into cluster vf2 . Vertex 32, on the other side, can be placed in either one of

the two clusters vf1 or vf2 . Case 2(b) occurs, e.g, for vertex 16. Since its only coarse

grid neighbor (vertex 0) belongs to vc1, we conclude 16 ∈ vf1 . Case 2(c) applies, e.g.,
to vertex 15, which results from refinement of an edge with two boundary endpoints.
Vertex 15 has to belong to the same cluster as one of its neighbors (vertices 14 and

19), i.e., 15 ∈ vf3 .

Once all the fine grid vertices are assigned to leaf clusters, they are assigned
“degree-of-freedom” names. Here, the order of the leaf clusters determines the or-
dering of the unknowns up to the ordering within a leaf which is arbitrary. In the
example given in Figure 4.1, the clustering usually leads to different degree-of-freedom
names on the coarse and fine grid, e.g., vertex (or index) 6 corresponds to degree of
freedom 3 on the coarse grid and degree of freedom 15 on the fine grid, respectively
(in Table 4.1, dof2idxc(3) = dof2idxf (15) = 6).

Next we construct the lower level clusters from the leaves up to the root in the
following canonical way: Let the subscript � denote the level of a cluster in the coarse
cluster tree, and let vci,�, v

c
j,� be two coarse grid clusters that have a joint predecessor

vck,�−1, i.e., vck,�−1 = vci,� ∪ vcj,�. We then define a fine cluster vfk,�−1 (corresponding to

the coarse cluster vck,�−1) by vfk,�−1 = vfi,� ∪ vfj,�.

In the case of the example given in Figure 4.1, there will be two clusters on level 1,
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Fig. 4.1. A coarse grid cluster tree (left) and the (leaves of the) resulting fine grid cluster tree.

Table 4.1

“Degree of freedom to vertex” (dof2idx) arrays for the coarse and fine grids.

DoF 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .
dof2idxc 0 3 4 6 7 1 2 5 8
dof2idxf 0 3 4 9 10 16 20 21 22 27 28 31 32 33 34 6 . . .

namely, vf1,1 := vf1 ∪ vf2 and vf2,1 := vf3 ∪ vf4 . Finally, we obtain the root on level 0 to

be the full index set vf1,0 := vf1,1 ∪ vf2,1 = (I = {0, 1, . . . , 48}).
Once the index cluster tree is given, a block index cluster tree is computed in the

canonical way (see (2.4)).

Alternatively, we could construct a coarse cluster tree from a given fine cluster
tree by simply deleting vertices that are in the fine grid but not the coarse grid from
all clusters. In the case of regularly refined grids, these two approaches yield very
similar (or identical) resulting cluster trees. For adaptively refined grids, however,
some “unlucky” cases may occur for this approach, e.g., empty coarse clusters or a
fine grid vertex belonging to a different cluster than its two coarse grid neighbors.

The multilevel clustering as described in this subsection provides a matrix block
structure to approximate the inverse stiffness matrix. The computation of the actual
matrix data will be described in the next two subsections for Rk-blocks and full matrix
blocks, respectively.

4.2. Prolongation of Rk-blocks. Let sc × tc be an admissible block clus-
ter of the coarse grid, and let sf × tf be the corresponding fine grid cluster. Let
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(A−H
c )sc×tc =

∑k
i=1 a

c
i (b

c
i )

T be the rank k representation of the corresponding (ad-
missible) matrix block in the coarse grid approximation to the inverse stiffness ma-
trix. In order not to overload our presentation with sub- and superscripts, let c =
(γ1, γ2, . . . , γ|sc|)

T be one of the vectors aci in the Rk representation of (A−H
c )sc×tc . A

prolongation of c to Pc := f := (φ1, φ2, . . . , φ|sf |)
T is computed by

φi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γk : dof2idxf (i) = dof2idxc(k),

θγj + ϑγk :

⎛
⎜⎜⎝

dof2idxf (i) results from refinement of
edge between vertices dof2idxc(j) and
dof2idxc(k), both of which belong to the

coarse cluster sc

⎞
⎟⎟⎠ ,

γk :

(
dof2idxc(k) is the only coarse grid neighbor

of dof2idxf (i) that belongs to sc

)
,

0 :

(
dof2idxf (i) does not have any

coarse grid neighbors in sc

)
.

(4.1)

Here, “dof2idxf” and “dof2idxc” denote the arrays that store the mappings of the
degrees of freedoms to the vertex names for the fine and coarse grids, respectively.
An example was given in Table 4.1. θ and ϑ are the problem-dependent interpolation
factors. This prolongation is well defined as a result of the multilevel construction of
the cluster tree: This construction guarantees dof2idxc(s

c) ⊂ dof2idxf (sf ) (and also
dof2idxc(t

c) ⊂ dof2idxf (tf )) so that the prolongation of any entry corresponding
to a coarse grid vertex is well defined (first case in (4.1)). A fine grid vertex may
have two, one, or no coarse grid neighbors belonging to the respective coarse cluster
sc (second through fourth cases in (4.1)). We note that we expect the fourth case
to be the exception. In fact, in a regularly refined grid of the type as shown in
Figure 4.1, this case applies to only two corner vertices (vertices 15 and 42 in this
example). The prolongation of vectors bci is performed analogously, possibly with
different interpolation factors θ̃ and ϑ̃. We therefore obtain an approximation (in

rank k representation) (A−H
f )sf×tf =

∑k
i=1 a

f
i (bfi )T to the corresponding fine grid

matrix block of the inverse stiffness matrix.

4.3. Computation of full blocks and selected Rk corrections. We assume
that the standard admissibility condition (2.2) is used in the construction of the block
cluster tree. However, instead of representing nonadmissible, off-diagonal blocks as
full matrices, we use the Rk representation with full rank. Therefore, we obtain a block
structure with full blocks only on the diagonal of the matrix. We furthermore assume
that the prolongations of all off-diagonal Rk-blocks have already been computed.
We now compute the full diagonal blocks by solving AfA

−H
f = If exactly for these

diagonal blocks, i.e., for every diagonal block sf×sf , we solve (Af )sf×J ·(A−H
f )J×sf =

Isf×sf for (A−H
f )sf×sf :

(A−H
f )sf×sf := ((Af )sf×sf )

−1 ·
(
Isf×sf − (Af )sf×(J\sf ) · (A−H

f )(J\sf )×sf

)
.(4.2)

Here, Af denotes the fine stiffness matrix, If denotes the identity matrix, and J
denotes the set of degrees of freedom on the fine grid.

We provide an illustration in Figure 4.2. Here, we computed approximations to
the inverse of the Laplace matrix for a relatively small problem size (441 × 441). On
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Fig. 4.2. The multilevel inverse (left) and the H-inverse (right).

the left, we show the H-matrix obtained by the prolongation. The blocks along the
diagonal are full matrix blocks. The number printed in these blocks is the infinity
norm of the respective block. The off-diagonal blocks show the first four singular
values (on a logarithmic scale) with the largest one being printed in the block. On
the right in Figure 4.2, we show the matrix obtained by the H-inversion algorithm
applied to the fine matrix (which may differ from a best possible H-approximation to
the exact inverse matrix). We note the resemblance of the two matrices.

The particular matrix structure with full blocks only on the diagonal is moti-
vated by the ease of computation for these remaining full matrix blocks. In fact, it
is unclear how the full blocks should be computed (efficiently) in the case of several
off-diagonal full blocks. However, a clear disadvantage with respect to the approxi-
mation accuracy can be observed as a result of this block structure: Let (A−H

c )sc×tc

be such an off-diagonal, nonadmissible matrix block in Rk representation with rank
kc ≤ min{|sc|, |tc|}(≤ nmin), i.e., full rank. Since sc × tc does not satisfy the admis-
sibility condition, neither do we expect the corresponding fine block sf × tf to be
admissible (it may, however, be admissible in exceptional cases) so that an accurate
approximation to (A−H

f )sf×tf could require up to a full rank kf ≤ min{|sf |, |tf |}. The

Rk prolongation, however, will provide an approximation of only rank kc (≈ 1
4kf ).

We expect the largest errors in entries (A−H
f )ij for which (Af )ij �= 0, but the

respective vertices dof2idxf (i) and dof2idxf (j) belong to different leaves in the fine
cluster tree. Let Acorr be a “correction” matrix of such a sparsity structure. Its
nonzero entries (Acorr)ij are computed by

(Acorr)ij := −
(eTi Af ) · (A−H

f ej)

(Af )ii

to obtain eTi Af (A−H
f + Acorr)ej = 0. Here, ei again denotes the ith unit vector. We

then compute the correction

Ã−H
f := A−H

f ⊕H Acorr.(4.3)

In section 5 we will show numerical results for both matrices A−H
f and Ã−H

f .
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We close this section with a remark on how the construction of a multilevel H-
inverse differs from the standard geometric multigrid method: In the coarse grid
correction step of the geometric two-grid method, we compute an approximate error
ef ≈ PA−1

c Rrf where rf , ef denote the fine grid residual and error, respectively, and
P and R denote the prolongation and restriction operators. The matrix PA−1

c R may
be interpreted as an approximate fine grid inverse, obtained by prolongation from
the coarse grid inverse. Our multilevel inverse differs from PA−1

c R since we compute
prolongations only restricted to block clusters, and entries on diagonal blocks are not
obtained from prolongation but by the explicit computation given in (4.2).

5. Numerical results. We will provide numerical results for the iterative solu-
tion of the (discretized) convection-diffusion equation

−εΔu + b · ∇u = f in Ω = (−1, 1)2,

u = g on ∂Ω

for varying values for ε and various convections b ∈ {bnone, bxline, bdiag, bcirc, brecirc},
where

bnone(x, y) = (0, 0)T (no convection),

bxline(x, y) = (1, 0)T (constant convection along the x-axis),

bdiag(x, y) =
√

2
−1

(1, 1)T (diagonal convection),

bcirc(x, y) =

(
1

2
− y, x− 1

2

)T

(circular convection),

brecirc(x, y) = (4x(x− 1)(1 − 2y), −4y(y − 1)(1 − 2x))
T

(recirculating convection).

A finite element discretization using Tabata’s upwind triangle scheme [17, Chap. III,
sect. 3.1.1] leads to systems of linear equations Ahxh = fh, where h denotes the grid
width of the underlying (regular) triangulation. Throughout we use the adaptive H-
arithmetic (2.5) which is typically superior to fixed ranks, in particular for highly non-
symmetric problems [14]. All the numerical results given subsequently use problem
independent interpolation factors θ = ϑ = 1

2 since the problem-dependent factors did
not yield significant improvements. All tests were performed on a Dell Precision 470n
Workstation with a Xeon 3.2GHz processor using the standard H-matrix library HLib

(cf. http://www.hlib.org). We choose x0 = 100 · (1, . . . , 1)T as the initial vector to
solve the discrete system by a preconditioned BiCGstab iteration. We iterate until
either the maximum number of 100 iterations has been reached, or until the residual
has been reduced by a factor of 10−6. We compute an averaged convergence rate
n
√
rn/r0, where rn = ‖b−Axn‖2 denotes the norm of the nth residual.
In our first set of experiments (see Table 5.1), we test the dependence of the mul-

tilevel H-inverse on the adaptive accuracy δ (2.5) used in the H-arithmetic. These
tests have been performed for a fixed coarse problem size nc = 10000 and refined
fine grid with nf = 40401 unknowns. In the upper part of the table, we record re-
sults obtained for the Laplace equation, and the lower block shows the results for a
convection-dominated problem with circular convection. The times for the computa-
tion of the coarse H-inversion and prolongation are given in seconds. For comparison,
we also record the time for the H-inversion of the fine stiffness matrix. We observe
that the coarse H-inversion and prolongation together take about half as much time
as the fine H-inversion (at least for adaptive H-accuracy δ ≤ 10−3). However, the
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Table 5.1

Dependence on adaptive accuracy, nf = 40401, nc = 10000.

H-accuracy δ 10−1 10−2 10−3 10−4

ε = 1.0, b = bnone (Laplace)
Coarse H-inversion 21.7 32.1 44.5 55.4

Prolongation 4.2 4.4 4.7 4.9
Fine H-inversion 35.4 56.7 88.1 124.6
Storage in MB 64 96 145 191

Convergence rates 0.97/0.98/0.96 0.96/0.96/0.71 0.95/0.95/3.5e-4 0.95/0.95/3.7e-10
Steps 100/100/100 100/100/43 100/100/3 100/100/2

Iteration time 7/7/10 10/11/6 14/16/1 17/19/0.5

ε = 10−8, b = bcirc
Coarse H-inversion 15.1 17.3 20.1 22.5

Prolongation 5.3 4.8 5.4 4.9
Fine H-inversion 25.4 37.1 48.7 62.0
Storage in MB 76.8 102.4 125.8 146.5

Convergence rate 0.48/0.50/0.38 0.31/0.29/4.7e-3 0.31/0.29/1.1e-8 0.31/0.29/0
Steps 23/22/17 13/14/4 13/14/2 13/14/1

Iteration time 2/2/1 1.3/1.7/0.6 1.7/1.9/0.4 1.7/3.2/0.2

Table 5.2

Dependence on problem size (nf , nc), fixed H-accuracy δ = 1e− 3.

nf 10201 20449 40401 80089 160801

ε = 1.0, b = bnone (Laplace)
Coarse H-inversion 7.8 12.4 44.5 67.1 226.8

Prolongation 1.0 2.4 4.7 11.3 21.9
Storage in MB 27.8 59.1 145.7 295.9 719.7

Convergence rate 0.94/0.65 0.94/0.77 0.95/0.95 0.95/0.95 0.95/0.98
Steps 100/37 100/63 100/100 100/100 100/100

Iteration time 2.7/1.2 5.3/3.9 14/16 28/32 70/80

ε = 10−8, b = bcirc
Coarse H-inversion 3.8 6.1 20.1 31.2 96.8

Prolongation 0.9 2.3 5.4 11.1 21.5
Storage in MB 23.0 50.6 125.8 271.9 654.6

Convergence rate 0.27/0.28 0.25/0.27 0.31/0.29 0.34/0.37 0.45/0.47
Steps 13/12 12/12 13/14 14/16 21/20

Iteration time 0.3/0.4 0.6/0.7 1.7/2.1 3.5/4.6 12.9/14.4

convergence rates are disappointing, at least for the Laplace problem: Listed are the
three convergence rates obtained for the multilevel H-inverse without Rk correction
(see section 4.3), with Rk correction, and using the H-inverse computed by the stan-
dard H-inversion of the fine stiffness matrix. Whereas the latter one yields an almost
exact method for adaptive accuracy δ = 10−4, the multilevel inverses with or without
Rk correction only yield convergence rates of 0.95 independent of the H-accuracy.
However, our main motivation is to find a good preconditioner not for the Laplace
problem but rather for highly convection-dominated problems. And here, the conver-
gence rates of 0.30 reported in the bottom part of Table 5.1 look rather satisfactory.

In Table 5.2, we choose a fixed H-accuracy of δ = 10−3 and perform tests for
varying problem sizes ranging from 10201 to 160801 unknowns on the fine grid. We
notice that even though the convergence rate shows some dependence on the problem
size, this dependence is very moderate. The convergence rates obtained with Rk
correction only differ from those obtained without this correction for the smaller
problem sizes for the Laplace problem. They were almost identical for the convection-
dominated circular problem.
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Table 5.3

Dependence on convection direction and dominance (nf = 80089, nc = 19881).

ε 1.0 10−1 10−2 10−3 10−4 10−5 10−6

Setup times (coarse H-inverse & prolongation)
bxline 67/12 70/12 79/12 70/12 53/12 43/11 37/12

bdiagonal 68/12 71/12 78/12 70/12 58/13 51/12 43/12
bcirc 68/11 70/12 75/12 64/12 50/11 42/11 37/11
brecirc 68/11 71/12 69/12 55/11 43/11 36/11 32/11

Convergence rates & iteration times
bxline 0.95/32 0.50/7 0.17/3.6 0.36/6 0.77/20 0.85/30 0.87/30

bdiagonal 0.96/32 0.45/6.5 0.10/2.6 0.22/4.7 0.76/22 0.92/36 0.93/28
bcirc 0.95/32 0.86/31 0.44/6.7 0.22/3.7 0.33/4.5 0.36/5 0.36/4.8
brecirc 0.95/33 0.76/19 0.35/5.3 0.32/4.5 0.51/7.2 0.74/13 0.78/17

Next, we perform tests for various convection directions and dominance, leaving
the problem size fixed (nf = 80089) and also the adaptive accuracy δ = 10−3 (see
Table 5.3). All times are measured in seconds. We notice that the setup times for
the H-inversion of the coarse matrix become smaller as the convection dominance
increases (i.e., as ε decreases). It is interesting to note that the best convergence
is observed for an ε between 10−2 and 10−1, i.e., initially the convergence behavior
improves as ε becomes smaller, but eventually the rates increase again as ε → 0.

Conclusions. A very efficient construction of an approximate H-inverse from
a given coarser level H-inverse via interpolation has been presented. Whereas the
approximation accuracy of such an inverse cannot be made arbitrarily good (as it
can, e.g., for the explicit H-inverse by increasing the local ranks), it is still sufficiently
accurate to obtain efficient preconditioners for iterative solution methods such as
BiCGstab. The numerical results have been presented for a two-level method applied
to a two-dimensional convection-diffusion problem. Extensions to more than two levels
as well as applications to three-dimensional problems are relatively straightforward.
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Abstract. Suppose A−BXB∗, A−BX−X∗B∗, and A−BX +X∗B∗ are three linear matrix
expressions over the field of complex numbers, where A is an Hermitian or skew-Hermitian matrix. In
this paper, we consider how to choose an Hermitian or skew-Hermitian matrix X such that A−BXB∗

have the maximal and minimal possible ranks, and how to choose X such that A − BX ± X∗B∗

attain the minimal possible ranks. Some applications to Hermitian or skew-Hermitian solutions of
matrix equations with symmetric patterns are also given.
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1. Introduction. Throughout this paper, C denotes the field of complex num-
bers; the symbols A∗, r(A), and R(A) stand for the conjugate transpose, the rank,
and the range (column space) of matrix A ∈ C

m×n, respectively; [A, B ] denotes a
row block matrix consisting of A and B.

For an m× n matrix A, the Moore–Penrose inverse A† of A is defined to be the
unique solution X to the four Penrose equations

(i) AXA = A, (ii) XAX = X, (iii) (AX)∗ = AX, (iv) (XA)∗ = XA.

A matrix X is called a generalized inverse of A, denoted by A−, while the collection
of all possible g-inverses of A is denoted by {A−}. For convenience, the symbols EA

and FA stand for the two orthogonal projectors EA = Im −AA† and FA = In −A†A.
General properties of g-inverses of matrices can be found in [2, 4, 12].

In matrix theory and applications, there are various matrix expressions that in-
volve variable entries. For example,

A−BXC, A−B1X1C1 −B2X2C2,(1.1)

where X, X1, and X2 are variable matrices. In many situations, it is necessary
to know the maximal and minimal possible ranks of the matrices with respect to
X, X1, and X2. These extremal ranks can be used to characterize nonsingularity,
rank invariance, range inclusion of the corresponding matrix expressions, as well as
solvability conditions of matrix equations.

In addition to (1.1), there are many matrix expressions that have symmetric
patterns or involve Hermitian matrices. Some simpler cases are given by

A−BXB∗, A−BY − Y ∗B∗, A−BY + Y ∗B∗,(1.2)
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where A ∈ C
m×m and B ∈ C

m×n are given, and X ∈ C
n×n and Y ∈ C

n×m are
variable matrices. In this paper, we consider how to choose X and Y with X = X∗

and Y = Y ∗, or X = −X∗ and Y = −Y ∗, such that the matrix expressions have the
maximal and minimal ranks. A direct motivation for this consideration arises from
some previous work on solving the matrix equations BXB∗ = A and BY ±Y ∗B∗ = A;
see, e.g., [1, 3, 5, 6, 22]. As applications, we shall give the extremal ranks of Hermitian
and skew-Hermitian solutions of some well-known linear matrix equations.

Suppose A ∈ C
m×n, B ∈ C

m×k, and C ∈ C
l×n are given. Then a valuable

formula for the rank of the matrix expression A−BXC is

r(A−BXC ) = r

[
A
C

]
+ r[A, B ] − r(M) + r[ET1(X + TM†S )FS1 ],(1.3)

where

M =

[
A B
C 0

]
, T = [ 0, Ik ], S =

[
0
Il

]
, T1 = TFM , S1 = EMS.

The proof of (1.3) can be found in [19]. Observe that the first three terms on the
right-hand side of (1.3) are the ranks of the three partitioned matrices consisting of
A, B, and C. Hence the variation of the rank of A − BXC with respect to X is
determined by the rank of ET1(X +TM†S )FS1 with respect to X. It is obvious that
there exists a matrix X such that ET1(X + TM†S )FS1 = 0. This fact enables us
to find the maximal and minimal ranks of ET1(X + TM†S )FS1

with respect to X.
Some previous results on the extremal ranks of A − BXC and related problems can
be found in [16, 19].

In order to find the extremal ranks of A − BXB∗ with respect to X = ±X∗

through (1.3), we need the following results on ranks of partitioned matrices and
solutions of matrix equations.

Lemma 1.1 (see [9]). Let A ∈ C
m×n, B ∈ C

m×k, and C ∈ C
l×n be given. Then

r[A, B ] = r(A) + r(B −AA†B ) = r(B) + r(A−BB†A ),(1.4)

r

[
A
C

]
= r(A) + r(C − CA†A ) = r(C) + r(A−AC†C ),(1.5)

r

[
A B
C 0

]
= r(B) + r(C) + r[ ( Im −BB† )A( In − C†C ) ].(1.6)

Lemma 1.2 (see [10, 11]). Let A ∈ C
m×n, B ∈ C

n×m, and C ∈ C
m×m. Then

the matrix equation AXB = C has an Hermitian solution if and only if the pair of
matrix equations AY B = C and B∗Y A∗ = C∗ has a common solution. In this case,
the general Hermitian solution to AXB = C can be written as

X =
1

2
(Y + Y ∗ ),(1.7)

where Y is the general common solution to the pair AY B = C and B∗Y A∗ = C∗.
Applying Lemma 1.2 to AXA∗ = B yields the following well-known result.
Lemma 1.3 (see [8]). Let A ∈ C

m×n and B = B∗ ∈ C
m×m. Then the matrix

equation AXA∗ = B has an Hermitian solution if and only if R(B) ⊆ R(A). In this
case, the general Hermitian solution can be written as

X = A†B(A†)∗ + FAV + V ∗FA,(1.8)
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where V ∈ C
n×n is arbitrary. The Hermitian solution to AXA∗ = B is unique if and

only if A†A = In, i.e., r(A) = n.
The following result can be shown similarly.
Lemma 1.4. Let A ∈ C

m×n, B ∈ C
n×m, and C ∈ C

m×m. Then the matrix
equation AXB = C has a skew-Hermitian solution if and only if the pair of matrix
equations AY B = C and B∗Y A∗ = −C∗ has a common solution. In this case, the
general skew-Hermitian solutions to AXB = C can be written as

X =
1

2
(Y − Y ∗ ),(1.9)

where Y is the general common solution to the pair AY B = C and B∗Y A∗ = −C∗.
Applying Lemma 1.4 to AXA∗ = B with B = −B∗ yields the following result.
Lemma 1.5. Let A ∈ C

m×n and B = −B∗ ∈ C
m×m. Then the matrix equation

AXA∗ = B has a skew-Hermitian solution if and only if R(B) ⊆ R(A). In this case,
the general skew-Hermitian solution can be written as

X = A†B(A†)∗ + FAV − V ∗FA,(1.10)

where V ∈ C
n×n is arbitrary. The skew-Hermitian solution to AXA∗ = B is unique

if and only if A†A = In, i.e., r(A) = n.

2. Ranks of A−BXB∗ with respect to Hermitian and skew-Hermitian
matrix X. It is well known that if A is Hermitian, then A† is Hermitian, too, and
AA† = A†A. Let A ∈ C

m×m, B ∈ C
m×n and let

M =

[
A B
B∗ 0

]
, S =

[
0
In

]
, S1 = S −MM†S.(2.1)

If A is Hermitian, then M is Hermitian, too. In this case, applying (1.3) to

p(X) = A−BXB∗,(2.2)

where X ∈ C
n×n, and simplifying give the following rank equality:

r(A−BXB∗ ) = 2r[A, B ] − r(M) + r[FS1(X + S∗M†S )FS1 ].(2.3)

Notice that there exists an X ∈ C
n×n such that

FS1(X + S∗M†S )FS1 = 0.(2.4)

Hence we have the following result.
Theorem 2.1. Let p(X) be as given in (2.2) with A = A∗, and let M, S, and S1

be as given in (2.1). Then the following hold:
(a) The maximal and minimal ranks of p(X) with respect to X = X∗ are given

by

max
X=X∗∈Cn×n

r(A−BXB∗ ) = r[A, B ],(2.5)

min
X=X∗∈Cn×n

r(A−BXB∗ ) = 2r[A, B ] − r

[
A B
B∗ 0

]
.(2.6)

(b) The general expression of Hermitian matrix X satisfying (2.5) can be written
as

X = −S∗M†S + U,(2.7)
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where U = U∗ ∈ C
n×n is chosen such that r(FS1

UFS1
) = r(FS1

), say, U = FS1
.

(c) The general expression of Hermitian matrix X satisfying (2.6) can be written
as

X = −S∗M†S + S∗
1V

∗ + V S1,(2.8)

where V ∈ C
n×(m+n) is arbitrary.

Proof. We first see from (2.3) that

max
X=X∗

r(A−BXB∗ ) = 2r[A, B ] − r(M) + max
X=X∗

r[FS1(X + S∗M†S )FS1 ],(2.9)

min
X=X∗

r(A−BXB∗ ) = 2r[A, B ] − r(M) + min
X=X∗

r[FS1
(X + S∗M†S )FS1 ].(2.10)

Note that

max
X=X∗

r[FS1(X + S∗M†S )FS1 ] = max
U=U∗

r(FS1UFS1) = r(FS1).(2.11)

The matrix X satisfying (2.9) can be written as (2.7). Substituting this into (2.9)
gives

max
X=X∗

r(A−BXB∗ ) = 2r[A, B ] − r(M) + r(FS1
).(2.12)

Note that r(FS1) = r( In − S†
1S1 ) = n− r(S1) and

r(S1) = r(S −MM†S ) = r[M, S ] − r(M) = n + r[A, B ] − r(M) (by (1.4)).

Hence r(FS1
) = r(M) − r[A, B ]. Substituting this into (2.12) gives (2.5). Also note

that

min
X=X∗

r[FS1(X + S∗M†S )FS1 ] = min
U=U∗

r(FS1UFS1) = 0.

Hence we have (2.6). Solving the matrix equation FS1(X + S∗M†S )FS1 = 0 for X
by Lemma 1.3 gives (2.8).

Suppose the Hermitian matrix A is nonnegative definite, i.e., A can be written as
A = NN∗ for some N . In this case,

r

[
A B
B∗ 0

]
= r[A, B ] + r(B);

see Rao and Mitra [12]. Hence if A is nonnegative definite, then (2.6) reduces to

min
X=X∗

r(A−BXB∗ ) = r[A, B ] − r(B).(2.13)

Corollary 2.2. Let p(X) be as given in (2.2) with A = A∗. Then the rank
of p(X) is invariant with respect to the choice of Hermitian matrix X, i.e., r(A −
BXB∗ ) = r(A) for any X = X∗, if and only if

R

[
B
0

]
⊆ R

[
A
B∗

]
.(2.14)

In particular, suppose A is nonnegative definite. Then the rank of p(X) is invariant
for any Hermitian X if and only if B = 0.
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Corollary 2.3. Let p(X) be as given in (2.2) with A = A∗, and let M and S
be as given in (2.1). Then the matrix satisfying (2.6) is unique if and only if

r(B) = n and r

[
A B
B∗ 0

]
= r[A, B ] + r(B).(2.15)

In this case, the unique matrix satisfying (2.6) is

X = −S∗M†S.(2.16)

Proof. It can be seen from (2.10) that the Hermitian X satisfying (2.6) is unique if
and only if the Hermitian solution to (2.4) is unique. From Lemma 1.3, the Hermitian
solution of the equation is unique if and only if r(FS1

) = n, which is equivalent
to r(M) = r[A, B ] + n. Also note that r(M) ≤ r[A, B ] + r(B). Hence r(M) =
r[A, B ] + n is equivalent to (2.15).

If A is skew-Hermitian, i.e., A = −A∗, then A† is skew-Hermitian, too, and
AA† = A†A. Let

M =

[
A B

−B∗ 0

]
, S =

[
0
In

]
, S1 = S −MM†S.(2.17)

Then M = −M∗ and MM† = M†M . In such a case, applying (1.3) to p(X) in (2.2)
with A = −A∗ yields the following rank identity

r(A−BXB∗ ) = 2r[A, B ] − r(M) + r[FS1(X + S∗M†S )FS1 ].(2.18)

Theorem 2.4. Let p(X) be as given in (2.2) with A = −A∗, and let M, S, and
S1 be as given in (2.17). Then the following hold:

(a) The maximal and minimal ranks of p(X) with respect to X = −X∗ ∈ C
n×n

are given by

max
X=−X∗∈Cn×n

r(A−BXB∗ ) = r[A, B ],(2.19)

min
X=−X∗∈Cn×n

r(A−BXB∗ ) = 2r[A, B ] − r

[
A B

−B∗ 0

]
.(2.20)

(b) The general expression of matrix X satisfying (2.19) can be written as

X = −S∗M†S + U,(2.21)

where U = −U∗ ∈ C
n×n is chosen such that r(FS1UFS1) = r(FS1), say, U = iFS1

with i2 = −1.
(c) The general expression of the matrix X satisfying (2.20) can be written as

X = −S∗M†S + S∗
1V

∗ − V S1,(2.22)

where V ∈ C
n×(m+n) is arbitrary.

Proof. We see from (2.18) that

max
X=−X∗

r(A−BXB∗ ) = 2r[A, B ] − r(M) + max
X=−X∗

r[FS1(X + S∗M†S )FS1 ],(2.23)

min
X=−X∗

r(A−BXB∗ ) = 2r[A, B ] − r(M) + min
X=−X∗

r[FS1(X + S∗M†S )FS1 ].(2.24)
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Note that

max
X=−X∗

r[FS1(X + S∗M†S )FS1 ] = max
U=−U∗

r(FS1UFS1) = r(FS1).(2.25)

The matrix X satisfying (2.25) can be written as (2.21). Substituting this into (2.23)
gives

max
X=−X∗

r(A−BXB∗ ) = 2r[A, B ] − r(M) + r(FS1).(2.26)

It is easy to verify that r(FS1) = r(M) − r[A, B ]. Substituting this into (2.26) gives
(2.19). Also note that

min
X=−X∗

r[FS1(X + S∗M†S )FS1
] = min

U=−U∗
r(FS1

UFS1
) = 0.

Hence we have (2.20). Solving the matrix equation FS1(X + S∗M†S )FS1 = 0 for X
by Lemma 1.5 gives (2.22).

Corollary 2.5. Let p(X) be as given in (2.2) with A = −A∗. Then the rank
of p(X) is invariant with respect to the choice of skew-Hermitian matrix X, i.e.,
r(A−BXB∗ ) = r(A) for any X = −X∗, if and only if

R

[
B
0

]
⊆ R

[
A
B∗

]
.(2.27)

Corollary 2.6. Let p(X) be as given in (2.2) with A = −A∗, and let M and S
be as given in (2.17). Then the matrix satisfying (2.20) is unique if and only if

r(B) = n and r

[
A B

−B∗ 0

]
= r[A, B ] + r(B).(2.28)

In this case, the unique matrix satisfying (2.21) is

X = −S∗M†S.(2.29)

An extension of A−BXB∗ is

p(X, Y ) = A−BXB∗ − CY C∗,(2.30)

where A ∈ C
m×m, B ∈ C

m×n, and C ∈ C
m×k are given. In such a case, it is of

interest to seek analytical expressions of the extremal ranks of p(X, Y ) with respect
to X = ±X∗ and Y = ±Y ∗. It has been shown in [15, 17] that

max
X1∈Cp1×q1 , X2∈Cp2×q2

r(A−B1X1C1 −B2X2C2 )(2.31)

= min

⎧⎨
⎩r[A, B1, B2 ], r

⎡
⎣

A
C1

C2

⎤
⎦, r

[
A B1

C2 0

]
, r

[
A B2

C1 0

]⎫⎬
⎭,

min
X1∈Cp1×q1 , X2∈Cp2×q2

r(A−B1X1C1 −B2X2C2 ) = r

⎡
⎣

A
C1

C2

⎤
⎦ + r[A, B1, B2 ](2.32)

+ max{s1, s2},
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where

s1 = r

[
A B1

C2 0

]
− r

[
A B1 B2

C2 0 0

]
− r

⎡
⎣
A B1

C1 0
C2 0

⎤
⎦,

s2 = r

[
A B2

C1 0

]
− r

[
A B1 B2

C1 0 0

]
− r

⎡
⎣

A B2

C1 0
C2 0

⎤
⎦.

Notice that p(X, Y ) in (2.30) is a special case of A−B1X1C1 −B2X2C2. Hence we
have the following conjecture.

Conjecture 2.7. Let p(X, Y ) be as given in (2.30) with A = ±A∗. Then

max
X=±X∗, Y =±Y ∗

r(A−BXB∗ − CY C∗ ) = min

{
r[A, B, C ], r

[
A B
C∗ 0

]}
,

min
X=±X∗, Y =±Y ∗

r(A−BXB∗ − CY C∗ )

= 2r[A, B, C ] + r

[
A B
C∗ 0

]
− r

[
A B C
B∗ 0 0

]
− r

[
A B C
C∗ 0 0

]
.

3. The minimal ranks of A − BX − X∗B∗ with respect to X. Let A ∈
C

m×n, B ∈ C
m×k, and C ∈ C

l×n be given. It is shown in [18] that the minimal rank
of A−BX − Y C with respect to X ∈ C

k×n and Y ∈ C
m×l is given by the formula

min
X∈Ck×n, Y ∈Cm×l

r(A−BX − Y C ) = r

[
A B
C 0

]
− r(B) − r(C);(3.1)

a pair of matrices X and Y satisfying (3.1) are given by

X = B†A + UC + ( Ik −B†B )U1,(3.2)

Y = ( Im −BB† )AC† −BU + U2( Il − CC† ),(3.3)

where U ∈ C
k×l, U1 ∈ C

k×n, and U2 ∈ C
m×l are arbitrary matrices. Formula (3.1)

indicates that there exist two matrices X and Y such that BX +Y C = A if and only
if

r

[
A B
C 0

]
= r(B) + r(C),

that is, EBAFC = 0. This result is well known; see Roth [14]. In this case, (3.2) and
(3.3) are the general solutions to BX + Y C = A.

From (2.31), the maximal rank of A−BX − Y C with respect to X and Y is

max
X∈Ck×n, Y ∈Cm×l

r(A−BX − Y C ) =

{
m, n, r

[
A B
C 0

]}
.(3.4)

Letting A ∈ C
m×m and B ∈ C

m×n and letting Y = X∗ and C = B∗ in A−BX−
Y C leads to the matrix expression

p(X) = A−BX −X∗B∗.(3.5)

We have seen from (1.8) that the general Hermitian solution of AXA∗ = B is a special
case of (3.5). In this section, we show how to choose X such that p(X) in (3.5) attains
the minimal rank.
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Theorem 3.1. Let p(X) be as given in (3.5) with A = A∗. Then the minimal
rank of p(X) with respect to X is given by

min
X∈Cn×m

r(A−BX −X∗B∗ ) = r

[
A B
B∗ 0

]
− 2r(B).(3.6)

A matrix X satisfying (3.6) is given by

X = B†A− 1

2
B†ABB† + UB∗ + ( In −B†B )V,(3.7)

where both U = −U∗ ∈ C
n×n and V ∈ C

n×m are arbitrary.
Proof. Let M =

[
A B
B∗ 0

]
. Then the rank of M satisfies the inequality

r(M) ≤ r(A) + 2r(B).(3.8)

Replacing A in (3.8) with p(X) in (3.5) yields the rank inequality

r

[
A−BX −X∗B∗ B

B∗ 0

]
≤ r(A−BX −X∗B∗ ) + 2r(B).(3.9)

It is easy to find by elementary block matrix operations that

r

[
A−BX −X∗B∗ B

B∗ 0

]
= r

[
A B
B∗ 0

]
for any X.

Thus we see from (3.9) that

r(A−BX −X∗B∗ ) ≥ r(M) − 2r(B) for any X.(3.10)

Observe that the right-hand side of (3.10) involves no X. Thus r(M) − 2r(B) is a
lower bound for the rank of p(X) with respect to X. On the other hand, substituting
(3.7) into p(X) in (3.5) yields

p(X) = A−BB†A +
1

2
BB†ABB† −BUB∗ −ABB† +

1

2
BB†ABB† + BUB∗

= A−BB†A−ABB† + BB†ABB†

= ( Im −BB† )A( Im −BB† ).

In this case, the rank of p(X) by (1.6) is

r[ p(X) ] = r[ ( Im −BB† )A( Im −BB† ) ] = r(M) − 2r(B).(3.11)

Combining (3.10) with (3.11), we see that r(M)− 2r(B) is the minimal rank of p(X)
with respect to X, and a matrix X satisfying (3.6) is given by (3.7).

If A is nonnegative definite, then (3.6) reduces to

min
X∈Cn×m

r(A−BX −X∗B∗ ) = r[A, B ] − r(B).

Comparing this with (2.13) leads to

min
X=X∗∈Cn×n

r(A−BXB∗ ) = min
Y ∈Cn×m

r(A−BY − Y ∗B∗ ).
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The matrix equation associated with (3.5) is BX + X∗B∗ = A. Braden [3]
investigated the equation when both A and B are real.

Corollary 3.2. Let p(X) be as given in (3.5) with A = A∗.
(a) The matrix equation BX +X∗B∗ = A has a solution if and only if r

[
A B
B∗ 0

]
= 2r(B), i.e., EBAEB = 0. In this case, the general solution is given by (3.7).

(b) Suppose that A is nonnegative definite. Then the matrix equation BX +
X∗B∗ = A has a solution if and only if R(A) ⊆ R(B). In this case, the general
solution is

X =
1

2
B†A + UB∗ + ( Im −B†B )V,

where both U = −U∗ ∈ C
n×n and V ∈ C

n×m are arbitrary.
(c) Suppose that B ∈ C

m×m is nonsingular. Then the matrix equation BX +
X∗B∗ = A always has a solution, and the general solution can be written as

X =
1

2
B−1A + UB∗,

where U = −U∗ ∈ C
n×n is arbitrary.

Proof. It is easy to verify that under EBAEB = 0, (3.6) satisfies BX+X∗B∗ = A.
Further suppose X0 is any matrix satisfying BX0 + X∗

0B
∗ = A. In this case, let

U = −B†X∗
0B

†B + 1
2B

†A(B†)∗ and V = X0 in (3.7). Then

U + U∗ = −B†X∗
0B

†B −B†BX0(B
†)∗ + B†A(B†)∗

= −B†(X∗
0B

∗ + BX0 −A )(B†)∗ = 0

and

X = B†A− 1

2
B†ABB† +

[
−B†X∗

0B
†B +

1

2
B†A(B†)∗

]
B∗ + ( Im −B†B )X0

= B†A− 1

2
B†ABB† −B†X∗

0B
∗ +

1

2
B†ABB† + X0 −B†BX0

= B†A−B†X∗
0B

∗ + X0 −B†(A−X∗
0B

∗ ) = X0.

This indicates that any solution of BX + X∗B∗ = A can be represented by (3.7).
Thus (3.7) is the general solution of BX + X∗B∗ = A. Parts (b) and (c) follow from
(a).

Suppose A − BX is a matrix expression with A ∈ C
m×m, B ∈ C

m×n, and
X ∈ C

n×m. In this case, it is of interest to find X such that A−BX is Hermitian or
skew-Hermitian. These kinds of problems are called matrix completion problems of
partial matrices in the literature. Many completion problems on determinants, ranks,
inverses and generalized inverses, nonnegative definiteness, and eigenvalues of partial
matrices, and their applications have been investigated; see, e.g., [7, 13, 20]. Applying
Theorem 3.1 to A−BX, we obtain the following result.

Corollary 3.3. Let A ∈ C
m×m and B ∈ C

m×n be given, and let X ∈ C
n×m be

a variable matrix. Then

min
X∈Cn×m

r[ (A−BX ) + (A−BX )∗ ] = r

[
A + A∗ B
B∗ 0

]
− 2r(B).(3.12)

A matrix X satisfying (3.12) is given by

X = B†(A + A∗ ) − 1

2
B†(A + A∗ )BB† + UB∗ + ( In −B†B )V,(3.13)
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where both U = −U∗ ∈ C
n×n and V ∈ C

n×m are arbitrary. In particular, there exists
an X such that A−BX is skew-Hermitian if and only if

r

[
A + A∗ B
B∗ 0

]
= 2r(B),

in which case a matrix X such that A−BX is skew-Hermitian is given by (3.13).
From (3.4) we can also give a conjecture on the maximal rank of A−BX−X∗B∗

with A = A∗ ∈ C
m×m:

max
X∈Cn×m

r(A−BX −X∗B∗ ) =

{
m, r

[
A B
B∗ 0

]}
.(3.14)

We shall show (3.14) through the generalized singular value decompositions of matri-
ces in a forthcoming paper.

Moreover for the matrix expression A−BXC − (BXC)∗ with A∗ = A, we have
the following conjectures on its maximal and minimal ranks:

max
X∈Cp×q

r[A−BXC − (BXC)∗ ] = min

{
r[A, B, C∗ ], r

[
A B
B∗ 0

]
, r

[
A C∗

C 0

]}
,

min
X∈Cp×q

r[A−BXC − (BXC)∗ ] = 2r[A, B, C∗ ] + max{s1, s2},

where

s1 = r

[
A B
B∗ 0

]
− 2r

[
A B C∗

B∗ 0 0

]
, s2 = r

[
A C∗

C 0

]
− 2r

[
A B C∗

C 0 0

]
.

4. The minimal rank of A−BX +X∗B∗ with respect to X. A variation
of A−BX −X∗B∗ in (3.4) is

p(X) = A−BX + X∗B∗,(4.1)

where A ∈ C
m×m and B ∈ C

m×n are given and X ∈ C
n×m is a variable matrix. By

an approach similar to that of section 3, we can show the following several results.
Theorem 4.1. Let p(X) be as given in (4.1) with A = −A∗. Then

min
X∈Cn×m

r(A−BX + X∗B∗ ) = r

[
A B
B∗ 0

]
− 2r(B).(4.2)

A matrix X satisfying (4.2) is given by

X = B†A− 1

2
B†ABB† + UB∗ + ( In −B†B )V,(4.3)

where both U = U∗ ∈ C
n×n and V ∈ C

n×m are arbitrary.
Corollary 4.2. Let A = −A∗ ∈ C

m×m and B ∈ C
m×n be given. Then the

matrix equation BX−X∗B∗ = A has a solution if and only if r
[

A B
B∗ 0

]
= 2r(B), i.e.,

EBAEB = 0. In this case, the general solution is given by

X = B†A− 1

2
B†ABB† + UB∗ + ( In −B†B )V,

where both U = U∗ ∈ C
n×n and V ∈ C

n×m are arbitrary. In particular, suppose
B ∈ C

m×m is nonsingular. Then the equation BX +X∗B∗ = A is consistent, and the
general solution can be written as

X =
1

2
B−1A + UB∗,
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where U = U∗ ∈ C
n×n is arbitrary.

The following two corollaries show how to find X and Y such that A− BX and
A−BX − Y C are Hermitian.

Corollary 4.3. Let A ∈ C
m×m and B ∈ C

m×n be given. Then

min
X∈Cn×m

r[ (A−BX ) − (A−BX )∗ ] = r

[
A−A∗ B
B∗ 0

]
− 2r(B).(4.4)

A matrix X satisfying (4.4) is given by

X = B†(A−A∗ ) − 1

2
B†(A−A∗ )BB† + UB∗ + ( In −B†B )V,(4.5)

where both U = U∗ ∈ C
n×n and V ∈ C

n×m are arbitrary. In particular, there exists
an X such that A−BX is Hermitian if and only if

r

[
A−A∗ B
B∗ 0

]
= 2r(B),

in which case a matrix X such that A−BX is Hermitian is given by (4.5).
Corollary 4.4. Let A ∈ C

m×m, B ∈ C
m×n, and C ∈ C

p×m be given. Then

min
X∈Cn×m, Y ∈Cm×p

r[ (A−BX − Y C ) − (A−BX − Y C )∗ ](4.6)

= r

⎡
⎣
A−A∗ B C∗

B∗ 0 0
C 0 0

⎤
⎦− 2r[B, C∗ ].

A pair of matrices X and Y satisfying (4.6) are given by
[
X
Y ∗

]
= [B, −C∗ ]†(A−A∗ ) − 1

2
[B, −C∗ ]†(A−A∗ )[B, −C∗ ][B, −C∗ ]†(4.7)

+ U [B, −C∗ ]∗ + ( In+p − [B, −C∗ ]†[B, −C∗ ] )V,

where both U = U∗ ∈ C
(n+p)×(n+p) and V ∈ C

(n+p)×m are arbitrary. In particular,
there exist two matrices X and Y such that A−BX−Y C is Hermitian if and only if

r

⎡
⎣
A−A∗ B C∗

B∗ 0 0
C 0 0

⎤
⎦ = 2r[B, C∗ ],

in which case a pair of matrices X and Y such that A − BX − Y C is Hermitian is
given by (4.7).

Motivated by (2.31) and (2.32), two conjectures on the maximal and minimal
ranks of A−BXC + (BXC)∗ with A = −A∗ are given below:

max
X∈Cp×q

r[A−BXC + (BXC)∗ ] = min

{
r[A, B, C∗ ], r

[
A B
B∗ 0

]
, r

[
A C∗

C 0

]}
,

min
X∈Cp×q

r[A−BXC + (BXC)∗ ] = 2r[A, B, C∗ ] + max{s1, s2},

where

s1 = r

[
A B
B∗ 0

]
− 2r

[
A B C∗

B∗ 0 0

]
, s2 = r

[
A C∗

C 0

]
− 2r

[
A B C∗

C 0 0

]
.
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5. Some applications. Linear matrix equations have been a main subject of
study in matrix theory and applications. For a given matrix equation, one always
wants to know the solvability condition, the general solution, and the uniqueness of
solution of the equation. Moreover, if a matrix equation is consistent, one also would
like to know properties of solutions of the equation, such as the maximal and minimal
ranks of solutions to the equation, the existence of upper-triangular or lower-triangular
solutions to the equation, and the existence of Hermitian or skew-Hermitian solutions
to the equation. In this section, we give several results on the existence of solutions
of matrix equations with special patterns.

From Theorem 3.1, we are able to derive a necessary and sufficient condition for
a pair of matrix equations

A1X1A
∗
1 = B1 and A2X2A

∗
2 = B2(5.1)

to have a common Hermitian solution, where A1 ∈ C
m×p, B1 = B∗

1 ∈ C
m×m, A2 ∈

C
n×p, and B2 = B∗

2 ∈ C
n×n are given. Some previous work can be found in [5, 21].

Theorem 5.1. Suppose that each of the two linear matrix equations in (5.1) is
consistent. Then the following hold:

(a) The minimal rank of the difference of Hermitian solutions of the two equations
in (5.1) is

min
X1=X∗

1 , X2=X∗
2

A1X1A
∗
1=B1

A2X2A
∗
2=B2

r(X1 −X2 ) = r

⎡
⎣
B1 0 A1

0 −B2 A2

A∗
1 A∗

2 0

⎤
⎦− 2r

[
A1

A2

]
.(5.2)

(b) The pair of matrix equations in (5.1) have a common Hermitian solution if
and only if

r

⎡
⎣
B1 0 A1

0 −B2 A2

A∗
1 A∗

2 0

⎤
⎦ = 2r

[
A1

A2

]
.(5.3)

Proof. If each of the two linear matrix equations in (5.1) is consistent, then by
Lemma 1.3 the general Hermitian solutions of the two equations can be written as

X1 = A†
1B1(A

†
1)

∗ + FA1V1 + V ∗
1 FA1 ,

X2 = A†
2B2(A

†
2)

∗ − FA2V2 − V ∗
2 FA2 ,

where both V1, V2 ∈ C
p×p are arbitrary. In this case, the difference X1 −X2 can be

written as

X1 −X2 = A†
1B1(A

†
1)

∗ −A†
2B2(A

†
2)

∗ + [FA1
, FA2

]

[
V1

V2

]
+ [V ∗

1 , V ∗
2 ]

[
FA1

FA2

]
.

Applying (3.6) to this expression we find that

min
A1X1A

∗
1=B1

A2X2A
∗
2=B2

r(X1 −X2 )(5.4)

= r

⎡
⎣
A†

1B1(A
†
1)

∗ −A†
2B2(A

†
2)

∗ FA1 FA2

FA1 0 0
FA2 0 0

⎤
⎦− 2r

[
FA1

FA2

]
.
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Simplifying the ranks of the above two block matrices by (1.4) and (1.6) and elemen-
tary block operations gives

r

⎡
⎣
A†

1B1(A
†
1)

∗ −A†
2B2(A

†
2)

∗ FA1 FA2

FA1 0 0
FA2 0 0

⎤
⎦

= r

⎡
⎢⎢⎢⎢⎣

A†
1B1(A

†
1)

∗ −A†
2B2(A

†
2)

∗ Ip Ip 0 0
Ip 0 0 A∗

1 0
Ip 0 0 0 A∗

2

0 A1 0 0 0
0 0 A2 0 0

⎤
⎥⎥⎥⎥⎦
− 2r(A1) − 2r(A2)

= r

⎡
⎢⎢⎢⎢⎣

0 Ip 0 0 0
Ip 0 0 A∗

1 0
Ip 0 0 0 A∗

2

−B1(A
†
1)

∗ 0 −A1 0 0

B2(A
†
2)

∗ 0 A2 0 0

⎤
⎥⎥⎥⎥⎦
− 2r(A1) − 2r(A2)

= r

⎡
⎢⎢⎢⎢⎣

0 Ip 0 0 0
Ip 0 0 0 0
0 0 0 −A∗

1 A∗
2

0 0 −A1 B1 0
0 0 A2 0 −B2

⎤
⎥⎥⎥⎥⎦
− 2r(A1) − 2r(A2)

= r

⎡
⎣
B1 0 A1

0 −B2 A2

A∗
1 A∗

2 0

⎤
⎦ + 2p− 2r(A1) − 2r(A2),

r

[
FA1

FA2

]
= r

[
Ip A∗

1 0
Ip 0 A∗

2

]
− r(A1) − r(A2) = r[A∗

1, A
∗
2 ] + p− r(A1) − r(A2).

Substituting these two equalities into (5.4) yields (5.2). The result in part (b) is an
immediate consequence of (5.2).

Recall that the general expression of generalized inverses of A ∈ C
m×n can be

written as

A− = A† + FAV1 + V2EA,

where V1, V2 ∈ C
n×m are arbitrary. Suppose A ∈ C

m×m is Hermitian. Then A− can
be written as

A− = A† + FAV1 + V2FA,

where V1, V2 ∈ C
m×m are arbitrary. In particular, it is easy to verify that the general

expression of Hermitian generalized inverses of A can be written as

A− = A† + FAV + V ∗FA,

where V ∈ C
m×m is arbitrary. Applying Theorem 5.1 to a pair of Hermitian matrices

gives the following result.
Corollary 5.2. Let A and B be a pair of Hermitian matrices of the same size.

Then

min
A−=(A−)∗, B−=(B−)∗

r(A− −B− ) = r(A−B ) + r(A) + r(B) − 2r[A, B ].(5.5)
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Hence A and B have a common Hermitian generalized inverse if and only if

r(A−B ) = 2r[A, B ] − r(A) − r(B).(5.6)

Proof. Since both A and B are Hermitian, we see by Lemma 1.3 that each of
AXA = A and BY B = B has an Hermitian solution, i.e., there exist A− and B−

satisfying A− = (A−)∗ and B− = (B−)∗. Thus (5.5) follows from (5.2).
Applying (3.6) to (1.8) yields the following result. The proof is omitted.
Corollary 5.3. Let A ∈ C

m×n and B∗ = B ∈ C
m×m be given and suppose that

the matrix equation AXA∗ = B has an Hermitian solution. Then

min
AXA∗=B
X=X∗

r(X) = r(B).

In addition to Corollary 5.3, we are also able to find minimal ranks of the sub-
matrices in Hermitian solutions of AXA∗ = B. Suppose that the matrix equation
AXA∗ = B with B = B∗ has an Hermitian solution and write the equation in the
partitioned form

[A1, A2 ]

[
X1 X2

X3 X4

][
A∗

1

A∗
2

]
= B,(5.7)

where A1 ∈ C
m×n1 , A2 ∈ C

m×n2 , X1 ∈ C
n1×n1 , X2 ∈ C

n1×n2 , X3 ∈ C
n2×n1 , and

X4 ∈ C
n2×n2 . Also let

Si =

{
Xi

∣∣∣∣ [A1, A2 ]

[
X1 X2

X3 X4

][
A∗

1

A∗
2

]
= B, X∗

1 = X1, X∗
3 = X2, X∗

4 = X4

}
(5.8)

for i = 1, . . . , 4. By (1.8), the general expressions of Xi ∈ Si for i = 1, . . . , 4 can be
written as

X1 = P1A
†B(A†)∗P ∗

1 + P1FAV1 + V ∗
1 FAP

∗
1 ,(5.9)

X2 = X∗
3 = P1A

†B(A†)∗P ∗
2 + P1FAV2 + V ∗

1 FAP
∗
2 ,(5.10)

X4 = P2A
†B(A†)∗P ∗

2 + P2FAV2 + V ∗
2 FAP

∗
2 ,(5.11)

where P1 = [ In1
, 0 ] and P2 = [ 0, In2

]; both V1 ∈ C
n×n1 and V2 ∈ C

n×n2 arbitrary.
Applying (3.6) and (3.1) to (5.9), (5.10), and (5.11) yields the following result. The
proof is omitted.

Corollary 5.4. Suppose that the matrix equation AXA∗ = B has an Hermitian
solution and partition the equation as (5.7). Then

min
X1∈S1

r(X1) = r

[
B A2

A∗
2 0

]
− 2r(A2),

min
X2∈S2

r(X2) = r

[
B A1

A∗
2 0

]
− r(A1) − r(A2),

min
X4∈S4

r(X4) = r

[
B A1

A∗
1 0

]
− 2r(A1).

Suppose A is a square matrix. An Hermitian matrix X is called an Hermitian

{i, . . . , j}-inverse of A, denoted by A
(i,...,j)
h , if it satisfies the i, . . . , jth equations in
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the four Penrose equations in section 1. In particular, A
(1)
h , A

(1,2)
h , A

(1,3)
h , and A

(1,4)
h

are four commonly used Hermitian inverses of A. Hermitian generalized inverses of

a general square matrix do not necessarily exist. If, however, A is Hermitian, A
(1)
h ,

A
(1,2)
h , A

(1,3)
h , and A

(1,4)
h exist and their general expressions are given as follows:

(a) A−
h = A† + FAV + V ∗FA, where V is arbitrary.

(b) A
(1,2)
h = (A† + FAV )A(A† + V ∗FA ), where V is arbitrary.

(c) A
(1,3)
h = A

(1,4)
h = A† + FAUFA, where U = U∗ is arbitrary.

The extremal ranks of these three matrices can easily be derived from the results in
sections 2 and 3.

The results in sections 3 and 4 can also be used to characterize the symmetry
of various projectors associated with the general linear (Gauss–Markov) model y =
Xβ + ε. We shall present the corresponding results in another paper.

Acknowledgments. We are grateful to G.P.H. Styan and Y. Takane for helpful
remarks on the work in this paper. We also thank anonymous referees for their
suggestions on an earlier version of this paper.
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Abstract. We describe the design and implementation of a new algorithm for computing the
singular value decomposition (SVD) of a real bidiagonal matrix. This algorithm uses ideas developed
by Großer and Lang that extend Parlett’s and Dhillon’s multiple relatively robust representations
(MRRR) algorithm for the tridiagonal symmetric eigenproblem. One key feature of our new imple-
mentation is that k singular triplets can be computed using only O(nk) storage units and floating
point operations, where n is the dimension of the matrix. The algorithm will be made available as
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1. Introduction. Starting in the mid 1990s, Dhillon and Parlett developed the
algorithm of multiple relatively robust representations (MRRR) that computes k nu-
merically orthogonal eigenvectors of a symmetric tridiagonal matrix T ∈ R

n×n with
O(nk) cost [7, 8, 15, 17, 18]. This algorithm has subsequently been extended by Großer
and Lang using so-called coupling relations [10, 11, 12] for the stable computation of
the bidiagonal singular value decomposition (bSVD). Due to recent improvements
in the tridiagonal MRRR algorithm (see, e.g., [9, 21, 20]) as well as in the coupling
technique itself, the references [11, 12] no longer describe the most efficient implemen-
tation of the bidiagonal MRRR algorithm. This present paper focuses on these recent
developments and our resulting new implementation, which is to be incorporated as
routine xBDSCR into the next release of the widely used LAPACK library [1].

Throughout this article, we have tried to present the MRRR algorithm and its
adaptation to the bSVD via coupling relations in such a way that readers without
prior expertise in this area should be able to follow the arguments and understand
the inner workings of the algorithms in an intuitive way. That is, we will present the
topics in enough detail but without too much theory, giving all needed references to
update readers on the way.

First we will recall some basic concepts and fix our notation. For a bidiagonal
matrix B ∈ R

n×n, the problem bSVD consist of finding orthogonal matrices U and
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V and a diagonal matrix Σ such that

B = UΣV T .(1.1)

We will follow the convention that Σ contains the singular values σ1, . . . , σn of B in
descending order. The columns ui of U and vi of V are called the left and right
singular vectors, respectively, of B. For the scope of this paper we will furthermore
assume B to be upper bidiagonal, as it differs from the lower bidiagonal case only
concerning the roles of U and V .

Any algorithm solving the bSVD should guarantee small deviations from orthog-
onality for the matrices U and V ,

||UTU − I|| = O(nε), ||V TV − I|| = O(nε),(1.2)

along with small residuals

||BV − UΣ|| = O(nε||B||),(1.3)

where ε denotes the machine precision. In addition, for some applications (but not
all) it is required that the computed singular values approximate the exact ones to
high relative accuracy, so our algorithm should be able to deliver this if requested.

The problem bSVD can be reduced to the tridiagonal symmetric eigenproblem
(tSEP) in two ways, using three different matrices. One way works with the normal
equations of B to compute

BTB = V Σ2V T , BBT = UΣ2UT .(1.4)

Alternatively, one can use the Jordan–Wielandt form of B to compute U and V
simultaneously via

[
0 B
BT 0

]
= Q

[
−Σ 0
0 Σ

]
QT , where Q =

1√
2

[
U U
−V V

]
.(1.5)

Note that (1.5) can be permuted to be symmetric tridiagonal, resulting in the so-called
Golub–Kahan matrix.

A very efficient method for tSEP is the MRRR algorithm by Dhillon and Parlett,
which we will describe in section 2. In practice, the straightforward use of MRRR to
solve either (1.4) or (1.5) does not necessarily imply that both (1.2) and (1.3) hold.
This has been observed by Großer and Lang [10, 11, 12] and we will explain their
results in section 3. They proposed a remedy to this problem using so-called coupling
relations to adapt the MRRR algorithm for the bSVD.

We have found that in order to get an efficient and robust computer implemen-
tation of this method, the strategy presented in [11, 12] could be improved. This is
our main contribution and is described alongside the coupling relations in section 4.
Finally, in section 5, we describe additional important issues relevant for high perfor-
mance, and we will compare our implementation with the Divide & Conquer and QR
routines from LAPACK [1].

Some words concerning notation: the symbols already introduced above will re-
main fixed throughout this article. For example, B will always denote the upper
bidiagonal matrix of dimension n for which we want to compute its bSVD. We will
refer to the diagonal elements of B as ai and to its off-diagonal elements as bi. Besides
this, we will deal extensively with diagonal matrices D,R and unit lower or upper bidi-
agonal matrices L,U . These matrices have only a linear number of nontrivial entries
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each, which we will denote using a single index as di, ri, li, ui, respectively. It will be
convenient to define, for a given m-vector x and k ∈ Z, diag(x, k) as a square matrix
of order m+ |k| with its kth off-diagonal being x and all other entries set to zero. As
an example using this notation, we could write B alternatively as

B = diag([a1, . . . , an], 0) + diag([b1, . . . , bn−1],+1).

One possible point of confusion we are aware of is the fact that we use U for the
left singular vectors as well as for some upper unit bidiagonal matrix, and ui for the
columns of U as well as for off-diagonal elements. We did not want to break with
one of these uses, as they are part of an evolved and widespread standard, and the
meaning will always be clear from the context. Additional notation will be specified
where needed.

2. The MRRR algorithm. A quite new method for the tridiagonal symmetric
eigenproblem is the MRRR algorithm by Dhillon and Parlett (MRRR stands for
multiple relatively robust representations). For brevity, we will sometimes call it
simply MRRR.

For a symmetric tridiagonal matrix T ∈ R
n×n, the MRRR algorithm is able to

compute k eigenpairs (λi, qi) in optimal O(kn) time, at the same time guaranteeing
small residual norms

||Tqi − λiqi|| = O(nε||T ||)(2.1)

and numerically orthogonal eigenvectors with

|qTi qj | = O(nε), j �= i.(2.2)

For these reasons, together with the fact the MRRR is well suited for parallelization,
the MRRR algorithm is sometimes also dubbed the “holy grail.”

In this section, we want to give a short overview of the basic principles underlying
MRRR, as this will be necessary for the remainder of the paper. We will omit most of
the theory, but give enough information such that readers without prior knowledge of
the algorithm should be able to get an intuitive understanding. For a more detailed
description see [18, 8, 6].

Since LAPACK 3.0, the algorithm has been included as routine xSTEGR. There
have been many recent improvements of this implementation, especially for the sup-
port of partial spectra and better robustness (see, for example, [9]).

In order to describe the MRRR algorithm, we first need to establish the concept
of relative distances between eigenvalues, which is defined in slightly varying ways in
the literature. In accordance with [8] we will use

reldist(λ, μ) :=
|λ− μ|
|λ| .(2.3)

Then the relative gap of an eigenvalue is defined as

relgap(λ) := min {reldist(λ, μ) | λ �= μ ∈ spec(T )} .(2.4)

An eigenvalue is (relatively) isolated, or a singleton, if its relative gap exceeds some
threshold (for example 10−3). A group λc:d of successive nonsingleton eigenvalues
λc, λc+1, . . . , λd is called a cluster.



910 P. R. WILLEMS, B. LANG, AND C. VÖMEL

From a distant point of view, the MRRR algorithm can be seen as a sophisticated
variant of inverse iteration without the need for explicit reorthogonalization. A closer
perspective reveals the following two simple but elegant ingredients responsible for its
immense success:

1. A method based on so-called twisted factorizations to compute, for a relatively
isolated eigenvalue λ, in O(n) work an eigenvector q̄ satisfying

| sin ∠(q, q̄)| = O (nε/relgap(λ)) ,(2.5)

where q denotes the true eigenvector. We will describe this technique in more detail
shortly; for now let it suffice that twisted factorizations are a generalization of the
standard LDLT and URUT bidiagonal factorizations.

2. Eigenvectors are shift invariant, but the relative distances of eigenvalues are
not. More precisely, if a shift μ ≈ λ close to an eigenvalue is chosen, the relative gap
of λ′ = λ− μ with respect to T ′ := T − μI becomes

relgapT ′(λ′) = relgapT (λ)
|λ|

|λ− μ| � relgapT (λ).

With these two ideas, the obvious approach is to repeatedly shift the matrix until an
eigenvalue is relatively isolated and the corresponding eigenvector can be computed
using twisted factorizations.

As we will see shortly, in order to make this strategy work, it is necessary that each
encountered shifted matrix defines its eigenvalues and eigenvectors to high relative
accuracy. To this end, the MRRR algorithm employs the concept of relatively robust
representations (RRRs) of a matrix. Any set of numbers defining a matrix is called
a representation of the matrix. A representation is relatively robust if small relative
changes in these numbers cause only small relative changes in the eigenvalues and
eigenvectors. If this holds only for some eigenpairs, the representation is called a
partial RRR.

It is an interesting fact that most tridiagonal matrices represented directly by their
diagonal and off-diagonal elements do not have this property, but a representation
based on a bidiagonal factorization of the matrix usually does (see [6] for more details).
Therefore the algorithm does not work directly on tridiagonal matrices, but on LDLT

factorizations of these matrices instead, such that the data (L,D) form an RRR.
Armed with these concepts and ideas, the MRRR algorithm can now informally

be described as follows. First, an RRR (L,D) is found for the original matrix T ,
possibly by shifting T . Then the eigenvalues of interest are approximated accurately
enough to categorize them into singletons and clusters (for example, using bisection
or the dqds algorithm [15, 19]). For each singleton, the eigenvector can be computed
directly using twisted factorizations. Because the relative gap of a singleton is by
definition large enough, this leads to excellent results according to (2.5).

If there is a cluster of eigenvalues, the algorithm chooses a shift τ close to the
cluster s.t. LDLT − τI =: L+D+(L+)T and (L+, D+) again forms a partial RRR for
the eigenvalues in the cluster. This factorization is computed using the stationary
differential qds algorithm (dstqds) [15, 6], as shown in Algorithm 2.1. This trans-
formation is carefully designed to allow a mixed relative error analysis; that is, tiny
relative changes to the input (L,D) and the output (L+, D+) give an exact relation.
Note that this property, together with the fact that (L,D) and (L+, D+) are ensured
to be (partial) RRRs, is essential to guarantee that the shifting process does not spoil
the relation between the eigenpairs of L+D+(L+)T and LDLT . This allows us to
treat L+D+(L+)T recursively in the same fashion.
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Algorithm 2.1 Factorize LDLT − τI = L+D+(L+)T = U+R+(U+)T using the
differential stationary (left side) and progressive (right side) qds transformations.

dstqds

Input: L,D, τ
Output: L+, D+, S+

1: s+
1 = −τ

2: for i = 1 : n− 1 do
3: d+

i = di + s+
i

4: l+i = dili/d
+
i

5: si+1 = l+i lis
+
i − τ

6: endfor
7: d+

n = dn + s+
n

dpqds

Input: L,D, τ
Output: U+, R+, P+

1: p+
n = dn − τ

2: for i = n− 1 : −1 : 1 do
3: r+

i+1 = dil
2
i + p+

i+1

4: u+
i = lidi/r

+
i+1

5: p+
i = p+

i+1di/r
+
i+1 − τ

6: endfor
7: r+

1 = p+
1

A convenient way to describe the resulting flow of computation is as a traversal
of a representation tree. A node in this tree is given by an index range of eigenvalues,
a partial RRR for these eigenvalues, and the accumulated shift from the root. Leaf
nodes have only one index; otherwise each index of a node is contained in exactly one
of the index ranges of the node’s children.

Twisted factorizations. We will finish our description of the MRRR algorithm,
giving a more detailed explanation of the method used to compute highly accurate
eigenvectors with orthogonality levels inversely proportional to the relative gaps of
the eigenvalues.

Given an RRR (L,D), we can (for example, using bisection) compute an approx-
imation λ̄ to an eigenvalue λ of LDLT satisfying

|λ− λ̄| = O(ε|λ|).(2.6)

Then the idea is to find a vector q̄ with a small relative residual

||(LDLT − λ̄I)q̄|| = O(nε|λ̄|).(2.7)

The reward is revealed by the classical gap theorem [2, 14] because, if q denotes the
true eigenvector, we get the desired result (2.5).

In order to ensure (2.7), a double factorization

LDLT − λ̄I = L+D+(L+)T = U+R+(U+)T(2.8)

is computed using the stationary and progressive differential qds transformations
shown in Algorithm 2.1. If one or both of these factorizations do not exist, the
following method can be easily modified; see, for example, [8]. Assuming for now that
they do exist, this opens n possible ways to compute an approximation q(k), 1 ≤ k ≤ n,
to the eigenvector q via

q
(k)
k = 1,

q
(k)
i = −l+i q

(k)
i+1, i = k − 1, . . . , 1,

q
(k)
i+1 = −u+

i q
(k)
i , i = k, . . . , n− 1.

(2.9)
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Formally, applying (2.9) is equivalent to solving the system

NkGk(Nk)
T q(k) = γkek, q

(k)
k = 1,(2.10)

where NkGkN
T
k = LDLT − λ̄I, Gk = diag(d1, . . . , dk−1, γk, rk+1, . . . , rn), and Nk is

a tridiagonal matrix with

(Nk)1:k,1:k = L+
1:k,1:k and (Nk)k:n,k:n = U+

k:n,k:n.

The matrix NkGkN
T
k is called a twisted factorization of LDLT − λ̄I (also called

BABE-factorization for “burn at both ends”), and k the twist index, because it can
be obtained by applying the Gaussian elimination process from the top to row k and
then backward from the bottom to row k.

The remaining question now is, which k is best? As, according to (2.10), the
residual for q(k) is γkek, any twist index k minimizing |γk| is an obvious candidate.
Comparing (NkGkN

T
k )k,k with (LDLT − λ̄I)k,k gives

γk = d+
k + r+

k −
(
(LDLT )k,k − λ̄

)
, k = 1 : n.

A more stable way to compute γk is

γk = sk + pk + τ,

using the intermediate quantities s+
k and p+

k of Algorithm 2.1 for the factorizations
(2.8).

It is shown in [6] that if k is chosen such that |γk| is minimized (or small enough),
the resulting vector q(k) will indeed fulfill (2.7) and therefore also (2.5).

Another way to understand the above method is as a variant of inverse iteration. A
special and interesting property of the twist indices is that if λ̄ approximates λ to high
relative accuracy, i.e., if (2.6) is fulfilled, the index k minimizing |γk| will correspond
to the component of the eigenvector with largest absolute value. (Actually, this is
true only in the limit case λ̄ → λ; see [6] for details). Therefore, ek is guaranteed
to be an excellent choice as a starting vector. The simplicity of this right-hand side
then allows us to compute the first iterate using only multiplications in (2.9). Recent
developments of this technique by Parlett and Vömel in [21] even allow more steps of
inverse iteration with twisted factorizations, again using only multiplications to avoid
spoiling the relative accuracy of the vectors.

3. The black-box approach fails. As already mentioned in section 1, there
are mainly two different ways of reducing the bSVD to the tSEP. The first approach
employs the normal equations and computes eigendecompositions

BTB = V Σ2V T and BBT = UΣ2UT ,

which together give us the desired bSVD B = UΣV T of B.
Alternatively, one can use the so-called Golub–Kahan matrix TGK of B, which is

defined as

TGK := Pps ·
[

0 B
BT 0

]
· PT

ps,

where Pps is a “perfect shuffle” permutation mapping a vector x ∈ R
2n to Ppsx =

[xn+1, x1, xn+2, x2, . . . , x2n, xn]T . It is easy to see that TGK is symmetric tridiagonal
with a zero diagonal and the entries of B interleaved on the off-diagonals, i.e.,

TGK = diag ([a1, b1, a2, . . . , bn−1, an],±1) .
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Given an eigendecomposition TGK = QΛQT , in exact arithmetic Q will have the
structure

Q =
1√
2
· Pps ·

[
U U
−V V

]
,

so that the singular vectors of B can be easily extracted from the odd- and even-
numbered rows of Q. Furthermore, the eigenvalues of TGK are simply the singular
values of B and their negations. This has the additional benefit that if an adaptable
method like the MRRR algorithm is used for the computation of Q and Λ, only n
eigenpairs are needed, reducing the computation time by half.

It is tempting to use the MRRR algorithm as a “black box” on either the normal
equations or the Golub–Kahan matrix to obtain the SVD of our bidiagonal matrix
B. However, this leads to major numerical instabilities. In the following we will give
only a short description of these problems as a motivation for the remainder of the
paper. A more detailed analysis can be found in [12, 11].

Using the MRRR algorithm to compute eigendecompositions of BTB and BBT

separately can result in bad residuals for the singular vectors, in the sense of (1.3).
One reason is that MRRR uses different shifts when working on BTB and BBT ,
although in exact arithmetic the spectra of these matrices are identical. But the real
source of failure turns out to be more subtle, as it lies in computing the tridiagonal
factorizations.

To be more concrete, let us assume that on the first level of the representation
trees of BTB and BBT , a cluster σ2

c:d is encountered. Let us further assume that, in
order to proceed to the next level and break up the cluster, the same shift μ ≈ σ2

c is
chosen close to the cluster, and that the factorizations

BTB − μI = L̂D̂L̂T ,

BBT − μI = ĽĎĽT

are computed with the dstqds transformation from Algorithm 2.1, such that L̂D̂L̂T

and ĽĎĽT form RRRs for their respective eigenpairs c : d.
Now, in exact arithmetic, for the local eigenvalues λ̂i of L̂D̂L̂T and λ̌i of ĽĎĽT ,

we would have λ̂i = σ2
i −μ = λ̌i. We already mentioned that the dstqds transformation

allows a mixed relative perturbation analysis, that is, an exact relation holds only for
small relative perturbations of the inputs and outputs. As all matrices in our small
example are RRRs, this implies that the actual relationship between λ̂i and λ̌i is of
the form

λ̂i(1 + K1ε) = σ2
i (1 + K2ε) − μ,

λ̌i(1 + K3ε) = σ2
i (1 + K4ε) − μ,

where the Ki are small constants. Because σ2
c ≈ μ, and because σ2

c:d form a cluster

of close eigenvalues, we will in general have σ2
i � λ̂i, σ

2
i � λ̌i for i = c : d. Based

on this it is easy to show that the absolute deviation between the local eigenvalues λ̂i

and λ̌i, i = c : d, can be as large as

|λ̂i − λ̌i| = O(σ2
i ε).(3.1)

In [11] this fact has been demonstrated by a numerical example, where λ̂i and λ̌i

disagree on nearly all of their digits.
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Essentially, independently factorizing BTB−μI and BBT−μI using dstqds causes
a slight difference in the implied initial relative perturbations of the σ2

i (K2 �= K4 in
the example above). Then the cancellation which is implicit (and desired) in shifting
close to a cluster magnifies this small deviation up to (3.1). The effect can be tolerable
for clusters of small singular values σi, but for tight clusters of large singular values it
can possibly destroy the relationship between the computed vectors, resulting in bad
residuals for the bSVD. However, because we apply the MRRR algorithm separately
on BBT and BTB, the orthogonality requirements (1.2) for the computed matrices U
and V will be fulfilled.

For the Golub–Kahan matrix the situation is reversed. The residuals (1.3) of the
singular vectors are always excellent, but the deviation from orthogonality (1.2) can
become bad for some bidiagonals with tight clusters of very small singular values.

The main reason lies in the fact that every minor of TGK with an odd dimension
is singular. This can make it more difficult for the algorithm to find RRRs for the
next level. Additionally, we often observe quite differing element growth in the even-
numbered and odd-numbered elements of the representations, which can intuitively
cause a “displacement of information.” This is problematic, as only one twist index
is used to compute two singular vectors (via Q).

At this point we want to give an example of the impact of these problems on the
orthogonality level of the vectors. As a test matrix we took the upper bidiagonal

B := diag ([1, α, . . . , α], 0) + diag ([α, . . . , α],+1) , α = 200ε.(3.2)

This matrix has one singular value around 1 and the rest clustered at 10−14. We
tested for different dimensions of B the newest tridiagonal MRRR implementation
DSTEGR on the resulting Golub–Kahan matrix TGK . The following table shows in the
second column the measured orthogonality ||QTQ−I||/(nε) for the tSEP belonging to
TGK . The third column shows the orthogonality max(||UTU − I||, ||V TV − I||)/(nε)
of the extracted singular vectors from Q, and in the fourth column the same measure
is shown for the results obtained by our software DBDSCR.

n
DSTEGR on TGK DBDSCR on B

tSEP bSVD bSVD

100 4.45 > 1010 3.71
200 5.10 > 1010 4.13
400 2.93 > 1010 3.80

Note that Q itself fulfills the requirements (2.2) for the tSEP defined nicely by TGK ,
but the singular vectors extracted from Q are effectively useless. As can be seen in
the last column, the coupling techniques which we will present in the next section
avoid this problem.

A short note on notation. In the remaining parts of this paper we will have to
deal constantly with the three matrices BTB, BBT , and TGK and the various bidi-
agonal factorizations occurring in their respective representation trees for the MRRR
algorithm. In order to distinguish between these matrices, we will continue to use
superscripts ∧,∨, and ∼, as introduced in this section and presented in the following
diagram:
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BTB TGK BBT

�
μ2

�
μ

�
μ2

L̂D̂L̂T L̃D̃L̃T ĽĎĽT

4. The bidiagonal MRRR algorithm. As we have seen in the preceding sec-
tion, the main problem when trying to solve the bSVD by the application of MRRR to
BTB and BBT lies in the separate factorizations, which can cause the local eigenvalues
to drift apart.

In [12], Großer and Lang proposed a solution to this problem. They devised
so-called coupling relations, which link the factorizations

BTB − μ2I =: L̂D̂L̂T , TGK − μI =: L̃D̃L̃T , and BBT − μ2I =: ĽĎĽT

in a backward stable way. As a consequence, it is necessary to do only one of the
factorizations explicitly; the remaining two factorizations can then be computed im-
plicitly using only multiplications and divisions. This guarantees that the eigenvalues
of L̂D̂L̂T and ĽĎĽT will agree to most of their digits.

This then suggests a new algorithm for the bSVD based on the MRRR algorithm.
The idea is to apply MRRR simultaneously on BTB, TGK , and BBT (which we
sometimes call “the three matrices”) with identical shifts μ2 for BTB and BBT and
μ for TGK . But the dstqds factorizations needed to proceed from one level to the
next are always done for only one of the matrices—in most cases this will be TGK ;
see below—whereas the above mentioned coupling relations are used to keep track of
the other two factorizations implicitly. The backward stable nature of the coupling
relations will ensure that the eigenvalues of a representation L̂D̂L̂T in the tree for
BTB and the corresponding representation ĽĎĽT for BBT always remain relatively
close. As a consequence, if upon encountering a singleton the singular vectors are
computed using the coupled representations of BTB and BBT , we get vectors with
small residuals and good orthogonality levels.

This section is divided into two parts. First we will present the coupling relations,
and then we describe our approach to incorporate them in an efficient and practical
way into an MRRR algorithm for the bSVD.

4.1. The coupling relations. At the core of the new algorithm lies the capa-
bility to convert between shifted factorizations of the matrices BTB, BBT , and TGK

in a backward stable way. In the following, we will summarize the main results from
[12, 11] needed to understand and implement the algorithm.

We will not give detailed proofs of the coupling relations in this paper, as they
can be quite technical (and the following pages are already technical enough). Their
main ingredients are that shifted factorizations of the three matrices can be related
by

(
BBT − μ2I 0

0 BTB − μ2I

)
= PT

ps(TGK + μI)(TGK − μI)Pps(4.1)

and that TGK − μI = L̃D̃L̃T implies TGK + μI = L̄D̄L̄T with D̄ = −D̃ and l̄i =
−l̃i, i = 1 : 2n − 1. A deeper analysis of this simple relation leads to the following
result.
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Lemma 4.1. Let the decompositions

TGK − μI = L̃D̃L̃T = Ũ R̃ŨT = ÑrG̃rÑ
T
r , r = 1 : 2n,

exist and be RRRs. Then the decompositions

BTB − μ2I = L̂D̂L̂T = Û R̂ÛT = N̂kĜkN̂
T
k , k = 1 : n,

BBT − μ2I = ĽĎĽT = Ǔ ŘǓT = ŇkǦkŇ
T
k , k = 1 : n,

also form RRRs, and for i = 1 : n the diagonal pivots and twist elements are given by

d̂i = −d̃2i−1d̃2i, ďi = −d̃2id̃2i+1,

r̂i = −r̃2i−2r̃2i−1, ři = −r̃2i−1d̃2i,
γ̂i = μγ̃2i−1, γ̌i = μγ̃2i,

(4.2)

where we set d̃2n+1 := d̃1 and r̃0 := r̃2n. The elements l̂i, ľi, ûi, ǔi can then be deter-
mined using

l̂id̂i = ûir̂i+1 = aibi and ľiďi = ǔiři+1 = ai+1bi.(4.3)

for i = 1 : n− 1.
Proof. The couplings (4.2) follow from (4.1), although additional technical ar-

gumentation is needed, which is beyond the scope of this paper; see Lemma 3.1 and
Corollary 3.2 in [12]. The identities (4.3) result from the fact that the off-diagonal
elements aibi of BTB and ai+1bi of BBT are not affected by the shift.

The requirement that each of the 2n twisted factorizations of TGK −μI has to be
an RRR is redundant, as it is shown in [6] that if a twisted factorization is an RRR
for some twist index k, then this also holds true for all twist indices.

Concerning the local eigenvalues, it was proved in [11] that if L̂D̂L̂T and ĽĎĽT

are set up from L̃D̃L̃T using (4.2) and (4.3), the relative distance of the respective

eigenvalues λ̂i and λ̌i obeys

reldist(λ̂i, λ̌i) = O(ε).(4.4)

Thus the local eigenvalues λ̂i and λ̌i will agree to most of their digits.
A special point in the above coupling relations is that they are completely obliv-

ious to the way in which the factorization of TGK − μI is computed. Therefore they
are also valid in the case of successive factorizations, which occur naturally during the
MRRR algorithm. As an example, let us assume we apply MRRR to TGK . Let us omit
the index ranges of the eigenvalues for now and denote by (L̃(i), D̃(i), μ(i)), i = 1, 2, . . . ,
a path in the representation tree, i.e.,

TGK − μ(1)I =: L̃(1)D̃(1)(L̃(1))T and

L̃(i)D̃(i)(L̃(i))T − μ(i+1)I =: L̃(i+1)D̃(i+1)(L̃(i+1))T , i = 1, 2, . . . .

Then we can use Lemma 4.1 to set up the corresponding paths (L̂(i), D̂(i), ν(i)) for
BTB and (Ľ(i), Ď(i), ν(i)) for BBT , where the shifts ν(i) are related to the TGK shifts
μ(i) by

i∑
j=1

ν(j) =

⎛
⎝

i∑
j=1

μ(j)

⎞
⎠

2

.
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Evaluating this recurrence gives

ν(i) = μ(i)(2μ̄(i−1) + μ(i)) with μ̄(i−1) :=

i−1∑
j=1

μ(j).(4.5)

Together with (4.4) this means that we are able to run MRRR implicitly on BTB and
BBT in parallel with identical shifts, thereby guaranteeing that the local eigenvalues
of the corresponding representations L̂(i)D̂(i)(L̂(i))T and Ľ(i)Ď(i)(Ľ(i))T are always
relatively close. This is already one big step toward the solution compared to the
separate application of MRRR on BTB and BBT .

However, we are still doing much work with the Golub–Kahan matrix and its
translates. As was already hinted at in section 3, there are two major problems when
working with TGK . First, it is hard to find good shifts μ such that we can prove
TGK − μI to be an RRR. Second, element growth in the factorizations can lead to
problems when computing the vectors. The latter problem is now resolved, as we can
use the couplings from Lemma 4.1 to compute the vectors directly with translates of
BTB and BBT , which results in good orthogonality and small residuals because of
(4.4). Concerning the first issue, the following lemma summarizes another coupling
relation presented in [12], which utilizes the intermediate quantities arising during
the differential qds transformations in Algorithm 2.1 in order to avoid factorizing
TGK − μ(1)I and to use BTB − ν(1) instead.

Lemma 4.2. Let the factorizations

BTB − μ2I = L̂D̂L̂T = Û R̂ÛT = N̂kĜkN̂
T
k , k = 1 : n,

be computed using Algorithm 2.1 with intermediate quantities Ŝ and P̂ . Then the
decompositions

TGK − μI = L̃D̃L̃T = Ũ R̃ŨT = ÑkG̃kÑ
T
k , k = 1 : 2n,

BBT − μ2I = ĽĎĽT = Ǔ ŘǓT = ŇkǦkŇ
T
k , k = 1 : n,

are given by

ďi =
ŝi+1

ŝi
d̂i, ři =

p̂i
p̂i+1

r̂i+1, γ̌i = −μ2γ̂i
r̂i+1

ŝip̂i+1

and

d̃2i−1 = ŝi
μ , r̃2i−1 =

p̂i
μ , γ̃2i−1 =

γ̂i
μ ,

d̃2i = − d̂i
d̃2i−1

, r̃2i = − ři
r̃2i−1

, γ̃2i = − γ̌i
μ

for i = 1 : n, setting ŝn+1 := −μ2, r̂n+1 := p̂n+1 := 1.
Proof. See Lemma 2.3 and Corollaries 2.4 and 2.5 in [12].
The elements ľi, ǔi, l̃i, ũi can be obtained as in (4.3) using ľiďi = ǔiři+1 = ai+1bi,

l̃2i−1d̃2i−1 = ũ2i−1r̃2i = ai and l̃2id̃2i = ũ2ir̃2i+1 = bi. Again it holds that if (L̂, D̂)
is an RRR, then (Ľ, Ď) is too and (4.4) is fulfilled; i.e., the eigenvalues of L̂D̂L̂T and
ĽĎĽT are relatively close [11, Theorem 5.4].

4.2. Modified MRRR algorithm with couplings. In this section we will
present the structure of our new implementation of the adapted MRRR algorithm for
the bSVD with embedded couplings.
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First we want to outline the main difference between our approach and the algo-
rithm presented in [12]. There, another coupling transformation was used on deeper
levels to couple directly from (L̂+, D̂+) to (Ľ+, Ď+), similarly to Lemma 4.2 for the
first level [12, p. 15]. Unfortunately, this transformation is based on an implicit partial
factorization of L̃D̃L̃T . Therefore it cannot guarantee (4.4) and the only way to use
this transformation is to compute the eigenvalues of L̂+D̂+(L̂+)T and Ľ+Ď+(Ľ+)T to
full accuracy and to compare them [12, p. 18]. The algorithm in [12] was based on the
original presentation of the tridiagonal MRRR algorithm in [6], where the eigenvalues
were computed to full accuracy on each level of the tree anyway. In this context, the
quality of the couplings could be checked easily.

However, as we pointed out in section 2 based on [9], it is sufficient for the MRRR
algorithm to refine the eigenvalues on each level only until they can be categorized
into singletons and clusters. For example, with the cluster tolerance set to 10−3, this
implies essentially that merely the first three decimal digits of the eigenvalues have to
be computed on each level. As the computation of the eigenvalues is by far the most
expensive part during the MRRR algorithm, this optimization results in a significant
speedup of the implementation.

If we wanted to employ the direct coupling strategy from [12], we would have
essentially two options. We could ignore the above optimization and still refine the
eigenvalues to full precision on each level, which would pose a serious and unnecessary
runtime overhead. Alternatively, we could use the optimization but skip checking the
quality of the couplings, resulting in a loss of robustness of the method. In our opinion,
both options are unacceptable.

Therefore we propose a different strategy for deeper levels. We do the steps from
one level to the next with the local translate L̃D̃L̃T of the Golub–Kahan matrix and
use Lemma 4.1 to set up the respective representations in the trees of BTB and BBT .
As this coupling guarantees (4.4), we do not need to refine the eigenvalues to full
accuracy anymore.

As outlined in the previous section, the new algorithm can be described as im-
plicitly running MRRR on the matrices BTB, TGK , and BBT simultaneously with
equivalent shifts. As a consequence, we are working in some sense on a (synchronized)
three-layered representation tree with nodes [L̂D̂L̂T , L̃D̃L̃T , ĽĎĽT , μ̄, jl : ju]. The lo-
cal index range jl : ju denotes the subset of desired singular values of B (respectively,
eigenvalues of BTB) and μ̄ is the accumulated shift from TGK , i.e., we have

BTB − μ̄2I = L̂D̂L̂T ,

TGK − μ̄I = L̃D̃L̃T ,

BBT − μ̄2I = ĽĎĽT .

Note that in order to be correct, the corresponding index range for the eigenvalues of
TGK would be n+ jl : n+ ju. For the sake of shorter indices we will omit this detail;
that is, we refer to the (n + i)th eigenvalue of TGK and its translates L̃D̃L̃T as λ̃i,
due to the fact that we are interested only in the n positive eigenvalues of TGK .

Recall that in the tridiagonal MRRR algorithm, the main tasks to be done for
each node are as follows:

1. Refine the local eigenvalues of the shifted matrix in order to identify clusters
and singletons.

2. For singletons, compute the eigenvector using twisted factorizations.
3. For clusters, find a shift close to the cluster resulting in a new partial RRR

for the eigenvalues in the cluster. Compute and store the new representation for the
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work on the next level.
These steps remain essentially the same in our approach. But as we use Lemma 4.2
to handle the couplings for the root node and Lemma 4.1 for deeper levels, the above
steps are applied to different matrices, depending on the level in the trees we are
currently on. Therefore we will treat the root node (i.e., level zero) and the deeper
levels separately in the following detailed description of our algorithm.

The root node (level 0). Given the upper bidiagonal B and a range il : iu for the
singular values of interest, in theory the root of our three-layered tree becomes

[BTB, TGK , BBT, 0, il : iu],

but by using Lemma 4.2 we will only need to work with BTB. A structural overview
of the steps performed for the root node is given in Algorithm 4.1.

The computation for the root node starts with refining the eigenvalues λ̂i =
σ2
i , i = il : iu. For each singleton λ̂s, we take advantage of the fact that Lemma 4.2

allows the direct coupling of twisted factorizations of BTB− νI and BBT − νI. That
is, after refining λ̂s to high relative accuracy, we use Algorithm 2.1 to compute the
twisted factorizations BTB − λ̂sI = N̂kĜkN̂

T
k , k = 1 : n. (Note that, as B is upper

bidiagonal, BTB can be written as LDLT with di = a2
i , li = bi/ai. Thus Algorithm

2.1 can be applied directly.) Then the right singular vector vs is computed using (2.9)

for a suitable twist index k̂. For the left singular vector, we invoke Lemma 4.2 to set
up the twisted factorizations BBT − λ̂sI = ŇkǦkŇ

T
k , k = 1 : n directly, and we use

them to compute us. Note that it is possible to choose a different twist index ǩ for
the left vector. As the couplings are backward stable this results in excellent residuals
||Bvs − σsus||.

Now assume that a cluster λ̂c:d of eigenvalues of BTB has been identified. In the
same manner as MRRR applied to BTB alone would proceed, we choose a shift μ2

s.t. BTB − μ2 =: L̂D̂L̂T forms a partial RRR for its eigenvalues with indices c : d.
Then we can again use Lemma 4.2 to set up the remaining data for the child node
[L̂D̂L̂T , L̃D̃L̃T , ĽĎĽT , μ, c : d].

Deeper levels. On deeper levels of the tree we work on nodes of the form
[
L̂D̂L̂T , L̃D̃L̃T , ĽĎĽT , μ̄, jl : ju

]
,

where jl : ju is a subset of the root index range il : iu with jl < ju. The computational
structure for deeper levels is shown in Algorithm 4.2.

Again we start by refining the eigenvalues λ̂i, i = jl : ju, of L̂D̂L̂T . For singletons
λ̂s, we want to compute the singular vectors us and vs as for the root node using
twisted factorizations

L̂D̂L̂T − λ̂sI = N̂+
k Ĝ+

k (N̂T
k )+, k = 1 : n,(4.6)

ĽĎĽT − λ̂sI = Ň+
k Ǧ+

k (ŇT
k )+, k = 1 : n.(4.7)

Unfortunately, compared to the root node case we have lost the advantage of be-
ing able to couple directly from (N̂+

k , Ĝ+
k ) to (Ň+

k , Ǧ+
k ). This leaves essentially

two options. First we could compute the twisted factorizations L̃D̃L̃T − λ̃sI =
Ñ+

k G̃+
k (ÑT

k )+, k = 1 : 2n, and then use Lemma 4.1 to set up the data N̂+
k , Ĝ+

k , Ň
+
k , Ǧ+

k ,
k = 1 : n, to compute the vectors. As this coupling obeys (4.4), it does lead to excel-
lent results.

However, there is a drawback to this approach. In practice, the computation of
eigenpairs during the MRRR algorithm can be accelerated using a specialized Rayleigh
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Algorithm 4.1 Bidiagonal MRRR, root node.

Input: Upper bidiagonal matrix B, range il : iu of desired singular triplets.

1: Refine eigenvalues λ̂il:iu of BTB enough to identify clusters.

2: for each singleton λ̂s do

3: compute λ̂s to full accuracy

4: compute BTB − λ̂sI = N̂kĜkN̂
T
k , k = 1 : n

5: compute vs for a suitable twist index k̂

6: couple (N̂kĜkN̂
T
k , k = 1 : n) → (ŇkǦkŇ

T
k , k = 1 : n) (Lemma 4.2)

7: compute us for a suitable twist index ǩ
8: endfor

9: for each cluster λ̂c:d do

10: find close shift μ2 s.t. BTB − μ2I = L̂D̂L̂T and

(L̂, D̂) forms a partial RRR for the eigenvalues c : d

11: modify eigenvalues for the next level: λ̂i := λ̂i − μ2, i = c : d

12: store L̂, D̂, Ŝ, μ, and c : d
13: endfor

quotient iteration (RQI) for twisted factorizations, as described in [6, 10]. Doing this
for L̃D̃L̃T is undesirable, as this matrix is of dimension 2n, and therefore the loops
in the RQI take twice as many operations as for the matrices L̂D̂L̂T and ĽĎĽT .
For this reason it was proposed in [10] to forfeit the couplings at this point, i.e., to

do RQI on L̂D̂L̂T for vs and λ̂s, and then to use the resulting approximation λ̂s to
do the factorization of ĽĎĽT − λ̂sI explicitly to compute us. This does not spoil
the residuals, because, as we are on a deeper level of the tree, the local eigenvalues
of L̂D̂L̂T and ĽĎĽT are typically very small compared to the singular values of B.
Therefore, the resulting absolute deviation (3.1) does not cause much harm at this
point.

After dealing with the singletons we still have to handle possibly upcoming new
(sub)clusters λ̂c:d on deeper levels, where jl ≤ c < d ≤ ju. To do the step to the next
level, we use the translate L̃D̃L̃T of the Golub–Kahan matrix with a suitable shift μ
to compute a new partial RRR L̃D̃L̃T − μI = L̃+D̃+(L̃+)T . Then we apply Lemma
4.1 to set up the representations

L̂D̂L̂T − νI = L̂+D̂+(L̂+)T and ĽĎĽT − νI = Ľ+Ď+(Ľ+)T

for the child node[
L̂+D̂+(L̂+)T , L̃+D̃+(L̃+)T , Ľ+Ď+(Ľ+)T , μ̄ + μ, c : d

]
.

Its local eigenvalues are related via λ̃i = σi − μ̄ and

λ̂i = σ2
i − μ̄2 = (σi − μ̄)(σi + μ̄) = λ̃i(2μ̄ + λ̃i).

Remember that λ̃i refers actually to the (n+ i)th eigenvalue of L̃D̃L̃T . Together with

(4.5) we can therefore express the relations between the local eigenvalues λ̂i and λ̃i,
and between the local shifts μ and ν as

λ̂s = conv(λ̃s, μ̄), ν = conv(μ, μ̄), where conv(x, y) := x(2y + x).(4.8)
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Algorithm 4.2 Bidiagonal MRRR, deeper levels (level ≥ 1).

1: if level = 1 then

2: Retrieve L̂, D̂, Ŝ, GK-shift from root μ̄ and cluster bounds jl : ju
3: else

4: Retrieve L̃, D̃, GK-shift from root μ̄ and cluster bounds jl : ju

5: couple (L̃, D̃) → (L̂, D̂) (Lemma 4.1)
6: endif

7: Refine eigenvalues jl : ju of L̂D̂L̂T enough to identify clusters
8: if singletons found then
9: if level = 1 then

10: couple (L̂, D̂, Ŝ) → (Ľ, Ď) (Lemma 4.2)
11: else

12: couple (L̃, D̃) → (Ľ, Ď) (Lemma 4.1)
13: endif

14: for each singleton λ̂s do

15: compute λ̂s to full accuracy

16: compute L̂D̂L̂T − λ̂sI = N̂kĜkN̂
T
k , k = 1 : n, to get vs

17: compute ĽĎĽT − λ̂sI = ŇkǦkŇ
T
k , k = 1 : n, to get us

18: endfor
19: endif
20: if new clusters found then
21: if level = 1 then

22: couple (L̂, D̂, Ŝ) → (L̃, D̃) (Lemma 4.2)
23: endif

24: for each cluster λ̂c:d do

25: approximate eigenvalues λ̃c:d based on λ̂c:d

26: find close shift μ s.t. L̃D̃L̃T − μI =: L̃+D̃+(̃L+)T is an RRR
27: transform shift: ν := μ(2μ̄ + μ)

28: modify eigenvalues for the next level: λ̂i := λ̂i − ν, i = c : d

29: store L̃, D̃, μ̄ + μ and c : d
30: endfor
31: endif

This relation is needed for two reasons. First, after choosing μ, we need ν to get
initial guesses λ̂i − ν for the local eigenvalues of L̂+D̂+(L̂+)T . Additionally, in order
to choose μ sensibly, some approximation to the eigenvalues λ̃c:d of L̃D̃L̃T is needed.
We want to avoid performing any direct eigenvalue computations for L̃D̃L̃T , as this
would be expensive, so we approximate λ̃i from λ̂i instead. The relation (4.8) implies

that λ̃i is defined as the larger root of the quadratic equation x2 +2μ̄x− λ̂i. Care has
to be taken to compute this root in a stable way; see [13], for example.

5. The software xBDSCR. The bidiagonal MRRR algorithm as described in the
last section has been realized as software xBDSCR in FORTRAN 77 and is to be
incorporated into the upcoming release of the LAPACK library. In this section we
want to discuss several practical issues concerning the implementation.

Refining the eigenvalues. Internally the approximations to the eigenvalues



922 P. R. WILLEMS, B. LANG, AND C. VÖMEL

λi := λ̂i of L̂D̂L̂T are handled as half-open intervals [λi, λi), with λi ≤ λi < λi. In
order to identify singletons, neighboring intervals are repeatedly refined using bisec-
tion until λi ≤ λi+1 and reldist(λi, λi+1), as defined in (2.3), is larger than the cluster

tolerance, or until reldist(λi, λi+1) is smaller than the cluster tolerance or the relative
width of the intervals becomes smaller than 4ε. In the first case, the eigenvalues can
safely be regarded as separated, whereas in the second case they cannot.

Computing the eigenpairs. As already mentioned, the final computation of
an eigenpair is actually done using RQI with twisted factorizations (see Algorithm
4.1, lines 3–5 and Algorithm 4.2, lines 15–16). For more details on this technique
see [6, pp. 136ff.]. Note that for each singular triplet, we need to do this iteration
only for L̂D̂L̂T (or BTB). The coupling relations guarantee that the resulting refined

eigenvalue λ̂ approximates the corresponding eigenvalue of ĽĎĽT to high relative
accuracy, therefore it can directly be used to compute the right singular vector (see
Algorithm 4.2, line 17).

Data storage. Algorithms 4.1 and 4.2 describe only the computations for each
node in the tree, but not the order in which the nodes are to be visited. In theory,
this order has no effect on the algorithm at all. In practice, however, the data for
each new child node has to be stored somewhere until it is visited.

It suffices to store enough information to rebuild the three representations be-
longing to a node using the coupling relations. For level one, we can employ Lemma
4.2 and therefore need only the elements of L̂, D̂, and Ŝ from the dstqds factorization
of BTB − μ2I. For deeper levels, the elements of L̃, D̃ are enough to set up the other
two representations L̂D̂L̂T and ĽĎĽT via Lemma 4.1. As a result, we need to store
4n+O(1) numbers for any node in the three-layered tree. As each node represents at
least two singular triplets, we can use, for example, the storage for the first two left
and right singular vectors belonging to the node temporarily for this purpose.

With this approach, a breadth-first traversal of the tree is sensible, as this avoids
unnecessary swapping of the node data. A similar technique is used in [9] for the
implementation of the tridiagonal MRRR algorithm.

IEEE arithmetic. The MRRR algorithm has to deal with possible breakdowns
in the factorizations. This is easy to accomplish if support of the IEEE-754 standard
for floating point arithmetic is present, or at least an equivalent handling of NaN’s
(see [10, p. 47]). If this is not the case, special care is necessary to avoid divisions
by zero and overflows. The new version xSTEGR of the tridiagonal MRRR algorithm
works with or without IEEE support [9], and we adapted the employed techniques for
the factorizations within xBDSCR.

However, we also have to take care of possible division by zero when using the
couplings in Lemma 4.2. It was shown in [10, p. 80] how to fix this in the case when
IEEE arithmetic is present. In a similar manner to that with the factorizations, these
modifications were extended for the case when IEEE arithmetic is not supported.

So, as with the new xSTEGR, our code does not need IEEE arithmetic, but is
able to exploit it. Preliminary tests indicated approximately a 10% performance
improvement with IEEE support, due to the fact that the innermost loop can be
formulated with fewer conditionals.

Preprocessing. In [10] it was noticed that for some kinds of matrices, the
algorithm can benefit from preceding it by a few sweeps of the bidiagonal QR method,
which is described, for example, in [4]. This sort of preprocessing for the original
matrix B was integrated in the code, although only some QR sweeps are done per
default, as updating the vectors afterward with the employed orthogonal rotations is
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not cheap.
Splitting. The MRRR algorithm and consequently its bidiagonal adaptation

work only on unreduced matrices; that is, no off-diagonal of the original tridiagonal
T , respectively, no element of the bidiagonal B, should be zero.

If some off-diagonal element bi of the original upper bidiagonal matrix B is zero,
the matrix can be split into two submatrices B1:i,1:i and Bi+1:n,i+1:n, which then can
be treated independently. If a diagonal element ai is zero, an elegant way to “deflate”
this zero out is to apply one sweep of the implicit zero-shift QR method, described
in [4]. This results in a matrix B′ with b′i−1 = b′n−1 = a′n = 0 [4, p. 21], i.e., one
zero singular value has been rotated out nicely and we can split the matrix into three
blocks B1:i−1,1:i−1, Bi:n−1,i:n−1 and Bn,n, the latter one being trivial.

Extensive splitting of the matrix should be exploited wherever possible, as it
has a beneficial effect on both orthogonality and runtime. Therefore it is sensible
to replace very small elements of B by zero if this affects the SVD only slightly.
Standard absolute perturbation theory for the bSVD [3, Cor. 5.1] shows that setting
an element ci of B to zero can cause an absolute change of |ci| in the singular values and
consequently also in the residual (1.3). This suggests the absolute splitting criterion

|ci| ≤ κnε||B|| ⇒ ci := 0,(5.1)

with some small constant κ. However, doing this implies that the singular values will
not be computed to high relative accuracy.

Our implementation employs a 2-phase splitting. In the first phase we split the
matrix as much as possible without spoiling the relative accuracy of the singular values.
This can be achieved using powerful criteria developed by Demmel and Kahan in the
context of the zero-shift QR algorithm [4, p. 18], or similar but slightly stronger
criteria developed by Li, which are based on the dqds transformation (see [19] for
details).

Based on the resulting relative split, we then apply the absolute splitting criterion
(5.1) on each of the blocks and, if necessary, again do a zero-shift QR sweep to deflate
zeros on the block diagonals. This results in the absolute split, where the blocks are
unreduced and subblocks of the relative split.

Then the core bidiagonal MRRR algorithm is applied to each block in the absolute
split. Should relative accuracy be desired (indicated by a flag when calling xBDSCR),
the singular values are afterward refined to high relative accuracy for the respective
“father” block in the relative split. Note that there is no need to refine the computed
singular vectors in order to get good orthogonality and small residuals.

This splitting approach has two advantages. First, we can always apply the
absolute splitting criterion, even if relative accuracy is desired, and if so, we exploit the
smaller blocks in the relative split to save runtime when refining the singular values.

6. Comparison with other methods. In this section, we compare our MRRR-
based bidiagonal SVD code with other algorithms available in LAPACK. In its current
release 3.0, LAPACK provides two driver routines, xGESVD and xGESDD, for computing
the SVD of a general rectangular matrix. In both cases, the matrix is first transformed
to bidiagonal form; afterward the singular values are computed from the bidiagonal
matrix using the QR algorithm xBDSQR or Divide & Conquer xBDSDC, respectively. As
part of the new release of LAPACK, we will provide a similar driver for our algorithm
xBDSCR. In the following, we compare the performance of the three computational
kernels xBDSCR, xBDSQR, and xBDSDC for the bidiagonal SVD.

As a testbed we used a Pentium 4, 2.8GHz processor with 512kb cache. All
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Fig. 6.1. Speedup of the bidiagonal MRRR algorithm over the Divide & Conquer algorithm for
matrices of varying dimension and distribution of the singular values.

routines and the LAPACK library were compiled using the Intel Fortran Compiler,
version 8.1, with compiler options -O3, -tpp7, and -mp.

Figure 6.1 shows the speedup of the bidiagonal MRRR algorithm over the Divide
& Conquer algorithm for computing the full SVD. For all matrices considered, the
QR algorithm was at least five times (in some cases several hundred times) slower
than these two algorithms; therefore the QR data is not shown in the figure.

The matrices underlying the figure were designed for testing the robustness of
the algorithms. In particular, many of them have very tight, and sometimes large,
clusters of singular values. This situation can be favorable for the Divide & Conquer
algorithm, which benefits from heavy deflation. By contrast, tight clusters may force
the bidiagonal MRRR algorithm to descend several levels in the representation tree,
thus increasing its operation count. For these reasons, neither of the two algorithms is
consistently superior, in particular for the small matrices. As can be seen in the figure,
with increasing matrix dimension the optimal O(n2) complexity of the bidiagonal
MRRR becomes decisive, such that this algorithm is faster in most cases.

Our bidiagonal MRRR routine xBDSCR provides the option to compute only se-
lected singular vectors. Table 6.1 shows that this feature can indeed reduce the com-
putation time significantly. For algorithmic reasons, neither the QR nor the Divide
& Conquer routine can provide partial SVDs.

Concerning accuracy, each of the three bSVD routines yielded deviations from
orthogonality and residuals within the bounds (1.2) and (1.3), respectively. The errors
of the bidiagonal MRRR algorithm tend to be larger than those of the remaining
two methods, but only by a moderate factor between 10 and 20. As our routine is
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Table 6.1

Average execution times in seconds for computing a random subset of consecutive singular
triplets for the test matrix defined in (3.2) with dimension 2000. Each test was repeated 10 times.

% DBDSCR DBDSDC DBDSQR

100% 2.84 6.63 368
50% 1.56 — —
25% 1.38 — —
10% 0.63 — —

strongly based on the newest implementation xSTEGR, the behavior is very similar to
that algorithm concerning the comparision of orthogonality, residuals, and runtime
with the Divide & Conquer and QR routines. Therefore we refer readers interested
in a more detailed discussion of test cases to [5].

7. Conclusions. We have described improvements to the bidiagonal MRRR
algorithm and its realization in our new software implementation, which allows for
the computation of subsets of k singular values and vectors at O(nk) cost. Due to
the nature of both the QR and the Divide & Conquer algorithms, this functionality
was not available; the whole set of singular values and vectors had to be computed at
full cost with respect to operations and storage.

As the bidiagonal MRRR algorithm is structurally very similar to the tridiago-
nal MRRR algorithm for tSEP, it inherits the superior features of the latter. The
theoretical complexity of the (bidiagonal) MRRR algorithm is O(n2), versus O(n3)
for the QR algorithm, and Divide & Conquer lies in between O(n2) and O(n3), de-
pending on the matrix and the amount of deflation. Additionally, the (bidiagonal)
MRRR algorithm is naturally parallelizable since the computation for the (singular)
vectors within a cluster does not depend on the computation for any other cluster.
Furthermore, most of the computation time is spent refining the eigenvalues, and this
part is perfectly parallelizable. We plan to develop a parallel version of our algorithm
for ScaLAPACK in the future.

As a major challenge for future research we consider the task of devising a stable
coupling scheme between successively shifted factorizations of BTB and BBT . This
would significantly improve and simplify the bidiagonal MRRR algorithm, as then
there would be no need to work with the Golub–Kahan matrix anymore. To this
end it would be sufficient to develop reliable and cheap criteria in order to test if the
couplings proposed in [12] are stable.

An alternative solution to this problem would be to eliminate the need for deeper
level couplings at all, that is, to improve the tridiagonal MRRR algorithm in a way
that the depth of the representation tree remains limited to one. This would be a
major achievement indeed, but at this stage of research it appears to be a very distant
goal. As one possible plan of attack in this direction we see a combination of multistep
inverse iteration as presented in [21] with some variant of the submatrix method for
tightly clustered eigenvalues [16].
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accuracy of bounds (independent of the mesh size h).
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1. Introduction. A popular approach for the solution of the generalized sym-
metric eigenvalue problem

Au = Muλ,
(
A,M ∈ R

n×n
)
,(1.1)

is the shift-invert Lanczos method [3, 4, 5]. The pencil (A,M) is symmetric defi-
nite, i.e., the matrices A and M are, respectively, symmetric and symmetric positive
semidefinite and some combination αA + μM is positive definite. This technique is
used to approximate the eigenvalues in a given interval, for instance, the smallest
eigenvalues.

Once approximations to the eigenvalues (and eigenvectors) are computed, a pos-
teriori error bounds can assess the accuracy of the results. Ericsson and Ruhe [3]
presented the first bounds for (1.1) when the matrix M is positive definite and the
Lanczos basis is M-orthonormal. In this paper, we review their results and extend
them to an (αA + μM)-orthonormal Lanczos basis (where the matrix αA + μM is
positive definite). We also derive the explicit constants for one- and two-sided bounds.

When the matrix M is symmetric positive semidefinite and some combination
αA+μM is positive definite, an approach is to apply the shift-invert Lanczos method
to the pencil (A, αA+μM) because the eigenvectors are unchanged and the eigenval-
ues are easily recovered. Another approach was introduced in [6] where Nour-Omid et
al. explained how to implement shift-invert Lanczos for the pencil (A,M) in the range
of M and build an M-orthonormal basis. Our motivation for using the (αA + μM)-
inner product with the pencil (A,M) arises in the definition of the stopping criterion
with a more general norm while still building the same Krylov space as Nour-Omid et
al. [6]. The norm involved in the stopping criterion is important as an inappropriate
choice can result in more Lanczos iterations than necessary.
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928 U. L. HETMANIUK AND R. B. LEHOUCQ

Our analysis also has implications on practical shift-invert Lanczos iterations. In
particular, when the eigenvalue problem (1.1) arises from the finite element discretiza-
tion of elliptic self-adjoint differential eigenvalue problem, invariance of the bounds
with respect to the mesh size is an important property. We study the bounds with
respect to the mesh size.

Our paper is organized as follows. Section 2 reviews the shift-invert Lanczos
decomposition and introduces our notation. Section 3 reviews useful general accuracy
results. Sections 4, 5, and 6 apply these accuracy results to approximations generated
by shift-invert Lanczos iterations. Finally, section 7 comments on the results of our
analysis for practical Lanczos iterations. For the sake of clarity, we gathered most of
the proofs in the appendix.

2. Shift-invert Lanczos decomposition. The eigenvalue problem (1.1) has a
set of M-orthogonal eigenvectors uj and corresponding eigenvalues λj . When M is
positive semidefinite, the symmetric pencil (A,M) has infinite eigenvalues. In most
practical cases, these infinite eigenvalues are not of interest. Hence we focus in this
report on the real finite eigenvalues and we assume that these finite eigenvalues (and
associated eigenvectors) are ordered in ascending order.

In order to use the shift-invert Lanczos iteration to compute eigenpairs of (1.1), a
spectral transformation is employed. If σ ∈ R, then the standard eigenvalue problem

(A − σM)−1Mu = uν,

(
ν =

1

λ− σ

)
(2.1)

results by subtracting σM from both sides of (1.1) followed by “cross-multiplication.”
This standard eigenvalue problem is no longer symmetric. However, a careful choice
of inner product renders the operator (A− σM)−1M symmetric. For instance, when
the inner product is induced by the matrix H, selecting H equal to αA + μM results
in an H-symmetric matrix (A − σM)−1M (where αA + μM is symmetric positive
definite). To see this symmetry, note that

αA + μM = α(A − σM) + (μ + σα)M

and so

(αA + μM)(A − σM)−1M = αM + (μ + σα)M(A − σM)−1M

= M(A − σM)−1(αA + μM).

Suppose that

A−1
σ MVj = VjTj + fje

T
j , (Aσ = A − σM)(2.2)

is a Lanczos reduction of length j where ej is the jth canonical basis vector, we have

VT
j HA−1

σ MVj = Tj ,(2.3a)

VT
j HVj = Ij ,(2.3b)

VT
j Hfj = 0,(2.3c)

where Tj is a symmetric tridiagonal matrix. The j columns of Vj form a basis
H-orthonormal for the Krylov subspace

Kj(A
−1
σ M,v1) = Span{v1,A

−1
σ Mv1, . . . , (A

−1
σ M)j−1v1}.(2.4)
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If we denote

Tj =

⎛
⎜⎜⎜⎝

α1 β1 · · · 0
β1 α2 · · · 0
...

. . . βj−1

0 · · · βj−1 αj

⎞
⎟⎟⎟⎠ ,

then the familiar Lanczos three-term recurrence is recovered by equating the jth
column of (2.2) to obtain

fj = A−1
σ Mvj − vjαj − vj−1βj−1.

Using H-orthonormality, we have

αj = vT
j HA−1

σ Mvj ,(2.5a)

βj = ‖fj‖H =
√

fTj Hfj ,(2.5b)

and the new direction vj+1 is equal to fj/βj , where we assume that βj is not zero. This
case is eliminated when every tridiagonal matrix Tj is unreduced or, equivalently, has
simple eigenpairs.

The Lanczos reduction (2.2) provides two choices of approximating eigenvectors.
If (s, θ) is an eigenpair for Tj such that

Tjs = sθ and ‖s‖ =
√

sT s = 1,

then we can postmultiply (2.2) by s to obtain

A−1
σ MVjs = Vjsθ + fjωj(2.6a)

= (Vjs + fj
ωj

θ
)θ,(2.6b)

where ωj = eTj s. To approximate an eigenvector, we can use the Ritz vector, defined
as

x = Vjs,(2.7)

and the purified vector, defined as

p = Vjs + fj
ωj

θ
= x + fj

ωj

θ
.(2.8)

The purified vector was introduced in [3, 6] as a simple postprocessing step to recover
the vector that results from a step of inverse iteration on the Ritz vector.

For a desired tolerance ε, a convergence criterion often used in practice [3, 5] is

‖fj‖H |ωj | ≤ ε |θ| .(2.9)

Note that by (2.5b), the convergence criterion is available as a by-product of the
Lanczos reduction.

In the remainder of this report, we omit the index j when the context is clear and
we always assume that σ is an arbitrary real number such that Aσ is invertible. We
also emphasize that the matrix

H = αA + μM(2.10)

is symmetric positive definite. Finally, we caution the reader that a distinction is
drawn between the inner product used for orthogonality of the Lanczos vectors and
the inner product used for the error bounds.
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3. General results. This section recalls several standard accuracy results that
will be useful for our analysis. These results provide bounds on the errors when
approximating an eigenpair in terms of its residual. First, we review a general result
for a simple eigenvalue problem.

Theorem 3.1. Let Â ∈ R
n×n be a symmetric matrix, ŷ a nonzero vector in R

n,
θ̂ a real number, and r̂ the residual vector

r̂ = Âŷ − ŷθ̂.

If α̂ is the eigenvalue of Â closest to θ̂, where Âẑ = ẑα̂ and ‖ẑ‖ = 1, then

0 ≤
∣∣∣θ̂ − α̂

∣∣∣ ≤ ‖r̂‖
‖ŷ‖ ,(3.1a)

0 ≤ |sin ∠(ŷ, ẑ)| ≤ 1

min
λ̂i �=α̂

∣∣∣λ̂i − θ̂
∣∣∣
‖r̂‖
‖ŷ‖ .(3.1b)

Furthermore, if θ̂ is the Rayleigh quotient of ŷ,

θ̂ =
ŷT Âŷ

ŷT ŷ
,

then

0 ≤
∣∣∣θ̂ − α̂

∣∣∣ ≤ min

⎛
⎜⎜⎝

‖r̂‖
‖ŷ‖ ,

1

min
λ̂i �=α̂

∣∣∣λ̂i − θ̂
∣∣∣
‖r̂‖2

‖ŷ‖2

⎞
⎟⎟⎠ ,(3.2a)

1

λ̂n − λ̂1

‖r̂‖
‖ŷ‖ ≤ |sin ∠(ŷ, ẑ)| ≤ 1

min
λ̂i �=α̂

∣∣∣λ̂i − θ̂
∣∣∣
‖r̂‖
‖ŷ‖ .(3.2b)

λ̂n and λ̂1 are, respectively, the largest and smallest eigenvalue of Â.
Proof. See Parlett [7, section 11.7].
Next, we derive several accuracy bounds to assess the approximation of an eigen-

pair (u, λ) for the pencil (A,M). The difference between the bounds arises from the
various norms used to measure the residual.

Proposition 3.2. Let (A,M) be a symmetric definite pencil, H = αA + μM a
symmetric positive definite matrix, and σ a real number such that Aσ is invertible.
We define also y a nonzero vector in R

n, λ̃ a real number such that λ̃ �= σ, and the
residual vector

r = Ay − Myλ̃.

If λ satisfies ∣∣∣∣
1

λ− σ
− 1

λ̃− σ

∣∣∣∣ = min
λi

∣∣∣∣
1

λi − σ
− 1

λ̃− σ

∣∣∣∣(3.3)

and Au = Muλ, where ‖u‖H = 1, then∣∣∣∣∣
λ− λ̃

λ− σ

∣∣∣∣∣ ≤
‖r‖A−1

σ HA−1
σ

‖y‖H
,(3.4a)

0 ≤ |sin ∠H(y,u)| ≤
∣∣∣∣∣
λγ − σ

λγ − λ̃

∣∣∣∣∣
‖r‖A−1

σ HA−1
σ

‖y‖H
,(3.4b)
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where
∣∣∣∣

1

λγ − σ
− 1

λ̃− σ

∣∣∣∣ = min
λi �=λ

∣∣∣∣
1

λi − σ
− 1

λ̃− σ

∣∣∣∣ .

In addition, when λ̃ satisfies

λ̃ = σ +
yTHy

yTHA−1
σ My

,(3.5)

we have
∣∣∣∣∣
λ− λ̃

λ− σ

∣∣∣∣∣ ≤
‖r‖A−1

σ HA−1
σ

‖y‖H
min

(
1,

∣∣∣∣∣
λγ − σ

λγ − λ̃

∣∣∣∣∣
‖r‖A−1

σ HA−1
σ

‖y‖H

)
,(3.6a)

∣∣∣∣
(λ+

σ − σ)(λ−
σ − σ)

(λ+
σ − λ−

σ )(λ̃− σ)

∣∣∣∣
‖r‖A−1

σ HA−1
σ

‖y‖H
≤ |sin ∠H(y,u)| ≤

∣∣∣∣∣
λγ − σ

λγ − λ̃

∣∣∣∣∣
‖r‖A−1

σ HA−1
σ

‖y‖H
,(3.6b)

where

(λ−
σ , λ

+
σ ) =

{
(arg minλi<σ |λi − σ| , arg minσ<λi

|λi − σ|) when λ1 < σ < λn,
(λ1, λn) otherwise.

Proof. This result is a reformulation of Theorem 3.1 when Â, ŷ, θ̂, and r̂ satisfy

⎧⎪⎪⎨
⎪⎪⎩

Â = H−1/2HA−1
σ MH−1/2,

ŷ = H1/2y,

θ̂ = (λ̃− σ)−1,

r̂ = Âŷ − ŷθ̂ = H1/2A−1
σ (Mxλ̃− Ax)(λ̃− σ)−1.

The Rayleigh quotient of ŷ satisfies

ŷT Âŷ

ŷT ŷ
=

yTHA−1
σ My

yTHy
.

When λ̃ satisfies (3.5), quadratic convergence of λ̃ towards the eigenvalue λ is
triggered when

∣∣∣∣∣
λγ − σ

λγ − λ̃

∣∣∣∣∣
‖r‖A−1

σ HA−1
σ

‖y‖H
< 1.

The eigenvalue bounds (3.4a) and (3.6a) guarantee a relative error on a nonzero
eigenvalue of the same level as the “normalized” residual norm because

∣∣∣∣∣
λ− λ̃

λ

∣∣∣∣∣ ≤
∣∣∣∣
λ− σ

λ

∣∣∣∣
‖r‖A−1

σ HA−1
σ

‖y‖H
.

When
∣∣∣λ̃− σ

∣∣∣ increases, so does |λγ − σ|. Then the bounds (3.6b) for the ratio

between the sine of the angle and the residual norm

∣∣∣∣
(λ+

σ − σ)(λ−
σ − σ)

(λ+
σ − λ−

σ )(λ̃− σ)

∣∣∣∣ ≤
|sin ∠H(y,u)| ‖y‖H

‖Ay − Myλ̃‖A−1
σ HA−1

σ

≤
∣∣∣∣∣
λγ − σ

λγ − λ̃

∣∣∣∣∣
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define a wider interval. When σ is close to an eigenvalue and λ̃ approximates a
different eigenvalue, the constants in all the bounds are bounded.

When σ is close to an eigenvalue and λ̃ approximates the same eigenvalue, relation
(3.3) constrains λ̃. For instance, when the shift σ satisfies

λj−1 + λj

2
< σ <

λj + λj+1

2
,

then λ̃ approximates λj if and only if the constraints

min

(
σ, max

λi �=λj

2λjλi − σ(λj + λi)

λj + λi − 2σ

)
< λ̃ < max

(
σ, min

λi �=λj

2λjλi − σ(λj + λi)

λj + λi − 2σ

)

are satisfied. Hence, the constant
∣∣∣∣∣
λγ − σ

λγ − λ̃

∣∣∣∣∣

approaches 1 when σ and λ̃ are near λ.
For the next two results, we need to make further assumptions on M or A to

define, with one of these matrices, an inner product.
Proposition 3.3. Let (A,M) be a symmetric definite pencil where M is sym-

metric positive definite. We define also y a nonzero vector, λ̃ a real number, and r
the residual vector

r = Ay − Myλ̃.

If λ is the closest eigenvalue to λ̃ and Au = Muλ, where ‖u‖M = 1, then

∣∣∣λ− λ̃
∣∣∣ ≤ ‖r‖M−1

‖y‖M
,(3.7a)

0 ≤ |sin ∠M(y,u)| ≤ 1

min
λi �=λ

∣∣∣λi − λ̃
∣∣∣
‖r‖M−1

‖y‖M
.(3.7b)

In addition, when λ̃ satisfies

λ̃ =
yTAy

yTMy
,

we have

∣∣∣λ− λ̃
∣∣∣ ≤ ‖r‖M−1

‖y‖M
min

⎛
⎜⎝1,

1

min
λi �=λ

∣∣∣λi − λ̃
∣∣∣
‖r‖M−1

‖y‖M

⎞
⎟⎠ ,(3.8a)

1

λn − λ1

‖r‖M−1

‖y‖M
≤ |sin ∠M(y,u)| ≤ 1

min
λi �=λ

∣∣∣λi − λ̃
∣∣∣
‖r‖M−1

‖y‖M
.(3.8b)

Proof. This result is a reformulation of Theorem 3.1 when Â, ŷ, θ̂, and r̂ satisfy
⎧⎪⎪⎨
⎪⎪⎩

Â = M−1/2AM−1/2,
ŷ = M1/2y,

θ̂ = λ̃,

r̂ = Âŷ − ŷθ̂ = M−1/2(Ay − Myλ̃).



UNIFORM ACCURACY OF EIGENPAIRS 933

Quadratic convergence towards the eigenvalue λ is triggered as soon as

1

min
λi �=λ

∣∣∣λi − λ̃
∣∣∣
‖r‖M−1

‖y‖M
< 1.

When λ belongs to a cluster of eigenvalues, this quadratic convergence will require a
small residual norm and the constant in the upper bound on the angle will become
large. Furthermore, when the spread λn − λ1 is large, the lower bound in (3.8b)
becomes crude.

Proposition 3.4. Let (A,M) be a symmetric definite pencil where A is sym-
metric positive definite. We define also y a nonzero vector, λ̃ a nonzero real number,
and r the residual vector

r = Ay − Myλ̃.

If 1/λ is the closest reciprocal eigenvalue to 1/λ̃ and Au = Muλ, then
∣∣∣∣∣
λ− λ̃

λ

∣∣∣∣∣ ≤
‖r‖A−1

‖y‖A
,(3.9a)

0 ≤ |sin ∠A(y,u)| ≤
∣∣∣∣

λδ

λδ − λ̃

∣∣∣∣
‖r‖A−1

‖y‖A
,(3.9b)

where
∣∣∣∣

1

λδ
− 1

λ̃

∣∣∣∣ = min
λi �=λ

∣∣∣∣
1

λi
− 1

λ̃

∣∣∣∣ .

In addition, when λ̃ satisfies

λ̃ =
yTAy

yTMy
,

we have
∣∣∣∣∣
λ− λ̃

λ

∣∣∣∣∣ ≤
‖r‖A−1

‖y‖A
min

(
1,

∣∣∣∣
λδ

λδ − λ̃

∣∣∣∣
‖r‖A−1

‖y‖A

)
,(3.10a)

λ1λn

(λn − λ1)λ̃

‖r‖A−1

‖y‖A
≤ |sin ∠A(y,u)| ≤

∣∣∣∣
λδ

λδ − λ̃

∣∣∣∣
‖r‖A−1

‖y‖A
.(3.10b)

Proof. This result is a reformulation of Theorem 3.1 when Â, ŷ, θ̂, and r̂ satisfy

⎧⎪⎪⎨
⎪⎪⎩

Â = A−1/2MA−1/2,
ŷ = A1/2y,

θ̂ = λ̃−1,

r̂ = Âŷ − ŷθ̂ = A−1/2(Myλ̃− Ay)λ̃−1.

The bounds (3.9a) and (3.10a) guarantee a relative error on the eigenvalue of the
same level as the “normalized” residual norm. Quadratic convergence towards the
eigenvalue λ is triggered as soon as

∣∣∣∣
λδ

λδ − λ̃

∣∣∣∣
‖r‖A−1

‖y‖A
< 1.
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We remark that when λn is large, the lower bound of (3.10b) is not modified. On
the other hand, when the Rayleigh quotient of y gets larger, the bounds (3.10b) for
the ratio between the sine of the angle and the residual norm

λ1λn

(λn − λ1)λ̃
≤ |sin ∠A(y,u)| ‖y‖A

‖Ay − Myλ̃‖A−1

≤
∣∣∣∣

λδ

λδ − λ̃

∣∣∣∣

define a wider interval.
In sections 4–6, we will consider different approximations, generated by shift-

invert Lanczos iterations, for an eigenpair (u, λ). In order to apply the previous
propositions, we will evaluate the different norms of the corresponding residuals.
When possible, we will give explicit expressions of the norms. Else, we will give
asymptotic expansions.

4. Study of the Ritz vector and the Ritz value. In this section, an eigenpair
(u, λ) is approximated by the Ritz vector x (2.7) and the value

σ +
1

θ
= σ +

xTHx

xTHA−1
σ Mx

,

where θ is the eigenvalue of T associated with the Ritz vector x. We also emphasize
that the matrix H = αA+μM is symmetric positive definite. The next result relates
the Lanczos vector f with different norms of the residual.

Proposition 4.1. Let x be a Ritz vector (2.7) produced by a shift-invert Lanczos
reduction where the Lanczos vectors are H-orthonormal. Let σ + 1/θ approximate an
eigenvalue, where

σ +
1

θ
= σ +

xTHx

xTHA−1
σ Mx

.(4.1)

If r = Ax − Mx(σ + 1/θ), then we have

‖r‖A−1
σ HA−1

σ

‖x‖H
=

∣∣∣ω
θ

∣∣∣ ‖f‖H.(4.2)

When M is symmetric positive definite, we have

‖r‖M−1

‖x‖M
= ‖f‖AσM−1Aσ

∣∣∣ω
θ

∣∣∣
√
μ + ασ +

α

θ
+ O

(
‖f‖2

H

ω2

θ2

)
(4.3)

for small values of ‖f‖H |ω/θ|.
When A is symmetric positive definite, we have

‖r‖A−1

‖x‖A
= ‖f‖AσA−1Aσ

∣∣∣ω
θ

∣∣∣
√

μ + ασ + α
θ

σ + 1
θ

+ O
(
‖f‖2

H

ω2

θ2

)
(4.4)

for small values of ‖f‖H |ω/θ|.
Proof. See section 8.1 in the appendix.
In general, σ + 1/θ, defined by (4.1), is not equal to the Rayleigh quotient of x,

xTAx

xTMx
.(4.5)



UNIFORM ACCURACY OF EIGENPAIRS 935

Indeed, we have

σ +
1

θ
= σ +

αxTAx + μxTMx

αxTMx + (μ + ασ)xTMA−1
σ Mx

.(4.6)

However, we remark that when μ is equal to −ασ and σ is smaller than λ1 (i.e., H
is equal to Aσ), the Rayleigh quotient (4.5) is equal to σ + 1/θ. Section 5 studies
the quality of the Rayleigh quotient (4.5). In the next subsections, we comment on
accuracy bounds when measuring the residual r with different norms.

4.1. Accuracy bounds with H-inner product. With the relation (4.2), we
can use the bounds (3.6). The general comments on bounds (3.6) still apply. In
particular, quadratic convergence towards the eigenvalue is triggered as soon as

∣∣∣∣
λγ − σ

λγ − σ − 1
θ

∣∣∣∣ ‖f‖H
∣∣∣ω
θ

∣∣∣ < 1.

We remark that as soon as the convergence criterion (2.9) is satisfied, we can introduce
the tolerance ε in these upper bounds of (3.6).

When approximating many eigenpairs with one shift σ, |θ| becomes smaller and
|λγ − σ| larger. Therefore, the bounds (3.6b) for the ratio between the sine of the
angle and the residual norm (4.2)

∣∣∣∣
(λ+

σ − σ)(λ−
σ − σ)

λ+
σ − λ−

σ

∣∣∣∣ |θ| ≤
|sin ∠H(x,u)|

‖Ax − Mx(σ + 1
θ )‖A−1

σ HA−1
σ

≤
∣∣∣∣

λγ − σ

λγ − σ − 1
θ

∣∣∣∣

define a wider interval. Consequently, the bounds (3.6b) do not guarantee the same
level of accuracy for the approximations close to the shift σ and the approximations
far from the shift.

4.2. Accuracy bounds when M is symmetric positive definite. With the
relation (4.3), we can use the bounds (3.7). We remark that ‖f‖AσM−1Aσ

is not
available as a by-product of the Lanczos reduction (2.2) and that the remainder term
in the expansion comes from the computation of ‖x‖M.

4.3. Accuracy bounds when A is symmetric positive definite. With the
relation (4.4), we can use the bounds (3.9). We remark that ‖f‖AσA−1Aσ

is not
available as a by-product of the Lanczos reduction (2.2) and that the remainder term
in the expansion comes from ‖x‖A.

5. Study of the Ritz vector and its Rayleigh quotient. We approximate
now an eigenpair (u, λ) by the Ritz vector x (2.7) and its Rayleigh quotient

ρ(x) =
xTAx

xTMx
.

Proposition 5.1. Let x be a Ritz vector (2.7) produced by a shift-invert Lanczos
reduction where the Lanczos vectors are H-orthonormal. Then we have

ρ(x) =
xTAx

xTMx
= σ +

1

θ
+

(μ + σα)
ω2

θ2
fTAσf

1 − α
μ + σα

μ + σα + α
θ

ω2

θ2
fTAσf

.(5.1)
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If r = Ax − Mxρ(x) denotes the residual, then we have

‖r‖A−1
σ HA−1

σ

‖x‖H
=

√
θ2

(
σ +

1

θ
− ρ

)2

+ ‖f‖2
H

ω2

θ2

(
1 −

(
σ +

1

θ
− ρ

)
θ

)2

.(5.2)

When M is symmetric positive definite, we have

‖r‖M−1

‖x‖M
= ‖f‖AσM−1Aσ

∣∣∣ω
θ

∣∣∣
√
μ + ασ +

α

θ
+ O

(
‖f‖2

H

ω2

θ2

)
(5.3)

for small values of ‖f‖H |ω/θ|.
When A is symmetric positive definite, we have

‖r‖A−1

‖x‖A
= ‖f‖AσA−1Aσ

∣∣∣ω
θ

∣∣∣
√

μ + ασ + α
θ

ρ
+ O

(
‖f‖2

H

ω2

θ2

)
(5.4)

for small values of ‖f‖H |ω/θ|.
Proof. See section 8.2 in the appendix.
We note that relation (5.1) does not indicate whether ρ(x) is greater or smaller

than σ + 1/θ without further assumptions on σ, A, or M. Ericsson and Ruhe [3]
noticed that when the matrix M is symmetric positive definite and H is equal to M,
the Rayleigh quotient ρ(x) is not close to σ + 1/θ. The relation (5.1) explains their
comment. Indeed, when H is equal to M (α = 0, μ = 1), we have

ρ(x) −
(
σ +

1

θ

)
= fTAσf

ω2

θ2
.

Hence fTAσf controls the difference between ρ(x) and σ + 1/θ. The eigenvalue
decomposition of (A,M) implies that

(λ1 − σ)fTMf ≤ fTAσf ≤ (λn − σ)fTMf .(5.5)

Even if ‖f‖M |ω/θ| < ε, a tight bound on fTAσf is, in general, not guaranteed.
Therefore, the Rayleigh quotient ρ(x) can be far from σ + 1/θ. For the general case
where H = αA+μM, relation (5.1) indicates that fTAσf still controls the difference
between ρ(x) and σ + 1/θ. Here we have

(
min
i

λi − σ

αλi + μ

)
fTHf ≤ fTAσf ≤

(
max

i

λi − σ

αλi + μ

)
fTHf(5.6)

and, for any eigenvalue λi, ∣∣∣∣
λi − σ

αλi + μ

∣∣∣∣ ≤
1

|α| .

Consequently, the convergence criterion ‖f‖H |ω/θ| < ε should result in a tighter con-
trol of fTAσf when α is nonzero. Such a control would justify an approximation with
a Ritz vector (2.7) produced by a shift-invert Lanczos reduction where the Lanczos
vectors are H-orthonormal when α is nonzero.

These expansions are valid when ‖f‖H |ω/θ| is small. However, the proof does
not indicate how small is small. The ratios (4.3, 4.4) and (5.3, 5.4) have similar
expansions. But, for the pair (x, ρ(x)), the remainder terms come from both the
residual norm and the norm of the Ritz vector. So we can expect that the expansions
(5.3, 5.4) will not be valid when ρ(x) is far from σ + 1/θ.
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5.1. Accuracy bounds with H-inner product. With the relation (5.2), we
can apply the bounds (3.4) and the corresponding comments. We remark that the
residual norm (5.2) is available as a by-product of the Lanczos reduction (2.2).

5.2. Accuracy bounds when M is symmetric positive definite. With the
relation (5.3), we can apply the bounds (3.8) and the corresponding comments. We
remark that ‖f‖AσM−1Aσ

is not available as a by-product of the Lanczos reduction
(2.2).

5.3. Accuracy bounds when A is symmetric positive definite. With the
relation (5.4), we can use the bounds (3.10). We remark that ‖f‖AσA−1Aσ

is not
available as a by-product of the Lanczos reduction (2.2).

6. Study of the purified vector and its Rayleigh quotient. This section
studies the case when the eigenpair is approximated by the purified vector p (2.8)
and its Rayleigh quotient

ρ(p) =
pTAp

pTMp
.

We recall that the purified vector was introduced in [3, 6].
Proposition 6.1. If p is the purified vector (2.8) given by the shift-invert Lanc-

zos reduction (2.2) where the Lanczos vectors are H-orthonormal, then

ρ(p) =
pTAp

pTMp
= σ +

1

θ

(
1 +

α

θ

ω2

θ2

fTHf − (μ + ασ)fTMf

μ + ασ + α
θ

)
η,(6.1)

where η defines a denominator such that

1

η
= 1 +

ω2

θ2

(
α

θ

1

μ + ασ + α
θ

+ 1

)
fTHf +

α2ω2

θ4

fTMf

μ + ασ + α
θ

.

If r = Ap − Mpρ(p) denotes the residual, then we have

‖r‖A−1
σ HA−1

σ

‖p‖H
= ‖Mf‖A−1

σ HA−1
σ

|ω|
θ2

+ O
(
‖f‖2

H

ω2

θ2

)
(6.2)

for small values of ‖f‖H |ω/θ|.
When M is symmetric positive definite, we have

‖r‖M−1

‖p‖M
= ‖f‖M

|ω|
θ2

√
μ + ασ +

α

θ
+ O

(
‖f‖2

H

ω2

θ2

)
(6.3)

for small values of ‖f‖H |ω/θ|.
When A is symmetric positive definite, we have

‖r‖A−1

‖p‖A
= ‖Mf‖A−1

|ω|
θ2

√
μ + ασ + α

θ

ρ(p)
+ O

(
‖f‖2

H

ω2

θ2

)
(6.4)

for small values of ‖f‖H |ω/θ|.
Proof. See section 8.3 in the appendix.
We note that relation (6.1) does not indicate whether ρ(p) is greater or smaller

than σ + 1/θ without further assumptions on σ, A, or M.
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6.1. Accuracy bounds with H-inner product. With the relation (6.2), we
can use the bounds (3.4).

We remark that the norm

‖Mf‖A−1
σ HA−1

σ
= ‖A−1

σ Mf‖H

is not directly available as a by-product of the Lanczos reduction (2.2). But performing
the next Lanczos iteration requires computing A−1

σ Mf , of which we could compute
the H-norm.

6.2. Accuracy bounds when M is symmetric positive definite. Ericsson
and Ruhe [3] proved

pTAp

pTMp
= σ +

1

θ

1

1 + ‖f‖2
M

ω2

θ2

,(6.5a)

‖r‖M−1

‖p‖M
= ‖f‖M

|ω|
θ2

1

1 + ‖f‖2
M

ω2

θ2

(6.5b)

when the Lanczos vectors are M-orthonormal. We recover their results when α is 0
and μ is 1.

We remark that ‖f‖M is available when H = M. For the general case where α
is nonzero, the norm ‖f‖M is not available as a by-product of the Lanczos reduction
(2.2). With relation (6.3), we can apply the bounds (3.8).

6.3. Accuracy bounds when A is symmetric positive definite. With the
relation (6.4), we can apply the bounds (3.10) and the corresponding comments. In
general, the norm ‖Mf‖A−1 is not available as a by-product of the Lanczos reduction
(2.2).

7. Conclusions. This paper analyzes the accuracy of the shift-invert Lanczos it-
eration, given a stopping criterion, for computing eigenpairs of the symmetric definite
generalized eigenvalue problem. We provide bounds for the accuracy of the eigenpairs
produced by shift-invert Lanczos for a “normalized” residual norm induced by dif-
ferent inner products. We point out, however, that we do not discuss the number of
Lanczos iterations required to achieve the stopping criterion (see [7] for a discussion).

During the remainder of this final section, we discuss some implications of our
analysis and draw some practical recommendations for shift-invert Lanczos iterations.
Finally, when the generalized eigenvalue problem arises from a conforming finite ele-
ment method, we also comment on the uniform accuracy of bounds (independent of
the mesh size h).

7.1. Practical shift-invert Lanczos iterations. To evaluate the accuracy of
a pair (y, λ̃), we have measured the associated residual in different norms. We now
provide some comments on selecting the appropriate residual norm. For the sake of
simplicity, we assume that A and M are symmetric positive definite and that the set
of eigenvectors {ui}ni=1 is M-orthonormal. When the vector y satisfies

y =
∑
i

uiψi (ψi = yTMui)
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and the residual is r = Ay − Myλ̃, we have

‖r‖2
M−1

‖y‖2
M

=
∑
i

ψ2
i∑

j ψ
2
j

(λi − λ̃)2,(7.1a)

‖r‖2
A−1

‖y‖2
A

=
∑
i

λiψ
2
i∑

j λjψ2
j

(
λi − λ̃

λi

)2

,(7.1b)

‖r‖2
A−1

σ HA−1
σ

‖y‖2
H

=
∑
i

(αλi + μ)ψ2
i∑

j(αλj + μ)ψ2
j

(
λi − λ̃

λi − σ

)2

.(7.1c)

When λn is large and is not an eigenvalue of interest, we note that the M−1-norm
has the largest weights, while the weights associated with the two other norms are
bounded. Moreover, when the spread λn − λ1 is large, the lower bound in (3.8b)
becomes crude. Consequently, we recommend to measure the residual with a norm
involving A−1

σ or A−1.
Our analysis has indicated that a Ritz vector (2.7) and its Rayleigh quotient can

produce a good approximation to an eigenpair of (A,M). When the Lanczos vectors
are H-orthonormal, the size of fTAσf controls the quality of such an approximation.
When α is nonzero, relation (5.6) combined with the convergence criterion (2.9) results
in a tight control of fTAσf and, hence, in a good approximation to an eigenpair.

In practice, the purified vector is often used to approximate an eigenvector. When
M is positive definite and H is equal to M, Ericsson and Ruhe [3] justified this choice.
For the general case where the Lanczos vectors are H-orthonormal (α is nonzero), our
analysis does not indicate whether the purified vector is a better choice than the Ritz
vector. However, we notice that the purified vector uses all the information available
from the Krylov subspace spanned by V and the vector f while the Ritz vector belongs
only to the Krylov subspace.

We now compare formally the right-hand sides of (4.2), (5.2), and (6.2). For (4.2),
the right-hand side is

‖f‖H
∣∣∣ω
θ

∣∣∣ .
For small values of ‖f‖H |ω/θ|, the right-hand side of (5.2) is equal to

‖f‖H
∣∣∣ω
θ

∣∣∣ + O
(
‖f‖2

H

ω2

θ2

)
.

Hence, asymptotically, (4.2) and (5.2) are equivalent. The right-hand side of (6.2)
employs a different norm and contains an additional factor of 1/θ. From (6.1), we
have that

1

θ
= ρ(p) − σ + O

(
‖f‖2

H

ω2

θ2

)
.

The equation Aσui = Mui(λi − σ) implies that

min
λi

1

|λi − σ| ‖y‖H ≤ ‖My‖A−1
σ HA−1

σ
≤ max

λi

1

|λi − σ| ‖y‖H

for all y ∈ R
n and in particular for f . Therefore, up to high order terms O

(
‖f‖2

H
ω2

θ2

)
,

we obtain

min
λi

∣∣∣∣
ρ(p) − σ

λi − σ

∣∣∣∣ ‖f‖H
∣∣∣ω
θ

∣∣∣ ≤ ‖Mf‖A−1
σ HA−1

σ

|ω|
θ2

≤ max
λi

∣∣∣∣
ρ(p) − σ

λi − σ

∣∣∣∣ ‖f‖H
∣∣∣ω
θ

∣∣∣ .
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Consequently, the right-hand sides of (4.2), (5.2), and (6.2) are equivalent. A similar
analysis can be carried out when measuring the residuals with the M−1-norm or the
A−1-norm.

We also comment that a common practice among many structural analysts is
to set the shift σ to the left of the smallest eigenvalue λ1 and use a preconditioned
iteration to approximate the application of A−1

σ . If we neglect the approximation
error due to the preconditioned iteration, then when approximating many eigenpairs
from the low end of the spectrum, the bound (3.4a) guarantees the same level of
relative error on the eigenvalue. On the other hand, relation (3.4b) cannot provide
the same level of accuracy on the angle, because the constant

∣∣∣∣∣
λγ − σ

λγ − λ̃

∣∣∣∣∣

increases with |λ̃− σ| as described in the discussion following Proposition 3.2.
When using purified vectors as approximation of eigenvectors, the practitioner

should be aware of possible departure from orthogonality. The paper [1] shows that
the tolerance for the eigensolver can be set at large values, say 10−3–10−5. When
using large values for ε, two purified vectors p and q,

p = Vsp + f
eT sp
θp

and q = Vsq + f
eT sq
θq

such that

‖f‖H
∣∣∣∣
eT sp
θp

∣∣∣∣ ≤ ε and ‖f‖H
∣∣∣∣
eT sq
θq

∣∣∣∣ ≤ ε,

may not be H-orthogonal to working precision because

∣∣pTHq
∣∣ = ‖f‖2

H

∣∣∣∣
eT sp
θp

∣∣∣∣
∣∣∣∣
eT sq
θq

∣∣∣∣ ≤ ε2.

One easy solution is to perform a Rayleigh–Ritz analysis for the pencil (A,M) and
the space spanned by V and f . This extra Rayleigh–Ritz step will restore the M-
orthogonality and improve the approximation of eigenpairs. Such a postprocessing
step would require the construction of the projected matrices

(
VTAV VTAf
fTAV fTAf

)
and

(
VTMV VTMf
fTMV fTMf

)
.

When M is symmetric definite positive and H is equal to M, the construction of these
projected matrices is described in [6] and does not require extra operations with A nor
M. When the shift σ is smaller than λ1 and H is equal to Aσ, the projected matrices
are available as by-products of the Lanczos reduction. For a general matrix H and
an arbitrary shift σ, we can project the matrix A (or M) onto the space spanned by
V and f and then use the H-orthogonality, i.e.,

(
I 0
0 fTHf

)
= α

(
VTAV VTAf
fTAV fTAf

)
+ μ

(
VTMV VTMf
fTMV fTMf

)
.

The projection step would incur extra matrix-vector products. This additional cost
will restore the M-orthogonality of the vectors and it could be cheaper than perform-
ing further shift-invert Lanczos iterations (i.e., further linear solves with Aσ).
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7.2. Example of a finite-element based eigenproblem. Here we assume
that the problem (1.1) arises from the discretization of an elliptic partial differential
equation with a conforming finite element method; we could write (1.1) as

Ahuh = Mhuhλh,(7.2)

where h is the characteristic mesh size. Our error bounds need to be uniform with
respect to this mesh size. Theorem 3.1 uses the largest and smallest eigenvalues of
Â. So, for the sake of completeness, we recall a standard result from finite element
theory [2]:

lim
h→0

λh
1 = λ	

1, lim
h→0

λh
n = +∞,(7.3)

where λ	
1 is the smallest eigenvalue of the differential eigenvalue problem. Note that

n → +∞ as h → 0.
The discussion in section 3 implies that the lower bound of (3.8b) loses its sharp-

ness when the mesh size is refined. Consequently, when measuring the residual with
the M−1-norm, the error on the angle can be much smaller than the upper bound in
(3.7b, 3.8b), which could result in more iterations than necessary. On the other hand,
the constants in the bounds (3.6b) and (3.10b) are invariant with respect to the mesh
size.

The previous subsection demonstrated, via a formal analysis, that the right-hand
sides of (4.2), (5.2), and (6.2) are equivalent. We also remarked that the left- and
right-hand sides of (4.2) use different norms in contrast to (6.2). If we assume that
(7.2) arises from a continuous eigenvalue problem posed in the function space H1

0 (Ω),
then we can identify the H-norm as a discrete H1

0 (Ω)-norm. In a similar fashion, the
(A−1

σ HA−1
σ )-norm may be identified as a discrete norm on the dual space H−1(Ω).

Scaled by a factor 1/ |θ|, the quantity

1

|θ| ‖Mf‖A−1
σ HA−1

σ

is now equivalent to the discrete H1
0 (Ω)-norm of f . Hence, the residual r is measured

in a discrete H−1(Ω)-norm while the right-hand side amounts to a discrete H1
0 (Ω)

norm of f .
As we explained in section 5, Ericsson and Ruhe [3] noticed that when M is

symmetric positive definite and H is equal to M, the Rayleigh quotient of x is not
close to σ+1/θ. The following example demonstrates that the Rayleigh quotient can
differ significantly from σ + 1/θ and that this difference can grow when the mesh is
refined. Consider the (2m− 1) × (2m− 1) tridiagonal matrices

Ah = 2m

⎛
⎜⎜⎜⎝

2 −1 · · · 0
−1 2 · · · 0
...

. . . −1
0 · · · −1 2

⎞
⎟⎟⎟⎠ , Mh =

1

12m

⎛
⎜⎜⎜⎝

4 1 · · · 0
1 4 · · · 0
...

. . . 1
0 · · · 1 4

⎞
⎟⎟⎟⎠

that arise from a uniform finite element discretization of the Laplace equation with
homogeneous Dirichlet boundary conditions on the unit interval. A shift-invert Lanc-
zos iteration with an Mh-inner product is used to approximate the smallest eigenpair.
The starting vector is Mh-normalized and proportional to em. The shift σ is set to
0. The Ritz vector x is obtained as soon as the stopping criterion (2.9) is satisfied
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Fig. 7.1. Size of the Rayleigh quotient with mesh refinement (ε = 10−2) using an Mh-
orthonormal shift-invert Lanczos method.
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Fig. 7.2. Size of the Rayleigh quotient with mesh refinement (ε = 10−2) using an (Ah + Mh)-
orthonormal shift-invert Lanczos method.

with ε = 10−2. Figure 7.1 demonstrates that the Rayleigh quotient of x for the pencil
(Ah, Mh) differs from σ + 1/θ and that the difference grows as we refine the mesh.
This difference decreases with ε but disappears only when ε = 0. This behavior is
well explained by relation (5.5). On the other hand, when building an (Ah + Mh)-
orthonormal Lanczos basis for the same test problem, Figure 7.2 demonstrates that
the Rayleigh quotient of x for the pencil (Ah, Mh) does not differ significantly from
σ+1/θ and independently of the mesh size. This behavior is well explained by relation
(5.6).
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8. Appendix.

8.1. Proof for Proposition 4.1. The Ritz vector x is H-normalized. Equation
(2.6) implies A−1

σ (Mx − Aσxθ) = fω so that

A−1
σ

(
Ax − Mx

(
σ +

1

θ

))
= −f

ω

θ
(8.1)

which proves the relation (4.2).

To compute the norms of the residual, we use (8.1) and obtain easily the leading
term with the norm of f . To finish the proof, we need to compute xTMx and xTAx.

Using the definition of H, we have

αxTMx = xTHA−1
σ Mx − (μ + ασ)xTMA−1

σ Mx.

From (2.6), we get

xTMA−1
σ Mx = θxTMx + xTMfω.

Combining the last two relations with the definition of θ, θ = xTHA−1
σ Mx, we obtain

xTMx =
1

μ + ασ + α
θ

(
1 − (μ + ασ)xTMf

ω

θ

)
.(8.2)

To compute xTMf , we follow the same steps

αfTMx = fTHA−1
σ Mx − (μ + ασ)fTMA−1

σ Mx.

From (2.6), we have

{
fTHA−1

σ Mx = fTHfω,
fTMA−1

σ Mx = fTMxθ + fTMfω.

Finally, we obtain

xTMf =
ω

θ

fTHf − (μ + ασ)fTMf

μ + ασ + α
θ

=
ω

θ

αfTAσf

μ + ασ + α
θ

(8.3)

which proves

xTMx =
1

μ + ασ + α
θ

+ O
(
‖f‖2

H

ω2

θ2

)
.

To compute xTAx, we start by using the H-norm of x,

αxTAx + μxTMx = 1

αxTAx =
ασ + α

θ

μ + ασ + α
θ

+ O
(
‖f‖2

H

ω2

θ2

)
.

By continuity, we can extend the formula to the case where α is 0 (which would require
that M is positive definite).
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8.2. Proof for Proposition 5.1. We start by writing the H-norm of x.

αxTAx + μxTMx = 1,

xTAx

xTMx
=

1

αxTMx
− μ

α
,

xTAx

xTMx
=

μ + ασ + α
θ

α
(
1 − α μ+ασ

μ+ασ+α
θ

ω2

θ2 fTAσf
) − μ

α
,

xTAx

xTMx
=

σ + 1
θ + μ μ+ασ

μ+ασ+α
θ

ω2

θ2 fTAσf

1 − α μ+ασ
μ+ασ+α

θ

ω2

θ2 fTAσf
,

xTAx

xTMx
= σ +

1

θ
+

(μ + σα)ω
2

θ2 fTAσf

1 − α μ+σα
μ+σα+α

θ

ω2

θ2 fTAσf
.

We compute now the norm of the residual r = Ax − Mxρ(x). We have

r = Ax − Mx

(
σ +

1

θ

)
+ Mx

(
σ +

1

θ
− ρ(x)

)
,

r = −Aσf
ω

θ
+ Mx

(
σ +

1

θ
− ρ(x)

)
,

A−1
σ r = −f

ω

θ
+ A−1

σ Mx

(
σ +

1

θ
− ρ(x)

)
,

A−1
σ r = f

ω

θ

((
σ +

1

θ
− ρ(x)

)
θ − 1

)
+ x

(
σ +

1

θ
− ρ(x)

)
θ.

We conclude by using the H-normalization of x and the H-orthogonality between f
and x.

Next, we consider the case where M is symmetric positive definite. We have

rTM−1r = fTAσM
−1Aσf

ω2

θ2
−2fTAσx

(
σ +

1

θ
− ρ(x)

)
ω

θ
+xTMx

(
σ +

1

θ
− ρ(x)

)2

.

The relations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
min
i

(λi − σ)2

αλi + μ

)
‖f‖2

H ≤ ‖f‖2
AσM−1Aσ

≤
(

max
i

(λi − σ)2

αλi + μ

)
‖f‖2

H,

xTAσf
ω

θ
=

(
σ +

1

θ
− ρ(x)

)
xTMx = O

(
‖f‖2

H

ω2

θ2

)
,

σ +
1

θ
− ρ(x) = O

(
‖f‖2

H

ω2

θ2

)
,

xTMx =
1

μ + ασ + α
θ

+ O
(
‖f‖2

H

ω2

θ2

)

establish
⎧⎪⎨
⎪⎩

‖r‖M−1 = ‖f‖AσM−1Aσ

∣∣ω
θ

∣∣ + O
(
‖f‖2

H
ω2

θ2

)
,

‖x‖M = 1√
μ+ασ+α

θ

+ O(‖f‖2
H

ω2

θ2 ),

which proves (5.3).
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Finally, let us assume A is symmetric positive definite. We have

rTA−1r = fTAσA
−1Aσf

ω2

θ2
− 2fTAσA

−1Mx

(
σ +

1

θ
− ρ(x)

)
ω

θ

+xTMA−1Mx

(
σ +

1

θ
− ρ(x)

)2

.

The relations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
min
i

(λi − σ)2

λi(αλi + μ)

)
‖f‖2

H ≤ ‖f‖2
AσA−1Aσ

≤
(

max
i

(λi − σ)2

λi(αλi + μ)

)
‖f‖2

H,

xTMA−1Aσf = xTMf − σxTMA−1Mf ,

xTMA−1Mf = xTMfθ − xMA−1Mfσθ + fTMfω − fTMA−1Mfσω,

σ +
1

θ
− ρ(x) = O

(
‖f‖2

H

ω2

θ2

)

establish ⎧⎪⎪⎨
⎪⎪⎩

‖r‖A−1 = ‖f‖AσA−1Aσ

∣∣ω
θ

∣∣ + O
(
‖f‖2

H
ω2

θ2

)
,

‖x‖A =
√

ρ(x)
μ+ασ+α

θ
+ O(‖f‖2

H
ω2

θ2 ),

which proves (5.4).

8.3. Proof for Proposition 6.1. We start by using the definitions of ρ(p) and
Aσ,

ρ(p) = σ +
pTAσp

pTMp
.

From (2.6), we get

pTMx = pTAσpθ.

Consequently, ρ(p) satisfies

ρ(x) = σ +
1

θ

1

1 + ω
θ

pTMf
pTMx

.(8.4)

By definition of p (2.8), we have⎧⎨
⎩

pTMf = xTMf + fTMf
ω

θ
,

pTMx = xTMx + xTMf
ω

θ
.

Now, we introduce (8.2) and (8.3)

pTMf =
ω

θ

fTHf + α
θ fTMf

μ + ασ + α
θ

,(8.5a)

pTMx =
1

μ + ασ + α
θ

(
1 +

α

θ

ω2

θ2

fTHf − (μ + ασ)fTMf

μ + ασ + α
θ

)
.(8.5b)

By combining (8.5b) with (8.5a), we obtain the formula for ρ(p).
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The Lanczos reduction (2.2) implies

r = Ap −
(
σ +

1

θ

)
Mp +

(
σ +

1

θ
− ρ(p)

)
Mp = −Mf

ω

θ2
+

(
σ +

1

θ
− ρ(p)

)
Mp

(8.6)

so that

rTA−1
σ HA−1

σ r = fTMA−1
σ HA−1

σ Mf
( ω

θ2

)2

−fTMA−1
σ HA−1

σ Mp
2ω

θ2

(
σ +

1

θ
− ρ(p)

)

+ pTMA−1
σ HA−1

σ Mp

(
σ +

1

θ
− ρ(p)

)2

.

The relations
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
min
i

1

(λi − σ)2

)
‖f‖2

H ≤ ‖Mf‖2
A−1

σ HA−1
σ

≤
(

max
i

1

(λi − σ)2

)
‖f‖2

H,

pTMA−1
σ HA−1

σ Mf = O
(
‖f‖2

H

ω2

θ2

)
,

σ +
1

θ
− ρ(p) = O

(
‖f‖2

H

ω2

θ2

)
,

pTMA−1
σ HA−1

σ Mp = xTMA−1
σ HA−1

σ Mx + O
(
‖f‖2

H

ω2

θ2

)
,

xTMA−1
σ HA−1

σ Mx = (xθ + fω)
T

H (xθ + fω) = θ2 + ‖f‖2
H

ω2

θ2

establish ⎧⎪⎨
⎪⎩

‖r‖A−1
σ HA−1

σ
= ‖Mf‖A−1

σ HA−1
σ

|ω|
θ2 + O

(
‖f‖2

H
ω2

θ2

)
,

‖p‖H =
√

1 + ‖f‖2
H

ω2

θ2 ,

which proves (6.2).
Next, we consider the case where M is symmetric positive definite. Starting from

(8.6), we have

rTM−1r = fTMf
( ω

θ2

)2

− fTMp
2ω

θ2

(
σ +

1

θ
− ρ(p)

)
+ pTMp

(
σ +

1

θ
− ρ(p)

)2

.

The relations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
min
i

1

αλi + μ

)
‖f‖2

H ≤ ‖f‖2
M ≤

(
max

i

1

αλi + μ

)
‖f‖2

H,

pTMp =
1

μ + ασ + α
θ

+ O
(
‖f‖2

H

ω2

θ2

)
,

σ +
1

θ
− ρ(p) = O

(
‖f‖2

H

ω2

θ2

)
,

pTMf
ω

θ
= O

(
‖f‖2

H

ω2

θ2

)
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establish
⎧⎪⎪⎨
⎪⎪⎩

‖r‖M−1 = ‖f‖M |ω|
θ2 + O

(
‖f‖2

H
ω2

θ2

)
,

‖p‖M =
√

1
μ+ασ+α

θ
+ O

(
‖f‖2

H
ω2

θ2

)
,

which proves (6.3).
We assume here that A is symmetric positive definite. Starting from (8.6), we

have

rTA−1r = fTMA−1Mf
( ω

θ2

)2

− fTMA−1Mp
2ω

θ2

(
σ +

1

θ
− ρ(p)

)

+ pTMA−1Mp

(
σ +

1

θ
− ρ(p)

)2

.

The relations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
min
i

1

λi(αλi + μ)

)
‖f‖2

H ≤ ‖Mf‖2
A−1 ≤

(
max

i

1

λi(αλi + μ)

)
‖f‖2

H,

σ +
1

θ
− ρ(p) = O

(
‖f‖2

H

ω2

θ2

)
,

pTMA−1Mf
ω

θ
= xTMA−1Mf

ω

θ
+ fTMA−1Mf

ω2

θ2
,

xTMA−1Mf = O
(
‖f‖2

H

ω2

θ2

)
,

pTMA−1Mp = xTMA−1Mx + O
(
‖f‖2

H

ω2

θ2

)

establish
⎧⎪⎪⎨
⎪⎪⎩

‖r‖A−1 = ‖Mf‖A−1
|ω|
θ2 + O

(
‖f‖2

H
ω2

θ2

)
,

‖p‖A =
√

ρ(p)
μ+ασ+α

θ
+ O

(
‖f‖2

H
ω2

θ2

)
,

which proves (6.4).
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RELATIVE RESIDUAL BOUNDS FOR EIGENVALUES OF
HERMITIAN MATRICES∗
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Abstract. This paper presents a linear and quadratic residual bound for eigenvalues of an
indefinite possible singular Hermitian matrix. These bounds are a generalization of results on a
semidefinite Hermitian matrix [Z. Drmač and V. Hari, SIAM J. Matrix Anal. Appl., 18 (1997),
pp. 21–29]. The bounds here contain an extra factor which depends on the norm of a J-unitary
matrix, where J is diagonal matrix with ±1 on its diagonal.
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ues, perturbation theory, relative perturbations
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1. Introduction. Let H ∈ Cn×n be a Hermitian matrix, let X ∈ Cn×m have
orthonormal columns (such X we call orthonormal), and

M = X∗HX, R = HX −XM, X = R(X) ,(1.1)

where X = R(X) denotes the column space of X. Furthermore, let

λ1 ≥ · · · ≥ λn and μ1 ≥ · · · ≥ μm(1.2)

be the eigenvalues of H and M , respectively. Throughout the paper ‖ · ‖ denotes the
2-norm.

The main purpose of this paper is to derive a linear and quadratic residual bound
for eigenvalues of an indefinite possible singular Hermitian matrix and to obtain a
geometric interpretation of these bounds.

In [9] the following linear residual bound for nonsingular indefinite Hermitian
matrices has been presented.

Theorem 1.1. Let H = GJG∗, where G and J are nonsingular and J is diagonal
with ±1 on its diagonal and let

δH = RX∗ + XR∗,(1.3)

where X is an n×m orthonormal matrix. Then there are at least m eigenvalues λik ,
k = 1, . . . ,m, of H for which

|λik − μk|
|λik |

≤ κ(V )‖L−1δHL−∗‖, k = 1, . . . ,m .(1.4)

Here, μk are eigenvalues of the matrix M defined by (1.1) and (1.2) and V is a J-
unitary matrix which diagonalizes the pair (G∗G, J), that is, V ∗G∗GV = |Λ| and
V ∗JV = J .
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We show that we can obtain a bound on |λik −μk|/|μk| that allows H to be singu-
lar. Our bounds are a generalization of linear residual bounds for positive semidefinite
matrices presented in [1, Theorems 1.1. and 2.1].

On the other hand, all existing quadratic residual bounds for general Hermitian
matrices belong to the classical perturbation theory.

Let σ(H) denote the spectra of H. The first result is due to Sun [6].
Theorem 1.2 (Sun). Let Y = R(Y ) be an invariant subspace of H with or-

thonormal basis Y ∈ Cn×m. Let λj1 ≥ · · · ≥ λjm be the eigenvalues of Y ∗HY , and
ΛY = diag(λj1 , . . . , λjm), ΛX = diag(μ1, . . . , μm). If for some α, β ∈ R and δ0 > 0,
σ(M) ⊂ [α, β], σ(H) \ σ(Y ∗HY ) ⊂ (−∞, α− δ0] ∪ [β + δ0,+∞) (or vice versa), and
if ρ ≡ ‖R‖/δ0 < 1, where R is defined by (1.1), then for any unitary invariant norm
|‖ · |‖,

|‖ΛY − ΛX |‖ ≤ 1√
1 − ρ2

· ‖R‖ |‖R|‖
δ0

.

The second result is due to Mathias [5], and this result is a generalization of the
result obtained by Theorem 1.2.

Let

H =

[
A R0

R∗
0 B

]
and H̃ =

[
A 0
0 B

]
(1.5)

be Hermitian matrices. For the measure of separation between eigenvalues λk, k =
1, . . . , n of the matrix H from eigenvalues μi(B) of the matrix B we define

δk ≡ min
i=1,...,m

|λk − μi(B)|.

For the measure of separation between eigenvalues λ̃k, k = 1, . . . , n of the matrix H̃
from eigenvalues μi(B) of the matrix B we use

δ̃k ≡ min
i=1,...,m

|λ̃k − μi(B)|.

Theorem 1.3 (see [5, Theorem 1]). If λk /∈ σ(B), then

|λk − λ̃k| ≤ δ−1
k ‖R0‖2,

while if λ̃k /∈ σ(B), then

|λk − λ̃k| ≤ δ̃−1
k ‖R0‖2.

One of the latest results which considers similar problems belongs to Chi-Kwong
Li and Ren-Cang Li. Let H and H̃ be defined as in 1.5, with eigenvalues λ1 ≥ · · · ≥ λn

and λ̃1 ≥ · · · ≥ λ̃n, respectively. In [3, Theorem 2] they have shown that the following
bound holds:

|λj − λ̃j | ≤
2‖R0‖2

η +
√

η2 + 4‖R0‖2
,(1.6)

where η = mini,j |μi(A) − μj(B)| denotes the spectral gap between the spectra of A
and B in (1.5) (here μi(A) denotes the ith eigenvalue of the matrix A).

Similar to the linear case our quadratic bound is a generalization of the quadratic
residual bound for positive semidefinite matrices presented in [1].
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2. Linear residual bound. In this section, we present relative residual bounds
for indefinite possible singular Hermitian matrices. Let X be an m-dimensional sub-
space of Cn and let X and X⊥ be any orthonormal basis for X and X⊥, respectively.
Let H = GJG∗ be any factorization of H. For simplicity, assume that G has a full
column rank (this assumption is not crucial for the obtained results; all results will
remain the same if G has one or more zero columns).

First we will separate the null subspace of the matrix H from the rest of the
subspaces.

Let X =
[
X1 X2

]
and X⊥ =

[
X⊥,1 X⊥,2

]
be orthonormal bases of X , X⊥,

respectively, such that G∗X1 = 0 and G∗X⊥,2 = 0 and

M =
[
X1 X2

]∗
H

[
X1 X2

]
=

[
0

Λ1

]
m− rM
rM

,(2.1)

N =
[
X⊥,1 X⊥,2

]∗
H

[
X⊥,1 X⊥,2

]
=

[
Λ2

0

]
rN
n−m− rM

.(2.2)

If we define rM = rank(M) and rN = rank(N), then we can write

[
X X⊥

]∗
H

[
X X⊥

]
=

⎡
⎣

0

Ĥ
0

⎤
⎦

m− rM
rM + rN
n−m− rN

,

where

Ĥ =

[
Λ1 K∗

K Λ2

]
rM
rN

.(2.3)

Note that Ĥ is nonsingular.
The following theorem contains a relative perturbation bound for eigenvalues of

H and Rayleigh–Ritz approximations of eigenvalues of H, that is, eigenvalues of M ,
where M is given by (2.1) .

Theorem 2.1. Let H = GJG∗ be an indefinite Hermitian matrix (possibly
singular), where J is a diagonal matrix with ±1 on its diagonal. Let X and X⊥ be

orthonormal matrices as in (2.1) and (2.2). If we define KS = |Λ2|−
1
2K|Λ1|−

1
2 , then

|λik − μm−rM+k|
|μm−rM+k|

≤ ‖KS‖, k = 1, . . . , rM ,(2.4)

μk = λjk = 0, k = 1, . . . ,m− rM ,

|λik − μm+k|
|μm+k|

≤ ‖KS‖, k = 1, . . . , rN ,(2.5)

μk = λjk = 0, k = m + rN + 1, . . . , n.

Proof. Let Ĥ0 be a diagonal matrix

Ĥ0 =

[
Λ1 0
0 Λ2

]
rM
rN

,(2.6)

where Λ1 and Λ2 are defined by (2.1) and (2.2). Then we can write Ĥ0 = D∗AD,
where

D =

[
|Λ1|1/2 0

0 |Λ2|1/2
]
, A =

[
J1 0
0 J2

]
.(2.7)
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Here J1 and J2 are diagonal matrices with signs of eigenvalues of Λ1 and Λ2, respec-
tively.

Note that Ĥ from (2.3) can be considered as a perturbation of Ĥ0. Indeed, since

Ĥ = D∗D−∗ĤD−1D,

we have Ĥ = D∗(A + δA)D, where

δA =

[
0 K∗

S

KS 0

]
.(2.8)

By applying a result of Veselić and Slapničar [10, Theorem 2.1], we know that if

|x∗δHx| ≤ ηx∗|H|Sx ∀ x, η < 1,

where |H|S = U |Λ|U∗ is the spectral absolute value, and H = U |Λ|U∗ is a corre-
sponding eigenvalue decomposition of H, then the following bound holds:

1 − η ≤ λ̃i

λi
≤ 1 + η.

Note that (2.6)–(2.8) imply η = ‖δA‖. Indeed

|x∗δHx| = |x∗D∗δADx| =
∣∣∣x∗D∗|A|1/2S |A|−1/2

S δA |A|−1/2
S |A|1/2S Dx

∣∣∣

≤
∥∥∥ |A|−1/2

S δA|A|−1/2
S

∥∥∥
∣∣∣ |A|1/2S Dx

∣∣∣
2

= η x∗|H|Sx ,

where η = ‖ |A|−1/2
S δA|A|−1/2

S ‖, and |H|S = x∗D∗|A|SDx. From (2.7) it follows that
|A|S = I; thus we can write η = ‖δA‖.

Now all above mentioned results imply that we can write

|λik − μm−rM+k|
|μm−rM+k|

≤ η, k = 1, . . . , rM .

Since η = ‖δA‖ = ‖KS‖, we obtained the first part of (2.4). Similar holds for
(2.5).

In the case of a positive semidefinite H the following holds (properties of a positive
semidefinite H are considered in [1] in detail).

Let H = GG∗ by any factorization of H. If X is invariant for H we have

y∗GG∗x = 0 , x ∈ X , y ∈ X⊥ .

Hence for the subspaces YG = G∗X and UG = G∗X⊥ we have YG ⊆ UG
⊥ and

UG ⊆ YG
⊥. This indicates that, if G is square and nonsingular, the maximal canonical

angle between YG and UG
⊥ as well as between UG and YG

⊥ is zero.
In [1, Theorem 1.1] it has been shown that if H is positive semidefinite then

‖KS‖ = sin∠
(
YG,U⊥

G

)
, where the angle function is defined by (see [11])

sin ∠
(
YG,U⊥

G

)
= min

{∥∥∥PUG
PYG

∥∥∥ ,
∥∥∥PU⊥

G
PY⊥

G

∥∥∥
}

;

here PM denotes an orthogonal projector onto M.
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Note that if H is positive semidefinite, then Theorem 2.1 has the same geometric
interpretation as [1, Theorem 1.1]. However if H = GJG∗ is indefinite, we cannot
express ‖KS‖ in terms of a sine of canonical angles. The following lemma presents
the upper bound for ‖KS‖ which contains such a sine.

Lemma 2.2. Let H = GJG∗, J , X and X⊥ be as in Theorem 2.1. If G∗X1 = 0
and G∗X⊥,2 = 0, and if we set WG = R(JG∗X⊥) YG = R(G∗X), then

‖KS‖ ≤ ‖U‖‖Y ‖ sinφ,(2.9)

where U = G∗X⊥,1|Λ2|−
1
2 , Y = G∗X2|Λ1|−

1
2 , and sinφ is defined by

sinφ = sin∠
(
YG,W⊥

G

)
= min

{∥∥∥PWG
PYG

∥∥∥,
∥∥∥PW⊥

G
PY⊥

G

∥∥∥
}
.(2.10)

Proof. From K = X⊥,1HX2 and the definition of KS , we have

KS = |Λ2|−
1
2K|Λ1|−

1
2 = |Λ2|−

1
2X∗

⊥,1HX2|Λ1|−
1
2 = |Λ2|−

1
2X∗

⊥,1GJG∗X2|Λ1|−
1
2

=
(
G∗X⊥,1|Λ2|−

1
2

)∗
J
(
G∗X2|Λ1|−

1
2

)
= U∗JY = W ∗Y,

where W = JU . Note that

Y ∗JY = |Λ1|−
1
2X∗

2GJG∗X2|Λ1|−
1
2

= |Λ1|−
1
2X∗

2HX2|Λ1|−
1
2 = |Λ1|−

1
2 Λ1|Λ1|−

1
2 = J1,

W ∗JW = |Λ2|−
1
2X∗

⊥,1GJG∗X⊥,1|Λ2|−
1
2

= |Λ2|−
1
2X∗

⊥,1HX⊥,1|Λ2|−
1
2 = |Λ2|−

1
2 Λ2|Λ2|−

1
2 = J2.

This shows that W and Y have J-orthogonal columns. Further, from

R(Y ) = R
(
G∗X2|Λ1|−

1
2

)
= R (G∗X2) ⊂ R (G∗X) = YG,

R(W ) = R
(
JG∗X⊥,1|Λ2|−

1
2

)
= R (JG∗X⊥) ⊂ R (JG∗X) = WG,

and from G∗X1 = 0 and G∗X⊥,2 = 0, it follows that R(Y ) = YG and R(W ) = WG.
Finally, let W = QWRW and Y = QY RY be QR decompositions of W and Y ,
respectively. Then

‖KS‖ = ‖W ∗Y ‖ ≤ ‖R∗
W ‖‖RY ‖‖Q∗

WQY ‖.(2.11)

The columns of QW and QY form orthonormal bases for WG and YG, respectively.
Drmač and Hari have shown in proof of [1, Theorem 1.1] that ‖Q∗

WQY ‖ = sinφ. Now,
using this and the fact that

‖R∗
W ‖ = ‖U‖, ‖RY ‖ = ‖Y ‖,

from (2.11) follows (2.9).
Inserting (2.9) into (2.4) and (2.5) we obtain the bound which is a generalization

of [1, Theorem 1.1] to indefinite Hermitian matrices, since in the semidefinite case
(J = I) this bound is equal to sinφ, and W ≡ U and Y have orthonormal columns.

Note that in the positive definite case the angle function ∠(YG,ZG) defined by
(2.10) does not depend on G but only on H (see [1]). However, in the indefinite
case, this is not true in general. The dependence of the angle function ∠(YG,ZG)
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on the factor G, where H = GJG∗, for a nonsingular indefinite matrix H, has been
considered in [9]. Now we will present a similar result for the indefinite possible
singular matrix H. Let

H = G1JG
∗
1 = G2JG

∗
2(2.12)

be decompositions of the matrix H, i = 1, 2.
From (2.12) it follows that there exists a nonsingular J-unitary matrix V such

that

G2 = G1V, V ∗JV = V JV ∗ = J, ‖V ‖ = ‖V −1‖ .

Further, let Wi and Yi be defined as in the proof of Lemma 2.2, that is,

W1 = JG∗
1X⊥,1|Λ2|−

1
2 , W2 = JG∗

2X⊥,1|Λ2|−
1
2(2.13)

Y1 = G∗
1X2|Λ1|−

1
2 , Y1 = G∗

1X2|Λ1|−
1
2 .(2.14)

Using the fact that JV ∗ = V −1J , it follows that

W2 = V −1W1, Y2 = V ∗Y1 ,

which further implies that the matrix KS does not depend on decomposition (2.12).
Indeed KS = W ∗

2 Y2 = W ∗
1 Y1.

Let Wi = QWiRWi and Yi = QYiRYi be QR decompositions of Wi and Yi, re-
spectively, for i = 1, 2. Note that (2.11) can be written as ‖KS‖ = ‖W ∗

i Yi‖, i = 1, 2.
Now, using the simple inequalities

sinφ2 = ‖R−∗
W2

R∗
W2

Q∗
W2

QY2RY2R
−1
Y2

‖ ≤ ‖R−∗
W2

‖ ‖R−1
Y2

‖‖KS‖
≤ ‖R−∗

W2
‖ ‖R−1

Y2
‖ ‖RW1

‖ ‖RY1
‖ sinφ1

and similarly,

sinφ1 ≤ ‖R−∗
W1

‖ ‖R−1
Y1

‖ ‖RW2
‖ ‖RY2

‖ sinφ2 ,

we can write the following bound

‖U†
1‖ ‖Y

†
1 ‖ ‖U2‖ ‖Y2‖ ≤ sinφ2

sinφ1
≤ ‖U†

2‖ ‖Y
†
2 ‖ ‖U1‖ ‖Y1‖ ,(2.15)

where we have used the fact that ‖R−∗
Wi

‖ = ‖U†
i ‖ and ‖R−∗

Yi
‖ = ‖Y †

i ‖, i = 1, 2. Here †
denotes the generalized inverse.

Further, from (2.13) it follows that Y2 = V ∗Y1 and U2 = V ∗U1. Using this, the
upper bound for the right-hand side of (2.15) has the following form:

‖U†
2‖ ‖U1‖ ‖Y1‖ ‖Y †

2 ‖ ≤ ‖V ‖2 cond(U1) cond(Y1) ,(2.16)

where cond(U) = ‖U†‖ ‖U‖. On the other hand, the lower bound for the left-hand
side has the following form:

‖U†
2‖ ‖U1‖ ‖Y1‖ ‖Y †

2 ‖ ≥ 1

‖V ‖2
cond(U1) cond(Y1) .(2.17)



RELATIVE RESIDUAL BOUNDS FOR HERMITIAN MATRICES 955

Now from (2.15), (2.16), and (2.17) if follows that

1

‖V ‖2
cond(U1) cond(Y1) ≤

sinφ2

sinφ1
≤ ‖V ‖2 cond(U1) cond(Y1) .(2.18)

Recall that cond(V ) = ‖V ‖2, which means if J-unitary V (G2 = V ∗G1) has a
condition number of the modest magnitude, then the corresponding angles will be
close, that is, sinφ1 ≈ sinφ2.

The classes of so-called “well-behaved matrices” for which there exist useful
bounds for conditions of V have been considered in [7]. This class includes matri-
ces such as scaled diagonally dominant matrices, block scaled diagonally dominant
(BSDD) matrices, and quasi-definite matrices. Details about these bounds can be
found in, e.g., [8, Section 3.1] and [7].

3. Quadratic residual bound. In this section we will present a quadratic rela-
tive residual bound for the eigenvalues of an indefinite singular Hermitian matrix and
compare it with results from the classical perturbation theory.

The main result of this section is a generalization of Drmač and Hari’s Theorem
2.1 from [1] to indefinite possibly singular Hermitian matrices.

In the following theorem σmin(·) denotes the smallest singular value of a matrix.
We will use the same notation as in Theorem 2.1. For a given nonzero eigenvalue λ
of H we shall choose the bases X and X⊥ such that

Λ1 = Ξλ ⊕ Ξ̂λ, Λ2 = Ωλ ⊕ Ω̂λ,(3.1)

where the diagonals of Ξλ and Ωλ approximate λ in the sense of Theorem 2.1.
Let Λ1 and Λ2 be decomposed as

Λ1 =

[
|Ξλ|1/2 0

0 |Ξ̂λ|1/2
] [

J11 0
0 J22

] [
|Ξλ|1/2 0

0 |Ξ̂λ|1/2
]
,(3.2)

Λ2 =

[
|Ωλ|1/2 0

0 |Ω̂λ|1/2
] [

J̄11 0
0 J̄22

] [
|Ωλ|1/2 0

0 |Ω̂λ|1/2
]
,(3.3)

where J11, J22, J̄11, J̄22 are diagonal matrices with ±1 on the diagonal. We write
J = J11 ⊕ J22, J̄ = J̄11 ⊕ J̄22.

Theorem 3.1. Let H, X be as in Theorem 2.1. Let λ > 0 be an eigenvalue of
H of multiplicity n(λ) (for λ < 0 we consider −H). Let the orthonormal bases of X
and X⊥ be chosen such that (3.1) holds. Write KS = |Λ2|−1/2K|Λ1|−1/2, where K is
defined by (2.3). Suppose that there exist constants α > γ and β > γ such that

‖λ|Ξλ|−1 − J11‖ ≤ γ, σmin(λ|Ξ̂λ|−1 − J22) > α,(3.4)

‖λ|Ωλ|−1 − J̄11‖ ≤ γ, σmin(λ|Ω̂λ|−1 − J̄22) > β.(3.5)

If Ξλ ⊕ Ωλ is of order n(λ) and ‖KS‖ ≤ γ < 1, then

‖λΞ−1
λ − I‖ ≤ 1

1 − ‖KS‖2

αβ

‖KS‖2

β
≤ ‖U‖2‖Y ‖2

1 − ‖U‖2‖Y ‖2 sin2 φ
αβ

sin2 φ

β
,(3.6)

‖λΩ−1
λ − I‖ ≤ 1

1 − ‖KS‖2

αβ

‖KS‖2

α
≤ ‖U‖2‖Y ‖2

1 − ‖U‖2‖Y ‖2 sin2 φ
αβ

sin2 φ

β
,(3.7)

where KS = U∗JY and U , Y and sinφ are defined as in Lemma 2.2.
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Proof. Our proof is similar to the proof of [1, Theorem 2.1], and most of it can be
omitted but we include the whole proof for completeness. Without loss of generality
we can assume

H =

[
Λ1 K∗

K Λ2

]
rM
rN

,(3.8)

where Λ1 and Λ2 are given by (3.1). Otherwise one can work with Ĥ from the proof
of Theorem 2.1. Matrix H is a nonsingular matrix of dimension r × r.

Matrices J and J̄ are diagonal matrices which contain signs of Λ1 and Λ2 from
(3.1). It is easy to show that under assumptions (3.4) and (3.5), J11 = I and J̄11 = I,
thus |Ξλ| = Ξλ and |Ωλ| = Ωλ. Indeed, let us show that J11 = I. From (3.4) we have

‖λ|Ξλ|−1 − J11‖ < 1

or

max
j

∣∣∣∣
λ

|λj |
− sign(λj)

∣∣∣∣ < 1, j = 1, . . . ,dim(Ξλ).

The last inequality is equivalent to

|λ− sign(λj)|λj || < |λj |,

which cannot be obtained for λj < 0, thus λj > 0 for all j, and we conclude that
J11 = I.

By Sylvester’s law of inertia, the matrix

HS(λ) = (|Λ1| ⊕ |Λ2|)−1/2(H − λI)(|Λ1| ⊕ |Λ2|)−1/2

has rank n− n(λ). It has the following block structure:

HS(λ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

I − λ|Ξλ|−1 0
(
K

(1,1)
S

)∗ (
K

(2,1)
S

)∗

0 J22 − λ|Ξ̂λ|−1
(
K

(1,2)
S

)∗ (
K

(2,2)
S

)∗

(
K

(1,1)
S

) (
K

(1,2)
S

)
I − λ|Ωλ|−1 0(

K
(2,1)
S

) (
K

(2,2)
S

)
0 J̄22 − λ|Ω̂λ|−1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Let ĤS(λ) be a matrix similar to HS(λ) defined by

ĤS(λ) = ΠTHS(λ)Π

=

⎡
⎢⎢⎢⎢⎢⎢⎣

I − λ|Ξ−1
λ |

(
K

(1,1)
S

)∗
0

(
K

(2,1)
S

)∗

(
K

(1,1)
S

)
I − λ|Ωλ|−1

(
K

(1,2)
S

)
0

0
(
K

(1,2)
S

)∗
J22 − λ|Ξ̂λ|−1

(
K

(2,2)
S

)∗

(
K

(2,1)
S

)
0

(
K

(2,2)
S

)
J̄22 − λ|Ω̂λ|−1

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where Π denotes an appropriate permutation matrix.
Assumptions (3.4) and (3.5) imply

σmin

((
J22 − λ|Ξ̂λ|−1

)
⊕
(
J̄22 − λ|Ω̂λ|−1

))
≥ min{α, β}(3.9)

> γ ≥ ‖KS‖ ≥ max
1≤i,j≤2

∥∥∥K(i,j)
S

∥∥∥ .(3.10)
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Hence matrix

C =

⎡
⎣J22 − λ|Ξ̂λ|−1

(
K

(2,2)
S

)∗

(
K

(2,2)
S

)
J̄22 − λ|Ω̂λ|−1

⎤
⎦ =

[
C11 C12

C21 C22

]
, C12 = C∗

21

and its diagonal blocks C11 and C22 are nonsingular. Therefore (see [2, section 0.7.3]),

C−1 =

⎡
⎢⎣

[
C11 − C12C

−1
22 C21

]−1

C−1
11 C12

[
C21C

−1
11 C12 − C22

]−1

[
C21C

−1
11 C12 − C22

]−1

C21C
−1
11

[
C22 − C21C

−1
11 C12

]−1

⎤
⎥⎦ ,

provided that all matrices in the brackets are nonsingular. However, this follows
since these matrices are (signed) Schur complements of C11 and C22 in C. By the

last assumption, C is of order n − n(λ) which is also the rank of ĤS(λ). Since C is

nonsingular, its Schur complement in ĤS(λ) must be zero (see [4, p. 183]). Hence

⎡
⎣I − λΞ−1

λ

(
K

(1,1)
S

)∗

(
K

(1,1)
S

)
I − λΩ−1

λ

⎤
⎦ =

⎡
⎣ 0

(
K

(2,1)
S

)∗

(
K

(2,1)
S

)
0

⎤
⎦C−1

⎡
⎣ 0

(
K

(1,2)
S

)∗

(
K

(1,2)
S

)
0

⎤
⎦ .(3.11)

From (3.11) we obtain

I−λΞ−1
λ =

(
K

(2,1)
S

)∗
[
J̄22 − λ|Ω̂λ|−1 −K

(2,2)
S

(
J22− λ|Ξ̂λ|−1

)−1(
K

(2,2)
S

)∗
]−1

K
(2,1)
S

I−λΩ−1
λ =

(
K

(1,2)
S

)[
J22 − λ|Ξ̂λ|−1 −

(
K

(2,2)
S

)∗(
J̄22 − λ|Ω̂λ|−1

)−1(
K

(2,2)
S

)]−1(
K

(1,2)
S

)∗
.

Now applying a standard 2-norm to the expressions on the left- and right-hand sides
we obtain

∥∥I − λΞ−1
λ

∥∥ ≤

∥∥∥K(2,1)
S

∥∥∥
2

β −

∥∥∥K(2,2)
S

∥∥∥
2

α

∥∥I − λΩ−1
λ

∥∥ ≤

∥∥∥K(1,2)
S

∥∥∥
2

α−

∥∥∥K(2,2)
S

∥∥∥
2

β

.

Since

max
1≤i,j≤2

‖K(i,j)
S ‖ ≤ ‖KS‖,

the first inequalities of (3.6) and (3.7) are proved. The upper bounds for (3.6) and
(3.7) follow from Lemma 2.2.

Theorem 3.1 is a generalization of [1, Theorem 2.1], since in the positive semidef-
inite case J = I and bounds (3.6) and (3.7) have the same form as the bound from
[1, Theorem 2.1].
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The following example is an indefinite version of Example 2.4 from [1], and it
shows that for certain Hermitian matrices results from Theorems 1.2 and 1.3 cannot
be applicable.

Example 1. Let

H =

⎡
⎣
−1010 1 10−13

1 −2 · 10−5 10−7

10−13 10−7 −10−5

⎤
⎦ , X =

⎡
⎣

0
1
0

⎤
⎦ , X⊥ =

⎡
⎣

0 1
0 0
1 0

⎤
⎦ .

Then

M =
[
2 · 10−5

]
, R =

[
1 0 10−7

]∗
, ‖R‖ ≈ 1.

Separation δ from Theorem 1.2 is of order 10−5, and this also holds for separations δk
and δ̃k from Theorem 1.3. In Theorem 1.3 ‖R0‖ = ‖R‖. All of this means that these
theorems are not applicable.

On the other hand, Theorem 2.1 ensures that for some j0 ∈ {1, 2, 3} holds

λj0 − 2 · 10−5

√
|λj0 | · 2 · 10−5

< 1.24 · 10−2.(3.12)

Since ‖Ks‖ ≈ 7.4 · 10−3, we can take γ = 2 · 10−2 in Theorem 2.1. If we consider
(3.12), and by taking β = 0.9, we can assume that conditions from (3.4) are satisfied.
Now, the bound from Theorem 3.1 yields

λj0 − 2 · 10−5

λj0

< 6.1 · 10−5.

The next example illustrates the theory from the last two paragraphs.
Example 2. Let

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10−4

2
− 10−4

2
10−9
√

3
− 10−9

√
6

10−10

2
√

2

√
3 10−10

2
√

2

− 10−4

2
10−4

2
− 10−9

√
3

10−9
√

6
− 10−10

2
√

2
−

√
3 10−10

2
√

2

10−9
√

3
− 10−9

√
3

(2.5106+3
√

2) 10−10

1.5
(3−106√2) 10−10

3

√
3 · 10−10 3 · 10−10

− 10−9
√

6
10−9
√

6

(3−106√2) 10−10

3
(2106−3

√
2) 10−10

1.5

√
3 10−9

5
√

2
3 10−9

5
√

2

10−10

2
√

2
− 10−10

2
√

2

√
3 · 10−10

√
3 10−9

5
√

2
−2.5 · 10−4 −

√
3 10−3

4
√

3 10−10
√

2
−

√
3 10−10
√

2
3 · 10−10 3 10−9

5
√

2
−

√
3 10−3

4
−7.5 · 10−4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and let

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

1/
√

2 1/
√

2 0

1/
√

2 −1/
√

2 0

0 0 1/
√

3

0 0
√

2/
√

3
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, X⊥ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0√

2/
√

3 0 0

−1/
√

3 0 0

0 1/2
√

3/2

0
√

3/2 −1/2

⎤
⎥⎥⎥⎥⎥⎥⎦
.

From (2.1), (2.2), and (2.3) it follows that

M =

⎡
⎣

0 0 0
0 10−4 0
0 0 10−4

⎤
⎦ , N =

⎡
⎣

2 · 10−4 0 0
0 −10−3 0
0 0 0

⎤
⎦ , K =

[
10−9 3 · 10−10

10−10 6 · 10−10

]
,
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where K = X∗
⊥,1HX2. Note that X1 = X(:, 1), X2 = X(:, 2 : 3), X⊥,1 = X⊥(:, 1 : 2),

and X⊥,2 = X⊥(:, 3)
Now, we will assume that H is given in factorized forms H = GJG∗ and H =

G1J1G
∗
1, where

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

6.7967 · 10−3 1.9505 · 10−3 −2.0328 · 10−9 1.0000 · 10−7

−6.7967 · 10−3 −1.9505 · 10−3 2.0328 · 10−9 −1.0000 · 10−7

1.5925 · 10−3 −5.5495 · 10−3 −9.9586 · 10−9 1.1547 · 10−2

2.2524 · 10−3 −7.8482 · 10−3 −1.4084 · 10−8 −8.1649 · 10−3

1.1892 · 10−9 −2.4961 · 10−9 1.5811 · 10−2 0
2.0598 · 10−9 −4.3233 · 10−9 2.7386 · 10−2 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

and

G1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

7.0711 · 10−3 0 0 0
−7.0711 · 10−3 0 0 0
8.1650 · 10−8 5.7735 · 10−3 1.1547 · 10−2 0
−5.7735 · 10−8 8.1649 · 10−3 −8.1650 · 10−3 0
5.0000 · 10−9 3.0000 · 10−8 −9.8995e− 014 1.5811 · 10−2

8.6603 · 10−9 5.1962 · 10−8 −1.7146e− 013 2.7386 · 10−2

⎤
⎥⎥⎥⎥⎥⎥⎦
,

and J = diag(1, 1, 1,−1), and J1 = diag(1, 1,−1, 1), respectively. All subsequent
quantities are displayed properly rounded to the given number of decimal places.
Further, let YG = G∗X and WG = JG∗X⊥.

From (2.10) we find that sinφ = 7.4337 · 10−6 (‖KS‖ = 7.4337 · 10−6). Recall

that U = G∗X⊥,1|Λ2|−
1
2 and Y = G∗X2|Λ1|−

1
2 , which give ‖U‖ ≈ 1 and ‖Y ‖ ≈ 1.

Now from (2.9) and (2.4)–(2.5) it follows that for some j0 ∈ {1, 2, 3} holds

λj0 − 10−4

√
|λj0 | · 10−4

< 7.43 · 10−6.

Using the above bound and by taking β = 0.5 we can assume that conditions from
(3.5) are satisfied. Now, bound (3.7) from Theorem 3.1 yields

λj0 − 10−4

λj0

< 1.1 · 10−10.(3.13)

Note that G1 = GV , with

V =

⎡
⎢⎢⎣

0.96120 0.27585 −1.4764 · 10−5 7.5213 · 10−7

0.27585 −0.96120 1.7694 · 10−7 −1.5787 · 10−6

2.8748 · 10−7 1.7249 · 10−6 −6.1662 · 10−12 1
1.4142 · 10−5 4.2426 · 10−6 1 5.2180 · 10−12

⎤
⎥⎥⎦ .

The matrix V satisfies V ∗JV = J1 and V J1V
∗ = J , and ‖V ‖ = 1.00000175. Now,

this and bound (2.18) insure that sinφ1 ≈ sinφ.
Remark 1. We would like to point out that one can apply bound (3.5) on matrix

HH =
[
X X⊥

]∗
H

[
X X⊥

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 10−4 0 10−9 10−10 0
0 0 10−4 3 · 10−10 6 · 10−10 0
0 10−9 3 · 10−10 2 · 10−4 0 0
0 10−10 6 · 10−10 0 −10−3 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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Since ‖E‖ = 1.09 · 10−9, and the spectral gap between the spectra of HH(1 : 3, 1 : 3)
and HH(4 : 6, 4 : 6) is η = 10−4, the relative version of the bound (3.5) yields:

|10−4 − λ̃j |
10−4

≤ 1

10−4
· 2‖R0‖2

η +
√

η2 + 4‖R0‖2
= 1.19 · 10−10 , j = 1, 2, 3,

which is similar to (3.13). Anyway, if one has only the factors of the matrix H (for
example G and J), and X and X⊥, then bound (3.13) still holds and at the same
time bound (3.5) cannot be applied without forming the matrix HH .
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[11] P. Å. Wedin, On angles between subspaces of a finite dimensional inner product space, in

Matrix Pencils, Lecture Notes in Math. 973, B. K̊agström and A. Ruhe, eds, Springer,
New York, 1983, pp. 263–285.



SIAM J. MATRIX ANAL. APPL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 961–970

COMPUTATION OF SMALLEST EIGENVALUES IN THE
STURM–LIOUVILLE PROBLEM WITH STRONGLY VARYING

COEFFICIENTS∗

ALEXANDER N. MALYSHEV†

Abstract. An efficient method is developed for computation of eigenvalues and eigenvectors with
high relative precision in the Sturm–Liouville problem with strongly varying coefficients. Accuracy of
the method is independent of the traditional condition number. New structured condition numbers
for nonmultiple eigenvalues are introduced.

Key words. Sturm–Liouville problem, eigenvalue problem, tridiagonal matrix, relative preci-
sion, condition number

AMS subject classification. 65F15

DOI. 10.1137/050628131

1. Introduction. Computed approximations fl(λ) to an eigenvalue λ of a self-
adjoint matrix A usually satisfy the estimate

|fl(λ) − λ| ≤ O(εmachine)‖A‖.

When |λ| � ‖A‖, computation of the eigenvalue λ with relative precision is generally
not feasible without a computer arithmetic of multiple precision. If, for instance,
the traditional condition number ‖A−1‖‖A‖ of a self-adjoint matrix A is of order
O(ε−1

machine), then its eigenvalue of smallest absolute value can be computed only with
poor relative precision in the standard floating point arithmetic.

However, the multiple precision arithmetic can be avoided for some structured
eigenvalue problem by using clever discretizations and matrix methods that respect
the structure. A widely known example is the computation of singular values of
bidiagonal matrices.

In the present work we study one general family of structured eigenvalue problems,
a discrete Sturm–Liouville problem, whose eigenvalues we compute with high relative
precision.

Throughout the paper we denote by |A| the matrix with the entries |aij |, where
A is a matrix with entries aij .

2. The regular Sturm–Liouville eigenvalue problem. Sturm–Liouville prob-
lems are concerned with solutions of the linear, homogeneous, ordinary differential
equation

−(p(x)y′(x))′ + q(x)y(x) = λw(x)y(x), x ∈ (a, b),(2.1)

where (a, b) is an open interval of the real line R, p, q, w are real-valued coefficients
defined on (a, b), and λ is a spectral parameter [14]. We treat only the regular case,
where p(x), q(x) and w(x) are sufficiently smooth functions on a finite closed interval
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[a, b]. Moreover, we limit ourselves by self-adjoint eigenvalue problems and, therefore,
do not admit sign changes in w(x). For certainty, assume that

w(x) > 0 for all x ∈ [a, b].(2.2)

The boundary conditions are separated (not coupled) and self-adjoint. Namely,
at the boundary x = a the solution y(x) satisfies either

y(a) = 0(2.3)

or

p(a)y′(a) − γay(a) = 0, γa ∈ R.(2.4)

Similarly, at x = b we impose the conditions

y(b) = 0(2.5)

or

p(b)y′(b) + γby(b) = 0, γb ∈ R.(2.6)

Let us introduce self-adjoint operators A and B by means of the bilinear forms

(By, φ) =

∫ b

a

w(x)y(x)φ(x)dx ∀φ(x) ∈ L2[a, b],(2.7)

(Ay, φ) =

∫ b

a

[p(x)y′(x)φ′(x) + q(x)y(x)φ(x)]dx(2.8)

+ γay(a)φ(a) + γby(b)φ(b) ∀φ(x) ∈ H1[a, b].

When y(a) = 0, the test functions φ must satisfy φ(a) = 0, and γa in (2.8) is set to
0. Analogously, φ(b) = 0 and γb = 0 when y(b) = 0. Note that the operator B takes
L2[a, b] to L2[a, b] and is positive definite owing to (2.2). The operator A : L2[a, b] →
L2[a, b] is unbounded.

The Sturm–Liouville eigenvalue problem is equivalent to the generalized eigen-
value problem for the operator pencil A − λB. It turns out that small relative per-
turbations of the coefficients p, q, w, γa and γb cause small relative perturbations of
the eigenvalues of A−λB. Our sophisticated numerical method inherits this property
and computes the eigenvalues with high relative precision.

Below we sketch a relative perturbation theory for the continuous eigenvalue
problem and introduce its condition number. Let λ and y(x) be a nonzero isolated
eigenvalue and associated eigenvector of the operator pencil A − λB. Suppose that
perturbations δA and δB are determined by relative perturbations of p, q, w, γa and
γb such that

|δp| ≤ ε|p|, |δq| ≤ ε|q|, |δw| ≤ ε|w|, |δγa| ≤ ε|γa|, |δγb| ≤ ε|γb|(2.9)

with infinitely small ε > 0. The perturbed eigenpair of the operator pencil (A+δA)−
λ(B + δB) is denoted by λ + δλ and y + δy. It is not difficult to derive the identity

δλ =
(δAy, y) − λ(δBy, y)

(By, y) ,(2.10)
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when ε is inifinitely small. Using (2.9) we can obtain the estimates

|(δAy, y)| ≤ ε

[∫ b

a

(|p|y′2 + |q|y2)dx + |γa|y2(a) + |γb|y2(b)

]
,

|(δBy, y)| ≤ ε

∫ b

a

wy2dx = ε(By, y),

which together with (2.10) give the estimate

|δλ|
|λ| ≤ ε

[∫ b

a
(|p|y′2 + |q|y2)dx + |γa|y2(a) + |γb|y2(b)

|λ|(By, y) + 1

]
.(2.11)

Replacing |λ|(By, y) by |(Ay, y)| in (2.11) we arrive at the inequality

|δλ|
|λ| ≤ ε · relcond(λ),

where

relcond(λ) =

∫ b

a

(|p|y′2 + |q|y2)dx + |γa|y2(a) + |γb|y2(b)
∣∣∣∣∣
∫ b

a

(py′2 + qy2)dx + γay
2(a) + γby

2(b)

∣∣∣∣∣

+ 1(2.12)

is the relative structured condition number of λ.
If, for instance, p(x), q(x), γa, γb ≥ 0, then relcond = 2 for each isolated eigenvalue.

3. Structured finite-difference approximation. Equation (2.1) is discretized
on the uniform grid xi = a + ih, i = 0 : (n + 1), h = (b− a)/(n + 1):

p(xi−1/2)(yi − yi−1) − p(xi+1/2)(yi+1 − yi)

h2
+ q(xi)yi = λw(xi)yi, i = 1:n,(3.1)

where xi±1/2 = xi ± h/2. The left boundary condition (2.3) is fulfilled with y0 = 0.
Similarly, the right boundary condition (2.5) is fulfilled with yn+1 = 0. The condition
(2.4) may be discretized as

p(x1/2)

h2
(y0 − y1) +

[
q(x0)

2
+

γa
h

]
y0 = λ

w(x0)

2
y0,

and the condition (2.6) as

p(xn+1/2)

h2
(yn+1 − yn) +

[
q(xn+1)

2
+

γb
h

]
yn+1 = λ

w(xn+1)

2
yn+1.

All above approximations are second order accurate with respect to h.
Let us introduce diagonal matrices P = diag(p1, . . . , pn+1), Q = diag(q1, . . . , qn),

and W = diag(w1, . . . , wn) with the diagonal entries pi = p(xi−1/2)/h
2, qi = q(xi),

wi = w(xi), and bidiagonal matrix

B = Bn =

⎛
⎜⎜⎝

a1 b1
a2 b2

· ·
an bn

⎞
⎟⎟⎠ ,(3.2)

where ai = 1 and bi = −1.
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Henceforth we restrict ourselves only by the Dirichlet boundary conditions

y0 = yn+1 = 0.(3.3)

Then the vector Y = [y1, . . . , yn]T satisfies the generalized eigenvalue problem

BPBTY + QY = λWY.(3.4)

We emphasize that our numerical algorithm takes advantage of the special structure
(3.4). The tridiagonal matrix BPBT + Q is never formed explicitly. Instead, the
factorized representation (3.4) is used.

Remark. Other boundary conditions can be considered analogously. For example,
when y(a) = 0 and p(b)y′(b) + γby(b) = 0, the vector Yn+1 = [y1, . . . , yn+1]

T satisfies
Bn+1Pn+1B

T
n+1Yn+1 + Qn+1Yn+1 = λWn+1Yn+1 with Pn+1 = diag(p1, . . . , pn+1, 0),

Qn+1 = diag(q1, . . . , qn, qn+1/2 + γb/h), Wn+1 = diag(w1, . . . , wn, wn+1/2).
Remark. Let xi be a nonuniform grid and hi = xi − xi−1. A direct modification

of (3.1) with zero Dirichlet conditions

2

hi + hi+1

[
p(xi−1/2)

yi − yi−1

hi
− p(xi+1/2)

yi+1 − yi
hi+1

]
+q(xi)yi = λw(xi)yi, i = 1:n,

leads to the matrix equation DBP̂BTY + QY = λWY with the diagonal matrices
D = diag( 2

h1+h2
, . . . , 2

hn+hn+1
) and P̂ = diag(p(x1/2)/h1, . . . , p(xn+1/2)/hn+1). Mul-

tiplying this equation from the left by D−1 and denoting Q̂ = D−1Q and Ŵ = D−1W
we obtain the equation BP̂BTY + Q̂Y = λŴY of the form (3.4). We do not pursue
the case of nonuniform grids further in this paper because our primary goal is to
reveal the algebraic structure of discretizations which are suitable for floating point
computations corresponding to the perturbation theory from the previous section.

4. Relative condition numbers for (3.4). We consider the matrix pencil
BPBT + Q− λW , where P , Q and W are diagonal matrices, W is positive definite,
and B is the n-by-n + 1 bidiagonal matrix (3.2). Let λ and v be an eigenpair of this
pencil such that the eigenvalue λ is nonmultiple. Assume that the diagonal entries pi,
qi and wi of P , Q and W are subject to relative perturbations

|δpi| ≤ ε|pi|, |δqi| ≤ ε|qi|, |δwi| ≤ ε|wi|,(4.1)

where ε > 0 is infinitely small. It is easy to derive that the perturbed eigenvalue
λ + δλ satisfies the identity

δλ =
([BδPBT + δQ]v, v) − λ(δWv, v)

(Wy, y)
,(4.2)

where δP = diag(δp1, . . . , δpn+1), δQ = diag(δq1, . . . , δqn), δW = diag(δw1, . . . , δwn).
The following estimate holds owing to (4.1):

|δλ| ≤ ε
([B|P |BT + |Q|]v, v) + |λ|(Wv, v)

(Wv, v)
.(4.3)

Taking into account the identity |λ|(Wv, v) = |([BPBT + Q]v, v)| we obtain that

|δλ| ≤ ε|λ|
{

([B|P |BT + |Q|]v, v)
|([BPBT + Q]v, v)| + 1

}
.(4.4)
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Thus the relative structured condition number similar to (2.12) for an isolated eigen-
value λ of (3.4) equals

relcond(λ) =
vTB|P |BT v + vT |Q|v
|vTBPBT v + vTQv| + 1,(4.5)

where v is an eigenvector corresponding to λ. Relative structured condition numbers
of type (4.5) probably first appeared in [5].

In section 6 we will need slightly more general perturbed pencils. Namely, consider
a perturbed matrix pencil of the form

(I + Δ)B(P + δP )BT (I + Δ) + (Q + δQ) − λ(W + δW ),(4.6)

where δP , δQ and δW are diagonal and their diagonal entries satisfy the inequalities
(4.1). The diagonal matrix Δ also satisfies the inequality ‖Δ‖2 ≤ ε. Applying (4.4)
to the pencil

B(P + δP )BT + (I + Δ)−2(Q + δQ) − λ(I + Δ)−2(W + δW ),

which has the same eigenvalues as (4.6), we arrive at the estimate

|δλ| ≤ 3ε|λ|relcond(λ).(4.7)

5. Relatively stable LDLT and UDUT factorizations. In this section we
study the LDLT and UDUT factorizations for the structured symmetric tridiagonal
matrix

BPBT + Q− μW,(5.1)

where B is an n × (n + 1) bidiagonal matrix as in (3.2), P is an (n + 1) × (n + 1)
diagonal matrix, Q and W are n× n diagonal matrices, and μ is a scalar parameter.

The identity BPBT + Q− μW = LDLT , where

D =

⎛
⎜⎜⎝

d1

d2

·
dn

⎞
⎟⎟⎠ , L =

⎛
⎜⎜⎝

1
l1 1

· ·
ln−1 1

⎞
⎟⎟⎠

is equivalent to the equalities di + di−1l
2
i−1 = pia

2
i + pi+1b

2
i + qi − μwi and dili =

pi+1ai+1bi, hence the straightforward algorithm:

d1 = p1a
2
1 + p2b

2
1 + q1 − μw1

for i = 1:n−1
li = pi+1ai+1bi/di
di+1 = −dil

2
i + pi+1a

2
i+1 + pi+2b

2
i+1 + qi+1 − μwi+1

end.

(5.2)

By introducing an auxiliary variable si = di − pi+1b
2
i the algorithm (5.2) is modified

as follows:

s1 = p1a
2
1 + q1 − μw1

for i = 1:n−1
di = si + pi+1b

2
i

ti = pi+1ai+1/di
li = tibi
si+1 = tiai+1si + qi+1 − μwi+1

end
dn = sn + pn+1b

2
n.

(5.3)
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The algorithm (5.3) is equivalent to (5.2) in exact arithmetic but very different in a
floating point arithmetic. Roughly speaking, the effects of rounding errors for (5.3)
can be interpreted as relative perturbations of the coefficients pi, qi and wi. Numerical
experiments with the examples from section 9 showed that the algorithm (5.2) had
no such properties and computed wrong results.

Variants of modification (5.3) were almost simultaneously discovered by Babuška,
Degtyarev, Favorskii, and Rutishauser (see [2],[3],[1],[12],[13]). These were mainly
aimed at solving tridiagonal systems of linear equations with strongly varying coeffi-
cients. Dhillon, Fernando, and Parlett later applied such modifications to eigenvalue
problems in [8], [5].

In a perfectly similar manner, the factorization BPBT +Q−μW = UDUT , where

D =

⎛
⎜⎜⎝

d1

d2

·
dn

⎞
⎟⎟⎠ , U =

⎛
⎜⎜⎝

1 u1

1 ·
· un−1

1

⎞
⎟⎟⎠

leads to the equalities di +di+1u
2
i = pia

2
i +pi+1b

2
i + qi−μwi and di+1ui = pi+1ai+1bi,

and the straightforward algorithm

dn = pna
2
n + pn+1b

2
n + qn − μwn

for i = n−1:−1: 1
ui = pi+1ai+1bi/di+1

di = −di+1u
2
i + pia

2
i + pi+1b

2
i + qi − μwi

end

(5.4)

is modified by introducing the auxiliary variable si = di − pia
2
i :

sn = pn+1b
2
n + qn − μwn

for i = n−1:−1: 1
di+1 = si+1 + pi+1a

2
i+1

ti+1 = pi+1bi/di+1

ui = ti+1ai+1

si = ti+1bisi+1 + qi − μwi

end
d1 = s1 + p1a

2
1.

(5.5)

The algorithm (5.3) may be called the relatively stable LDLT factorization of
(5.1) and algorithm (5.5) the relatively stable UDUT factorization of (5.1). These
names are due to the mixed relative stability that was first observed in [1] and then
more accurately formulated and proved in [8]. We discuss the mixed relative stability
in the next section.

6. Mixed relative stability of the relatively stable LDLT factorization.
The computed values of a variable a are denoted by fl(a) or ã. The rounding errors
for basic arithmetic operations are assumed to satisfy the common model

fl(a o b) = (a o b)(1 + δ), where |δ| ≤ ε = εmachine.(6.1)
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By the aid of (6.1) we model effects of rounding errors in (5.3) as follows:

d̃i = s̃i(1 + δ1,i) + pi+1b
2
i (1 + δ2,i), |δ1,i| ≤ ε,

|δ2,i| ≤ 3ε + O(ε2),

t̃i = (pi+1ai+1/d̃i)(1 + δ3,i), |δ3,i| ≤ 2ε + O(ε2),

l̃i = t̃ibi(1 + δ4,i), |δ4,i| ≤ ε,
s̃i+1 = t̃iai+1s̃i(1 + δ5,i) |δ5,i| ≤ 4ε + O(ε2),

+ qi+1(1 + δ6,i) − μwi+1(1 + δ7,i), |δ6,i| ≤ 2ε + O(ε2),
|δ7,i| ≤ 2ε + O(ε2).

(6.2)

Let us eliminate t̃i from these formulas and regroup them:

d̃i = s̃i(1 + δ1,i) + pi+1b
2
i (1 + δ2,i),

s̃i+1(1 + δ1,i+1) =
pi+1a

2
i+1

d̃i
s̃i(1 + δ1,i)

(1 + δ1,i+1)(1 + δ3,i)(1 + δ5,i)

(1 + δ1,i)

+ qi+1(1 + δ1,i+1)(1 + δ6,i) − μwi+1(1 + δ1,i+1)(1 + δ7,i),

l̃i =
pi+1ai+1bi

d̃i
(1 + δ3,i)(1 + δ4,i).

Introducing new variables (which are not computed!)

ŝi = s̃i(1 + δ1,i),

b̂i = bi
√

1 + δ2,i, âi+1 = ai+1

√
(1 + δ1,i+1)(1 + δ3,i)(1 + δ5,i)

(1 + δ1,i)
,

q̂i+1 = qi+1(1 + δ1,i+1)(1 + δ6,i), ŵi+1 = wi+1(1 + δ1,i+1)(1 + δ7,i),

(6.3)

we arrive at the following identities:

d̃i = ŝi + pi+1b̂
2
i ,

ŝi+1 =
pi+1â

2
i+1

d̃i
ŝi + q̂i+1 − μŵi+1,

l̂i =
pi+1âi+1b̂i

d̃i
,

l̃i = l̂i(1 + δ3,i)(1 + δ4,i)

√
(1 + δ1,i)

(1 + δ1,i+1)(1 + δ2,i)(1 + δ3,i)(1 + δ5,i)
.

(6.4)

Moreover,

|âi − ai| ≤ |ai|[4ε + O(ε2)], |b̂i − bi| ≤ |bi|[ 32ε + O(ε2)],

|q̂i − qi| ≤ |qi|[3ε + O(ε2)], |ŵi − wi| ≤ |wi|[3ε + O(ε2)],

|l̃i − l̂i| ≤ |l̂i|[ 172 ε + O(ε2)].

(6.5)

Let us denote D̃ = diag(d̃1, . . . , d̃n), Q̃ = diag(q̃1, . . . , q̃n), W̃ = diag(w̃1, . . . , w̃n).

The bidiagonal matrix B̂ is formed from B by replacing ai with âi and bi with b̂i.
The unit lower triangular matrix L̂ is formed from L by replacing li with l̂i. In this
notation we obtain the identity

L̂D̃L̂T = B̂P B̂T + Q̃− μW̃(6.6)
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from formulas (6.4). The structure of (6.6) is not completely satisfactory for the
conditioning theory presented in section 4 because of the availability of the perturbed
matrix B̂. However, this obstacle is easily removed as shown below.

We recall that bidiagonal matrices are perfect for dealing with relative perturba-
tions of their elements because such perturbations can be interpreted as multiplicative
[4, Lemma 5.7]. In our case, this means there exist diagonal matrices Δ and Δ1 such
that |Δ| = O(ε), |Δ1| = O(ε), and B̂ = (I+Δ)B(I+Δ1). Thus, (6.6) can be replaced
by the representation

L̂D̂L̂T = (I + Δ)B(I + Δ1)P (I + Δ1)B
T (I + Δ) + Q̃− μW̃ .(6.7)

Equation (6.7) is now of the form (4.6) with P +δP = (I+Δ1)P (I+Δ1), Q+δQ = Q̃,
and W + δW = W̃ . Therefore, estimates of the type (4.7) hold in computations of
eigenvalues based on relatively stable LDLT factorizations.

An analogous result holds for the algorithm (5.5).

7. Computation of eigenvalues. The well-known bisection method [4] uses
only signs of the diagonal entries of fl(D) = D̃ computed by the algorithm (5.3). In
the previous section we have demonstrated that the signs of d̃i depend on P , Q, W in
a backward stable manner. Therefore, if an eigenvalue has a low relative structured
condition number (4.5), then it can be computed with a high relative accuracy. A
faster but more delicate alternative to the bisection is the inverse iteration with shifts.

8. Eigenvectors from twisted factorizations. The twisted (or double) fac-
torization of a tridiagonal matrix T at row r is the factorization T = ZrDrZ

T
r , where

Dr = diag{d1, . . . , dr−1, γr, ďr+1, . . . , ďn} is diagonal and

Zr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
l1 1

· ·
lr−1 1 ur

1 ·
· un−1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(8.1)

Assume that T = LDLT is the LDLT factorization and T = UĎUT is the UDUT

factorization. One can show that the elements l1, . . . , lr−1, ur, . . . , un−1, d1, . . . , dr−1,
ďr+1, . . . , ďn from the twisted factorization coincide with the corresponding entries of
L, U , D, and Ď. Moreover, the following representations hold for the parameter γr:

γr = dr − Trr + ďr = dr − urTr+1,r.(8.2)

Let er be the rth unit coordinate vector. The identity Zrer = er implies that
eTr T

−1er = 1/γr, and hence trace(T−1) =
∑n

r=1
1
γr

. If the matrix T is nearly singular,

then trace(T−1) is large in most cases. In these cases, |γr| is tiny for at least one r
and the vector

vr = Z−T
r er(8.3)

satisfies the equation Tvr = γrer ≈ 0, i.e., vr is an approximate singular vector of T
corresponding to a nearly zero singular value.
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When generating the twisted factorizations of a nearly singular matrix T =
BPBT + Q − λ̃W from the results of (5.3) and (5.5), where λ̃ is an accurate ap-
proximation to an eigenvalue of the matrix pencil BPBT + Q− λW , the value γr is
stably computed by each of the two formulas:

γr = dr −
(pr+1ar+1br)

2

ďr+1

= sr +
pr+1b

2
r šr+1

šr+1 + pr+1a2
r+1

.(8.4)

One of the first uses of the twisted factorizations was reported in [10]. Babuška
systematically applied them in [1] to the solution of linear systems with tridiagonal
matrices and carried out a rather complete rounding error analysis. Godunov with
coauthors [9] pioneered the use of the twisted factorizations in reliable computation
of eigenvectors of symmetric tridiagonal matrices. Unaware of [9], Fernando in [7]
proposed his own variant of computation of an eigenvector of a symmetric tridiagonal
matrix by the twisted factorizations. Parlett and Dhillon further developed Fernando’s
method in [11].

We do not address hard problems with maintaining orthogonality between the
computed eigenvectors corresponding to multiple or almost multiple eigenvalues of
T here and refer the reader to, e.g., [5],[6]. By the way, the orthogonality between
eigenvectors does not hold for matrix pencils with W 
= const · I.

9. Numerical examples. In order to find several smallest eigenvalues and cor-
responding eigenvectors of (2.1) with high relative accuracy, one has to carry out the
following steps:

1. Form the diagonal matrices P , Q, W and bidiagonal B from (3.4).
2. Use (5.3) and the bisection method to compute the desired eigenvalues.
3. For each approximate eigenvalue λ̃, run the algorithms (5.3) and (5.5) with

μ = λ̃ and compute γr by (8.4) for all r. Then choose r for which |γr| is
smallest and compute the eigenvector by (8.3).

Below we demonstrate the power of this procedure in computation of the smallest
eigenvalues and associated eigenvectors for very ill-conditioned tridiagonal matrices
of the form T = BPBT + Q.

Positive definite matrix T . Consider the Sturm–Liouville problem on the interval
[a, b] = [−1, 1] divided into N equal subintervals with

p(x) = exp(−200x2), q(x) = 0, w(x) = 1, y(−1) = y(1) = 0.(9.1)

In this example we have computed the smallest six eigenvalues.

N λ1 λ2 λ3

104 5.544029528624667e−85 8.056984043120979e−82 8.091396479595924e−82
105 5.542569829437562e−85 8.060008044877117e−82 8.094455541536701e−82
106 5.542555233653751e−85 8.060038353699461e−82 8.094486201448963e−82

N λ4 λ5 λ6

104 2.694830737112778e−81 2.701042250989879e−81 5.651547554516112e−81
105 2.699895141887398e−81 2.706131801258254e−81 5.675612519454272e−81
106 2.699945802766178e−81 2.706182713474177e−81 5.675852827038452e−81

For N = 106, all relative structured condition numbers (4.5) are ≈ 2, all residuals
‖Tv − λv‖ were ≤ 2e−93, and the computed eigenvectors v1, v2, v3, v4, v5, v6 were
mutually orthogonal with high accuracy. Note that ‖T‖2 ≈ 1012 for N = 106.
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The eigenvalue functions, represented by the vectors v1, . . . , v6, have very narrow
boundary layers.

Indefinite matrix T . The smallest 12 eigenvalues of the Sturm–Liouville problem
on [a, b] = [−1, 1] divided into 106 equal subintervals with

p(x) = exp(−200x2), q(x) = −10−80 cos2(πx), w(x) = 1, y(−1) = y(1) = 0,(9.2)

are given in this table.

λ1 −9.193288419740126e−81 λ7 −4.246722436372906e−81
λ2 −9.192636604107326e−81 λ8 −2.632481764148639e−82
λ3 −7.304786310492325e−81 λ9 −2.386685734031909e−82
λ4 −7.297679753112374e−81 λ10 4.876318269699302e−81
λ5 −5.001049216049395e−81 λ11 4.898522180802763e−81
λ6 −4.321230312552760e−81 λ12 1.109749645012289e−80

The relative structured condition numbers (4.5) for λ1,. . . ,λ12 are 2.2, 2.2, 2.7, 2.7, 2.2,
4.6, 4.5, 76, 84, 6.1, 6.1, 3.8, the residuals ‖Tv−λv‖ were ≤ 9e−95, and the eigenvectors
v1, v2, . . . , v12 were mutually orthogonal with high accuracy.
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Abstract. The classical approach to investigating polynomial eigenvalue problems is lineariza-
tion, where the polynomial is converted into a larger matrix pencil with the same eigenvalues. For
any polynomial there are infinitely many linearizations with widely varying properties, but in prac-
tice the companion forms are typically used. However, these companion forms are not always entirely
satisfactory, and linearizations with special properties may sometimes be required.

Given a matrix polynomial P , we develop a systematic approach to generating large classes of
linearizations for P . We show how to simply construct two vector spaces of pencils that generalize the
companion forms of P , and prove that almost all of these pencils are linearizations for P . Eigenvectors
of these pencils are shown to be closely related to those of P . A distinguished subspace is then
isolated, and the special properties of these pencils are investigated. These spaces of pencils provide
a convenient arena in which to look for structured linearizations of structured polynomials, as well
as to try to optimize the conditioning of linearizations.
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1. Introduction. Polynomial eigenvalue problems P (λ)x = 0, where P (λ) =∑k
i=0 λ

iAi with real or complex coefficient matrices Ai, form the basis for (among
many other applications) the vibration analysis of buildings, machines, and vehicles
[5], [9], [21], and numerical methods for the solution of these problems are incorporated
into most commercial and noncommercial software packages for structural analysis.

The classical and most widely used approach to solving polynomial eigenvalue
problems is linearization, i.e., the conversion of P (λ)x = 0 into a larger size linear
eigenvalue problem L(λ)z = (λX+Y )z = 0 with the same eigenvalues, so that classical
methods for linear eigenvalue problems can be pressed into service. The linearizations
most commonly commissioned are the companion forms for P (λ), one of which is

L(λ) = λ

⎡
⎢⎢⎢⎣

Ak 0 · · · 0

0 In
. . .

...
...

. . .
. . . 0

0 · · · 0 In

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

Ak−1 Ak−2 · · · A0

−In 0 · · · 0
...

. . .
. . .

...

0 · · · −In 0

⎤
⎥⎥⎥⎦.(1.1)
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Many physical problems lead to matrix polynomials that are structured in some way;
for example, the coefficient matrices may all be symmetric [9], or perhaps alternate
between symmetric and skew-symmetric [15], or even have palindromic structure [12].
Such structure in the matrix polynomial often forces symmetries or constraints on
the spectrum [12], [14], [15], [21] that have physical significance. Numerical methods
(in a finite precision environment) that ignore this structure often destroy these qual-
itatively important spectral symmetries, sometimes even to the point of producing
physically meaningless or uninterpretable results [21].

Unfortunately the companion form linearizations do not reflect any structure that
may be present in the original polynomial, so their use for numerical computation in
such situations may be problematic. It would be preferable if the structural properties
of the polynomial were faithfully reflected in the linearization; a structure-preserving
numerical method that leaves the qualitative properties of the spectrum intact would
then be possible. Examples of such structured linearizations and their concomitant
structure-preserving numerical methods can be found in [14] and [15].

An important issue for any computational problem is its conditioning, i.e., its
sensitivity to small perturbations. It is known that different linearizations for a given
polynomial eigenvalue problem can have very different conditioning [20], [21], so that
numerical methods may produce rather different results for each linearization. It would
clearly be useful to have available a large class of easily constructible linearizations
from which one could always select a linearization guaranteed to be as well-conditioned
as the original problem.

A further issue for linearizations concerns eigenvalues at ∞. Much of the liter-
ature on polynomial eigenvalue problems considers only polynomials whose leading
coefficient matrix Ak is nonsingular (or even the identity), so the issue of infinite
eigenvalues does not even arise. However, there are a number of applications, such
as constraint multibody systems [2], [16], circuit simulation [3], or optical waveguide
design [17], where the leading coefficient is singular. In such cases one must choose a
linearization with care, since not all linearizations properly reflect the Jordan struc-
ture of the eigenvalue ∞ [13]. It has therefore been suggested [4], [10] that only strong
linearizations, which are guaranteed to preserve the structure of infinite eigenvalues,
can safely be used in such circumstances. Having a large class of linearizations that
are known to also be strong linearizations would make this issue of infinite eigenvalues
less of a concern in practice.

The aim of this paper is to show how to systematically generate, for any regular
matrix polynomial P , large classes of linearizations that address these issues. These
linearizations are easy to construct from the data in P , properly handle any infinite
eigenvalues, provide a fertile source of structured linearizations for many types of
structured polynomials [7], [12], and collectively constitute a well-defined arena in
which to look for “optimally” conditioned linearizations [8].

After introducing some basic definitions and notation in section 2, we develop a
natural generalization of the companion forms in section 3. The result is two large
vector spaces of pencils for each matrix polynomial P , termed L1(P ) and L2(P ).
Eigenvectors of any pencil from these associated vector spaces are shown to be sim-
ply related to the eigenvectors of P , thereby deepening the analogy to the companion
forms. While not every pencil in these spaces is a linearization for P , we describe con-
ditions under which these pencils are linearizations in section 4. As a consequence we
can then show that almost every pencil in these spaces is in fact a strong linearization
for P .
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Finally, pencils in L1(P ) ∩ L2(P ) are considered in sections 5 and 6. For a
polynomial P of degree k this intersection, termed DL(P ), is shown to be a subspace
of dimension k. Further properties of these special pencils are derived, including an
elegant characterization of exactly which pencils in DL(P ) are linearizations for P .

Subsequent papers [7], [8], [12] extend this work to the investigation of the con-
ditioning of linearizations in DL(P ) and the construction of structured linearizations
for various types of structured matrix polynomials.

2. Basic definitions and notation. We study n×n matrix polynomials of the
form

P (λ) =
k∑

i=0

λiAi, A0, . . . , Ak ∈ F
n×n, Ak �= 0,(2.1)

where F denotes the field of real or complex numbers and k is the degree of P .
Definition 2.1. If λ ∈ C and nonzero x ∈ C

n satisfy P (λ)x = 0, then x is said
to be a right eigenvector of P corresponding to the (finite) eigenvalue λ.

Following standard usage, we will often abbreviate “right eigenvector” to just
“eigenvector” when there is no ambiguity.

Our main concern is with regular matrix polynomials, i.e., polynomials P (λ) such
that detP (λ) is not identically zero for all λ ∈ C; for such polynomials the finite
eigenvalues are precisely the roots of the scalar polynomial detP (λ). Note, however,
that some of our results also hold for singular matrix polynomials (these are studied
in detail in [13], [18]).

It is also useful to allow ∞ as a possible eigenvalue of P (λ). The technical device
underlying this notion is the correspondence between the eigenvalues of P and those
of the polynomial obtained from P by reversing the order of its coefficient matrices.

Definition 2.2 (Reversal of matrix polynomials). For a matrix polynomial P (λ)
of degree k as in (2.1), the reversal of P (λ) is the polynomial

revP (λ) := λkP (1/λ) =

k∑
i=0

λiAk−i.(2.2)

Note that the nonzero finite eigenvalues of revP are the reciprocals of those of P ;
the next definition shows how in this context we may also sensibly view 0 and ∞ as
reciprocals.

Definition 2.3 (Eigenvalue at ∞). Let P (λ) be a regular matrix polynomial of
degree k ≥ 1. Then P (λ) is said to have an eigenvalue at ∞ with eigenvector x if
revP (λ) has the eigenvalue 0 with eigenvector x. The algebraic, geometric, and partial
multiplicities of the infinite eigenvalue are defined to be the same as the corresponding
multiplicities of the zero eigenvalue of revP (λ).

The classical approach to solving and investigating polynomial eigenvalue prob-
lems P (λ)x = 0 is to first perform a linearization, that is, to transform the given
polynomial into a linear matrix pencil L(λ) = λX+Y with the same eigenvalues, and
then work with this pencil. This transformation of polynomials to pencils is mediated
by unimodular matrix polynomials, i.e., matrix polynomials E(λ) such that detE(λ)
is a nonzero constant, independent of λ.

Definition 2.4 (Linearization [5]). Let P (λ) be an n × n matrix polynomial
of degree k with k ≥ 1. A pencil L(λ) = λX + Y with X,Y ∈ F

kn×kn is called a
linearization of P (λ) if there exist unimodular matrix polynomials E(λ), F (λ) such
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that

E(λ)L(λ)F (λ) =

[
P (λ) 0

0 I(k−1)n

]
.

There are many different possibilities for linearizations, but probably the most
important examples in practice have been the so-called companion forms or companion
polynomials [5]. Letting

X1 = X2 = diag(Ak, I(k−1)n),(2.3a)

Y1 =

⎡
⎢⎢⎢⎣

Ak−1 Ak−2 · · · A0

−In 0 · · · 0
...

. . .
. . .

...
0 · · · −In 0

⎤
⎥⎥⎥⎦, and Y2 =

⎡
⎢⎢⎢⎣

Ak−1 −In · · · 0

Ak−2 0
. . .

...
...

...
. . . −In

A0 0 · · · 0

⎤
⎥⎥⎥⎦,(2.3b)

then C1(λ) = λX1 + Y1 and C2(λ) = λX2 + Y2 are, respectively, called the first and
second companion forms for P (λ) in (2.1).

The notion of linearization in Definition 2.4 has been designed mainly for matrix
polynomials (2.1) with invertible leading coefficient Ak. In this case all the eigenvalues
of P (λ) are finite, and their Jordan structures (i.e., their partial multiplicities) may
be recovered from any linearization [5]. However, the situation is somewhat different
when the leading coefficient of a regular P (λ) is singular, so that ∞ is an eigenvalue
with some multiplicity m > 0. Although the Jordan structures of all the finite eigen-
values of P are still faithfully recovered from any linearization of P , the eigenvalue ∞
is problematic. Consider, for example, the fact that the identity matrix is a lineariza-
tion for any unimodular P (λ). Indeed, in [10] it is shown that any Jordan structure
for the eigenvalue ∞ that is compatible with its algebraic multiplicity m can be re-
alized by some linearization for P . Thus linearization in the sense of Definition 2.4
completely fails to reflect the Jordan structure of infinite eigenvalues.

To overcome this deficiency, a modification of Definition 2.4 was introduced in [4],
and termed strong linearization in [10]. The correspondence between the infinite
eigenvalue of a matrix polynomial P and the eigenvalue zero of revP is the source of
this strengthened definition.

Definition 2.5 (Strong Linearization). Let P (λ) be a matrix polynomial of
degree k with k ≥ 1. If L(λ) is a linearization for P (λ) and revL(λ) is a linearization
for revP (λ), then L(λ) is said to be a strong linearization for P (λ).

For regular polynomials P (λ), the additional property that revL(λ) is a lineariza-
tion for revP (λ) ensures that the Jordan structure of the eigenvalue ∞ is preserved
by strong linearizations. The first and second companion forms of any regular poly-
nomial P have this additional property [4], and thus are always strong linearizations
for P . Most of the pencils we construct in this paper will be shown to be strong
linearizations.

The following notation will be used throughout the paper: I = In is the n × n
identity, R = Rk denotes the k×k reverse identity, and N = Nk is the standard k×k
nilpotent Jordan block, i.e.,

R = Rk =

[
1

. .
.

1

]
, and N = Nk =

⎡
⎢⎢⎣

0 1

0
. . .
. . . 1

0

⎤
⎥⎥⎦.(2.4)
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The vector
[
λk−1 λk−2 · · · λ 1

]T
of decreasing powers of λ is denoted by Λ. We

will also sometimes use Λ with an argument, so that Λ(r) =
[
rk−1 rk−2 · · · r 1

]T
.

Denoting the Kronecker product by ⊗, the unimodular matrix polynomials

T (λ) =

⎡
⎢⎢⎢⎢⎢⎣

1 λ λ2 · · · λk−1

1 λ
. . .

...

1
. . . λ2

. . . λ
1

⎤
⎥⎥⎥⎥⎥⎦
⊗ I and G(λ) =

⎡
⎢⎢⎢⎣

1 λk−1

. . .
...

1 λ
1

⎤
⎥⎥⎥⎦⊗ I(2.5)

are used in several places in this paper. Observe that the last block-column of G(λ)
is Λ⊗ I, and that T (λ) may be factored as

T (λ) = G(λ)

⎡
⎢⎣

I λI
I

I . . .
I

⎤
⎥⎦

⎡
⎢⎣

I
I λI

I . . .
I

⎤
⎥⎦ · · ·

⎡
⎢⎣

I
. . .

I λI

I
I

⎤
⎥⎦.(2.6)

3. Vector spaces of “potential” linearizations. The companion forms of a
matrix polynomial P (λ) have several nice properties that make them attractive as
linearizations for P :

• they are immediately constructible from the data in P ,
• eigenvectors of P are easily recovered from eigenvectors of the companion

forms,
• they are always strong linearizations for P .

However, the companion forms have one significant drawback; they usually do not
reflect any structure or eigenvalue symmetry that may be present in the original
polynomial P . One would like to be able to draw on a source of linearizations for
P that allow for the preservation of structure while sharing as many of the useful
properties of companion forms as possible. To this end we introduce vector spaces of
pencils that generalize the two companion forms, and analyze some of the properties
these pencils have in common with the companion forms.

To motivate the definition of these spaces, let us recall the origin of the first
companion form. Imitating the standard procedure for converting a system of higher
order linear differential algebraic equations into a first order system (see [5]), introduce
the variables x1 = λk−1x, x2 = λk−2x, . . . , xk−1 = λx, xk = x, thereby transforming

the n× n polynomial eigenvalue problem P (λ)x = (
∑k

i=0 λ
iAi)x = 0 into

Ak(λx1) + Ak−1x1 + Ak−2x2 + · · · + A1xk−1 + A0xk = 0.

Then, together with the relations between successive variables, this can all be ex-
pressed as the kn× kn linear eigenvalue problem

⎛
⎜⎜⎜⎝λ

⎡
⎢⎢⎢⎣

Ak 0 · · · 0

0 In
. . .

...
...

. . .
. . . 0

0 · · · 0 In

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

Ak−1 Ak−2 · · · A0

−In 0 · · · 0
...

. . .
. . .

...
0 · · · −In 0

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
= C1(λ)

⎡
⎢⎢⎢⎣

x1

...
xk−1

xk

⎤
⎥⎥⎥⎦ = 0.(3.1)



976 D. S. MACKEY, N. MACKEY, C. MEHL, AND V. MEHRMANN

Conversely, if we start with (3.1), then the last k−1 block rows immediately constrain
any solution of (3.1) to have the form

⎡
⎢⎢⎢⎣

x1
...

xk−1

xk

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

λk−1x
...
λx
x

⎤
⎥⎥⎥⎦ = Λ⊗ x

for some vector x ∈ F
n. Thus to solve (3.1) it is reasonable to restrict attention to

products of the form C1(λ) · (Λ⊗ x). However,

C1(λ) ·
(
Λ⊗ x

)
=

[(
P (λ)x

)T
0 · · · 0

]T
for all x ∈ F

n,(3.2)

and so any solution of (3.1) leads to a solution of the original problem P (λ)x = 0.
Now observe that (3.2) is equivalent to the identity

C1(λ) ·
(
Λ⊗ In

)
= C1(λ)

⎡
⎢⎢⎣

λk−1In
...

λIn
In

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

P (λ)
0
...
0

⎤
⎥⎥⎦ = e1 ⊗ P (λ).(3.3)

Thus to generalize the companion form we consider the set of all kn × kn matrix
pencils L(λ) = λX + Y satisfying the property

L(λ) · (Λ⊗ In) = L(λ)

⎡
⎢⎢⎣

λk−1In
...

λIn
In

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

v1P (λ)
...

vk−1P (λ)
vkP (λ)

⎤
⎥⎥⎦ = v ⊗ P (λ)(3.4)

for some vector v = [v1, . . . , vk]
T ∈ F

k. This set of pencils will be denoted by L1(P ) as
a reminder that it generalizes the first companion form of P . To work with property
(3.4) more effectively we also introduce the notation

VP = {v ⊗ P (λ) : v ∈ F
k}(3.5)

for the set of all possible right-hand sides of (3.4). Thus we have the following defi-
nition.

Definition 3.1. L1(P ) := {L(λ) = λX + Y : X,Y ∈ F
kn×kn, L(λ) · (Λ⊗ In) ∈

VP }.
We will sometimes use the phrase “L(λ) satisfies the right ansatz with vector v”

or “v is the right ansatz vector for L(λ)” when L(λ) ∈ L1(P ) and the vector v in (3.4)
is the focus of attention. We say “right” ansatz here because L(λ) is multiplied on
the right by the block column Λ⊗ In; later we introduce an analogous “left ansatz.”

From the properties of the Kronecker product it is easy to see that VP is a vector
space isomorphic to F

k, and consequently that L1(P ) is also a vector space.
Proposition 3.2. For any polynomial P (λ), L1(P ) is a vector space over F.
Since C1(λ) is always in L1(P ), we see that L1(P ) is a nontrivial vector space for

any matrix polynomial P .
Our next goal is to show that, like the companion forms, pencils in L1(P ) are

easily constructible from the data in P . A consequence of this construction is a char-
acterization of all the pencils in L1(P ) and a calculation of dim L1(P ). To simplify the



VECTOR SPACES OF LINEARIZATIONS 977

discussion, we introduce the following new operation on block matrices as a convenient
tool for working with products of the form L(λ) · (Λ⊗ In).

Definition 3.3 (Column shifted sum). Let X and Y be block matrices

X =

⎡
⎢⎣
X11 · · · X1k
...

...
Xk1 · · · Xkk

⎤
⎥⎦, Y =

⎡
⎢⎣
Y11 · · · Y1k
...

...
Yk1 · · · Ykk

⎤
⎥⎦

with blocks Xij , Yij ∈ F
n×n. Then the column shifted sum of X and Y is defined to be

X �→Y :=

⎡
⎢⎣
X11 · · · X1k 0
...

...
...

Xk1 · · · Xkk 0

⎤
⎥⎦ +

⎡
⎢⎣

0 Y11 · · · Y1k
...

...
...

0 Yk1 · · · Ykk

⎤
⎥⎦,

where the zero blocks are also n× n.
As an example, for the first companion form C1(λ) = λX1 + Y1 of P (λ) =∑k

i=0 λ
iAi , the column shifted sum X1 �→Y1 is just

⎡
⎢⎢⎢⎣

Ak 0 · · · 0

0 In
. . .

...
...

. . .
. . . 0

0 · · · 0 In

⎤
⎥⎥⎥⎦ �→

⎡
⎢⎢⎢⎣

Ak−1 Ak−2 · · · A0

−In 0 · · · 0
...

. . .
. . .

...

0 · · · −In 0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Ak Ak−1 · · · A0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎤
⎥⎥⎥⎦.

Thus, the property C1(λ) · (Λ⊗ In) = e1 ⊗ P (λ) from (3.3) translates in terms of the
column shifted sum into X1 �→Y1 = e1 ⊗ [Ak Ak−1 · · · A0]. In fact, this shifted sum
operation is specifically designed to imitate the product of a pencil L(λ) = λX + Y
with the block column matrix Λ⊗ In, in the sense of the following lemma.

Lemma 3.4. Let P (λ) =
∑k

i=0 λ
iAi be an n× n matrix polynomial, and L(λ) =

λX + Y a kn× kn pencil. Then for v ∈ F
k,

(λX + Y ) · (Λ⊗ In) = v ⊗ P (λ) ⇐⇒ X �→Y = v ⊗ [Ak Ak−1 · · · A0],(3.6)

and so the space L1(P ) may be alternatively characterized as

L1(P ) = {λX + Y : X �→Y = v ⊗ [Ak Ak−1 · · · A0], v ∈ F
k}.(3.7)

The proof follows from a straightforward calculation which is omitted. The col-
umn shifted sum now allows us to directly construct all the pencils in L1(P ).

Theorem 3.5 (Characterization of pencils in L1(P )). Let P (λ) =
∑k

i=0 λ
iAi be

an n× n matrix polynomial, and v ∈ F
k any vector. Then the set of pencils in L1(P )

with right ansatz vector v consists of all L(λ) = λX + Y such that

X =
[ n (k−1)n

v ⊗Ak −W
]

and Y =
[ (k−1)n n

W +
(
v ⊗

[
Ak−1 · · · A1

])
v ⊗A0

]
,

with W ∈ F
kn×(k−1)n chosen arbitrarily.

Proof. Consider the multiplication map M that is implicit in the definition of
L1(P ):

L1(P )
M−→ VP ,

L(λ) �−→ L(λ) (Λ⊗ In).
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Clearly M is linear. To see that M is surjective, let v⊗P (λ) be an arbitrary element
of VP and construct

Xv =
[ n (k−1)n

v ⊗Ak 0
]

and Yv =
[ (k−1)n n

v ⊗
[
Ak−1 · · · A1

]
v ⊗A0

]
.

Then Xv �→Yv = v⊗[Ak Ak−1 · · · A0], so by Lemma 3.4, Lv(λ) := λXv+Yv is an M-
preimage of v⊗P (λ). The set of all M-preimages of v⊗P (λ) is then Lv(λ)+kerM,
so all that remains is to compute kerM. By (3.6), the kernel of M consists of all
pencils λX + Y satisfying X �→Y = 0. The definition of the shifted sum then implies
that X and Y must have the form

X =
[ n (k−1)n

0 −W
]

and Y =
[ (k−1)n n

W 0
]
,

where W ∈ F
kn×(k−1)n is arbitrary. This completes the proof.

Corollary 3.6. dim L1(P ) = k(k − 1)n2 + k .
Proof. Since M is surjective, dim L1(P ) = dim kerM + dimVP = k(k − 1)n2 +

k.
Thus we see that L1(P ) is a relatively large subspace of the full pencil space (with

dimension 2k2n2), yet the pencils in L1(P ) are still easy to construct from the data in
P . The next corollary isolates a special case of Theorem 3.5 that plays an important
role in section 4.

Corollary 3.7. Suppose L(λ) = λX + Y ∈ L1(P ) has right ansatz vector
v = αe1. Then

X =

[
αAk X12

0 −Z

]
and Y =

[
Y11 αA0

Z 0

]
(3.8)

for some Z ∈ F
(k−1)n×(k−1)n.

Note that C1(λ) fits the pattern in Corollary 3.7 with v = e1 and Z = −I(k−1)n.
The second important property of the companion form is the simple relationship

between its eigenvectors and those of the polynomial P that it linearizes. From the
discussion following (3.1) it is evident that every eigenvector of C1(λ) has the form
Λ ⊗ x, where x is an eigenvector of P . Thus eigenvectors of P are recovered simply
by extracting the last n coordinates from eigenvectors of the companion form. Our
next result shows that linearizations in L1(P ) also have this property.

Theorem 3.8 (Eigenvector Recovery Property for L1(P )). Let P (λ) be an n×n
matrix polynomial of degree k, and L(λ) any pencil in L1(P ) with nonzero right ansatz
vector v. Then x ∈ C

n is an eigenvector for P (λ) with finite eigenvalue λ ∈ C if and
only if Λ ⊗ x is an eigenvector for L(λ) with eigenvalue λ. If, in addition, P is
regular and L ∈ L1(P ) is a linearization for P , then every eigenvector of L with finite
eigenvalue λ is of the form Λ⊗ x for some eigenvector x of P .

Proof. The first statement follows immediately from the identity

L(λ)(Λ⊗ x) = L(λ)(Λ⊗ In)(1 ⊗ x) = (v ⊗ P (λ))(1 ⊗ x) = v ⊗ (P (λ)x).

For the second statement, assume that λ ∈ C is a finite eigenvalue of L(λ) with
geometric multiplicity m, and let y ∈ C

kn be any eigenvector of L(λ) associated with
λ. Since L(λ) is a linearization of P (λ), the geometric multiplicity of λ for P (λ) is
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also m. Let x1, . . . , xm be linearly independent eigenvectors of P (λ) associated with
λ, and define yi = Λ⊗ xi for i = 1, . . . ,m. Then y1, . . . , ym are linearly independent
eigenvectors for L(λ) with eigenvalue λ, and so y must be a linear combination of
y1, . . . , ym. Thus y has the form y = Λ⊗ x for some eigenvector x ∈ C

n for P .
A result analogous to Theorem 3.8 is also valid for the eigenvalue ∞. Because

additional arguments are needed, this will be deferred until section 4.
The above development and analysis of the pencil space L1(P ) has a parallel

version in which the starting point is the second companion form C2(λ) = λX2 + Y2,
as in (2.3). The analogue of (3.3) is the identity

[
λk−1In · · · λIn In

]
· C2(λ) =

[
P (λ) 0 · · · 0

]
,

expressed more compactly as (ΛT ⊗ In) ·C2(λ) = eT1 ⊗P (λ). This leads us to consider
pencils L(λ) = λX + Y satisfying the “left ansatz”

(
ΛT ⊗ In

)
· L(λ) = wT ⊗ P (λ),(3.9)

and to a corresponding vector space L2(P ). The vector w in (3.9) will be referred to
as the “left ansatz vector” for L(λ).

Definition 3.9. With WP = {wT ⊗ P (λ) : w ∈ F
k}, we define

L2(P ) = {L(λ) = λX + Y : X,Y ∈ F
kn×kn,

(
ΛT ⊗ In

)
· L(λ) ∈ WP }.

The analysis of L2(P ) is aided by the introduction of the following block matrix
operation.

Definition 3.10 (Row shifted sum). Let X and Y be block matrices

X =

⎡
⎢⎣
X11 · · · X1k
...

...
Xk1 · · · Xkk

⎤
⎥⎦, Y =

⎡
⎢⎣
Y11 · · · Y1k
...

...
Yk1 · · · Ykk

⎤
⎥⎦

with blocks Xij , Yij ∈ F
n×n. Then the row shifted sum of X and Y is defined to be

X �↓ Y :=

⎡
⎢⎢⎢⎣

X11 · · · X1k
...

...
Xk1 · · · Xkk

0 · · · 0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0 · · · 0
Y11 · · · Y1k
...

...
Yk1 · · · Ykk

⎤
⎥⎥⎥⎦,

where the zero blocks are also n× n.
The following analogue of Lemma 3.4 establishes the correspondence between the

left ansatz and row shifted sums.
Lemma 3.11. Let P (λ) =

∑k
i=0 λ

iAi be an n×n matrix polynomial, and L(λ) =
λX + Y a kn× kn pencil. Then for any w ∈ F

k,

(ΛT ⊗ In) · (λX + Y ) = wT ⊗ P (λ) ⇐⇒ X �↓ Y = wT ⊗

⎡
⎣

Ak
...
A0

⎤
⎦.(3.10)

Using these tools, one can characterize the pencils in L2(P ) in a manner com-
pletely analogous to Theorem 3.5, and thus conclude that

dim L2(P ) = dim L1(P ) = k(k − 1)n2 + k.(3.11)
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It is also not difficult to establish a stronger relationship between the spaces L1(P )
and L2(P ), which again immediately implies (3.11). Here for a polynomial P (λ) =∑k

i=0 λ
iAi , we use PT to denote the polynomial

∑k
i=0 λ

iAT
i ; by extension, if S is

any set of polynomials, then ST is the set
{
PT : P ∈ S

}
.

Proposition 3.12. L2(P ) = [L1(P
T )]T .

Proof.

L ∈ L1(P
T ) ⇔ L(λ) · (Λ⊗ In) = v ⊗ PT (λ)

⇔
(
ΛT ⊗ In

)
· LT (λ) = vT ⊗ P (λ) ⇔ LT ∈ L2(P ).

The analogue of Theorem 3.8 for pencils in L2(P ) involves left eigenvectors of
P (λ) rather than right eigenvectors. Since the definition of a left eigenvector of a
matrix polynomial does not seem to be completely standardized, we include here the
definition used in this paper.

Definition 3.13 (Left eigenvectors). A left eigenvector of an n × n matrix
polynomial P associated with a finite eigenvalue λ is a nonzero vector y ∈ C

n such
that y∗P (λ) = 0. A left eigenvector for P corresponding to the eigenvalue ∞ is a left
eigenvector for revP associated with the eigenvalue 0.

This definition differs from the one adopted in [5], although it is compatible
with the usual definition for left eigenvectors of a matrix [6], [19]. We have chosen
Definition 3.13 here because it is the one typically used in formulas for condition
numbers of eigenvalues, a topic investigated in [8]. The following result shows that
left eigenvectors of P are easily recovered from linearizations in L2(P ). The proof is
completely analogous to that given for Theorem 3.8.

Theorem 3.14 (Eigenvector Recovery Property for L2(P )). Let P (λ) be an n×n
matrix polynomial of degree k, and L(λ) any pencil in L2(P ) with nonzero left ansatz
vector w. Then y ∈ C

n is a left eigenvector for P (λ) with finite eigenvalue λ ∈ C if
and only if Λ⊗y is a left eigenvector for L(λ) with eigenvalue λ. If, in addition, P is
regular and L ∈ L2(P ) is a linearization for P , then every left eigenvector of L with
finite eigenvalue λ is of the form Λ⊗ y for some left eigenvector y of P .

Just as for Theorem 3.8, there is an analogous result for the eigenvalue ∞ that
can be found in section 4.

In this section we have seen that pencils in L1(P ) and L2(P ) closely resemble the
companion forms, and have eigenvectors that are simply related to those of P . Thus
one can reasonably view L1(P ) and L2(P ) as large classes of “potential” linearizations
for P (λ). So far, though, we have not shown any of these “good candidates” to actually
be linearizations. It is to this question that we turn next.

4. When is a pencil in L1(P ) a linearization? It is clear that not all pencils
in the spaces L1(P ) and L2(P ) are linearizations of P—consider, for example, any
pencil in L1(P ) with right ansatz vector v = 0. In this section we focus on L1(P )
and obtain criteria for deciding whether a pencil from L1(P ) is a linearization for
P or not. We show, for example, that for any given L ∈ L1(P ) there is typically
a condition (specific to L) on the coefficient matrices of P that must be satisfied in
order to guarantee that L is actually a linearization for P . Specific examples of such
“linearization conditions” can be found in section 4.1 and in the tables in section 5.
Analogues of all the results in this section also hold for L2(P ), with very similar
arguments.

We begin with a result concerning the special case of the right ansatz (3.4) con-
sidered in Corollary 3.7. Note that P is not assumed here to be regular.
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Theorem 4.1. Suppose that P (λ) =
∑k

i=0 λ
iAi with Ak �= 0 is an n× n matrix

polynomial, and L(λ) = λX +Y ∈ L1(P ) has nonzero right ansatz vector v = αe1, so
that

L(λ) · (Λ⊗ In) = αe1 ⊗ P (λ).(4.1)

Partition X and Y as in (3.8) so that

L(λ) = λX + Y = λ

[
αAk X12

0 −Z

]
+

[
Y11 αA0

Z 0

]
,(4.2)

where Z ∈ F
(k−1)n×(k−1)n. Then Z nonsingular implies that L(λ) is a strong lin-

earization of P (λ).
Proof. We show first that L(λ) is a linearization of P (λ). Begin the reduction of

L(λ) to diag(P (λ), I(k−1)n) using the unimodular matrix polynomials T (λ) and G(λ)
defined in (2.5). In the product L(λ)G(λ), clearly the first k − 1 block-columns are
the same as those of L(λ); because the last block-column of G(λ) is Λ⊗I, we see from
(4.1) that the last block-column of L(λ)G(λ) is αe1 ⊗ P (λ). Partitioning Z in (4.2)
into block columns [Z1 Z2 · · · Zk−1], where Zi ∈ F

(k−1)n×n, we thus obtain

L(λ)G(λ) =

[
∗ ∗ . . . ∗ ∗
Z1 (Z2 − λZ1) . . . (Zk−1 − λZk−2) −λZk−1

]
G(λ)

=

[
∗ ∗ . . . ∗ αP (λ)

Z1 (Z2 − λZ1) . . . (Zk−1 − λZk−2) 0

]
.

Further transformation by block-column operations yields

L(λ)T (λ) =L(λ)G(λ)

⎡
⎢⎣

I λI
I

I . . .
I

⎤
⎥⎦

⎡
⎢⎣

I
I λI

I . . .
I

⎤
⎥⎦· · ·

⎡
⎢⎣

I
. . .

I λI

I
I

⎤
⎥⎦

︸ ︷︷ ︸
=T (λ)

=

⎡
⎣ ∗ αP (λ)

Z 0

⎤
⎦.

Scaling and block-column permutations on L(λ)T (λ) show that there exists a uni-
modular matrix polynomial F (λ) such that

L(λ)F (λ) =

[
P (λ) W (λ)

0 Z

]

for some matrix polynomial W (λ). (Note that we have reached this point without
any assumptions about Z.) Now if Z is nonsingular, then L(λ) is a linearization for
P (λ), since

[
I −W (λ)Z−1

0 Z−1

]
L(λ)F (λ) =

[
P (λ) 0

0 I(k−1)n

]
.

To show that L(λ) is also a strong linearization for P (λ), it remains to show that
revL(λ) = λY + X is a linearization for revP (λ). Now it would be nice if revL(λ)
were a pencil in L1(revP ), but it is not; however, a small modification of revL(λ)
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is in L1(revP ). Observe that λk−1 · Λ(1/λ) = [1, λ, . . . , λk−2, λk−1]T = RkΛ, where
Rk denotes the k × k reverse identity matrix. Thus replacing λ by 1/λ in (4.1) and
multiplying both sides by λk yields

λL(1/λ) ·
(
λk−1Λ(1/λ) ⊗ I

)
= αe1 ⊗ λkP (1/λ),

or equivalently, revL(λ)·
(
(RkΛ)⊗I

)
= αe1⊗revP (λ). Thus, L̂(λ) := revL(λ)·(Rk⊗I)

satisfies

L̂(λ) · (Λ⊗ I) = αe1 ⊗ revP (λ),(4.3)

and so L̂ ∈ L1(revP ). (Observe that L̂(λ) is just revL(λ) = λY + X with the block-

columns of Y and X arranged in reverse order.) Since L̂ and revL are equivalent

pencils, the proof will be complete once we show that λX̂+Ŷ := L̂(λ) is a linearization

for revP (λ). However, X̂ = Y · (Rk ⊗ I) and Ŷ = X · (Rk ⊗ I), and hence from (4.2)
it follows that

X̂ =

[
αA0 X̂12

0 −Ẑ

]
and Ŷ =

[
Ŷ11 αAk

Ẑ 0

]
,

where Ẑ = −Z · (Rk−1⊗ I). Clearly Ẑ is nonsingular if Z is, and so by the part of the

theorem that has already been proved, L̂ (and therefore also revL) is a linearization
for revP (λ).

Remark 4.2. The fact (first proved in [4]) that the first companion form of any
polynomial is always a strong linearization is a special case of Theorem 4.1.

When a matrix polynomial P (λ) is regular, then it is easy to see from Defini-
tion 2.4 that any linearization for P (λ) must also be regular. The next result shows
something rather surprising: when a pencil L is in L1(P ) this minimal necessary con-
dition of regularity is actually sufficient to guarantee that L is a linearization for P .
This result serves to emphasize just how close a pencil is to being a linearization for
P , even a strong linearization for P , once it satisfies the ansatz (3.4).

Theorem 4.3 (Strong Linearization Theorem). Let P (λ) be a regular matrix
polynomial, and let L(λ) ∈ L1(P ). Then the following statements are equivalent:

(i) L(λ) is a linearization for P (λ).
(ii) L(λ) is a regular pencil.
(iii) L(λ) is a strong linearization for P (λ).
Proof. “(i) ⇒ (ii)”: If L(λ) is a linearization for P (λ), then there exist unimodular

matrix polynomials E(λ), F (λ) such that

E(λ)L(λ)F (λ) =

[
P (λ) 0

0 I(k−1)n

]
.

Thus the regularity of P (λ) implies the regularity of L(λ).
“(ii) ⇒ (iii)”: Since L(λ) ∈ L1(P ), we know that L(λ) · (Λ ⊗ In) = v ⊗ P (λ)

for some v ∈ F
k. However, L(λ) is regular, and so v is nonzero. Let M ∈ F

k×k

be any nonsingular matrix such that Mv = αe1. Then the regular pencil L̃(λ) :=
(M ⊗ In) · L(λ) is in L1(P ) with right ansatz vector αe1, since

L̃(λ)(Λ⊗ In) = (M ⊗ In)L(λ)(Λ⊗ In) = (M ⊗ In)(v ⊗ P (λ))

= Mv ⊗ P (λ)

= αe1 ⊗ P (λ).
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Hence by Corollary 3.7 the matrices X̃ and Ỹ in L̃(λ) := λX̃ + Ỹ have the forms

X̃ =

n (k−1)n⎡
⎢⎢⎣

αAk X̃12

0 −Z̃

⎤
⎥⎥⎦

n

(k−1)n
and Ỹ =

(k−1)n n⎡
⎢⎢⎣

Ỹ11 αA0

Z̃ 0

⎤
⎥⎥⎦

n

(k−1)n
.

Now if Z̃ was singular, there would exist a nonzero vector w ∈ F
(k−1)n such that

wT Z̃ = 0. But this would imply that

[
0 wT

]
(λX̃ + Ỹ ) = 0 for all λ ∈ F,

contradicting the regularity of L̃(λ). Thus Z̃ is nonsingular, and so by Theorem 4.1

we know that L̃(λ), and hence also L(λ), is a strong linearization for P (λ).
“(iii) ⇒ (i)” is trivial.
Now recall from Definitions 2.3 and 3.13 that a vector x ∈ C

n is a right (left)
eigenvector for a polynomial P with eigenvalue ∞ if and only if x is a right (left)
eigenvector for revP with eigenvalue 0. Translating statements about infinite eigen-
values to ones about zero eigenvalues allows us to use Theorems 3.8, 3.14, and 4.3 to
extend the eigenvector recovery properties of L1(P ) and L2(P ) to the eigenvalue ∞.

Theorem 4.4 (Eigenvector Recovery at ∞). Let P (λ) be an n× n matrix poly-
nomial of degree k, and L(λ) any pencil in L1(P ) (resp., L2(P )) with nonzero right
(left ) ansatz vector v. Then x ∈ C

n is a right (left ) eigenvector for P (λ) with eigen-
value ∞ if and only if e1 ⊗x is a right (left ) eigenvector for L(λ) with eigenvalue ∞.
If, in addition, P is regular and L ∈ L1(P ) (resp., L2(P )) is a linearization for P ,
then every right (left ) eigenvector of L with eigenvalue ∞ is of the form e1 ⊗ x for
some right (left ) eigenvector x of P with eigenvalue ∞.

Proof. We give the proof only for right eigenvectors of L ∈ L1(P ) here. The
argument for recovery of left eigenvectors of L ∈ L2(P ) is essentially the same, given
the analogues of Theorems 4.1 and 4.3 for L2(P ).

For any L(λ) define L̂(λ) := revL(λ) · (Rk ⊗ I). Then the reasoning used in

Theorem 4.1 to obtain (4.3) shows that L ∈ L1(P ) ⇒ L̂ ∈ L1(revP ), with the same
nonzero right ansatz vector v. By Theorem 3.8 we know that x is a right eigenvector
for revP with eigenvalue 0 if and only if Λ ⊗ x = ek ⊗ x is a right eigenvector for
L̂ with eigenvalue 0. However, ek ⊗ x is a right eigenvector for L̂ if and only if
e1⊗x = (Rk⊗ I)(ek⊗x) is a right eigenvector for revL, both with eigenvalue 0. This
establishes the first part of the theorem.

If P is regular and L ∈ L1(P ) is a linearization for P , then by Theorem 4.3

L̂ ∈ L1(revP ) is a linearization for revP . Theorem 3.8 then implies that every right

eigenvector of L̂ with eigenvalue 0 is of the form ek ⊗x, where x is a right eigenvector
of revP with eigenvalue 0; equivalently every right eigenvector of revL with eigenvalue
0 is of the form e1 ⊗ x for some right eigenvector x of revP with eigenvalue 0. This
establishes the second part of the theorem.

4.1. Linearization conditions. A useful by-product of the proof of Theo-
rem 4.3 is a simple procedure for generating a symbolic “linearization condition”
for any given pencil L ∈ L1(P ), i.e., a necessary and sufficient condition (in terms of
the data in P ) for L to be a linearization for P . We describe this procedure and then
illustrate with some examples.
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Procedure to determine the linearization condition for a pencil in

L1(P ):
(1) Suppose that P (λ) is a regular polynomial and L(λ) = λX + Y ∈ L1(P ) has

nonzero right ansatz vector v ∈ F
k, i.e., L(λ) · (Λ⊗ In) = v ⊗ P (λ).

(2) Select any nonsingular matrix M such that Mv = αe1.
(3) Apply the corresponding block-transformation M ⊗ In to L(λ) to produce

L̃(λ) := (M ⊗ In)L(λ), which must be of the form

L̃(λ) = λX̃ + Ỹ = λ

[
X̃11 X̃12

0 −Z

]
+

[
Ỹ11 Ỹ12

Z 0

]
,(4.4)

where X̃11 and Ỹ12 are n × n. Since only Z is of interest here, it suffices to
form just Ỹ = (M ⊗ In)Y .

(4) Extract detZ �= 0 , the linearization condition for L(λ).

Note that this procedure can readily be implemented as a numerical algorithm to check
if a pencil in L1(P ) is a linearization: choose M to be unitary, e.g., a Householder
reflector, then use a rank revealing factorization such as the QR-decomposition with
column pivoting or the singular value decomposition to check if Z is nonsingular.

Example 4.5. Consider the general quadratic polynomial P (λ) = λ2A + λB + C
(assumed to be regular ) and the following pencils in L1(P ):

L1(λ) = λ

[
A B + C
A 2B −A

]
+

[
−C C

A−B C

]
, L2(λ) = λ

[
0 −B
A B − C

]
+

[
B 0
C C

]
.

Since
[
A B + C
A 2B −A

]
�→

[
−C C

A−B C

]
=

[
A B C
A B C

]
,

we have L1(λ) ∈ L1(P ) with right ansatz vector v =
[

1 1
]T

. Subtracting the first
entry from the second reduces v to e1, and the corresponding block-row-operation on
Y yields

Ỹ =

[
−C C

A−B + C 0

]
.

Hence Z = A − B + C, and det(A − B + C) = detP (−1) �= 0 is the linearization
condition. Thus L1(λ) is a linearization for P if and only if λ = −1 is not an eigenvalue
of P . On the other hand, for L2(λ) we have

[
0 −B
A B − C

]
�→

[
B 0
C C

]
=

[
0 0 0
A B C

]
,

and so L2(λ) ∈ L1(P ) with v = [0 1]T . Permuting the entries of v gives e1, and
applying the analogous block-row-permutation to Y yields

Ỹ =

[
C C
B 0

]
.

Thus Z = Ỹ21 = B, and so detB �= 0 is the linearization condition for L2(λ).



VECTOR SPACES OF LINEARIZATIONS 985

The next example shows that the linearization condition for a pencil in L1(P )
may depend on some nonlinear combination of the data in P , and thus its meaning
may not be so easy to interpret.

Example 4.6. Consider the general cubic polynomial P (λ) = λ3A+λ2B+λC+D
(again assumed to be regular ) and the pencil

L3(λ) = λX + Y = λ

⎡
⎣

A 0 2C
−2A −B − C D − 4C

0 A −I

⎤
⎦ +

⎡
⎣

B −C D
C −B 2C −D −2D
−A I 0

⎤
⎦

in L1(P ). Since X �→Y =
[
1 −2 0

]T⊗[A B C D
]
, we have v =

[
1 −2 0

]T
.

Adding twice the first block-row of Y to the second block-row of Y gives

Z =

[
B + C −D
−A I

]
,

and hence the linearization condition detZ = det(B +C −DA) �= 0. (Recall that for
n × n blocks W,X, Y, Z with Y Z = ZY , we have det [W X

Y Z ] = det(WZ −XY ). See
[11]. )

We have seen in this section that each pencil in L1(P ) has its own particular
condition on the coefficient matrices of P that must be satisfied in order for the
pencil to be a linearization for P . From this point of view it seems conceivable that
there could be polynomials P for which very few of the pencils in L1(P ) are actually
linearizations for P . However, the following result shows that this never happens;
when P is regular the “bad” pencils in L1(P ) always form a very sparse subset of
L1(P ).

Theorem 4.7 (Linearizations Are Generic in L1(P )). For any regular n × n
matrix polynomial P (λ) of degree k, almost every pencil in L1(P ) is a linearization
for P (λ). (Here by “almost every” we mean for all but a closed, nowhere dense set of
measure zero in L1(P ). )

Proof. Let d = dim L1(P ) = k + (k − 1)kn2, and let L1(λ), L2(λ), . . . , Ld(λ) be
any fixed basis for L1(P ). Since any L(λ) ∈ L1(P ) can be uniquely expressed as a
linear combination

L(λ) = β1L1(λ) + β2L2(λ) + · · · + βdLd(λ),

we can view detL(λ) as a polynomial in λ whose coefficients c0, c1, c2, . . . , ckn are each
polynomial functions of β1, . . . , βd, that is, ci = ci(β1, . . . , βd).

Now by Theorem 4.3 we know that L(λ) ∈ L1(P ) fails to be a linearization for
P (λ) if and only if detL(λ) ≡ 0, equivalently if all the coefficients ci are zero. Thus
the subset of pencils in L1(P ) that are not linearizations for P (λ) can be characterized
as the common zero set Z of the polynomials

{
ci(β1, β2, . . . , βd) : 0 ≤ i ≤ kn

}
, i.e.,

as an algebraic subset of F
d.

Since proper algebraic subsets of F
d are well known to be closed, nowhere dense

subsets of measure zero, the proof will be complete once we show that Z is a proper
subset of F

d, or equivalently, that there is a pencil in L1(P ) that is a linearization for
P . But this is immediate: the first companion form C1(λ) for P (λ) is in L1(P ) and
is always a linearization for P (see [5] or Remark 4.2).

Although L1(P ) and L2(P ) contain a large supply of linearizations for P , there do
exist simple linearizations for P that are neither in L1(P ) nor in L2(P ). We illustrate
this with a recent example from [1].
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Example 4.8. For the cubic matrix polynomial P (λ) = λ3A3 +λ2A2 +λA1 +A0,
the pencil

L(λ) = λ

⎡
⎣

0 A3 0
I A2 0
0 0 I

⎤
⎦ +

⎡
⎣

−I 0 0
0 A1 A0

0 −I 0

⎤
⎦

is shown in [1] to be a linearization for P . Using shifted sums, it is easy to see that
L(λ) is in neither L1(P ) nor L2(P ).

4.2. Another view of L1(P ) and L2(P ). In section 3 we defined the pencil
space L1(P ) by generalizing one particular property of the first companion form C1(λ)
of P . A different connection between L1(P ) and C1(λ) can be established, which gives
an alternative insight into why the pencils in L1(P ) retain so many of the attractive
features of C1(λ). Using the first three steps of the procedure in section 4.1, together
with the characterization of L1(P )-pencils given in Theorem 3.5 and Corollary 3.7,
one can show that any L(λ) ∈ L1(P ) can be factored (non-uniquely) in the form

L(λ) = (K ⊗ In)

[
αIn U

0 −Z

]
C1(λ),(4.5)

where Z ∈ F
(k−1)n×(k−1)n is the same as the block Z in Corollary 3.7 and (4.4), and

K ∈ F
k×k is nonsingular. Note that the scalar α ∈ F is zero if and only if the right

ansatz vector v of L(λ) is zero. This factorization gives another reason why the right
eigenvectors of pencils in L1(P ) have the same Kronecker product structure as those
of C1(λ), and why pencils in L1(P ) are either strong linearizations of P (like C1(λ))
or singular pencils, depending on the nonsingularity or singularity of the block Z and
the scalar α.

In a completely analogous fashion one can factor any L(λ) ∈ L2(P ) as

L(λ) = C2(λ)

[
βIn 0

T −V

]
(H ⊗ In),(4.6)

thus providing a different insight into the left eigenvector structure of pencils in L2(P ),
and the fact that almost all pencils in L2(P ) are strong linearizations for P (like
C2(λ)).

On the other hand, certain aspects of L1(P ) and L2(P ) are less apparent from
the point of view of these factorizations. For example, the fact that L1(P ) and L2(P )
are vector spaces is no longer so obvious. In addition, the criterion for a pencil to
be an element of L1(P ) or L2(P ) is now implicit rather than explicit and is therefore
rather harder to verify.

We are also interested in the possibility of the existence of pencils that are si-
multaneously in L1(P ) and L2(P ). The factored forms (4.5) and (4.6) might make
it seem rather unlikely that there could be any nontrivial pencils in this intersection.
However, in the next section we will see (using shifted sums) that this is an erroneous
impression.

Finally, it is worth pointing out that the ansatz equations (3.4) and (3.9) enjoy
the advantage of being identities in the variable λ, and so can be treated analytically
as well as algebraically. This property is exploited in the analysis of the conditioning
of eigenvalues of linearizations [8].
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5. Double ansatz spaces. So far we have constructed two large vector spaces
of pencils L1(P ) and L2(P ) for any given matrix polynomial P (λ) and shown that
when P is regular, almost all of these pencils are linearizations for P . Indeed, these
spaces are so large that for any choice of (right or left) ansatz vector there are many
degrees of freedom available for choosing a potential linearization in L1(P ) or L2(P )
with the given ansatz vector (see Theorem 3.5). This suggests that it might be
possible to identify special subspaces of pencils in L1(P ) or L2(P ) with additional
useful properties.

Recall that one of the key advantages of linearizations in L1(P ) is that right
eigenvectors of P are easily recovered from right eigenvectors of the linearization.
L2(P ) offers a similar advantage for recovery of left eigenvectors. Thus it seems
natural to consider pencils in the intersection of L1(P ) and L2(P ); for these pencils
we can simply relate both the right and left eigenvectors of the pencil to those of the
original polynomial P . This simultaneous eigenvector recovery property is particularly
important in the investigation of the conditioning of linearizations [8]. Therefore we
make the following definition.

Definition 5.1 (Double ansatz spaces). For any n× n matrix polynomial P of
degree k, the double ansatz space of P is

DL(P ) := L1(P ) ∩ L2(P ),

i.e., the set of kn× kn pencils L(λ) that simultaneously satisfy

a “right ansatz” L(λ) · (Λ⊗ I) = v ⊗ P (λ) for some v ∈ F
k,(5.1)

and a “left ansatz” (ΛT ⊗ I) · L(λ) = wT ⊗ P (λ) for some w ∈ F
k.(5.2)

The rest of this paper is devoted to developing some of the basic properties of
DL(P )-spaces, additional aspects of which are explored in [7], [8], [12]. In this section
we characterize DL(P ) and show how all the pencils in DL(P ) may be constructed.
In section 6 we reconsider the “linearization condition” discussed in section 4. As
illustrated by Example 4.6, the intrinsic meaning of this condition can sometimes be
rather obscure. However, we will see that for pencils in DL(P ) this condition can
always be expressed in a way that makes its meaning transparent.

A priori, the right and left ansatz vectors of a pencil in DL(P ) may be any pair
v, w ∈ F

k. However, it turns out that only pairs with v = w can ever be realized
by a DL(P )-pencil. To show this, we first need to determine when the equations
X �→Y = S and X �↓ Y = T can be solved simultaneously for X and Y .

Proposition 5.2. Let S = [Sij ] and T = [Tji] be block matrices of size kn ×
(k + 1)n and (k + 1)n × kn, respectively, where Sij , Tji ∈ F

n×n for i = 1, . . . , k and
j = 1, . . . , k + 1. Then there exist block k × k matrices X = [Xij ], Y = [Yij ] with
blocks Xij , Yij ∈ F

n×n for i, j = 1, . . . , k such that

X �→Y = S and X �↓ Y = T(5.3)

if and only if for j = 1, . . . , k the blocks of S and T satisfy the compatibility conditions

Tjj +

j−1∑
μ=1

(Tμ,2j−μ − Sμ,2j−μ) = Sjj +

j−1∑
μ=1

(S2j−μ,μ − T2j−μ,μ)(5.4)

and

j∑
μ=1

(Sμ,2j+1−μ − Tμ,2j+1−μ) =

j∑
μ=1

(T2j+1−μ,μ − S2j+1−μ,μ).(5.5)
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(Here, Sν,η = 0 = Tη,ν whenever (ν, η) �∈ {1, . . . , k} × {1, . . . , k + 1}.) If (5.3) has a
solution, then X and Y are uniquely determined by the formulas

Xij = Tij +

i−1∑
μ=1

(Tμ,j+i−μ − Sμ,j+i−μ), Yij =

i∑
μ=1

(Sμ,j+i+1−μ − Tμ,j+i+1−μ),(5.6)

Xji = Sji +

i−1∑
μ=1

(Sj+i−μ,μ − Tj+i−μ,μ), Yji =

i∑
μ=1

(Tj+i+1−μ,μ − Sj+i+1−μ,μ),(5.7)

for i, j = 1, . . . , k and j ≥ i.
Proof. Due to its technical nature, the proof is provided in Appendix A.
We are now in a position to show not only that any DL(P )-pencil has its right

ansatz vector equal to its left ansatz vector, but also that every v ∈ F
k is actually

realized as the ansatz vector of a pencil in DL(P ), indeed of a unique pencil in DL(P ).
Note that this result does not require any regularity assumption on P .

Theorem 5.3. Let P (λ) =
∑k

i=0 λ
iAi be a matrix polynomial with coefficients

in F
n×n and Ak �= 0. Then for vectors v = (v1, . . . , vk)

T and w = (w1, . . . , wk)
T in

F
k there exists a kn× kn matrix pencil L(λ) = λX + Y that simultaneously satisfies

L(λ) · (Λ⊗ I) = v ⊗ P (λ) and (ΛT ⊗ I) · L(λ) = wT ⊗ P (λ)(5.8)

if and only if v = w. In this case, if X = [Xij ] and Y = [Yij ] are written as block
matrices with n× n blocks Xij and Yij, then X and Y are uniquely determined by v.
In particular, setting v0 := 0, vμ := 0, and Aμ := 0 ∈ F

n×n for μ < 0 or μ > k, the
blocks of X and Y satisfy the formulas

Xij = vmax(i,j)Ak+1−min(i,j) +

min(i−1,j−1)∑
μ=1

(vj+i−μAk+1−μ − vμAk+1−j−i+μ),(5.9)

Yij =

min(i,j)∑
μ=1

(vμAk−j−i+μ − vj+i+1−μAk+1−μ), i, j = 1, . . . , k.(5.10)

Proof. See Appendix B for the proof.
In light of the results in Theorem 5.3, we no longer need to refer separately to the

right and left ansatz vectors of a pencil in DL(P ). It suffices to say the ansatz vector
v of L ∈ DL(P ), and it is to be understood that v plays both roles.

We can also concisely summarize the result of Theorem 5.3 in a slightly different
way. Viewing DL(P ) as a special subspace of L1(P ), consider the multiplication map
M (introduced in the proof of Theorem 3.5) restricted to the subspace DL(P ). Then
the following is an immediate corollary of Theorem 5.3.

Corollary 5.4. For any polynomial P , the map DL(P )
M−→ VP is an isomor-

phism.
Thus once an ansatz vector v has been chosen, a pencil from DL(P ) is uniquely

determined and can be computed using the formulas of Theorem 5.3.
Another significant property of DL(P ) is worth mentioning here. A matrix poly-

nomial is symmetric when all its coefficient matrices are symmetric. For symmetric P ,
a simple argument shows that every pencil in DL(P ) is also symmetric: L ∈ DL(P )
with ansatz vector v implies that LT is also in DL(P ) with the same ansatz vector v,
and then L = LT follows from the uniqueness statement of Theorem 5.3.
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Table 1

Some pencils in DL(P ) for the general quadratic P (λ) = λ2A+λB+C. Linearization condition
found using procedure in section 4.1.

v L(λ) ∈ DL(P ) for given v Linearization condition

[
1
0

]
λ

[
A 0
0 −C

]
+

[
B C
C 0

]
det(C) �= 0

[
0
1

]
λ

[
0 A
A B

]
+

[
−A 0
0 C

]
det(A) �= 0

[
1
1

]
λ

[
A A
A B − C

]
+

[
B −A C

C C

]
det(A−B + C) = det[P (−1)] �= 0

[
α
β

]
λ

[
αA βA
βA βB − αC

]
+

[
αB − βA αC

αC βC

]
det(β2A− αβB + α2C) �= 0 ;

equivalently, det
[
P (− β

α
)
]
�= 0

Table 2

Some pencils in DL(P ) for the general cubic P (λ) = λ3A + λ2B + λC + D. Linearization
condition found using procedure in section 4.1.

v L(λ) ∈ DL(P ) for given v Linearization condition

⎡
⎣
1
0
0

⎤
⎦ λ

⎡
⎣
A 0 0
0 −C −D
0 −D 0

⎤
⎦ +

⎡
⎣
B C D
C D 0
D 0 0

⎤
⎦ detD �= 0

⎡
⎣
0
1
0

⎤
⎦ λ

⎡
⎣

0 A 0
A B 0
0 0 −D

⎤
⎦ +

⎡
⎣
−A 0 0
0 C D
0 D 0

⎤
⎦ detA · detD �= 0

⎡
⎣
0
0
1

⎤
⎦ λ

⎡
⎣

0 0 A
0 A B
A B C

⎤
⎦ +

⎡
⎣

0 −A 0
−A −B 0
0 0 D

⎤
⎦ detA �= 0

⎡
⎣

1
0
−1

⎤
⎦ λ

⎡
⎣

A 0 −A
0 −A− C −B −D

−A −B −D −C

⎤
⎦ +

⎡
⎣

B A + C D
A + C B + D 0

D 0 −D

⎤
⎦ det

[
A+C B+D
B+D A+C

]
�= 0

⎡
⎣
1
1
1

⎤
⎦ λ

⎡
⎣
A A A
A A + B − C B −D
A B −D C −D

⎤
⎦ +

⎡
⎣
B −A C −A D
C −A C + D −B D

D D D

⎤
⎦ det

[
C−B A−B+D

A−B+D A−C+D

]
�= 0

Examples of pencils in DL(P ) for k = 2 and k = 3 may be found in Tables 1
and 2. Using shifted sums, one easily verifies that these examples are indeed in both
L1(P ) and L2(P ), with the same right and left ansatz vector v. Note that if A, B,
C, and D are symmetric, then so are all the pencils in these examples. Symmetric
linearizations are studied in more detail in [7].

Perhaps the most striking property of the space DL(P ) is that the linearization
condition for each pencil in DL(P ) can be directly linked to its ansatz vector v, as
will be seen in the next section.
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6. The eigenvalue exclusion theorem. We now establish a connection be-
tween the linearization condition of any pencil L ∈ DL(P ) and the ansatz vector v
that defines L. For example, consider the cubic polynomial P (λ) = λ3A+λ2B+λC+D
and the pencil

L(λ) = λ

⎡
⎣

A 0 −A
0 −A− C −B −D

−A −B −D −C

⎤
⎦ +

⎡
⎣

B A + C D
A + C B + D 0
D 0 −D

⎤
⎦

in DL(P ) with ansatz vector v =
[

1 0 −1
]T

. Using the procedure in section 4.1,
one easily finds that

det

[
A + C B + D
B + D A + C

]
�= 0(6.1)

is the linearization condition for L(λ). (See also Table 2.) Now it is not immediately
clear what the meaning of this condition is, or even whether it has any intrinsic
meaning at all. However, the identity

[
0 I
I I

] [
A + C B + D
B + D A + C

] [
I 0
−I I

]

=

[
−A + B − C + D A + C

0 A + B + C + D

]
=

[
P (−1) A + C

0 P (+1)

]

shows that condition (6.1) is equivalent to saying that neither −1 nor +1 is an eigen-
value of the matrix polynomial P (λ). Thus in this example we can reinterpret the
linearization condition from section 4.1 as an “eigenvalue exclusion” condition.

Why do these particular eigenvalues need to be excluded? And what role, if any,

does the ansatz vector v =
[
1 0 − 1

]T
play here? Observe that if we interpret

the components of v as the coefficients of a scalar polynomial, then we obtain x2 − 1,
whose roots are exactly the eigenvalues that have to be excluded in order to guarantee
that L(λ) is a linearization for P (λ). The goal of this section is to show that this is
not merely a coincidence, but rather an instance of a general phenomenon described
by the “eigenvalue exclusion theorem.”

The main technical result needed to prove this theorem is an explicit formula
for the determinant of a pencil L(λ) in DL(P ). To aid in the development of this
formula we first introduce some notation to be used throughout this section. As before,
P (λ) =

∑k
i=0 λ

iAi is an n×n matrix polynomial with nonzero leading coefficient Ak.
The pencil L(λ) ∈ DL(P ) under consideration has ansatz vector v = [v1, v2, . . . , vk]

T ,
with an associated scalar polynomial defined as follows.

Definition 6.1 (v-polynomial). With a vector v = [v1, v2, . . . , vk]
T ∈ F

k asso-
ciate the scalar polynomial

p(x ; v) = v1x
k−1 + v2x

k−2 + · · · + vk−1x + vk,

referred to as the “ v-polynomial” of the vector v. We adopt the convention that
p(x ; v) has a root at ∞ whenever v1 = 0.

We also need to introduce the notion of the “Horner shifts” of a polynomial.
Definition 6.2 (Horner shifts). For any polynomial p(x) = anx

n + an−1x
n−1 +

· · · + a1x + a0 and 0 ≤ � ≤ n , the “ degree � Horner shift of p(x)” is p�(x) :=
anx

� + an−1x
�−1 + · · · + an−�+1x + an−� .
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Remark 6.3. The polynomials in Definition 6.2 satisfy the recurrence relation

p0(x) = an,

p�+1(x) = xp�(x) + an−�−1 for 0 ≤ � ≤ n− 1,

pn(x) = p(x),

and are precisely the polynomials appearing in Horner’s method for evaluating the
polynomial p(x).

We have seen in Theorem 5.3 that L(λ) ∈ DL(P ) is uniquely determined by the
vector v and the polynomial P , so it is not surprising that one can also specify the
columns of L(λ) in terms of this data. This is done in the next lemma, where a
block-column–wise description of L(λ) is given. In this description we make extensive
use of the standard k × k nilpotent Jordan block N from (2.4) in the matrix N ⊗ I,
employed here as a block-shift operator.

Lemma 6.4 (Block-column structure of pencils in DL(P )). Suppose that L(λ) =
λX + Y is in DL(P ) with ansatz vector v. Partition X and Y as

X =
[
X1 X2 · · · Xk

]
and Y =

[
Y1 · · · Yk−1 Yk

]
,

where X�, Y� ∈ F
nk×n, � = 1, . . . , k. Then with Y0 := 0, the block-columns Y� satisfy

the recurrence

Y� = (N ⊗ I)(Y�−1 − v ⊗Ak−�+1) + v�

⎡
⎢⎣
Ak−1

...
A0

⎤
⎥⎦, 1 ≤ � ≤ k − 1,(6.2)

Yk = v ⊗A0.(6.3)

The block-columns of X are determined by X� = −Y�−1 +v⊗Ak−�+1 for 1 ≤ � ≤ k,
and the pencil L(λ) has the columnwise description

L(λ) =

[
Y1 Y2 − λY1 · · · Yk−1 − λYk−2 v ⊗A0 − λYk−1

+λv ⊗Ak +λv ⊗Ak−1 +λv ⊗A2 +λv ⊗A1

]
.(6.4)

Proof. Let Y0 = [Yi0] := 0, X� = [Xi�], and Y� = [Yi�] for n×n blocks Yi0, Xi�, Yi�,
where i = 1, . . . , k. Then we obtain from (5.10) for 1 ≤ i < � ≤ k − 1 that

Yi� =

i∑
μ=1

(vμAk−�−i+μ − v�+i+1−μAk+1−μ)

=

i+1∑
μ=1

(vμAk−�−i+μ − v�+i+1−μAk+1−μ) − vi+1Ak+1−� + v�Ak−i

= Yi+1,�−1 − vi+1Ak+1−� + v�Ak−i.

Analogously, we obtain for 1 ≤ � ≤ i ≤ k − 1 that

Yi� =

�∑
μ=1

(vμAk−�−i+μ − v�+i+1−μAk+1−μ)

=

�−1∑
μ=1

(vμAk−�−i+μ − v�+i+1−μAk+1−μ) + v�Ak−i − vi+1Ak+1−�

= Yi+1,�−1 − vi+1Ak+1−� + v�Ak−i.
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Since formula (5.10) also implies Yk� = v�A0, we obtain

Y� =

⎡
⎢⎢⎣

Y1�
...

Yk−1,�

Yk�

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Y2,�−1
...

Yk,�−1

0

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

v2Ak−�+1
...

vkAk−�+1

0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

v�Ak
...

v�A1

v�A0

⎤
⎥⎥⎦

= (N ⊗ I)(Y�−1 − v ⊗Ak−�+1) + v�

⎡
⎢⎣
Ak−1

...
A0

⎤
⎥⎦

for � = 1, . . . , k−1. Noting that (3.6) implies Yk = v⊗A0 and X�+Y�−1 = v⊗Ak−�+1

for � = 1, . . . , k, we immediately obtain (6.4).
Using (6.2), we can now develop a concise formula describing the action of the

block-row ΛT (x)⊗I on the block-column Y� , where x is a scalar variable taking values
in C and ΛT (x) :=

[
xk−1 xk−2 . . . x 1

]
. This formula will be used repeatedly

and plays a central role in the proof of Theorem 6.6. (Note that ΛT (x)v is the same
as the scalar v-polynomial p(x ; v).)

Lemma 6.5. Suppose that L(λ) ∈ DL(P ) with ansatz vector v, and p(x ; v) is the
v-polynomial of v. Let Y� denote the �th block column of Y in L(λ) = λX +Y , where
1 ≤ � ≤ k − 1. Then

(
ΛT (x) ⊗ I

)
Y� = p�−1(x ; v)P (x) − x p(x ; v)P�−1(x),(6.5)

where p�−1(x ; v) and P�−1(λ) are the degree �− 1 Horner shifts of p(x ; v) and P (λ),
respectively.

Proof. The proof will proceed by induction on � . First note that for the k × k
nilpotent Jordan block N , it is easy to check that ΛT (x)N =

[
0 xk−1 · · · x

]
=

xΛT (x) − xkeT1 .

� = 1 : Using (6.2), we have

(
ΛT (x) ⊗ I

)
Y1 =

(
ΛT (x) ⊗ I

)
⎛
⎜⎝v1

⎡
⎢⎣
Ak−1

...
A0

⎤
⎥⎦− (N ⊗ I)(v ⊗Ak)

⎞
⎟⎠.

Simplifying this gives

(
ΛT (x) ⊗ I

)
Y1 = v1

(
P (x) − xkAk

)
−
(
ΛT (x)N ⊗ I

)
(v ⊗Ak)

= v1P (x) − v1x
kAk −

((
xΛT (x) − xkeT1

)
v ⊗Ak

)

= p0(x ; v)P (x) − v1x
kAk −

(
xΛT (x)v

)
Ak +

(
xkeT1 v

)
Ak

= p0(x ; v)P (x) − v1x
kAk − x p(x ; v)Ak + v1x

kAk

= p0(x ; v)P (x) − x p(x ; v)P0(x),

which establishes (6.5) for � = 1. The induction hypothesis is now the following:

(
ΛT (x) ⊗ I

)
Y�−1 = p�−2(x ; v)P (x) − x p(x ; v)P�−2(x).(6.6)
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� − 1 ⇒ � : Starting again with (6.2), we have

(
ΛT (x) ⊗ I

)
Y� =

(
ΛT (x) ⊗ I

)
⎛
⎜⎝(N ⊗ I)(Y�−1 − v ⊗Ak−�+1) + v�

⎡
⎢⎣
Ak−1

...
A0

⎤
⎥⎦

⎞
⎟⎠

=
(
ΛT (x)N ⊗ I

)
(Y�−1 − v ⊗Ak−�+1) + v�

(
ΛT (x) ⊗ I

)
⎡
⎢⎣
Ak−1

...
A0

⎤
⎥⎦

=
((
xΛT (x) − xkeT1

)
⊗ I

)
(Y�−1 − v ⊗Ak−�+1) + v�

(
P (x) − xkAk

)

= x
(
ΛT (x) ⊗ I

)
Y�−1 − xk

(
eT1 ⊗ I

)
Y�−1 −

(
xΛT (x)v

)
Ak−�+1

+ v1x
kAk−�+1 + v� P (x) − v� x

kAk.

Note that
(
eT1 ⊗I

)
Y�−1 is the topmost block in Y�−1 and is equal to v1Ak−�+1−v�Ak,

by (5.10). Finally, invoking the induction hypothesis (6.6) gives

(
ΛT (x) ⊗ I

)
Y� = x p�−2(x ; v)P (x) − x2 p(x ; v)P�−2(x) − v1x

kAk−�+1 + v� x
kAk

− x p(x ; v)Ak−�+1 + v1x
kAk−�+1 + v� P (x) − v� x

kAk

= (x p�−2(x ; v) + v�)P (x) − x p(x ; v) (xP�−2(x) + Ak−�+1)

= p�−1(x ; v)P (x) − x p(x ; v)P�−1(x).

This completes the proof.
Theorem 6.6 (Determinant formula for pencils in DL(P )). Suppose that L(λ)

is in DL(P ) with nonzero ansatz vector v = [v1, v2, . . . , vk]
T . Assume that v has m

leading zeroes with 0 ≤ m ≤ k − 1, so that v1 = v2 = · · · = vm = 0, vm+1 �= 0 is
the first nonzero coefficient of p(x ; v), and p(x ; v) has k −m − 1 finite roots in C,
counted with multiplicities, denoted here by r1, r2, . . . , rk−m−1. Then we have

(6.7)

detL(λ) =

⎧⎨
⎩

(−1)n·� k
2 �(v1)

kn det
(
P (r1)P (r2) · · ·P (rk−1)

)
detP (λ) if m = 0,

(−1)s(vm+1)
kn(detAk)

m det
(
P (r1) · · ·P (rk−m−1)

)
detP (λ) if m > 0,

where s = n
(
m +

⌊
m
2

⌋
+
⌊
k−m

2

⌋)
.

Proof. The proof proceeds in three parts.
Part 1. We first consider the case when m = 0 (i.e., v1 �= 0) and p(x ; v) has

k − 1 distinct finite roots. The strategy of the proof is to reduce L(λ) by a sequence
of equivalence transformations to a point where the determinant can just be read off.

We begin the reduction process by right-multiplying L(λ) by the block-Toeplitz
matrix T (λ). Recall that T (λ) and G(λ) denote the unimodular matrix polynomials
defined in (2.5), and are related to each other via the factorization in (2.6). Using
(6.4) for the description of L(λ), an argument very similar to the one used in the
proof of Theorem 4.1 yields the block-column–wise description

L(λ)G(λ) =

[
Y1 Y2 − λY1 · · · Yk−1 − λYk−2 v ⊗ P (λ)
+λv ⊗Ak +λ v ⊗Ak−1 +λ v ⊗A2

]
,

and hence

(6.8)

L(λ)T (λ) =

[
Y1 Y2 · · · Yk−1 v ⊗ P (λ)
+λv ⊗ P0(λ) +λv ⊗ P1(λ) +λv ⊗ Pk−2(λ)

]
.
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Next we left-multiply by a constant (nonsingular) “Vandermonde-like” matrix M ,
built block-row–wise from ΛT (x) := [xk−1 xk−2 · · · x 1] evaluated at each of the roots
of p(x ; v),

M :=

⎡
⎢⎢⎢⎢⎢⎣

eT1
ΛT (r1)
ΛT (r2)

...
ΛT (rk−1)

⎤
⎥⎥⎥⎥⎥⎦
⊗ I =

⎡
⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0

rk−1
1 rk−2

1 · · · r1 1

rk−1
2 rk−2

2 · · · r2 1
...

... · · ·
...

...

rk−1
k−1 rk−2

k−1 · · · rk−1 1

⎤
⎥⎥⎥⎥⎥⎦
⊗ I.(6.9)

Using Lemma 6.5 and the fact that ΛT (rj)v = p(rj ; v), we obtain that

(
ΛT (rj) ⊗ I

)
(Y� + λv ⊗ P�−1(λ))

= p�−1(rj ; v)P (rj) − rj p(rj ; v)P�−1(rj) + λ p(rj ; v)P�−1(λ).

Since r1, . . . , rk−1 are the roots of p(x ; v), the product ML(λ)T (λ) simplifies to

⎡
⎢⎢⎢⎢⎢⎢⎣

∗ ∗ · · · ∗ v1P (λ)

p0(r1 ; v)P (r1) p1(r1 ; v)P (r1) · · · pk−2(r1 ; v)P (r1) 0
p0(r2 ; v)P (r2) p1(r2 ; v)P (r2) · · · pk−2(r2 ; v)P (r2) 0

...
...

. . .
...

...
p0(rk−1 ; v)P (rk−1) p1(rk−1 ; v)P (rk−1) · · · pk−2(rk−1 ; v)P (rk−1) 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

This matrix now factors into

⎡
⎢⎢⎢⎢⎣

I

P (r1)
. . .

P (rk−1)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=:W

⎡
⎢⎢⎢⎢⎣

∗ · · · ∗ v1P (λ)

p0(r1 ; v)I · · · pk−2(r1 ; v)I 0
...

. . .
...

...
p0(rk−1 ; v)I · · · pk−2(rk−1 ; v)I 0

⎤
⎥⎥⎥⎥⎦
,

and after reversing the order of the block-columns using R⊗ I, we have

ML(λ)T (λ)(R⊗ I) = W

⎡
⎢⎢⎢⎣

v1P (λ) ∗
0
... V ⊗ I
0

⎤
⎥⎥⎥⎦,(6.10)

where

V =

⎡
⎢⎣

pk−2(r1 ; v) · · · p1(r1 ; v) p0(r1 ; v)
...

...
...

...
pk−2(rk−1 ; v) · · · p1(rk−1 ; v) p0(rk−1 ; v)

⎤
⎥⎦

=

⎡
⎢⎣

(v1r
k−2
1 + · · · + vk−2r1 + vk−1) · · · (v1r1 + v2) v1

...
...

...
...

(v1r
k−2
k−1 + · · · + vk−2rk−1 + vk−1) · · · (v1rk−1 + v2) v1

⎤
⎥⎦.
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All that remains is to observe that V can be reduced by (det = +1) column operations
to

v1 ·

⎡
⎢⎣

rk−2
1 rk−3

1 · · · r1 1
...

...
...

...
...

rk−2
k−1 rk−3

k−1 · · · rk−1 1

⎤
⎥⎦,(6.11)

so det(V ⊗I) = v
(k−1)n
1 detM . Taking determinants on both sides of (6.10) now gives

detM · detL(λ) · detT (λ) · det(R⊗ I)

= det (P (r1)P (r2) · · ·P (rk−1)) · det (v1P (λ)) · det(V ⊗ I).

Since

det(R⊗ I) = det(Rk ⊗ In) = (detRk)
n(det In)k = (−1)n·� k

2 �(6.12)

and detT (λ) = +1, this simplifies to the desired result

detL(λ) = (−1)n·� k
2 �(v1)

kn det (P (r1)P (r2) · · ·P (rk−1)) detP (λ).(6.13)

This completes the argument for the case when m = 0 and the k − 1 roots of p(x ; v)
are all distinct.

Part 2. We now describe how to modify this argument to handle m > 0, i.e.,
the first nonzero coefficient of p(x ; v) is vm+1. We will continue to assume that the
k −m− 1 finite roots of p(x ; v) are all distinct.

We start out the same way as before, postmultiplying L(λ) by T (λ) to get (6.8).
But then, instead of M in (6.9), we use all available finite roots of p(x ; v) to define
the following modified version of M :

M̂ :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

eT1
...

eTm+1

ΛT (r1)
...

ΛT (rk−m−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗ In =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Im+1 0

rk−1
1 rk−2

1 · · · r1 1
...

...
...

...
...

rk−1
k−m−1 rk−2

k−m−1 · · · rk−m−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗ In.(6.14)

Now simplify the product M̂L(λ)T (λ) using Lemma 6.5 and ΛT (r�)v = p(r� ; v) = 0
as before, as well as the fact that v1 = v2 = · · · = vm = 0, which implies that
p0(x ; v), p1(x ; v), . . . , pm−1(x ; v) are all zero polynomials. Then we obtain
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M̂L(λ)T (λ)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

∗
...
0

∗ · · · ∗ vm+1P (λ)

p0(r1 ; v)P (r1) · · · pk−2(r1 ; v)P (r1) 0
...

...
...

...
p0(rk−m−1 ; v)P (rk−m−1) · · · pk−2(rk−m−1 ; v)P (rk−m−1) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

B ∗
...
0

∗ ∗ · · · ∗ vm+1P (λ)

pm(r1 ; v)P (r1) · · · pk−2(r1 ; v)P (r1) 0

0
...

...
...

...
pm(rk−m−1 ; v)P (rk−m−1) · · · pk−2(rk−m−1 ; v)P (rk−m−1) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

mn (k−m−1)n n

where the mn ×mn block B can also be seen to have some further structure. First
note that because of the structure of M̂ , the block B in M̂L(λ)T (λ) is exactly the
same as the corresponding block in L(λ)T (λ) in (6.8), which is just the first mn rows
of

[
Y1 Y2 · · · Ym

+λv ⊗ P0(λ) +λv ⊗ P1(λ) +λv ⊗ Pm−1(λ)

]
.

But because v1 = v2 = · · · = vm = 0, the terms λv ⊗ Pi(λ) make no contribution to
these first mn rows. So B is the same as the first mn rows of

[Y1|Y2| · · · |Ym].

Using the recurrence (6.2) from Lemma 6.4 with 1 ≤ � ≤ m, we can now show that B is
actually block anti-triangular. When � = 1 we have Y1 = −Nv⊗Ak. Since the first m
entries of Nv are [v2, v3, . . . , vm+1]

T = [0, 0, . . . , vm+1]
T , we see that the first block-

column of B is [0, . . . , 0,−vm+1A
T
k ]T . With � = 2 we have Y2 = (N⊗I)Y1−Nv⊗Ak−1,

whose first mn rows are

⎡
⎢⎢⎢⎢⎣

0
...
0

−vm+1Ak

∗

⎤
⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎣

0
...
0
0

−vm+1Ak−1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0
...
0

−vm+1Ak

∗

⎤
⎥⎥⎥⎥⎦
.

By induction, we then see that the first mn rows of Y� for 1 ≤ � ≤ m look like

[
0, . . . , 0, −vm+1A

T
k , ∗, . . . , ∗

]T
,
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with m− � leading blocks of zeroes. Thus B has the block anti-triangular form

B = −vm+1 ·

⎡
⎢⎢⎢⎣

0 · · · 0 Ak
... . .

.
. .

. ∗
0 Ak . .

. ...
Ak ∗ · · · ∗

⎤
⎥⎥⎥⎦,

and so M̂L(λ)T (λ) is equal to
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −vm+1Ak 0

. .
. ∗

...
−vm+1Ak ∗ 0

∗ ∗ · · · ∗ vm+1P (λ)

pm (r1 ; v)P (r1) · · · pk−2 (r1 ; v)P (r1) 0

0
...

...
...

...
pm (rk−m−1 ; v)P (rk−m−1) · · · pk−2 (rk−m−1 ; v)P (rk−m−1) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Performing some block-column permutations gives us

(6.15)

M̂L(λ)T (λ) ((Rm ⊕Rk−m) ⊗ In)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−vm+1Ak 0 0
. . .

... ∗
∗ −vm+1Ak 0

∗ vm+1P (λ) ∗ · · · ∗
0 pk−2 (r1 ; v)P (r1) · · · pm (r1 ; v)P (r1)

0
...

...
...

...
0 pk−2 (rk−m−1 ; v)P (rk−m−1) · · · pm (rk−m−1 ; v)P (rk−m−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which after factoring becomes
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−vm+1Im) ⊗ In 0 0

0 vm+1In 0

0 0 Ŵ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ak 0
. . . 0 ∗

∗ Ak

0 P (λ) ∗

0 0 V̂ ⊗ In

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,(6.16)

where Ŵ = diag(P (r1), . . . , P (rk−m−1)) and

V̂ =

⎡
⎢⎣

pk−2(r1 ; v) · · · pm(r1 ; v)
...

...
...

pk−2(rk−m−1 ; v) · · · pm(rk−m−1 ; v)

⎤
⎥⎦

=

⎡
⎢⎣

(vm+1r
k−m−2
1 + · · · + vk−1) · · · (vm+1r1 + vm+2) vm+1

...
...

...
...

(vm+1r
k−m−2
k−m−1 + · · · + vk−1) · · · (vm+1rk−m−1 + vm+2) vm+1

⎤
⎥⎦.
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Since vm+1 �= 0, this (k−m−1)× (k−m−1) matrix V̂ can be reduced by (det = +1)
column operations in a manner analogous to the reduction of V in (6.11), so we see
that

det(V̂ ⊗ In) = (vm+1)
(k−m−1)n det M̂ .(6.17)

Now taking determinants on both sides of (6.15) and using the factorization (6.16)
gives

det M̂ · detL(λ) · detT (λ) · det(Rm ⊗ In) · det(Rk−m ⊗ In)

= det (P (r1)P (r2) · · ·P (rk−m−1)) ·det(−vm+1Ak)
m ·det (vm+1P (λ)) ·det(V̂⊗In).

Canceling det M̂ on both sides using (6.17), and using detT (λ) = +1 together with
the fact that det(R⊗ I) is its own inverse, we get

detL(λ) = det (P (r1)P (r2) · · ·P (rk−m−1)) · (−1)mn · (vm+1)
kn · (detAk)

m

·detP (λ) · det(Rm ⊗ In) · det(Rk−m ⊗ In).

Finally, substituting det(Rm ⊗ In) = (−1)n·�m
2 � and det(Rk−m ⊗ In) = (−1)n·�

k−m
2 �

from (6.12) yields the desired formula (6.7). Note that this is consistent with formula
(6.13) derived for the m = 0 case, as long as we interpret the term (detAk)

m to be
equal to +1 whenever m = 0, regardless of whether detAk is zero or nonzero.

Part 3. Now that we know that (6.7) holds for any v ∈ F
k such that the corres-

ponding p(x ; v) has distinct finite roots, we can leverage this result to the general
case by a continuity argument. For every fixed m and fixed polynomial P (λ), the
formula on the right-hand side of (6.7) is clearly a continuous function of the leading
coefficient vm+1 and the roots r1, r2, . . . , rk−m−1 of p(x ; v), and is defined for all lists
in the set D =

{
(vm+1, r1, r2, . . . , rk−m−1) : vm+1 �= 0

}
, regardless of whether the

numbers r1, r2, . . . , rk−m−1 are distinct or not.
The left-hand side of (6.7) can also be viewed as a function defined and continuous

for all lists in D. To see this, first observe that the map

(vm+1, r1, r2, . . . , rk−m−1) �→ (vm+1, vm+2, . . . , vk)

taking the leading coefficient and roots of the polynomial p(x ; v) to the coefficients of
the same polynomial p(x ; v) is defined and continuous on D, as well as being surjec-
tive. Next note that because of the isomorphism in Corollary 5.4, the unique pencil
L(λ) ∈ DL(P ) corresponding to v = (0, 0, . . . , 0, vm+1, . . . , vk)

T can be expressed as a
linear combination

L(λ) = vm+1Lm+1(λ) + · · · + vkLk(λ)

of the fixed pencils Li(λ) corresponding to v = ei. Thus detL(λ) is a continuous
function of (vm+1, vm+2, . . . , vk), and hence also of (vm+1, r1, r2, . . . , rk−m−1).

In summary, the two sides of (6.7) are continuous functions defined on the same
domain D and have been shown to be equal on a dense subset

{
(vm+1, r1, r2, . . . , rk−m−1) : vm+1 �= 0 and r1, r2, . . . , rk−m−1 are distinct

}

of D. Therefore by continuity the two sides of (6.7) must be equal on all of D. Since
this argument holds for each m with 0 ≤ m ≤ k − 1, the desired result is established
for all nonzero v ∈ F

k.
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We now have all the ingredients needed to prove the main result of this section.
Keep in mind our convention that the “roots of p(x ; v)” includes a root at ∞ whenever
v1 = 0.

Theorem 6.7 (Eigenvalue Exclusion Theorem). Suppose that P (λ) is a regular
matrix polynomial and L(λ) is in DL(P ) with nonzero ansatz vector v. Then L(λ)
is a linearization for P (λ) if and only if no root of the v-polynomial p(x ; v) is an
eigenvalue of P (λ). (Note that this statement includes ∞ as one of the possible roots
of p(x ; v) or possible eigenvalues of P (λ).)

Proof. By Theorem 4.3, L(λ) is a linearization for P (λ) if and only if L(λ) is
regular. However, from the determinant formula (6.7) it follows that L(λ) is regular
if and only if no root of p(x ; v) is an eigenvalue of P (λ).

Using Theorem 6.7, we can now show that almost every pencil in DL(P ) is a
linearization for P . Although the same property was proved in Theorem 4.7 for
pencils in L1(P ), the result for DL(P ) is not a consequence of Theorem 4.7, since
DL(P ) is itself a closed, nowhere dense subset of measure zero in L1(P ). Neither can
the proof of Theorem 4.7 be directly generalized in any simple way; hence the need
for a different argument in the following result.

Theorem 6.8 (Linearizations Are Generic in DL(P )). For any regular matrix
polynomial P (λ), pencils in DL(P ) are linearizations of P (λ) for almost all v ∈ F

k.
(Here “almost all” means for all but a closed, nowhere dense set of measure zero in
F
k. )

Proof. Recall that the resultant [22] res(f, g) of two polynomials f(x) and g(x) is
a polynomial in the coefficients of f and g with the property that res(f, g) = 0 if and
only if f(x) and g(x) have a common (finite) root. Now consider res(p(x ; v),detP (x)),
which, because P (λ) is fixed, can be viewed as a polynomial r(v1, v2, . . . , vk) in the
components of v ∈ F

k. The zero set Z(r) =
{
v ∈ F

k : r(v1, v2, . . . , vk) = 0
}

, then,
is exactly the set of v ∈ F

k for which some finite root of p(x ; v) is an eigenvalue of
P (λ), together with the point v = 0. Recall that by our convention the v-polynomial
p(x ; v) has ∞ as a root exactly for v ∈ F

k lying in the hyperplane v1 = 0. Thus
by Theorem 6.7 the set of vectors v ∈ F

k for which the corresponding pencil L(λ) ∈
DL(P ) is not a linearization of P (λ) is either the proper algebraic set Z(r) or the
union of two proper algebraic sets, Z(r) and the hyperplane v1 = 0. However, the
union of any finite number of proper algebraic sets is always a closed, nowhere dense
set of measure zero in F

k.
How far can the eigenvalue exclusion theorem be extended from DL(P )-pencils to

other pencils in L1(P )? Let us say that a pencil L ∈ L1(P ) with right ansatz vector
v has the eigenvalue exclusion property if the statement “no root of the v-polynomial
p(x ; v) is an eigenvalue of P (λ)” is equivalent to the linearization condition for L.
That there are pencils in L1(P ) with the eigenvalue exclusion property that are not
in DL(P ) is shown by the pencil L1(λ) in Example 4.5. The following variation of
Example 4.6, though, is easily shown not to have the eigenvalue exclusion property.

Example 6.9. For the general cubic polynomial P (λ) = λ3A + λ2B + λC + D
consider the pencil

L(λ) = λX + Y = λ

⎡
⎣

A 0 2C
−2A −B − C A− 4C

0 A 0

⎤
⎦ +

⎡
⎣

B −C D
C −B 2C −A −2D
−A 0 0

⎤
⎦

that is in L1(P ) but not in DL(P ). Since X �→Y =
[
1 −2 0

]T ⊗
[
A B C D

]
,

the right ansatz vector is v =
[
1 −2 0

]T
with v-polynomial p(x ; v) = x2 − 2x and
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roots 0 and 2. On the other hand, applying the procedure described in section 4.1
gives

Z =

[
B + C −A
−A 0

]
,

and hence the linearization condition detZ = det(−A2) �= 0, equivalently detA �= 0.
Thus L(λ) is a linearization for P (λ) if and only if ∞ is not an eigenvalue of P (λ).
In this example, then, the roots of the v-polynomial do not correctly predict the
linearization condition for L.

The first companion form of a polynomial P is another example where the eigen-
value exclusion property is easily seen not to hold. Characterizing the set of pencils
in L1(P ) for which the eigenvalue exclusion property does hold is an open problem.

7. Concluding remarks. By generalizing the first and second companion form
linearizations for a matrix polynomial P (λ), we have introduced two large vector
spaces of pencils, L1(P ) and L2(P ), which serve as sources of potential linearizations
for P (λ). The mild hypothesis that P (λ) is regular makes almost every pencil in these
spaces a linearization for P (λ).

A number of properties enjoyed by the companion forms extend to the lineariza-
tions in L1(P ) and L2(P ): they are strong linearizations, are readily constructed from
the coefficient matrices of P (λ), and have eigenvectors that reveal those of P (λ). Fur-
thermore, a simple procedure can be used to test when a pencil in L1(P ) or L2(P ) is
a linearization of P (λ).

The intersection of L1(P ) and L2(P ), denoted by DL(P ), is of particular signifi-
cance. Pencils in L1(P ) reveal only right eigenvectors of P (λ), while those in L2(P )
lead to left eigenvectors of P (λ). Pencils in DL(P ) therefore simultaneously reveal
right as well as left eigenvectors of P . An isomorphism between DL(P ) and F

k al-
lows the association of a unique scalar polynomial of degree k − 1 to each pencil in
DL(P ). Linearizations in DL(P ) can then be characterized by an eigenvalue exclusion
property—a pencil in this distinguished subspace is a linearization precisely when no
root of its associated scalar polynomial is an eigenvalue of P .

As remarked earlier, the first and second companion form linearizations have a
significant drawback—they usually do not reflect any structure that may be present in
P (λ). Different linearizations can also exhibit very different conditioning. By system-
atizing the construction of large classes of linearizations that generalize the companion
forms, we have provided a rich arena in which linearizations with additional properties
like structure preservation or improved conditioning can be found. This is the subject
of the work in [7], [8], [12].

Appendix A. Proof of Proposition 5.2.
Proof. “⇒”: Assume that (5.3) holds. First, we show by induction on k that the

formulas (5.6)–(5.7) hold.

k = 1 : In this case, we have

X �→Y = S =
[
S11 S12

]
, X �↓ Y = T =

[
T11

T21

]

and hence X = S11 = T11 and Y = S12 = T21, which coincides with (5.6)–(5.7).

k − 1 ⇒ k : By the definition of the column and row shifted sums, (5.3) implies

Yik = Si,k+1 and Yki = Tk+1,i(A.1)
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as well as Xji + Yj,i−1 = Sji and Xij + Yi−1,j = Tij for j = 1, . . . , k and i = 2, . . . , k,
which together with (A.1) gives

Xki = Ski − Tk+1,i−1 and Xik = Tik − Si−1,k+1(A.2)

for i = 1, . . . , k. (Remember that S0,k+1 = 0 = Tk+1,0 by convention.) In order to be
able to use the induction hypothesis, let us partition X and Y as

X =

⎡
⎢⎢⎢⎢⎣

X1k

X̃
...

Xk−1,k

Xk1 . . . Xk,k−1 Xkk

⎤
⎥⎥⎥⎥⎦
, Y =

⎡
⎢⎢⎢⎢⎣

Y1k

Ỹ
...

Yk−1,k

Yk1 . . . Yk,k−1 Ykk

⎤
⎥⎥⎥⎥⎦
,

with (n− 1)k × (n− 1)k matrices X̃ and Ỹ . Then we obtain

X̃ �→Ỹ =

⎡
⎢⎢⎢⎣

S11 . . . S1,k−1 S1k −X1k

S21 . . . S2,k−1 S2k −X2k

...
. . .

...
...

Sk−1,1 . . . Sk−1,k−1 Sk−1,k −Xk−1,k

⎤
⎥⎥⎥⎦(A.3)

=

⎡
⎢⎢⎢⎣

S11 . . . S1,k−1 S1k − T1k

S21 . . . S2,k−1 S2k − T2k + S1,k+1

...
. . .

...
...

Sk−1,1 . . . Sk−1,k−1 Sk−1,k − Tk−1,k + Sk−2,k+1

⎤
⎥⎥⎥⎦ =: S̃.(A.4)

Analogously,

(A.5)

X̃ �↓ Ỹ =

⎡
⎢⎢⎢⎣

T11 T12 . . . T1,k−1

...
...

. . .
...

Tk−1,1 Tk−1,2 . . . Tk−1,k−1

Tk1 − Sk1 Tk2 − Sk2 + Tk+1,1 . . . Tk,k−1 − Sk,k−1 + Tk+1,k−2

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
=: T̃

.

Writing S̃ = [S̃ij ] and T̃ = [T̃ij ] with n × n blocks S̃ij , T̃ij and using the induction

hypothesis for X̃ = [Xij ] and Ỹ = [Yij ], we then obtain for i, j = 1, . . . , k − 1 and
j ≥ i that

Xij = T̃ij +

i−1∑
μ=1

(T̃μ,j+i−μ − S̃μ,j+i−μ), Yij =

i∑
μ=1

(S̃μ,j+i+1−μ − T̃μ,j+i+1−μ),(A.6)

Xji = S̃ji +

i−1∑
μ=1

(S̃j+i−μ,μ − T̃j+i−μ,μ), Yji =

i∑
μ=1

(T̃j+i+1−μ,μ − S̃j+i+1−μ,μ),(A.7)

where S̃νη = 0 = T̃ην whenever (ν, η) �∈ {1, . . . , k − 1} × {1, . . . , k}. We claim that
together with (A.1) and (A.2), the formulas (A.6)–(A.7) coincide with the formu-
las (5.6)–(5.7). We show this in detail for the first formula in (5.6); for the other
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formulas there is a similar proof that is omitted. If j + i ≤ k, then the block forms of
S̃ and T̃ given in (A.4) and (A.5) immediately yield

Xij = T̃ij +

i−1∑
μ=1

(T̃μ,j+i−μ − S̃μ,j+i−μ) = Tij +

i−1∑
μ=1

(Tμ,j+i−μ − Sμ,j+i−μ).

If j + i > k and i, j < k, then j + i−m = k for some m ≥ 1 ; using Sνη = 0 = Tην for
(ν, η) �∈ {1, . . . , k} × {1, . . . , k + 1}, we obtain

Xij = T̃ij +

i−1∑
μ=1

(T̃μ,j+i−μ − S̃μ,j+i−μ)

= T̃ij +

i−1∑
μ=m+1

(T̃μ,j+i−μ − S̃μ,j+i−μ) − S̃mk

= Tij +

i−1∑
μ=m+1

(Tμ,j+i−μ − Sμ,j+i−μ) − Smk + Tmk − Sm−1,k+1

= Tij +

i−1∑
μ=1

(Tμ,j+i−μ − Sμ,j+i−μ).

Finally, for i = k or j = k the statement follows immediately from (A.1) or (A.2).
This concludes the inductive proof of the formulas (5.6)–(5.7). In particular, this
implies that X and Y are uniquely determined by S and T . Note that Xii and Yii

now satisfy two distinct formulas for i = 1, . . . , n. Since both right-hand sides in the
formulas (5.6)–(5.7) must be equal in this case, we directly obtain (5.4) and (5.5).

“⇐”: We have to show the existence of block-matrices X = [Xij ] and Y = [Yij ]
such that X �→Y = S and X �↓ Y = T . Define Xij and Yij by the formulas (5.6)–(5.7).
Because of (5.4) and (5.5), X and Y are well defined. We will now show in detail
that X �→Y = S. (The proof of X �↓ Y = T is similar and will be omitted.) Indeed,
formulas (5.6)–(5.7) imply Xj1 = Sj1 and Yik = Sik for i, j = 1, . . . , k. Moreover, we
obtain for i = 1, . . . , k and j = 2, . . . , k that

Xij + Yi,j−1 = Tij +

i−1∑
μ=1

(Tμ,j+i−μ − Sμ,j+i−μ) +

i∑
μ=1

(Sμ,j+i−μ − Tμ,j+i−μ)

= Tij + Sij − Tij = Sij

if j − 1 ≥ i, and that

Xij + Yi,j−1 = Sij +

j−1∑
μ=1

(Sj+i−μ,μ − Tj+i−μ,μ) +

j−1∑
μ=1

(Tj+i−μ,μ − Sj+i−μ,μ) = Sij

if j − 1 < i. This shows X �→Y = S and concludes the proof.

Appendix B. Proof of Theorem 5.3.
Proof. Note that (5.8) is equivalent to X �→Y = S and X �↓ Y = T , where

S = (Sij) and T = (Tji) are block k × k matrices such that

Sij = viAk+1−j , Tji = wiAk+1−j , i = 1, . . . , k, j = 1, . . . , k + 1.(B.1)
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Then by Proposition 5.2, X and Y satisfying (5.8) exist if and only if

wjAk+1−j +

j−1∑
μ=1

(
w2j−μAk+1−μ − vμAk+1−2j+μ

)
(B.2)

= vjAk+1−j +

j−1∑
μ=1

(
v2j−μAk+1−μ − wμAk+1−2j+μ

)

and

j∑
μ=1

(
vμAk−2j+μ − w2j+1−μAk+1−μ

)
=

j∑
μ=1

(
wμAk−2j+μ − v2j+1−μAk+1−μ

)
(B.3)

for j = 1, . . . , k. (Here v0 := w0 := 0, and for μ < 0 or μ > k, vμ := wμ := 0 and
Aμ := 0 ∈ F

n×n.) Hence, it is sufficient to prove the statement

v = w ⇐⇒ (B.2) and (B.3) are satisfied.

“⇒”: If v = w, then (B.2) and (B.3) are obviously true.
“⇐”: We show vm = wm for m = 1, . . . , k by induction on m.
m = 1 : (B.2) for j = 1 yields v1Ak = w1Ak. Since Ak �= 0, this implies

v1 = w1.

m = 2 : (B.3) for j = 1 yields v1Ak−1−w2Ak = w1Ak−1−v2Ak. Since v1 = w1

and Ak �= 0, this implies v2 = w2.

m− 1 ⇒ m : Assume first that m is odd, so that m = 2j − 1 for some j ≥ 2.
Since by the induction hypothesis we have vi = wi for i = 1, . . . , 2j − 2, we obtain
from (B.2) that w2j−1Ak = v2j−1Ak. This implies w2j−1 = v2j−1 because Ak �= 0.
Next assume that m is even, i.e., m = 2j for some j ≥ 2. Again, since vi = wi for i =
1, . . . , 2j − 1 by the induction hypothesis, we obtain from (B.3) that w2jAk = v2jAk.
This implies w2j = v2j because Ak �= 0.

This concludes the induction. Hence we have v = w.
The uniqueness of X and Y and the formulas (5.9) and (5.10) follow directly from

Proposition 5.2, the formulas (5.6) and (5.7), and (B.1).

Acknowledgments. We thank the mathematics departments of the universities
of Manchester and TU Berlin, and the Banff International Research Station for giving
us the opportunity to carry out this joint research. We also thank Ralph Byers, Peter
Benner, Nick Higham, Françoise Tisseur, and Hongguo Xu for enlightening discussions
on the topic, and an anonymous referee for pointing out the factorization in (4.5).

REFERENCES

[1] E. N. Antoniou and S. Vologiannidis, A new family of companion forms of polynomial
matrices, Electron. J. Linear Algebra, 11 (2004), pp. 78–87.

[2] E. Eich-Soellner and C. Führer, Numerical Methods in Multibody Systems, B. G. Teubner,
Stuttgart, Germany, 1998.

[3] R. W. Freund, Krylov-subspace methods for reduced-order modeling in circuit simulation, J.
Comput. Appl. Math., 123 (2000), pp. 395–421.

[4] I. Gohberg, M. A. Kaashoek, and P. Lancaster, General theory of regular matrix polynomi-
als and band Toeplitz operators, Integral Equations Operator Theory, 11 (1988), pp. 776–
882.



1004 D. S. MACKEY, N. MACKEY, C. MEHL, AND V. MEHRMANN

[5] I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials, Academic Press, New York,
1982.

[6] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, 1996.

[7] N. J. Higham, D. S. Mackey, N. Mackey, and F. Tisseur, Symmetric Linearizations for Ma-
trix Polynomials, MIMS EPrint 2005.25, Manchester Institute for Mathematical Sciences,
The University of Manchester, UK, 2005.

[8] N. J. Higham, D. S. Mackey, and F. Tisseur, The conditioning of linearizations of matrix
polynomials, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 1005-1028.

[9] P. Lancaster, Lambda-Matrices and Vibrating Systems, Pergamon Press, Oxford, UK, 1966.
[10] P. Lancaster and P. Psarrakos, A Note on Weak and Strong Linearizations of Regular

Matrix Polynomials, Numerical Analysis Report No. 470, Manchester Centre for Compu-
tational Mathematics, Manchester, UK, 2005.

[11] D. S. Mackey, The characteristic polynomial of a partitioned matrix, in Linear Algebra Gems,
D. Carlson, C. R. Johnson, D. C. Lay, and A. D. Porter, eds., MAA Notes #59, Mathe-
matical Association of America, Washington, DC, 2002, pp. 13–14.

[12] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Palindromic Polynomial Eigenvalue
Problems: Good Vibrations from Good Linearizations, Technical Report 239, DFG Re-
search Center Matheon, “Mathematics for key technologies” in Berlin, TU Berlin, Berlin,
Germany, 2005; available online at http://www.matheon.de/.

[13] V. Mehrmann and C. Shi, Analysis of Higher Order Linear Differential-Algebraic Systems,
Preprint 2004/17, Institut für Mathematik, TU Berlin, D-10623 Berlin, Germany, 2004;
available online from http://www.math.tu-berlin.de/preprints/.

[14] V. Mehrmann and D. Watkins, Structure-preserving methods for computing eigenpairs of
large sparse skew-Hamiltonian/Hamiltonian pencils, SIAM J. Sci. Comput., 22 (2001),
pp. 1905–1925.

[15] V. Mehrmann and D. Watkins, Polynomial eigenvalue problems with Hamiltonian structure,
Electron. Trans. Numer. Anal., 13 (2002), pp. 106–118.

[16] W. Schiehlen, Advanced Multibody System Dynamics, Kluwer Academic Publishers, Stuttgart,
Germany, 1993.

[17] F. Schmidt, T. Friese, L. Zschiedrich, and P. Deuflhard, Adaptive Multigrid Methods for
the Vectorial Maxwell Eigenvalue Problem for Optical Waveguide Design, in Mathematics.
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Abstract. The standard way of solving the polynomial eigenvalue problem of degree m in n×n
matrices is to “linearize” to a pencil in mn×mn matrices and solve the generalized eigenvalue prob-
lem. For a given polynomial, P , infinitely many linearizations exist and they can have widely varying
eigenvalue condition numbers. We investigate the conditioning of linearizations from a vector space
DL(P ) of pencils recently identified and studied by Mackey, Mackey, Mehl, and Mehrmann. We
look for the best conditioned linearization and compare the conditioning with that of the original
polynomial. Two particular pencils are shown always to be almost optimal over linearizations in
DL(P ) for eigenvalues of modulus greater than or less than 1, respectively, provided that the prob-
lem is not too badly scaled and that the pencils are linearizations. Moreover, under this scaling
assumption, these pencils are shown to be about as well conditioned as the original polynomial. For
quadratic eigenvalue problems that are not too heavily damped, a simple scaling is shown to convert
the problem to one that is well scaled. We also analyze the eigenvalue conditioning of the widely
used first and second companion linearizations. The conditioning of the first companion linearization
relative to that of P is shown to depend on the coefficient matrix norms, the eigenvalue, and the
left eigenvectors of the linearization and of P . The companion form is found to be potentially much
more ill conditioned than P , but if the 2-norms of the coefficient matrices are all approximately
1 then the companion form and P are guaranteed to have similar condition numbers. Analogous
results hold for the second companion form. Our results are phrased in terms of both the standard
relative condition number and the condition number of Dedieu and Tisseur [Linear Algebra Appl.,
358 (2003), pp. 71–94] for the problem in homogeneous form, this latter condition number having
the advantage of applying to zero and infinite eigenvalues.

Key words. matrix polynomial, matrix pencil, linearization, companion form, condition num-
ber, homogeneous form, quadratic eigenvalue problem, vector space, scaling

AMS subject classifications. 65F15, 15A18

DOI. 10.1137/050628283

1. Introduction. Consider the matrix polynomial of degree m

P (λ) =
m∑
i=0

λiAi, Ai ∈ C
n×n, Am �= 0.(1.1)

We will assume throughout that P is regular, that is, detP (λ) �≡ 0. The eigenproblem
for P—the polynomial eigenvalue problem—is to find scalars λ and nonzero vectors
x and y satisfying P (λ)x = 0 and y∗P (λ) = 0; x and y are right and left eigenvectors
corresponding to the eigenvalue λ.

A standard way of solving the eigenproblem is to convert P into a linear polyno-
mial

L(λ) = λX + Y, X, Y ∈ C
mn×mn
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with the same spectrum as P and solve the resulting generalized eigenproblem L(λ)x =
0, which is usually done by the QZ algorithm for small to medium size problems or a
Krylov method for large sparse problems. The aim of this work is to provide guidance
on how to choose from among the infinitely many possible pencils L(λ).

We are interested in pencils L(λ) that are linearizations of P (λ) in the following
sense: they satisfy

E(λ)L(λ)F (λ) =

[
P (λ) 0

0 I(m−1)n

]
(1.2)

for some unimodular E(λ) and F (λ) (that is, det(E(λ)) is a nonzero constant, indepen-
dent of λ, and likewise for F ) [6, sect. 7.2]. This definition implies that γ det(L(λ)) =
det(P (λ)) for some nonzero constant γ, so that L and P have the same spectrum. As
an example, the pencil

C1(λ) = λ

[
A 0
0 I

]
+

[
B C
−I 0

]
(1.3)

can be shown to be a linearization for the quadratic Q(λ) = λ2A + λB + C; it is
known as the first companion form linearization (see section 7).

Two important sets of potential linearizations are identified and studied by Mackey,
Mackey, Mehl, and Mehrmann [13]. With the notation

Λ = [λm−1, λm−2, . . . , 1]T ,(1.4)

the sets are

L1(P ) =
{
L(λ) : L(λ)(Λ⊗ In) = v ⊗ P (λ), v ∈ C

m
}
,(1.5)

L2(P ) =
{
L(λ) : (ΛT ⊗ In)L(λ) = wT ⊗ P (λ), w ∈ C

m
}
.(1.6)

It is easy to check that C1(λ) in (1.3) belongs to L1(Q) (with v = e1)
1; so the pencils

in L1 can be thought of as generalizations of the first companion form. It is proved
in [13, Prop. 3.2, Prop. 3.12, Thm. 4.7] that L1(P ) and L2(P ) are vector spaces and
that almost all pencils in these spaces are linearizations of P .

One of the underlying reasons for the interest in L1 and L2 is that eigenvectors of P
can be directly recovered from eigenvectors of linearizations in L1 and L2. Specifically,
if L is any pencil in L1(P ) with nonzero vector v, then x is a right eigenvector of P
with eigenvalue λ if and only if Λ ⊗ x (if λ is finite) or e1 ⊗ x (if λ = ∞) is a right
eigenvector for L with eigenvalue λ. Moreover, if this L ∈ L1(P ) is a linearization for
P , then every right eigenvector of L has one of these two Kronecker product forms;
hence some right eigenvector of P can be recovered from every right eigenvector of L.
Similarly, if L is any pencil in L2(P ) with nonzero vector w, then y is a left eigenvector
for P with eigenvalue λ if and only if Λ ⊗ y (if λ is finite) or e1 ⊗ y (if λ = ∞) is a
left eigenvector for L with eigenvalue λ. Again, if this L ∈ L2(P ) is a linearization
for P , then every left eigenvector of L is of the form Λ⊗ y or e1 ⊗ y, and so every left
eigenvector of L produces a left eigenvector for P . Some insight can be gained from
the proof of the first part of these results. For any L ∈ L1(P ), postmultiplying the
equation in (1.5) defining L1 by 1 ⊗ x gives

L(λ)(Λ⊗ x) = v ⊗ P (λ)x.

1ei denotes the ith column of the identity matrix Im.
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Hence for finite λ and v �= 0, (x, λ) is an eigenpair for P if and only if (Λ⊗ x, λ) is an
eigenpair for L. The complete proofs of these results can be found in [13, Thm. 3.8,
Thm. 3.14, Thm. 4.4].

It is natural to concentrate attention on the pencils that lie in

DL(P ) = L1(P ) ∩ L2(P ),(1.7)

because there is a simultaneous correspondence between left and right eigenvectors of
P and of pencils in DL(P ). It is shown in [13, Thm. 5.3] and in [7, Thm. 3.4] that
L ∈ DL(P ) only if L satisfies the conditions in (1.5) and (1.6) with w = v, and that,
for any v ∈ C

m, there are uniquely determined X and Y such that L(λ) = λX + Y is
in DL(P ). Thus DL(P ) is always an m-dimensional space of pencils associated with
P . A basis for DL(P ) corresponding to the standard basis v = ei, i = 1:m, for C

m is
derived in [7, Sect. 3.3]. In this work we focus on linearizations in DL(P ).

Just as for L1 and L2, almost all pencils in DL(P ) are linearizations [13, Thm. 6.8].
In fact, there is a beautiful characterization of the subset of pencils L ∈ DL(P ) that
are linearizations [13, Thm. 6.7]: they are those for which no eigenvalue of P is a root
of the polynomial p(λ; v) := vTΛ =

∑m
i=1 viλ

m−i, where when v1 = 0 we define ∞ to
be a root of p(λ; v). Throughout this work we assume that the pencils L ∈ DL(P )
under consideration are linearizations.

The polynomials with m > 1 of greatest practical importance are the quadratics.
For later use we note that for m = 2 and Q(λ) = λ2A + λB + C,

DL(Q) =

{
L(λ) = λ

[
v1A v2A
v2A v2B − v1C

]
+

[
v1B − v2A v1C

v1C v2C

]
: v ∈ C

2

}
,(1.8)

which can be deduced directly from the definition of DL in (1.7).
We now summarize the organization of the paper. In section 2 we define and

describe properties of a relative condition number for a simple eigenvalue of P and
a condition number of Dedieu and Tisseur for the problem in homogeneous form.
Although there is no direct connection between the two condition numbers, both are
of interest, and all results in the paper are stated for both. In section 3 we obtain
for a linearization in DL(P ) expressions for the condition numbers that separate the
dependence on P from that of the vector v that defines the linearization. These ex-
pressions are then used in section 4 to approximately minimize the condition numbers
over all v. The pencils with v = e1 and v = em, which are linearizations when A0

and Am, respectively, are nonsingular, are shown always to be almost optimal within
DL(P ) for eigenvalues of modulus greater than or less than 1, respectively, provided
that the measure ρ = maxi ‖Ai‖2/min(‖A0‖2, ‖Am‖2) of the scaling of the problem is
of order 1. This result generalizes and strengthens earlier results of Tisseur [16] for the
quadratic case. Under the same scaling assumption these two linearizations are shown
to be about as well conditioned as the original polynomial. How to extend the results
to sets of eigenvalues, and the situation where we know only a region containing the
eigenvalues, is discussed in section 4.1.

In section 5 we turn to quadratic polynomials and show that a simple scaling
converts the problem to one that is well scaled, provided the quadratic is not too
heavily damped. In section 6 we prove the equality of the condition number of an
eigenvalue of a linearization in DL(P ) with the condition number of the corresponding
reciprocal eigenvalue of a linearization of the “reversal” of the polynomial. In section 7
we show that the ratio of the condition number of the first companion linearization
to that of P at a given λ depends on the product of a rational function of |λ| and the
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norms ‖Ai‖ with the ratio of the norms of the left eigenvectors of the pencil and P .
This result, and its analogue for the second companion form, reveals and gives insight
into potential instability of the companion forms.

Finally, the numerical experiments in section 8 show the ability of our analysis to
predict well the accuracy of eigenvalues computed via different linearizations.

2. Eigenvalue condition number. Let λ be a simple, finite, nonzero eigen-
value of P in (1.1) with corresponding right eigenvector x and left eigenvector y. A
normwise condition number of λ can be defined by

κP (λ) = lim
ε→0

sup

{
|Δλ|
ε|λ| :

(
P (λ + Δλ) + ΔP (λ + Δλ)

)
(x + Δx) = 0,

‖ΔAi‖2 ≤ εωi, i = 0:m

}
,(2.1)

where ΔP (λ) =
∑m

i=0 λ
iΔAi. The ωi are nonnegative weights that allow flexibility

in how the perturbations are measured; in particular, ΔAi can be forced to zero by
setting ωi = 0. An explicit formula for this condition number is given in the following
result.

Theorem 2.1 (Tisseur [16, Thm. 5]). The normwise condition number κP (λ) is
given by

κP (λ) =

(∑m
i=0 |λ|iωi

)
‖y‖2‖x‖2

|λ| |y∗P ′(λ)x| .(2.2)

The condition number κP (λ) has the disadvantage that it is not defined for zero
or infinite eigenvalues. In order to give a unified treatment for all λ, we rewrite the
polynomial in the homogeneous form

P (α, β) =
m∑
i=0

αiβm−iAi

and consider eigenvalues as pairs (α, β) �= (0, 0) that are solutions of the scalar equa-
tion detP (α, β) = 0; thus λ ≡ α/β. More precisely, since P (α, β) is homogeneous in
α and β, we define an eigenvalue as any line through the origin in C

2 of solutions of
detP (α, β) = 0. Let T(α,β)P1 denote the tangent space at (α, β) to P1, the projective
space of lines through the origin in C

2. Dedieu and Tisseur [3] define a condition
operator K(α, β) : (Cn×n)m+1 → T(α,β)P1 for the eigenvalue (α, β) as the differential
of the map from the (m + 1)-tuple (A0, . . . , Am) to (α, β) in projective space. The
significance of the condition operator is shown by the following result, which is an
extension of a result of Dedieu [2, Thm. 6.1]. Here and below, we sometimes write a
representative of an eigenvalue (α, β) as a row vector [α, β] ∈ C

1×2.
Theorem 2.2. Let (α, β) be a simple eigenvalue of P (α, β) with representative

[α, β] normalized so that ‖[α, β]‖2 = 1. For sufficiently small (m + 1)-tuples

ΔA ≡ (ΔA0, . . . , ΔAm),

the perturbed polynomial P̃ (α, β) =
∑m

i=0 α
iβm−i(Ai + ΔAi) has a simple eigenvalue

(α̃, β̃) for which, with the normalization [α, β][α̃, β̃]∗ = 1,

[α̃, β̃] = [α, β] + K(α, β)ΔA + o(‖ΔA‖).
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A condition number κP (α, β) can be defined as a norm of the condition operator:

κP (α, β) = max
‖ΔA‖≤1

‖K(α, β)ΔA‖2

‖[α, β]‖2
,

where the norm on ΔA is arbitrary. Note that this condition number is well defined,
since the right-hand side is independent of the choice of representative of the eigenvalue
(α, β). Let θ

(
(μ, ν), (μ̃, ν̃)

)
be the angle between the two lines (μ, ν) and (μ̃, ν̃). Then

for θ small enough,

|θ
(
(μ, ν), (μ̃, ν̃)

)
| ≤

∣∣tan
(
θ
(
(μ, ν), (μ̃, ν̃)

))∣∣ =

∥∥∥∥[μ̃, ν̃]
‖[μ, ν]‖2

[μ̃, ν̃][μ, ν]∗
− [μ, ν]

‖[μ, ν]‖2

∥∥∥∥
2

.

Inserting the particular representatives [α, β] and [α̃, β̃] of the original and perturbed
eigenvalues, normalized as in Theorem 2.2, gives

∣∣θ((α, β), (α̃, β̃)
)∣∣ ≤ ‖[α, β] − [α̃, β̃]‖2 = ‖K(α, β)ΔA‖2 + o(‖ΔA‖).

Hence, the angle between the original and perturbed eigenvalues satisfies

∣∣θ((α, β), (α̃, β̃)
)∣∣ ≤ κP (α, β)‖ΔA‖ + o(‖ΔA‖).(2.3)

By taking the sine of both sides we obtain a perturbation bound in terms of sin |θ|,
which is the chordal distance between (α, β) and (α̃, β̃) as used by Stewart and Sun [15,
Chap. 6]. Of course, sin |θ| ≤ |θ| and asymptotically these two measures of distance
are equal.

We will take for the norm on (Cn×n)m+1 the ω-weighted Frobenius norm

‖A‖ = ‖(A0, . . . , Am)‖ = ‖[ω−1
0 A0, . . . , ω

−1
m Am]‖F ,(2.4)

where the ωi are nonnegative weights that are analogous to those in (2.1). Define the
operators Dα ≡ ∂

∂α and Dβ ≡ ∂
∂β . The following result is a trivial extension of a result

of Dedieu and Tisseur [3, Thm. 4.2] that treats the unweighted Frobenius norm.
Theorem 2.3. The normwise condition number κP (α, β) of a simple eigenvalue

(α, β) is given by

κP (α, β) =

(
m∑
i=0

|α|2i|β|2(m−i)ω2
i

)1/2
‖y‖2‖x‖2∣∣y∗(β̄DαP − ᾱDβP )|(α,β)x

∣∣ .(2.5)

As a check, we note that the expression (2.5) is independent of the choice of
representative of (α, β) and of the scaling of x and y. Note also that for a simple
eigenvalue the denominator terms y∗P ′(λ)x in (2.2) and y∗(β̄Dα − ᾱDβ)P |(α,β)x in
(2.5) are both nonzero, as shown in [1, Thm. 3.2] for the former and [3, Thm. 3.3(iii)]
for the latter.

To summarize, κP (λ) and κP (α, β) are two different measures of the sensitivity of
a simple eigenvalue. The advantage of κP (λ) is that it is an immediate generalization
of the well-known Wilkinson condition number for the standard eigenproblem [18,
p. 69] and it measures the relative change in an eigenvalue, which is a concept readily
understood by users of numerical methods. In favor of κP (α, β) is that it elegantly
treats all eigenvalues, including those at zero and infinity; moreover, it provides the
bound (2.3) for the angular error, which is an alternative to the relative error bound
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that κP (λ) provides. Both condition numbers are therefore of interest and we will
treat both in the next section.

We note that in MATLAB 7.0 (R14) the function polyeig that solves the polyno-
mial eigenvalue problem returns the condition number κP (α, β) as an optional output
argument.

3. Eigenvalue conditioning of linearizations. We now focus on the condition
numbers κL(λ) and κL(α, β) of a simple eigenvalue of a linearization L(λ) = λX +
Y ∈ DL(P ). Our aim is to obtain expressions for these condition numbers with two
properties: they separate the dependence on P from that of the vector v and they have
minimal explicit dependence on X and Y . In the next section we will consider how
to minimize these expressions over all v. Note the distinction between the condition
numbers κL of the pencil and κP of the original polynomial. Note also that a simple
eigenvalue of L is necessarily a simple eigenvalue of P , and vice versa, in view of (1.2).

We first carry out the analysis for κL(α, β). Let x and y denote right and left
eigenvectors of P , and z and w denote right and left eigenvectors of L, all correspond-
ing to the eigenvalue (α, β). Recalling that λ = α/β, define

L(α, β) = αX + βY = βL(λ),

Λα,β = [αm−1, αm−2β, . . . , βm−1]T = βm−1Λ.

In view of the relations in section 1 we can take

w = Λα,β ⊗ y, z = Λα,β ⊗ x.(3.1)

(These expressions are valid for both finite and infinite eigenvalues.)
The condition number that we wish to evaluate is obtained by applying Theo-

rem 2.3 to L:

κL(α, β) =
√
|α|2ω2

X + |β|2ω2
Y

‖w‖2‖z‖2∣∣w∗(β̄DαL− ᾱDβL)|(α,β)z
∣∣ ,(3.2)

where an obvious notation has been used for the weights in (2.4).
We can rewrite the condition in (1.5) that characterizes a member of L1 as

L(α, β)(Λα,β ⊗ In) = v ⊗ P (α, β),(3.3)

where for the moment α and β denote variables. Differentiating with respect to α
gives

DαL(α, β)(Λα,β ⊗ In) + L(α, β)(DαΛα,β ⊗ In) = v ⊗DαP (α, β).(3.4)

Now evaluate this equation at an eigenvalue2 (α, β). Multiplying on the left by w∗

and on the right by 1 ⊗ x, and using (3.1), we obtain

w∗(DαL)|(α,β)z = ΛT
α,βv ⊗ y∗(DαP )|(α,β)x

= ΛT
α,βv · y∗(DαP )|(α,β)x.(3.5)

Exactly the same argument leads to

w∗(DβL)|(α,β)z = ΛT
α,βv · y∗(DβP )|(α,β)x.(3.6)

2Strictly speaking, here and later we are evaluating at a representative of an eigenvalue. All the
condition number formulae are independent of the choice of representative.
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Hence, from (3.5) and (3.6),

w∗(β̄DαL− ᾱDβL)|(α,β)z = ΛT
α,βv · y∗(β̄DαP − ᾱDβP )|(α,β)x.

The first factor on the right can be viewed as a homogeneous scalar polynomial in α
and β, so we introduce the notation

p(α, β; v) := vTΛα,β =

m∑
i=1

viα
m−iβi−1 = ΛT

α,βv.(3.7)

Noting, from (3.1), that ‖w‖2 = ‖Λα,β‖2‖y‖2 and ‖z‖2 = ‖Λα,β‖2‖x‖2, we obtain
an alternative form of (3.2) that clearly separates the dependence on P from that on
the vector v that defines the linearization. Now we write κL(α, β; v) to indicate the
dependence of κL on the vector v ∈ C

m that defines the linearization.
Theorem 3.1. Let (α, β) be a simple eigenvalue of P with right and left eigen-

vectors x and y, respectively. Then, for any pencil L(α, β) = αX + βY ∈ DL(P ) that
is a linearization of P ,

κL(α, β; v) =

√
|α|2ω2

X + |β|2ω2
Y

|p(α, β; v)| · ‖Λα,β‖2
2 ‖y‖2‖x‖2∣∣y∗(β̄DαP − ᾱDβP )|(α,β)x

∣∣ ,(3.8)

where v is the vector in (3.3).
Now we give a similar analysis for the condition number κL(λ) of a finite, nonzero

λ. In view of (2.2), our aim is to obtain an expression for |w∗L′(λ)z|. Since L ∈ L1,

L(λ)(Λ⊗ In) = v ⊗ P (λ).(3.9)

Differentiating (3.9) with respect to λ gives

L′(λ)(Λ⊗ In) + L(λ)(Λ′ ⊗ In) = v ⊗ P ′(λ).(3.10)

Evaluating at an eigenvalue λ, premultiplying by w∗ = ΛT ⊗ y∗, postmultiplying by
1 ⊗ x, and using (3.1), gives

w∗L′(λ)z = ΛT v ⊗ y∗P ′(λ)x = ΛT v · y∗P ′(λ)x.

Analogously to (3.7), we write

p(λ; v) := vTΛ =

m∑
i=1

viλ
m−i = ΛT v

for the polynomial defined by v with variable λ.
Theorem 3.2. Let λ be a simple, finite, nonzero eigenvalue of P with right and

left eigenvectors x and y, respectively. Then, for any pencil L(λ) = λX +Y ∈ DL(P )
that is a linearization of P ,

κL(λ; v) =
(|λ|ωX + ωY )

|p(λ; v)| · ‖Λ‖
2
2‖y‖2‖x‖2

|λ| |y∗P ′(λ)x| ,(3.11)

where v is the vector in (3.9).
The expression (3.8) shows that κL(α, β) is finite if and only if (α, β) is not a zero

of p(α, β; v), and (3.11) gives essentially the same information for λ �= 0,∞. This is
consistent with the theory in [13] which shows, as noted in section 1, that L(λ) is
a linearization for P (λ) if and only if no eigenvalue of P (including ∞) is a root of
p(λ; v).
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4. Minimizing the condition numbers κL(α, β) and κL(λ). A pencil L(λ) ∈
DL(P ) is uniquely defined by the vector v in (1.5). Our aim is to minimize the
condition numbers κL(λ) and κL(α, β) over all v ∈ C

m, thereby identifying a best
conditioned linearization for a particular eigenvalue.

A technical subtlety is that the minimum of κL(α, β) over v could potentially
occur at a v for which L is not a linearization, since we are minimizing for a particular
eigenvalue, whereas the property of being a linearization is a property concerning all
the eigenvalues. In this case formulas (3.8) and (3.11) are not valid. However, such
“bad” v form a closed, nowhere dense set of measure zero [13, Thm. 6.8] and an
arbitrarily small perturbation to v can make L a linearization.

Expressions (3.8) and (3.11) have similar forms, with dependence on v confined
to the p(·) terms in the denominator and the ω terms in the numerator. For most of
this section we work with the condition number (3.8) for the pencil in homogeneous
form; we return to κL(λ) at the end of the section.

For the weights we will take the natural choice

ωX = ‖X‖2, ωY = ‖Y ‖2.(4.1)

Since the entries of X and Y are linear combinations of the entries of v [13, Thm. 5.3],
this choice makes the condition numbers independent of the scaling of v.

We consider first the v-dependence of ‖X‖2 and ‖Y ‖2.
Lemma 4.1. For L(λ) = λX + Y ∈ DL(P ) defined by v ∈ C

m we have

‖v‖2‖Am‖2 ≤ ‖X‖2 ≤ mr1/2 max
i

‖Ai‖2‖v‖2,(4.2)

‖v‖2‖A0‖2 ≤ ‖Y ‖2 ≤ mr1/2 max
i

‖Ai‖2‖v‖2,(4.3)

where r is the number of nonzero entries in v.
Proof. Partition X and Y as block m × m matrices with n × n blocks. From

[7, Sect. 3.3] or [13, Thm. 3.5] we know that the first block column of X is v ⊗ Am

and the last block column of Y is v⊗A0. The lower bounds are therefore immediate.
From [7, Sect. 3.3] or [13, Thm. 5.3] it can be seen that each block of X has the form

Xij =

m∑
k=1

skvkA�k
,(4.4)

where sk ∈ {−1, 0, 1} and the indices �k are distinct. Hence

‖Xij‖2 ≤ max
k

‖Ak‖2

m∑
k=1

|vk| = max
k

‖Ak‖2‖v‖1 ≤ r1/2 max
k

‖Ak‖2‖v‖2.

The upper bound on ‖X‖2 follows on using

‖X‖2 ≤ mmax
i,j

‖Xij‖2,(4.5)

which holds for any block m × m matrix. An identical argument gives the upper
bound for ‖Y ‖2.

Hence, provided the ‖Ai‖2 values vary little in magnitude with i, the numerator
of (3.8) varies little in magnitude with v if ‖v‖2 is fixed. Under this proviso, we will
approximately minimize the condition number κL(α, β) if we maximize the p(α, β; v)
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term. We therefore restrict our attention to the denominator of the expression (3.8)
for κL and maximize |p(α, β; v)| = |ΛT

α,βv| subject to ‖v‖2 = 1, for a given eigenvalue
(α, β). By the Cauchy–Schwarz inequality, the maximizing v, and the corresponding
value of the polynomial, are

v∗ =
Λα,β

‖Λα,β‖2
, |p(α, β; v∗)| = ‖Λα,β‖2.(4.6)

Two special cases that play an important role in the rest of this paper are worth
noting:

(α, β) = (1, 0), λ = ∞ ⇒ v∗ = e1,
(α, β) = (0, 1), λ = 0 ⇒ v∗ = em.

The next theorem compares the condition numbers for v = e1 and v = em with
the optimal condition number. Define

ρ =
maxi ‖Ai‖2

min(‖A0‖2, ‖Am‖2)
≥ 1.(4.7)

When we write infv κL(α, β; v) the infimum is understood to be taken over v for which
L is a linearization.

Theorem 4.2. Let (α, β) be a simple eigenvalue of P and consider pencils L ∈
DL(P ). Take the weights (4.1) for κL. Then

κL(α, β; e1) ≤ ρm3/2 inf
v
κL(α, β; v) if A0 is nonsingular and |α| ≥ |β|,(4.8)

κL(α, β; em) ≤ ρm3/2 inf
v
κL(α, β; v) if Am is nonsingular and |α| ≤ |β|.(4.9)

Proof. Note first that the conditions that A0 and Am are nonsingular ensure that
0 and ∞, respectively, are not eigenvalues of P , and hence that v = e1 and v = em,
respectively, yield linearizations.

Since κL(α, β; v) is invariant under scaling of v, we can set ‖v‖2 = 1. In view of

the bounds in Lemma 4.1, the v-dependent term
√
|α|2ω2

X + |β|2ω2
Y in the numerator

of (3.8) is bounded below by min(‖A0‖2, ‖Am‖2)
√
|α|2 + |β|2 for any v, and bounded

above by mmaxi ‖Ai‖2

√
|α|2 + |β|2 when v = ei for some i. Hence to prove (4.8) it

suffices to show that

max
‖v‖2=1

|p(α, β; v)| ≤
√
m |p(α, β; e1)| for |α| ≥ |β|.(4.10)

This inequality is trivial for β = 0, so we can assume β �= 0 and divide through by
βm−1 to rewrite the desired inequality as

max
‖v‖2=1

|p(λ; v)| ≤
√
m |p(λ; e1)| for |λ| ≥ 1.

But this inequality follows from

|p(λ; v)| = |ΛT v| ≤ ‖Λ‖2 ≤
√
m |λm−1| =

√
m |p(λ; e1)|.

The proof of (4.9) is entirely analogous.
Theorem 4.2 says that for matrix polynomials with coefficient matrices of roughly

equal norm, one of the two pencils with v = e1 and v = em will always give a near
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optimal condition number κL for a given eigenvalue; moreover, which pencil is nearly
optimal depends only on whether that eigenvalue is greater than or less than 1 in
modulus. Note, however, that taking the wrong choice of v = e1 or v = em can be
disastrous:

κL(0, β; e1) = ∞, κL(α, 0; em) = ∞(4.11)

(and in these situations the pencils are not linearizations); see the final example in
section 8.

For the quadratic polynomial Q(λ) = λ2A + λB + C, the pencils corresponding
to v = e1 and v = em(= e2) are, respectively (from (1.8)),

L1(λ) = λ

[
A 0
0 −C

]
+

[
B C
C 0

]
, L2(λ) = λ

[
0 A
A B

]
+

[
−A 0
0 C

]
.(4.12)

These pencils were analyzed by Tisseur [16], along with a companion form linearization
(which belongs to L1 but not DL). She showed that if ‖A‖2 = ‖B‖2 = ‖C‖2 = 1 then
κL1

(λ) ≤ κL2
(λ) for |λ| ≥

√
2 and κL1

(λ) ≥ κL2
(λ) for |λ| ≤ 2−1/2. Our analysis

in Theorem 4.2 implies that analogous inequalities hold for arbitrary degrees m and
arbitrary ρ. In fact, working directly from Lemma 4.1 we can show that

κL(α, β; e1) ≤ κL(α, β; em) if |α| ≥ (ρm)
1

m−1 |β|,
κL(α, β; em) ≤ κL(α, β; e1) if |β| ≥ (ρm)

1
m−1 |α|,

with entirely analogous inequalities holding for κL(λ).
Now we compare the optimal κL(α, β; v) with κP (α, β), the condition number of

the eigenvalue for the original polynomial.
Theorem 4.3. Let (α, β) be a simple eigenvalue of P . Then

1

ρ
≤ infv κL(α, β; v)

κP (α, β)
≤ m2ρ,

where the weights are chosen as ωi ≡ ‖Ai‖2 for κP and as in (4.1) for κL.
Proof. From Theorem 2.3,

κP (α, β) =

(∑m
i=0 |α|2i|β|2(m−i) ‖Ai‖2

2

)1/2 ‖y‖2‖x‖2∣∣y∗(β̄DαP − ᾱDβP )|(α,β)x
∣∣ .

On the other hand, for v = v∗ in (4.6) we have, from Theorem 3.1,

κL(α, β; v∗) =

√
|α|2‖X‖2

2 + |β|2‖Y ‖2
2 ‖Λα,β‖2‖y‖2‖x‖2∣∣y∗(β̄DαP − ᾱDβP )|(α,β)x

∣∣ .(4.13)

If L is not a linearization for v = v∗ then we need to interpret v∗ as an arbitrarily
small perturbation of v∗ for which L is a linearization. Using (4.2) and (4.3) and∑m

i=0 |α|2i|β|2(m−i) ‖Ai‖2
2 ≥ (|α|2m + |β|2m) min(‖A0‖2, ‖Am‖2)

2, it is easy to see
that

κL(α, β; v∗)

κP (α, β)
≤ ρm3/2f(α, β),
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where

f(α, β) =

√
|α|2 + |β|2

(∑m
i=1 |α|2(i−1)|β|2(m−i)

)1/2
√
|α|2m + |β|2m

.

From (A.1) in Lemma A.1 we have f(α, β) ≤
√
m. The upper bound follows since

infv κL(α, β; v) ≤ κL(α, β; v∗). For the lower bound we have, for any v with ‖v‖2 = 1,

κL(α, β; v)

κP (α, β)
=

√
|α|2‖X‖2

2 + |β|2‖Y ‖2
2 ‖Λα,β‖2

2(∑m
i=0 |α|2i|β|2(m−i)‖Ai‖2

2

)1/2 |p(α, β; v)|

≥
√
|α|2 + |β|2 min(‖A0‖2, ‖Am‖2)‖Λα,β‖2(∑m

i=0 |α|2i|β|2(m−i)
)1/2

maxi ‖Ai‖2

≥ 1

ρ

√
|α|2 + |β|2

(∑m
i=1 |α|2(i−1)|β|2(m−i)

)1/2
(∑m

i=0 |α|2i|β|2(m−i)
)1/2 =:

1

ρ
g(α, β),

since |p(α, β; v)| ≤ ‖Λα,β‖2 by the Cauchy–Schwarz inequality. From (A.2), g(α, β) ≥
1, and the lower bound follows.

Now we state the analogues of Theorem 4.2 and 4.3 for κL(λ). Recall that ρ is
defined in (4.7).

Theorem 4.4. Let λ be a simple, finite, nonzero eigenvalue of P and consider
pencils L ∈ DL(P ). Take the weights (4.1) for κL. Then

κL(λ; e1) ≤ ρm3/2 inf
v
κL(λ; v) if A0 is nonsingular and |λ| ≥ 1,(4.14)

κL(λ; em) ≤ ρm3/2 inf
v
κL(λ; v) if Am is nonsingular and |λ| ≤ 1.(4.15)

Proof. The proof is entirely analogous to that of Theorem 4.2.

Theorem 4.5. Let λ be a simple, finite, nonzero eigenvalue of P . Then

(
2
√
m

m + 1

)
1

ρ
≤ infv κL(λ; v)

κP (λ)
≤ m2ρ,

where the weights are chosen as ωi ≡ ‖Ai‖2 for κP and as in (4.1) for L.

Proof. The proof is very similar to that of Theorem 4.3, but with slightly different
f and g having the form of f3 and f4 in Lemma A.1.

Theorems 4.3 and 4.5 show that for polynomials whose coefficient matrices do not
vary too much in norm, the best conditioned linearization in DL(P ) for a particular
eigenvalue is about as well conditioned as P itself for that eigenvalue, to within a
small constant factor. This is quite a surprising result, because the condition numbers
κL(α, β) and κL(λ) permit arbitrary perturbations in L(λ) = λX + Y that do not
respect the zero and repeated block structure of X and Y (as exhibited for two
particular instances for m = 2 in (4.12)). Under the same assumptions on the ‖Ai‖2,
by combining Theorems 4.2 and 4.3, or Theorems 4.4 and 4.5, we can conclude that,
for any given eigenvalue, one of the two pencils with v = e1 and v = em will be about
as well conditioned as P itself for that eigenvalue.



1016 N. J. HIGHAM, D. S. MACKEY, AND F. TISSEUR

4.1. Several eigenvalues. Suppose now that several eigenvalues (α1, β1), . . . ,
(αr, βr) are of interest and that neither |αi| ≥ |βi| for all i nor |αi| ≤ |βi| for all i.
A reasonable way to define a single pencil that is best for all these eigenvalues is by
maximizing the 2-norm of the r-vector of the reciprocals of the eigenvalue condition
numbers for the pencil. This vector can be written, using Theorem 3.1, as

diag
(
(|αi|2ω2

X + |βi|2ω2
Y )1/2 ‖Λαi,βi

‖2
2‖yi‖2‖xi‖2

)−1

× diag(|y∗i (β̄iDαP − ᾱiDβP )|(αi,βi)xi|)

⎡
⎢⎣

ΛT
α1,β1

...
ΛT
αr,βr

⎤
⎥⎦ v =: Bv.

Assume that ρ = O(1), so that ωX and ωY in (4.1) are roughly constant in ‖v‖2.
Then we can set ωX = ωY = 1 and define the optimal v as the right singular vector
corresponding to the largest singular value of B. This approach requires knowledge
of the eigenvectors xi and yi as well as the λi. If the eigenvectors are not known then
we can simplify B further to

diag
(
(|αi|2 + |βi|2)1/2 ‖Λαi,βi‖2

2

)−1

⎡
⎢⎣

ΛT
α1,β1

...
ΛT
αr,βr

⎤
⎥⎦ .

So far we have implicitly assumed that we have a good estimate of the eigenvalues
of interest. Suppose, instead, that we know only a region S of the complex plane
in which the eigenvalues of interest lie. In this case a natural approach is to try to
minimize the v-dependent part of the eigenvalue condition number over S. Continuing
to assume ρ = O(1), and working now with κL(λ; v), the problem becomes to find the
v that achieves the maximum in the problem

max
‖v‖2=1

min
λ∈S

|p(λ; v)|.

This uniform (or Chebyshev) complex approximation problem can be expressed as a
semi-infinite programming problem and solved by numerical methods for such prob-
lems [14, sect. 2.3].

5. Quadratic polynomials. We now concentrate our attention on quadratic
polynomials, Q(λ) = λ2A + λB + C, as these are in practice the most important
polynomials of degree 2 or higher. Write

a = ‖A‖2, b = ‖B‖2, c = ‖C‖2.(5.1)

The quantity ρ in Theorems 4.2–4.5 is now

ρ =
max(a, b, c)

min(a, c)
.

Clearly, ρ is of order 1 if

b <∼ max(a, c) and a ≈ c.

If these conditions are not satisfied then we can consider scaling Q. Write λ = μγ,
γ ∈ R and

Q(λ) = λ2A + λB + C = μ2(γ2A) + μ(γB) + C =: μ2Ã + μB̃ + C̃ =: Q̃(μ).(5.2)
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The γ that minimizes max(‖Ã‖2/‖B̃‖2, ‖C̃‖2/‖B̃‖2) = max(γa/b, c/(γb)) is easily
seen to be

γ =
√
c/a,(5.3)

and it yields

‖Ã‖2 = c, ‖B̃‖2 = b
√
c/a, ‖C̃‖2 = c.

Hence, for the scaled problem,

ρ = max(1, b/
√
ac).

This scaling is intended to improve the conditioning of the linearizations, but what
does it do to the conditioning of the quadratic itself? It is easy to see that κP (λ) is
invariant under scaling when ωi = ‖Ai‖2, but that κP (α, β) is scale-dependent. We
note that the scaling (5.2) and (5.3) is used by Fan, Lin, and Van Dooren [4]; see
section 7.

With these observations we can combine and specialize Theorems 4.4 and 4.5 as
follows.

Theorem 5.1. Let λ denote a simple eigenvalue of Q(λ) = λ2A + λB + C or of

the scaled quadratic Q̃ defined by (5.2) and (5.3). Take the weights (4.1) for κL(λ).
With the notation (5.1), assume that either

• b <∼ max(a, c) and a ≈ c, in which case let P = Q and L ∈ DL(Q), or

• b <∼
√
ac, in which case let P = Q̃ and L ∈ DL(Q̃).

Then if C is nonsingular and |λ| ≥ 1, the linearization with v = e1 has κL(λ; e1) ≈
κP (λ), while if A is nonsingular and |λ| ≤ 1, the linearization with v = e2 has
κL(λ; e2) ≈ κP (λ).

If we think of Q as representing a mechanical system with damping, then the
near-optimality of the v = e1 and v = e2 linearizations holds for Q that are not too
heavily damped. One class of Q for which b <∼

√
ac automatically holds is the elliptic

Q [8], [11]: those for which A is Hermitian positive definite, B and C are Hermitian,
and (x∗Bx)2 < 4(x∗Ax)(x∗Cx) for all nonzero x ∈ C

n.
An analogue of Theorem 5.1 for κL(α, β) can be obtained from Theorems 4.2 and

4.3.

6. Connection with linearization of reversal of P . Consider the quadratic
Q(λ) = λ2A+λB+C and the “reversed” quadratic revQ(λ) = λ2C +λB+A, whose
eigenvalues are the reciprocals of those of Q. Tisseur [16, Lem. 10] shows that if λ
is a simple, finite, nonzero eigenvalue of Q and μ = 1/λ the corresponding simple
eigenvalue of revQ then, with the weights (4.1), κ

L̃1
(μ) = κL2

(λ) and κ
L̃2

(μ) =

κL1
(λ), where L1 and L2 are the pencils corresponding to v = e1 and v = e2 given

in (4.12) and L̃1 and L̃2 are the corresponding pencils for revQ. In essence this
result says that one cannot improve the condition of an eigenvalue of a linearization
by regarding it as the reciprocal of an eigenvalue of the reversed quadratic. In this
section we generalize this result in three respects: to any vector v (not just v = e1 or
e2), to arbitrary degree polynomials, and to zero and infinite eigenvalues.

Define

revP (λ) = λmP (1/λ),
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where P has degree m, which is the polynomial obtained by reversing the order of
the coefficient matrices of P . Let L(λ) = λX + Y ∈ DL(P ) with vector v and

L̃(λ) = λX̃ + Ỹ ∈ DL(revP ) with vector Rv, where

R =

[
1

. .
.

1

]
∈ R

m×m.

Lemma 6.1. L is a linearization for P if and only if L̃ is a linearization for
revP .

Proof. The roots of p(λ;Rv) are the reciprocals of the roots of p(λ; v), while the
eigenvalues of revP are the reciprocals of the eigenvalues of P . The result now follows
from [13, Thm. 6.7].

We now work with the condition number κL(α, β). Note that (α, β) is an eigen-
value of P with right and left eigenvectors x and y if and only if (β, α) is an eigenvalue
of revP with right and left eigenvectors x and y. Also note that in homogeneous vari-
ables revP (α, β) = P (β, α).

Lemma 6.2. If the weights ωX and ωY for L and weights ω
X̃

and ω
Ỹ

for L̃ satisfy
ωX = ω

Ỹ
and ωY = ω

X̃
then κL(α, β) = κ

L̃
(β, α).

Proof. We have, from (3.8),

κL(α, β) =

√
|α|2ω2

X + |β|2ω2
Y

|p(α, β; v)| · ‖Λα,β‖2
2 ‖y‖2‖x‖2∣∣y∗(β̄DαP − ᾱDβP )|(α,β)x

∣∣ ,

κ
L̃
(β, α) =

√
|β|2ω2

X̃
+ |α|2ω2

Ỹ

|p(β, α;Rv)| · ‖Λβ,α‖2
2 ‖y‖2‖x‖2∣∣y∗(ᾱDαrevP − β̄DβrevP )|(β,α)x

∣∣ .

We show that each of the four terms in the first expression equals the corresponding
term in the second expression. The assumptions on the weights clearly imply equality
of the square root terms. Next, Λβ,α = RΛα,β , so Λβ,α and Λα,β have the same
2-norm, while p(α, β; v) ≡ p(β, α;Rv). Finally,

(ᾱDαrevP − β̄DβrevP )|(β,α) = ᾱ(DαrevP )|(β,α) − β̄(DβrevP )|(β,α)

= ᾱ(DβP )|(α,β) − β̄(DαP )|(α,β)

= −(β̄DαP − ᾱDβP )|(α,β),

which implies the equality of the final two denominator terms.
Do the conditions ωX = ω

Ỹ
and ωY = ω

X̃
hold for the natural choice of weights

ωX ≡ ‖X‖2, ωY ≡ ‖Y ‖2? The next lemma shows that they do, and shows an even

stronger relationship between L and L̃.
Lemma 6.3. We have

L̃(λ) = (R⊗ In)revL(λ)(R⊗ In),(6.1)

and so X̃ = (R⊗ In)Y (R⊗ In) and Ỹ = (R⊗ In)X(R⊗ In). Hence ‖X̃‖ = ‖Y ‖ and

‖Ỹ ‖ = ‖X‖ for any unitarily invariant norm.

Proof. L̃ is defined as the unique pencil in DL(revP ) = L1(revP ) ∩ L2(revP )
corresponding to the vector Rv. Therefore to establish (6.1) it suffices to show that
the pencil (R ⊗ In)revL(λ)(R ⊗ In) belongs to both L1(revP ) and L2(revP ) with
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vector Rv, that is, it satisfies the appropriate versions of properties (1.5) and (1.6).
The other results then follow.

Recall that revP (λ) = λmP (1/λ) and note that λm−1Λ(1/λ) = RΛ, where Λ(λ) ≡
Λ is defined in (1.4). If L ∈ L1(P ) with vector v then

L(λ) · (Λ⊗ In) = v ⊗ P (λ)

⇒ L(1/λ) · (Λ(1/λ) ⊗ In) = v ⊗ P (1/λ)

⇒ λL(1/λ) · (λm−1Λ(1/λ) ⊗ In) = v ⊗ λmP (1/λ)

⇒ revL(λ) · (RΛ⊗ In) = v ⊗ revP (λ)

⇒ (R⊗ In)revL(λ)(R⊗ In) · (Λ⊗ In) = (R⊗ In)(v ⊗ revP (λ)) = Rv ⊗ revP (λ),

which means that (R⊗ In)revL(λ)(R⊗ In) ∈ L1(revP ) with vector Rv.
Similarly, it can be shown that L ∈ L2(P ) with vector v implies that (R ⊗

In)revL(λ)(R⊗ In) ∈ L2(revP ) with vector Rv.
Combining the previous three lemmas we obtain the following generalization of

Tisseur [16, Lem. 10].
Theorem 6.4. Let (α, β) be a simple eigenvalue of P , so that (β, α) is a simple

eigenvalue of revP . Suppose L ∈ DL(P ) with vector v is a linearization of P . Then

L̃ ∈ DL(revP ) with vector Rv is a linearization of revP and, if the weights are chosen
as in (4.1), κL(α, β) = κ

L̃
(β, α).

An analogue of Theorem 6.4 stating that κL(λ) = κ
L̃
(1/λ) for finite, nonzero λ

can also be derived.

7. Companion linearizations. Associated with P are two companion form
pencils, C1(λ) = λX1 + Y1 and C2(λ) = λX2 + Y2, called the first and second com-
panion forms [12, sect. 14.1], respectively, where

X1 = X2 = diag(Am, In, . . . , In),

Y1 =

⎡
⎢⎢⎢⎢⎣

Am−1 Am−2 . . . A0

−In 0 . . . 0
...

. . .
. . .

...
0 . . . −In 0

⎤
⎥⎥⎥⎥⎦
, Y2 =

⎡
⎢⎢⎢⎢⎢⎣

Am−1 −In . . . 0

Am−2 0
. . .

...
...

...
. . . −In

A0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦
.

The pencil C1 belongs to L1(P ) with v = e1 in (1.5), while C2 belongs to L2(P ) with
w = e1 in (1.6). Neither pencil is in DL(P ), but both are always linearizations [12,
sect. 14.1].

We wish to compare the conditioning of C1 and C2 with that of P and of an
appropriate DL(P ) linearization. Our first result shows that it suffices to analyze the
conditioning of C1, because any results about the conditioning of C1 translate to C2

simply by transposing the coefficient matrices Ai.
Lemma 7.1. Let λ, or (α, β) in homogeneous form, be a simple eigenvalue of P ,

and take ωi = ‖Ai‖2. Then

κP (α, β) = κPT (α, β), κP (λ) = κPT (λ).

Moreover,

κC2(P )(α, β) = κC1(P
T )(α, β), κC2(P )(λ) = κC1(P

T )(λ),
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where Ci(P ), i = 1, 2, denotes the ith companion linearization for P , and PT denotes
the polynomial obtained by transposing each coefficient matrix Ai.

Proof. If (λ, x, y) is an eigentriple for P then (λ, y, x) is an eigentriple for PT .
The first two equalities follow by considering the formulae (2.2) and (2.5). It is easy
to see that C2(P ) = C1(P

T )T . The second pair of equalities are therefore special
cases of the first.

For the rest of the section we work with λ and κ(λ); for (α, β) and κ(α, β) anal-
ogous results hold. We first obtain a formula for left eigenvectors w∗ of C1.

Lemma 7.2. The vector y ∈ C
n is a left eigenvector of P corresponding to a

simple, finite, nonzero eigenvalue λ if and only if

w =

⎡
⎢⎢⎣

I
(λAm + Am−1)

∗

...
(λm−1Am + λm−2Am−1 + · · · + A1)

∗

⎤
⎥⎥⎦ y(7.1)

is a left eigenvector of C1 corresponding to λ.
Proof. Since C1 is a linearization of P , λ is a simple eigenvalue of C1. The proof

therefore consists of a direct verification that w∗C1(λ) = 0.
Lemma 7.2 shows that, even though C1 �∈ L2(P ), a left eigenvector of P can be

recovered from one of C1—simply by reading off the leading n components.
Since C1 ∈ L1(P ), we know that the right eigenvectors z and x of C1 and P are

related by z = Λ ⊗ x. Evaluating (3.10) (which holds for any member of L1) with
L = C1 at an eigenvalue λ, then multiplying on the left by w∗ and on the right by
1 ⊗ x = x, we obtain

w∗C ′
1(λ)z = w∗(v ⊗ P ′(λ)x).

Using the formula (7.1) for w and the fact that v = e1 gives

w∗C ′
1(λ)z = y∗P ′(λ)x.

By applying Theorem 2.1 to C1 we obtain the following analogue of Theorem 3.2.
Theorem 7.3. Let λ be a simple, finite, nonzero eigenvalue of P with right and

left eigenvectors x and y, respectively. Then, for the first companion linearization
C1(λ) = λX1 + Y1,

κC1
(λ) =

(|λ|ωX1
+ ωY1

) ‖w‖2‖Λ‖2‖x‖2

|λ| |y∗P ′(λ)x| ,

where w is given by (7.1).
Now we can compare the condition number of the first companion form with that

of P . We have

κC1
(λ)

κP (λ)
=

‖w‖2

‖y‖2
·
(|λ|ωX1

+ ωY1
) ‖Λ‖2∑m

i=0 |λ|iωi
.

We choose the weights ωX1
= ‖X1‖2, ωY1

= ‖Y1‖2, and ωi = ‖Ai‖2 in (2.2). We
therefore need bounds on the norms of X1 and Y1. These are provided by the next
lemma, which is similar to Lemma 4.1.

Lemma 7.4. For C1(λ) = λX1 + Y1 we have ‖X1‖2 = max(‖Am‖2, 1) and

max
(
1, max

i=0:m−1
‖Ai‖2

)
≤ ‖Y1‖2 ≤ mmax

(
1, max

i=0:m−1
‖Ai‖2

)
.(7.2)
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Proof. The proof is straightforward, using (4.5).
For notational simplicity we will now concentrate on the quadratic case, m = 2.

With the notation (5.1), we have

ψ

21/2

‖w‖2

‖y‖2
≤

κC1
(λ)

κP (λ)
≤ 2ψ

‖w‖2

‖y‖2
,(7.3)

where

ψ =
(1 + |λ|)

(
max(a, 1)|λ| + max(b, c, 1)

)
a|λ|2 + b|λ| + c

≥ 1

and

‖w‖2

‖y‖2
=

∥∥∥∥
[

I
(λA + B)∗

]
y

∥∥∥∥
2

‖y‖2
=

∥∥∥∥
[

I
(λ−1C)∗

]
y

∥∥∥∥
2

‖y‖2
(7.4)

satisfies

1 ≤ ‖w‖2

‖y‖2
≤ min

(
(1 + (|λ|a + b)2)1/2, (1 + c2/|λ|2)1/2

)
.

Therefore κC1
(λ) will be of the same order of magnitude as κP (λ) only if both ψ and

‖w‖2/‖y‖2 are of order 1. It is difficult to characterize when these conditions hold.
However, it is clear that, unlike for the DL(P ) linearizations, the condition of C1 is
affected by scaling Ai ← γAi, i = 0:m, as might be expected in view of the mixture of
identity matrices and Ai that make up the blocks of X1 and Y1. Indeed if a, b, c � 1,
then ψ � 1, while if a, b, c � |λ| ≥ 1, then ‖w‖2/‖y‖2 � 1, unless y is nearly a null
vector for (λA + B)∗ and C∗. The only straightforward conditions that guarantee
κC1

(λ) ≈ κP (λ) are a ≈ b ≈ c ≈ 1: then ψ ≈ 1 and one of the two expressions for
‖w‖2/‖y‖2 in (7.4) is clearly of order 1 (the first if |λ| ≤ 1, otherwise the second).
The predilection of the first companion form for coefficient matrices of unit 2-norm
was shown from a different viewpoint by Tisseur [16, Thm. 7]: she proves that when
a = b = c = 1, applying a backward stable solver to the companion pencil is backward
stable for the original quadratic.

It is natural to scale the problem to try to bring the 2-norms of A, B, and C close
to 1. The scaling of Fan, Lin, and Van Dooren [4], which was motivated by backward
error considerations, has precisely this aim. It converts Q(λ) = λ2A + λB + C to

Q̃(μ) = μ2Ã + μB̃ + C̃, where

λ = γμ, Q(λ)δ = μ2(γ2δA) + μ(γδB) + δC ≡ Q̃(μ),(7.5a)

γ =
√
c/a, δ = 2/(c + bγ).(7.5b)

This is the scaling γ we used in section 5 combined with the multiplication of each
coefficient matrix by δ.

Now we compare κC1
(λ) with κL(λ; v∗), where v∗ for λ is defined analogously to

v∗ for (α, β) in (4.6) by

v∗ =
Λ

‖Λ‖2
, |p(λ; v∗)| = ‖Λ‖2.
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We have, from (3.11),

κL(λ; v∗) =
(|λ|ωX + ωY )‖Λ‖2‖y‖2‖x‖2

|λ| |y∗P ′(λ)x| ,

and so

κC1
(λ)

κL(λ; v∗)
=

‖w‖2

‖y‖2
·
|λ|ωX1

+ ωY1

|λ|ωX + ωY

.

Again, specializing to m = 2, and using Lemmas 4.1 and 7.4, we have

‖w‖2

‖y‖2
·
(
max(a, 1)|λ| + max(b, c, 1)

)
23/2 max(a, b, c)(1 + |λ|) ≤

κC1
(λ)

κL(λ; v∗)
(7.6)

≤ ‖w‖2

‖y‖2
·
(
max(a, 1)|λ| + 2 max(b, c, 1)

)
a|λ| + c

.

If a ≈ b ≈ c ≈ 1 then we can conclude that κC1
(λ) ≈ κL(λ; v∗). However, κC1

(λ) �
κL(λ; v∗) if ‖w‖2/‖y‖2 � 1 or if (for example) a, b, c � 1.

Our results for the companion forms are not as neat as those in section 4 for the
DL(P ) linearizations, which focus attention on a single, easily computed or estimated,
scalar parameter ρ. The conditioning of the companion forms relative to P and to the
class DL(P ) depends on both (a) the ratios of norms of left eigenvectors of C1 and
P , and (b) rational functions of the coefficient matrix norms and λ. It does not seem
possible to bound the norm ratio in a useful way a priori. Therefore the only easily
checkable conditions that we can identify under which the companion forms can be
guaranteed to be optimally conditioned are ‖Ai‖2 ≈ 1, i = 0:m (our proof of this fact
for m = 2 is easily seen to generalize to arbitrary m).

Finally, we note that the bounds (7.3) and (7.6) remain true when “λ” is replaced
by “α, β,” with just minor changes to the constants.

8. Numerical experiments. We illustrate the theory on four quadratic eigen-
value problems. Our experiments were performed in MATLAB 7, for which the unit
roundoff is 2−53 ≈ 1.1 × 10−16. To obtain the angular error θ((α, β), (α̃, β̃)) for a

computed eigenvalue (α̃, β̃), we took as exact eigenvalue (α, β) the value computed
in MATLAB’s VPA arithmetic at 40 digit precision. In our figures, the x-axis is the
eigenvalue index and the eigenvalues are sorted in increasing order of absolute value.
We compare the condition numbers of the quadratic Q, the first companion form, and
the DL(Q) linearizations with v = e1 and v = e2. All our problems have (real) sym-
metric coefficient matrices so we know from Lemma 7.1 that the second companion
form has exactly the same condition numbers as the first companion form. In two of
the problems we apply the scaling given by (7.5). Table 8.1 reports the problem sizes,
the coefficient matrix norms, and the values of ρ in (4.7) before and after scaling.

Our first problem shows the benefits of scaling. It comes from applying the
Galerkin method to a PDE describing the wave motion of a vibrating string with
clamped ends in a spatially inhomogeneous environment [5], [8]. The quadratic Q is
elliptic; the eigenvalues are nonreal and have absolute values in the interval [1, 25].
Figure 8.1 shows the condition numbers κL(α, β) for the DL(Q) linearization with
v = e1 and the first companion linearization, the condition number κP (α, β) for Q,
and the angular errors in the eigenvalues computed by applying the QZ algorithm
to the two linearizations. Figure 8.2 shows the corresponding information for the
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Table 8.1

Problem statistics.

Problem Wave Nuclear Mass-spring Acoustics
n 25 8 50 107

Unscaled Scaled Unscaled Scaled Unscaled Unscaled Scaled
‖A‖2 1.57e0 1.85e0 2.35e8 1.18e0 1.00e0 1.00e0 2.00e0
‖B‖2 3.16e0 1.49e-1 4.35e10 8.21e-1 3.20e2 5.74e-2 3.64e-5
‖C‖2 9.82e2 1.85e0 1.66e13 1.18e0 5.00e0 9.95e6 2.00e0
ρ 6.25e2 1.00e0 7.06e4 1.00e0 3.20e2 9.95e6 1.00e0
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Fig. 8.1. Wave problem, unscaled; v = e1, ρ = 625.

scaled problem. Since the eigenvalues are all of modulus at least 1, we know from
Theorem 4.3 that for every eigenvalue, the DL(Q) linearization with v = e1 has
condition number within a factor 4ρ = 2500 of the condition number for Q. The
actual ratios are between 3.5 and 266. Since this problem is elliptic, we know from
Theorem 5.1 that for the scaled problem, whose eigenvalues lie between 0.04 and 1 in
modulus, the DL(Q̃) linearization with v = e2 will have condition number similar to

that of Q̃ for every eigenvalue. This is confirmed by Figure 8.2; the maximum ratio of
condition numbers is 3.3. The benefit of the smaller condition numbers after scaling
is clear from the figures: the angular error of the computed eigenvalues is smaller by
a factor roughly equal to the reduction in condition number. The behavior of the
companion linearization is very similar to that of the DL(Q) linearizations, and this
is predicted by our theory since the term ψ‖w‖2/‖y‖2 in (7.3) varies from 3.7 to 511
without scaling and only 1.0 to 4.5 with scaling.

The next problem is a simplified model of a nuclear power plant [9], [17]. There
are 2 real and 14 nonreal eigenvalues, with absolute values in the interval (17, 362).
Since ρ = 7 × 104, it is not surprising that the DL(Q) linearization with v = e1 has
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Fig. 8.2. Wave problem, scaled; v = e2, ρ = 1.
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Fig. 8.3. Nuclear power plant problem, unscaled; v = e1, ρ = 7 × 104.
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Fig. 8.4. Nuclear power plant problem, scaled; v = e2, ρ = 1.

eigenvalue condition numbers up to 369 times as large as those of Q, as Figure 8.3
indicates. Although the problem is not elliptic, ‖B‖2 ≤

√
‖A‖2‖C‖2, and so our the-

ory says that scaling will make the DL(Q) linearization with v = e2 (since the scaled
eigenvalues have modulus at most 1) optimally conditioned. This prediction is con-
firmed in Figure 8.4. Scaling also brings a dramatic improvement in the conditioning
and accuracy of the companion linearization; again, this is predicted by our theory
since the scaled problem has coefficient matrices of norm approximately 1, and the
magnitude of the reduction is explained by the term ψ‖w‖2/‖y‖2 in (7.3), which has
a maximum of 2 × 1010 without scaling and 1.5 with scaling. Scaling results in an
increase in the condition numbers κP (α, β) by factors ranging from 1.2 to 173.

Our third problem is a standard damped mass-spring system, as described in [17,
sect. 3.9]. The matrix A = I, B is tridiagonal with super- and subdiagonal elements
all −64 and diagonal 128, 192, 192, . . . , 192, and C is tridiagonal with super- and
subdiagonal elements all −1 and diagonal 2, 3, . . . , 3. Here, ρ = 320. The eigenvalues
are all negative, with 50 eigenvalues of large modulus ranging from −320 to −6.4 and
50 small modulus eigenvalues approximately −1.5 × 10−2. Figures 8.5 and 8.6 show
the results for v = e1 and v = e2, respectively. Our theory suggests that for the
eigenvalues of large modulus the linearization with v = e1 will have nearly optimal
conditioning, while for eigenvalues of small modulus the linearization with v = e2

will be nearly optimal. This behavior is seen very clearly in the figures, with a sharp
change in condition number at the three order of magnitude jump in the eigenvalues.
This example also clearly displays nonoptimal conditioning of the first companion
linearization for small eigenvalues: for the 50 eigenvalues of small modulus, κC1

(α, β)
exceeds κP (α, β) and κL(α, β; e2) by a factor at least 103, and again this is accurately
reflected in the bounds (7.3). For this problem, scaling has essentially no effect on
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Fig. 8.5. Damped mass-spring system, unscaled; v = e1, ρ = 320.
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Fig. 8.6. Damped mass-spring system, unscaled; v = e2, ρ = 320.
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the two DL(Q) linearizations, but for the companion linearization it increases the
condition number for the large eigenvalues and decreases it for the small eigenvalues,
with the result that all the condition numbers lie between 3.6 and 13.

Finally, we describe an example that emphasizes the importance in our analysis
of the condition that the pencil L ∈ DL(P ) is a linearization of P . The problem
is a quadratic of dimension 107 arising from an acoustical model of a speaker box
[10]. After scaling, ρ = 1. The computed eigenvalues from the companion form have
moduli of order 1, except for two eigenvalues with moduli of order 10−5. We found
the pencil with v = e2 to have eigenvalue condition numbers of the same order of
magnitude as those of Q (namely from 106 to 1013)—as predicted by the theory.
But for v = e1 the conditioning of L was orders of magnitude worse than that of
Q for every eigenvalue, which at first sight appears to contradict the theory. The
explanation is that this problem has a singular A0 and hence a zero eigenvalue; L is
therefore not a linearization for v = e1, as we noted earlier: see the first sentence of
the proof of Theorem 4.2 and (4.11). In fact, since L ∈ DL(P ) is not a linearization
for v = e1 it is a nonregular pencil [13, Thm. 4.3]. This example is therefore entirely
consistent with the theory.

Appendix A.
The following lemma is needed in the proofs of Theorems 4.3 and 4.5. We omit

the proof.
Lemma A.1. Consider the functions

f1(x) =
(1 + x2)(1 + x2 + x4 + · · · + x2(m−1))

1 + x2m
,

f2(x) =
(1 + x2)(1 + x2 + x4 + · · · + x2(m−1))

1 + x2 + x4 + · · · + x2m
,

f3(x) =
(1 + x)2(1 + x2 + x4 + · · · + x2(m−1))

(1 + xm)2
,

f4(x) =
(1 + x)2(1 + x2 + x4 + · · · + x2(m−1))

(1 + x + x2 + · · · + xm)2
.

The functions f1, f2, f3, and f4 are all unimodal on [0,∞), with a unique interior
extreme point at x = 1 and another extreme point at x = 0. In particular, we have
the following sharp bounds:

1 ≤ f1(x) ≤ m,(A.1)

1 ≤ f2(x) ≤ 2m

m + 1
,(A.2)

1 ≤ f3(x) ≤ m,(A.3)

4m

(m + 1)2
≤ f4(x) ≤ 1.(A.4)
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Abstract. Many applications give rise to nonlinear eigenvalue problems with an underlying
structured matrix polynomial. In this paper several useful classes of structured polynomials (e.g.,
palindromic, even, odd) are identified and the relationships between them explored. A special class
of linearizations which reflect the structure of these polynomials, and therefore preserve symmetries
in their spectra, is introduced and investigated. We analyze the existence and uniqueness of such
linearizations and show how they may be systematically constructed.
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1. Introduction. We consider n× n matrix polynomials of the form

(1.1) P (λ) =
k∑

i=0

λiAi, A0, . . . , Ak ∈ F
n×n, Ak �= 0,

where F denotes the field R or C. The numerical solution of the associated polynomial
eigenvalue problem P (λ)x = 0 is one of the most important tasks in the vibration
analysis of buildings, machines, and vehicles [11], [22], [35]. In many applications, sev-
eral of which are summarized in [27], the coefficient matrices have a further structure
which reflects the properties of the underlying physical model, and it is important
that numerical methods respect this structure.

Our main motivation stems from a project with the company SFE GmbH in
Berlin which investigates rail traffic noise caused by high speed trains [16], [17]. The
eigenvalue problem that arises in this project from the vibration analysis of rail tracks
has the form

(1.2) (λ2A + λB + AT )x = 0,

where A,B are complex square matrices with B complex symmetric and A singular.
The impact of the theory developed in this paper on the solution of this particular
eigenvalue problem will be discussed further in section 4. (See also the article in [20].)
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Observe that the matrix polynomial in (1.2) has the property that reversing the
order of the coefficient matrices, followed by taking their transpose, leads back to the
original matrix polynomial. By analogy with linguistic palindromes, of which

“sex at noon taxes”
is perhaps a less well-known example,1 we say such matrix polynomials are T-palindromic.

Quadratic real and complex T -palindromic eigenvalue problems also arise in the
mathematical modeling and numerical simulation of the behavior of periodic surface
acoustic wave (SAW) filters [36], whereas the computation of the Crawford number
[15] associated with the perturbation analysis of symmetric generalized eigenvalue
problems produces a quadratic ∗-palindromic eigenvalue problem, where ∗ stands for
conjugate transpose. Higher order matrix polynomials with a ∗-palindromic structure
arise in the optimal control of higher order difference equations [27].

A related class of structured eigenvalue problems arises in the study of corner
singularities in anisotropic elastic materials [3], [4], [25], [33] and gyroscopic systems
[35]. Here the problem is of the form

(1.3) P (λ)v = (λ2M + λG + K)v = 0,

with large and sparse coefficients M = MT , G = −GT , K = KT in R
n×n. The

matrix polynomial in (1.3) is reminiscent of an even function: replacing λ with −λ,
followed by taking the transpose, leads back to the original matrix polynomial. We
therefore say such matrix polynomials are T -even. Higher order ∗-even eigenvalue
problems arise in the linear quadratic optimal control problem for higher order systems
of ordinary differential equations [34]. Under different nomenclature, even matrix
polynomials have recently received much attention [3], [5], [33], [34].

The classical approach to investigating or numerically solving polynomial eigen-
value problems is linearization, in which the given polynomial (1.1) is transformed
into a kn× kn matrix pencil L(λ) = λX + Y that satisfies

(1.4) E(λ)L(λ)F (λ) =

[
P (λ) 0

0 I(k−1)n

]
,

where E(λ) and F (λ) are unimodular matrix polynomials [11]. (A matrix polynomial
is unimodular if its determinant is a nonzero constant, independent of λ.) Standard
methods for linear eigenvalue problems as in [2], [26], [30] can then be applied.

The companion forms [11] provide the standard examples of linearizations for a
matrix polynomial P (λ) as in (1.1). Let X1 = X2 = diag(Ak, In, . . . , In),

Y1 =

⎡
⎢⎢⎢⎣

Ak−1 Ak−2 . . . A0

−In 0 . . . 0
. . .

. . .
...

0 −In 0

⎤
⎥⎥⎥⎦ , and Y2 =

⎡
⎢⎢⎢⎣

Ak−1 −In 0

Ak−2 0
. . .

...
...

. . . −In
A0 0 . . . 0

⎤
⎥⎥⎥⎦ .

Then C1(λ) = λX1 + Y1 and C2(λ) = λX2 + Y2 are, respectively, the first and sec-
ond companion forms for P (λ). Unfortunately, since these companion linearizations
do not reflect the structure present in palindromic or even matrix polynomials, the

1Invented by the mathematician Peter Hilton in 1947 for his thesis advisor J.H.C. Whitehead. It
is probable, Hilton says, that this palindrome may have been known before 1947. When Whitehead
lamented its brevity, Hilton responded by crafting the palindromic masterpiece “Doc, note, I dissent.
A fast never prevents a fatness. I diet on cod” [18], [19].
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corresponding linearized pencil can usually only be treated with methods for general
matrix pencils. In a finite precision environment, a numerical method that ignores the
structure may produce physically meaningless results [35], e.g., may lose symmetries
in the spectrum. Therefore, it is important to construct linearizations that reflect the
structure of the given matrix polynomial, and then develop numerical methods for
the corresponding linear eigenvalue problem that properly address these structures as
well. The latter topic has been an important recent area of research; see, e.g., [5], [6],
[7], [30], [32], and the references therein.

In this paper we show that the pencil spaces L1(P ) and L2(P ), developed in
[28] by generalizing the first and second companion forms, are rich enough to include
subspaces of pencils that reflect palindromic, even, or odd structure of a matrix poly-
nomial P . Extending the notion of Cayley transformation to matrix polynomials, we
show in section 2.2 how this transformation connects (anti-)palindromic and odd/even
structures. Section 3 is devoted to the introduction and analysis of structured lin-
earizations for the various structured matrix polynomials under consideration. The
general linearization approach of [28] is summarized and then exploited to obtain the
main results of this paper: identification of structured pencils in L1(P ), a constructive
method for generating them, and necessary and sufficient conditions for these pen-
cils to be linearizations, thereby correctly retaining information on eigenvalues and
eigenvectors of the original matrix polynomial. These results are then used to identify
situations when existence of structure-preserving linearizations is not guaranteed.

Finally, in section 4 we elucidate the subtitle “good vibrations from good lin-
earizations” by discussing the impact of the theory developed in this paper on the
palindromic eigenvalue problem (1.2) arising in the vibration analysis of rail tracks.

2. Basic structures, spectral properties, and Cayley transformations.
In this section we formally define the structured polynomials that are studied in this
paper, show how the structure of a polynomial is reflected in its spectra, and establish
connections between the various classes of structured polynomials by extending the
classical definition of Cayley transformations to matrix polynomials. For conciseness,
the symbol � is used as an abbreviation for transpose T in the real case and for either
T or conjugate transpose ∗ in the complex case.

Definition 2.1. Let Q(λ) =
∑k

i=0 λ
iBi, where B0, . . . , Bk ∈ F

m×n, be a matrix
polynomial of degree k, that is, Bk �= 0. Then we define the adjoint Q�(λ) and the
reversal revQ(λ) of Q(λ), respectively, by

(2.1) Q�(λ) :=

k∑
i=0

λiB�
i and revQ(λ) := λkQ(1/λ) =

k∑
i=0

λk−iBi.

If deg(Q(λ)) denotes the degree of the matrix polynomial Q(λ), then, in general,
deg(revQ(λ)) ≤ deg(Q(λ)) and rev

(
Q1(λ) ·Q2(λ)

)
= revQ1(λ) · revQ2(λ), whenever

the product Q1(λ) · Q2(λ) is defined. Using (2.1), the various structured matrix
polynomials under consideration are defined in Table 2.1.

For a scalar polynomial p(x), T -palindromic is the same as palindromic (i.e.,
rev p(x) = p(x)), while ∗-palindromic is equivalent to conjugate-palindromic (i.e.,
rev p(x) = p(x)). Analogous simplifications occur in the scalar polynomial case for all
other structures defined in Table 2.1.

Two matrices that play an important role in our investigation are the k×k reverse
identity Rk in the context of palindromic structures, and the k × k diagonal matrix
Σk of alternating signs in the context of even/odd structures (the subscript k will be
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Table 2.1

Definitions of basic structures.

palindromic revP (λ) = P (λ) anti-palindromic revP (λ) = −P (λ)
� -palindromic revP�(λ) = P (λ) � -anti-palindromic revP�(λ) = −P (λ)

even P (−λ) = P (λ) odd P (−λ) = −P (λ)
� -even P�(−λ) = P (λ) � -odd P�(−λ) = −P (λ)

suppressed whenever it is clear from the context):

(2.2) R := Rk :=

⎡
⎢⎣

0 1

. .
.

1 0

⎤
⎥⎦
k×k

and Σ := Σk :=

⎡
⎢⎣

(−1)k−1 0
. . .

0 (−1)0

⎤
⎥⎦ .

2.1. Spectral symmetry. A distinguishing feature of the structured matrix
polynomials in Table 2.1 is the special symmetry properties of their spectra, described
in the following result.

Theorem 2.2. Let P (λ) =
∑k

i=0 λ
iAi , Ak �= 0, be a regular matrix polynomial

that has one of the structures listed in Table 2.1. Then the spectrum of P (λ) has
the pairing depicted in Table 2.2. Moreover, the algebraic, geometric, and partial
multiplicities of the two eigenvalues in each such pair are equal. (Here, we allow
λ = 0 and interpret 1/λ as the eigenvalue ∞.)

Table 2.2

Spectral symmetries.

Structure of P (λ) Eigenvalue pairing

(anti-)palindromic, T -(anti-)palindromic (λ, 1/λ)

∗-palindromic, ∗-anti-palindromic (λ, 1/ λ)

even, odd, T -even, T -odd (λ,−λ)

∗-even, ∗-odd (λ,−λ)

Proof. We first recall some well-known facts [8], [10], [11] about the companion
forms C1(λ) and C2(λ) of a regular matrix polynomial P (λ):

• P (λ) and C1(λ) have the same eigenvalues (including ∞), with the same
algebraic, geometric, and partial multiplicities.

• C1(λ) and C2(λ) are always strictly equivalent , i.e., there exist nonsingular
constant matrices E and F such that C1(λ) = E · C2(λ) · F .

• Strictly equivalent pencils have the same eigenvalues (including ∞), with the
same algebraic, geometric, and partial multiplicities.

With these facts in hand, we first consider the case when P (λ) is � -palindromic or
� -anti-palindromic, so that revP�(λ) = χP P (λ) for χP = ±1. Our strategy is to
show that C1(λ) is strictly equivalent to revC�

1 (λ), from which the desired eigenvalue
pairing and equality of multiplicities then follow. Using the nonsingular matrix

T :=

⎡
⎢⎢⎣

χP I χP Ak−1 . . . χP A1

0 0 −I
... . .

.

0 −I 0

⎤
⎥⎥⎦ ,
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we first show that C1(λ) is strictly equivalent to revC�
2 (λ):

T · C1(λ) · (Rk ⊗ In) = T ·

⎛
⎜⎜⎝λ

⎡
⎢⎢⎣

0 Ak

I
. .
.

I 0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
A0 A1 . . . Ak−1

0 0 −I... . .
.

0 −I 0

⎤
⎥⎥⎦

⎞
⎟⎟⎠

= λ

⎡
⎢⎢⎣
χP A1 . . . χP Ak−1 χP Ak

−I 0 0
. . .

...
0 −I 0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
χP A0 0

I
. . .

0 I

⎤
⎥⎥⎦

= λ

⎡
⎢⎢⎣
Ak−1 −I 0
...

. . .
A1 0 −I
A0 0 . . . 0

⎤
⎥⎥⎦

�

+

⎡
⎢⎢⎣
Ak 0

I
. . .

0 I

⎤
⎥⎥⎦

�

= revC�
2 (λ).

But revC�
2 (λ) is always strictly equivalent to revC�

1 (λ), since C1(λ) and C2(λ) are.
This completes the proof for this case.

For the case of palindromic or anti-palindromic matrix polynomials, i.e., polyno-
mials P (λ) satisfying revP (λ) = χP P (λ), an analogous computation shows that

T · C1(λ) · (Rk ⊗ In) = revC1(λ),

i.e., C1(λ) is strictly equivalent to revC1(λ), which again implies the desired eigenvalue
pairing and equality of multiplicities.

Next assume that P (λ) is � -even or � -odd, so P�(−λ) = εP P (λ) for εP = ±1.
We show that C1(λ) is strictly equivalent to C�

1 (−λ), from which the desired pairing
of eigenvalues and equality of multiplicities follows. We begin by observing that C1(λ)
is strictly equivalent to C�

2 (−λ):
(
diag(εP ,−Σk−1) ⊗ In

)
· C1(λ) · (Σk ⊗ In)

= λ

⎡
⎢⎢⎢⎣

εP (−1)k−1Ak 0
−I

. . .

0 −I

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

εP (−1)k−1Ak−1 . . . εP (−1)1A1 εP A0

−I 0 0
. . .

...
0 −I 0

⎤
⎥⎥⎥⎦

= −λ

⎡
⎢⎢⎢⎣

Ak 0
I

. . .

0 I

⎤
⎥⎥⎥⎦

�

+

⎡
⎢⎢⎢⎣

Ak−1 −I 0
...

. . .

A1 0 −I
A0 0 . . . 0

⎤
⎥⎥⎥⎦

�

= C�
2 (−λ).

The strict equivalence of C�
2 (−λ) and C�

1 (−λ) now follows from that of C2(λ) and
C1(λ), and the proof for this case is complete.

For even or odd polynomials, that is, when P (−λ) = εP P (λ), an analogous
computation

(
diag(εP ,−Σk−1) ⊗ In

)
· C1(λ) · (Σk ⊗ In) = C1(−λ)

shows that C1(λ) is strictly equivalent to C1(−λ), which implies the desired eigenvalue
pairing and equality of multiplicities.
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If the coefficient matrices of P are real, then the eigenvalues of a � -even or � -odd
matrix polynomial occur in quadruples (λ, λ,−λ,−λ). This property has sometimes
been referred to as “Hamiltonian spectral symmetry” because the eigenvalues of real
Hamiltonian matrices have such symmetry [31], [34]. However, this feature is not
confined to Hamiltonian matrices, but is shared by matrices in Lie algebras associated
with any real scalar product. Similarly, the eigenvalues of real � -palindromic and � -
anti-palindromic matrix polynomials occur in quadruples (λ, λ, 1/λ, 1/λ), a property
sometimes referred to as “symplectic spectral symmetry” because real symplectic
matrices exhibit this behavior. But once again, this type of eigenvalue symmetry is
an instance of a more general phenomenon associated with matrices in the Lie group
of any real scalar product, such as the real pseudo-orthogonal (Lorentz) groups. See
[1], [7], [24], [31] for detailed coverage of Hamiltonian and symplectic matrices, and
see [12], [29] for properties of matrices in the Lie algebra or Lie group of more general
scalar products.

Remark 2.3. In Definition 2.1 we could have defined the adjoint of an n× n ma-
trix polynomial with respect to the adjoint of a more general scalar product, rather
than restricting � to being just transpose or conjugate transpose. For example, with
any nonsingular matrix M we can define a bilinear scalar product 〈x, y〉 := xTMy
and denote the adjoint of a matrix A ∈ F

n×n with respect to this scalar prod-
uct by A� = M−1ATM . (For a sesquilinear scalar product 〈x, y〉 := x∗My, its
corresponding adjoint is A� = M−1A∗M .) Then for an n × n matrix polynomial
P (λ), the definition of the corresponding adjoint P�(λ) is formally identical to Def-
inition 2.1; the structures in Table 2.1 also make sense as written with � denoting
the adjoint of a general scalar product. Well-known examples of this are the skew-
Hamiltonian/Hamiltonian pencils [33], which are � -odd with respect to the symplectic
form defined by M = J =

[
0 I
−I 0

]
.

However, if the matrix M defining a bilinear scalar product satisfies MT = εM
for ε = ±1 (or M∗ = εM , |ε| = 1, ε ∈ C, in the sesquilinear case), then not
much is gained by this apparent extra generality. Note this includes all the standard
examples, which are either symmetric or skew-symmetric bilinear forms or Hermitian
sesquilinear forms. In the bilinear case, we have

P (λ) is � -palindromic ⇔ revP�(λ) = rev
(
M−1PT (λ)M

)
= P (λ)

⇔ rev (MP (λ))T = rev
(
PT (λ)MT

)
= εMP (λ)

⇔ MP (λ) is T -palindromic or T -anti-palindromic,

depending on the sign of ε . A similar argument shows that � -evenness or � -oddness
of P (λ) is equivalent to T -evenness or T -oddness of MP (λ). Analogous results also
hold in the sesquilinear case when M∗ = εM . Thus for any of the standard scalar
products with adjoint � , the � -structures in Table 2.1 can be reduced to either the
� = T or � = ∗ case; in particular this implies that the eigenvalue pairing results of
Theorem 2.2 extend to these more general � -structures. Note this reduction shows
that the skew-Hamiltonian/Hamiltonian pencils mentioned above are equivalent to
T -even or ∗ -even pencils.

2.2. Cayley transformations of matrix polynomials. It is well known that
the Cayley transformation and its generalization to matrix pencils [24], [32] relates
Hamiltonian structure to symplectic structure for both matrices and pencils. By
extending the classical definition of this transformation to matrix polynomials, we
now develop analogous relationships between (anti-)palindromic and odd/even matrix
polynomials, and their � -variants.
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Our choice of definition is motivated by the following observation: the only
Möbius transformations of the complex plane that map reciprocal pairs (μ, 1/μ) to
plus/minus pairs (λ,−λ) are α

(
μ−1
μ+1

)
and β

(
1+μ
1−μ

)
, where α, β ∈ C are nonzero con-

stants. When α = β = 1, these transformations also map conjugate reciprocal pairs
(μ, 1/μ) to conjugate plus/minus pairs (λ,−λ). Combining this with Theorem 2.2,
we see that the Möbius transformations μ−1

μ+1 , 1+μ
1−μ translate the spectral symmetries

of (anti-)palindromic matrix polynomials and their � -variants to those of odd/even
matrix polynomials and their � -variants. Consequently, it is reasonable to antici-
pate that Cayley transformations modeled on these particular Möbius transforma-
tions might have an analogous effect on structure at the level of matrix polynomials.
These observations therefore lead us to adopt the following definition as the natural
extension, given our context, of the Cayley transformation to matrix polynomials.

Definition 2.4. Let P (λ) be a matrix polynomial of degree k as in (1.1). Then
the Cayley transformation of P (λ) with pole at −1 or +1, respectively, is the matrix
polynomial

(2.3) C−1(P )(μ) := (μ+1)kP

(
μ− 1

μ + 1

)
, resp., C+1(P )(μ) := (1−μ)kP

(
1 + μ

1 − μ

)
.

When viewed as maps on the space of n× n matrix polynomials of degree k ≥ 1,
the Cayley transformations in (2.3) can be shown by a direct calculation to be inverses
of each other, up to a scaling factor.

Proposition 2.5. For any n× n matrix polynomial P of degree k ≥ 1, we have
C+1(C−1(P )) = C−1(C+1(P )) = 2k · P .

The next lemma gives some straightforward observations that are helpful in re-
lating the structure in a matrix polynomial to that in its Cayley transformations.

Lemma 2.6. Let P be a matrix polynomial of degree k ≥ 1. Then

(2.4)
(
C−1(P )

)�(μ) = C−1(P
�)(μ),

(
C+1(P )

)�(μ) = C+1(P
�)(μ),

rev
(
C−1(P )

)�(μ) = (μ + 1)kP�
(
−μ− 1

μ + 1

)
, μ �= −1,(2.5a)

rev
(
C+1(P )

)�(μ) = (−1)k(1 − μ)kP�
(
−1 + μ

1 − μ

)
, μ �= 1.(2.5b)

Proof. The proof of (2.4) is straightforward. We only prove (2.5b); the proof
of (2.5a) is similar. Since C+1(P ), and hence C+1(P )�, are matrix polynomials of
degree k,

rev
(
C+1(P )

)�(μ) = μk
(
C+1(P )

)�
(

1

μ

)
= μkC+1(P

�)

(
1

μ

)
by (2.4), (2.1)

= μk(1 − 1/μ)kP�
(

1 + 1/μ

1 − 1/μ

)
by (2.3)

and (2.5b) is now immediate.
Theorem 2.7. Let P (λ) be a matrix polynomial of degree k ≥ 1. Then the

correspondence between structure in P (λ) and in its Cayley transformations is as
stated in Table 2.3.

Proof. Since the proofs of the equivalences are similar, we establish only one of
them. We show that P (λ) is � -even if and only if C+1(P )(μ) is � -palindromic when k
is even and � -anti-palindromic when k is odd. Now P (λ) being � -even is equivalent,
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Table 2.3

Cayley transformations of structured matrix polynomials.

C−1(P )(μ) C+1(P )(μ)

P (λ) k even k odd k even k odd

palindromic even odd even
� -palindromic � -even � -odd � -even

anti-palindromic odd even odd
� -anti-palindromic � -odd � -even � -odd

even palindromic palindromic anti-palindromic
� -even � -palindromic � -palindromic � -anti-palindromic

odd anti-palindromic anti-palindromic palindromic
� -odd � -anti-palindromic � -anti-palindromic � -palindromic

by definition, to P�(−λ) = P (λ) for all λ. Setting λ = 1+μ
1−μ and multiplying by

(1 − μ)k yields

P (λ) is � -even ⇐⇒ (1 − μ)kP�
(
−1 + μ

1 − μ

)
= (1 − μ)kP

(
1 + μ

1 − μ

)
for all μ �= 1

⇐⇒ (−1)krev (C+1(P ))�(μ) = C+1(P )(μ) by Lemma 2.6,

from which the desired result follows.
Observe that the results in Table 2.3 are consistent with C−1(P ) and C+1(P ) being

essentially inverses of each other (Proposition 2.5).
Theorem 2.7 establishes a relationship between � -(anti-)palindromic and � -even/odd

matrix polynomials via the Cayley transformation. Since � -even/odd matrix poly-
nomials can be interpreted as generalizations of Hamiltonian matrices [33], [34], and
since it is well known that Hamiltonian matrices and symplectic matrices are related
via the Cayley transformation [31], � -(anti-)palindromic matrix polynomials can be
thought of as generalizations of symplectic matrices.

3. Structured linearizations. As sources of structured linearizations for the
structured polynomials listed in Table 2.1, we consider the vector spaces L1(P ) and
L2(P ), introduced in [28]. We establish the existence of structured pencils in these
spaces, show how they can be explicitly constructed, and give necessary and sufficient
conditions for them to be linearizations of the given matrix polynomial P .

3.1. Vector spaces of potential linearizations. The vector spaces L1(P ) and
L2(P ) consist of pencils that generalize the first and second companion forms C1(λ)
and C2(λ) of P (λ), respectively:

L1(P ) :=
{
L(λ) = λX + Y : L(λ) · (Λ⊗ In) = v ⊗ P (λ), v ∈ F

k
}
,(3.1)

L2(P ) :=
{
L(λ) = λX + Y :

(
ΛT ⊗ In

)
· L(λ) = wT ⊗ P (λ), w ∈ F

k
}
,(3.2)

where Λ =
[
λk−1 λk−2 . . . λ 1

]T
, and ⊗ denotes the Kronecker product. A

direct calculation shows that

C1(λ) · (Λ⊗ In) = e1 ⊗ P (λ) and
(
ΛT ⊗ In

)
· C2(λ) = eT1 ⊗ P (λ),
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so C1(λ) ∈ L1(P ) and C2(λ) ∈ L2(P ) for any P (λ). The vector v in (3.1) is called
the right ansatz vector of L(λ) ∈ L1(P ) because L(λ) is multiplied on the right by
Λ ⊗ In to give v ⊗ P (λ). Analogously, the vector w in (3.2) is called the left ansatz
vector of L(λ) ∈ L2(P ).

The pencil spaces Lj(P ) were designed with the aim of providing an arena of
potential linearizations that is fertile enough to contain those that reflect additional
structures in P , but small enough that these linearizations still share salient features
of the companion forms Cj(λ). First, when P (λ) is regular, the mild hypothesis of a
pencil in Lj(P ) being regular is sufficient to guarantee that it is indeed a linearization
for P . In fact, as shown in [28], regularity makes these pencils strong linearizations for
P (λ), i.e., revL(λ) is also a linearization for revP (λ). This ensures that the Jordan
structures of both the finite and infinite eigenvalues of P are always faithfully reflected
in L, just as is done by the companion forms. Without this extra property of being a
strong linearization, any Jordan structure compatible with the algebraic multiplicity
of the infinite eigenvalue of P (λ) can be realized by some linearization [23]. Second,
eigenvectors of P (λ) are easily recoverable from those of L(λ). Indeed, the definition
of L1(P ) implies that L(λ) · (Λ⊗ x) = v ⊗ (P (λ)x) for all x ∈ F

n. Thus, whenever x
is a right eigenvector of P (λ) associated with an eigenvalue λ, then Λ ⊗ x is a right
eigenvector of L(λ) associated with λ. Similar observations hold for L(λ) ∈ L2(P )
and left eigenvectors. Finally, when P (λ) is regular, almost all pencils in Lj(λ) are
regular, and thus strong linearizations for P (λ)—the ones that are not from a closed
nowhere dense set of measure zero [28].

3.1.1. Shifted sums. The column-shifted sum and row-shifted sum are conve-
nient tools that readily allow one to construct pencils in L1(P ) and L2(P ), respec-
tively. They also enable one to easily test when a given pencil is in Lj(P ).

Definition 3.1 (shifted sums). Let X = (Xij) and Y = (Yij) be block k × k
matrices in F

kn×kn with blocks Xij , Yij ∈ F
n×n. Then the column shifted sum X �→Y

and row shifted sum X �↓ Y are defined to be

X �→Y :=

⎡
⎢⎣
X11 . . . X1k 0
...

. . .
...

...
Xk1 . . . Xkk 0

⎤
⎥⎦ +

⎡
⎢⎣

0 Y11 . . . Y1k

...
...

. . .
...

0 Yk1 . . . Ykk

⎤
⎥⎦ ∈ F

kn×k(n+1),

X �↓ Y :=

⎡
⎢⎢⎢⎣

X11 · · · X1m

...
. . .

...
Xm1 . . . Xmm

0 . . . 0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0 . . . 0
Y11 . . . Y1m

...
. . .

...
Ym1 . . . Ymm

⎤
⎥⎥⎥⎦ ∈ F

k(n+1)×kn.

With P (λ) =
∑k

i=0 λ
iAi, and L(λ) = λX +Y , a straightforward calculation with

the shifted sums now reveals the equivalences

L(λ) ∈ L1(P )
with right ansatz vector v

⇐⇒ X �→Y = v ⊗ [Ak Ak−1 . . . A0],(3.3)

L(λ) ∈ L2(P )
with left ansatz vector w

⇐⇒ X �↓ Y = wT ⊗

⎡
⎢⎣

Ak

...
A0

⎤
⎥⎦ .(3.4)

3.2. Building T -palindromic pencils in L1(P ). For the moment, let us focus
our attention on L1(P ) and try to construct a T -palindromic pencil in L1(P ) for a
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matrix polynomial P (λ) that is T -palindromic. We begin with the simplest nontrivial
example.

Example 3.2. Consider the T -palindromic matrix polynomial λ2A + λB + AT ,
where B = BT and A �= 0. We try to construct a T -palindromic pencil L(λ) ∈ L1(P )
with a nonzero right ansatz vector v = [ v1, v2 ]T ∈ F

2. This means that L(λ) must
be of the form

L(λ) = λZ + ZT =: λ

[
D E
F G

]
+

[
DT FT

ET GT

]
, D,E, F,G ∈ F

n×n.

Since L(λ) ∈ L1(P ), the equivalence given by (3.3) implies that

Z �→ZT =

[
D E + DT FT

F G + ET GT

]
=

[
v1A v1B v1A

T

v2A v2B v2A
T

]
.

Equating corresponding blocks in the first and last columns, we obtain D = v1A,
F = v2A = v1A, and G = v2A. This forces v1 = v2, since A �= 0 by assumption.
From either block of the middle column, we see that E = v1(B−AT ); with this choice
for E all the equations are consistent, thus yielding

(3.5) L(λ) = λZ + ZT = v1

(
λ

[
A B −AT

A A

]
+

[
AT AT

B −A AT

])
.

This example illustrates three important properties: (1) the choice of right ansatz
vectors v for which L(λ) ∈ L1(P ) is T -palindromic is restricted; (2) once one of these
restricted right ansatz vectors v is chosen, a T -palindromic pencil L(λ) ∈ L1(P ) is
uniquely determined; (3) interchanging the first and second block rows of L(λ), i.e.,
premultiplying by R2 ⊗ I, yields the pencil

(R2 ⊗ I)L(λ) = v1

(
λ

[
A A
A B −AT

]
+

[
B −A AT

AT AT

])
,

which the column- and row-shifted sums easily confirm to be a pencil in the double
ansatz space DL(P ) := L1(P )∩L2(P ) with left and right ansatz vector v = [v1, v1]

T .
These three observations turn out to be true in general for T -palindromic matrix
polynomials P and T -palindromic pencils in L1(P ).

Theorem 3.3. Let P (λ) be a T -palindromic matrix polynomial and suppose
L(λ) ∈ L1(P ) with right ansatz vector v. Then the pencil L(λ) is T -palindromic if
and only if Rv = v and (R ⊗ I)L(λ) ∈ DL(P ) with right and left ansatz vector Rv,
where R is the reverse identity as in (2.2). Moreover, for any v ∈ F

k satisfying
Rv = v there exists a unique pencil L(λ) ∈ L1(P ) with right ansatz vector v and
T -palindromic structure.

The proof of this theorem is deferred to the next section, where it is subsumed
under the even more general result stated in Theorem 3.5.

The double ansatz space DL(P ) was introduced in [28] as a natural space in which
to look for pencils that enjoy both the right and left eigenvector recovery properties.
This feature was successfully exploited in [14] to find linearizations with optimally
conditioned eigenvalues. Now Example 3.2 suggests that DL(P ) could also play an
important role in the search for structured linearizations.

3.3. Existence of structured pencils in L1(P ). For a � -(anti-)palindromic
or � -even/odd polynomial it is natural to seek a linearization with the same structure
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as P . From the point of view of numerical analysis, however, one of the most important
reasons for using a structure-preserving method is to preserve spectral symmetries.
But we see in Table 2.2 that for each structure under consideration there is also an
“anti” version of that structure with the same spectral symmetry. Thus it makes
sense to try to linearize a structured polynomial with an “anti-structured” pencil as
well as with a structured one; so in this section we also characterize the pencils in
L1(P ) having the “anti-structure” of P .

Before turning to the main results of this section, we draw the reader’s attention to
two key properties of DL(P ) that will be systematically used in their proofs. Recall
that the left and right ansatz vectors of the double ansatz pencil (R2 ⊗ I)L(λ) in
Example 3.2 coincide. This is, in fact, a property shared by all pencils in DL(P ), thus
leading to the notion of a single ansatz vector instead of separate left/right ansatz
vectors for these pencils. Furthermore, every pencil in DL(P ) is uniquely determined
by its ansatz vector.

Theorem 3.4 (see [13], [28]). Let P (λ) =
∑k

i=0 λ
iAi be a (not necessarily

regular) matrix polynomial with coefficients in F
n×n and Ak �= 0. Then for vectors

v, w ∈ F
k there exists a kn× kn matrix pencil L(λ) ∈ DL(P ) with right ansatz vector

w and left ansatz vector v if and only if v = w. Moreover, the pencil L(λ) ∈ DL(P )
is uniquely determined by v.

We now extend the result of Theorem 3.3 to �-(anti-)palindromic structures, show-
ing that there is only a restricted class of admissible right ansatz vectors v that can
support a structured or “anti-structured” pencil in L1(P ). In each case the restric-
tions on the vector v can be concisely described using the reverse identity R = Rk as
defined in (2.2).

Theorem 3.5. Suppose the matrix polynomial P (λ) is � -palindromic or � -anti-
palindromic. Then for pencils L(λ) ∈ L1(P ) with right ansatz vector v, conditions (i)
and (ii) in Table 3.1 are equivalent. Moreover, for any v ∈ F

k satisfying one of the
admissibility conditions for v in (ii), there exists a unique pencil L(λ) ∈ L1(P ) with
right ansatz vector v and the corresponding structure in (i).

Table 3.1

Structure
Equivalent conditions

of P (λ) (i) L(λ) is (ii) (R⊗ I)L(λ) ∈ DL(P ) with
ansatz vector Rv and

T -palindromic
T -palindromic Rv = v

T -anti-palindromic Rv = −v

T -anti-palindromic
T -palindromic Rv = −v

T -anti-palindromic Rv = v

∗-palindromic
∗-palindromic Rv = v

∗-anti-palindromic Rv = −v

∗-anti-palindromic
∗-palindromic Rv = −v

∗-anti-palindromic Rv = v
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Proof. We consider all eight cases simultaneously. Let P (λ) be � -palindromic or
� -anti-palindromic, so that revP�(λ) = χP P (λ) for χP = ±1.

(i) ⇒ (ii): By (i), revL�(λ) = χLL(λ) for χL = ±1. Since L(λ) ∈ L1(P ), we
have

(3.6) L(λ)(Λ⊗ I) = v ⊗ P (λ).

Taking the reversal of both sides of (3.6), and noting that RΛ = revΛ, we have

revL(λ)(R⊗ I)(Λ⊗ I) = revL(λ)
(
(revΛ) ⊗ I

)
= v ⊗ revP (λ).

Now applying the adjoint � to both sides, we obtain

(Λ� ⊗ I)(R⊗ I) revL�(λ�) = v� ⊗ revP�(λ�) ,

or equivalently

(3.7)
(
Λ� ⊗ I

)
(R⊗ I)L(λ�) = (χP χL v

�) ⊗ P (λ�) ,

since L(λ) and P (λ) are either � -palindromic or � -anti-palindromic. Then using the
fact that (3.7) is an identity, we replace λ� with λ to obtain

(ΛT ⊗ I)(R⊗ I)L(λ) = (χP χL v
�) ⊗ P (λ) ,

thus showing (R⊗ I)L(λ) to be in L2(P ) with left ansatz vector w = χP χL (v�)T. On
the other hand, multiplying (3.6) on the left by R⊗ I yields

(R⊗ I)L(λ)(Λ⊗ I) = (Rv) ⊗ P (λ) ,

so (R ⊗ I)L(λ) is also in L1(P ) with right ansatz vector Rv. Thus (R ⊗ I)L(λ) is in
DL(P ) = L1(P ) ∩ L2(P ), and from Theorem 3.4 the equality of right and left ansatz
vectors implies that Rv = χP χL (v�)T . All eight variants of condition (ii) now follow
by noting that (v∗)T = v and (vT )T = v.

(ii) ⇒ (i): Since (R⊗ I)L(λ) is in DL(P ) with ansatz vector Rv, we have

(R⊗ I)L(λ)(Λ⊗ I) = (Rv) ⊗ P (λ) ,(3.8) (
(ΛTR) ⊗ I

)
L(λ) = (ΛT ⊗ I)(R⊗ I)L(λ) = (Rv)T ⊗ P (λ) .(3.9)

Applying the adjoint � to both ends of (3.9) gives

L�(λ�)
(
(R(ΛT )�) ⊗ I

)
= R(vT )� ⊗ P�(λ�),

or equivalently

(3.10) L�(λ)
(
(RΛ) ⊗ I

)
= R(vT )� ⊗ P�(λ).

Note that all cases of condition (ii) may be expressed in the form R(vT )� = εχP v,
where ε = ±1. Then taking the reversal of both sides in (3.10) and using RΛ = revΛ,
we obtain

revL�(λ)(Λ⊗ I) = (εχP v) ⊗ revP�(λ) = (εv) ⊗ P (λ) ,

and after multiplying by ε(R⊗ I),

ε(R⊗ I) revL�(λ)(Λ⊗ I) = (Rv) ⊗ P (λ).
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Thus we see that the pencil ε(R ⊗ I) revL�(λ) is in L1(P ) with right ansatz vector
Rv. Starting over again from identity (3.8) and taking the adjoint � of both sides,
we obtain by analogous reasoning that

(R⊗ I)L(λ)(Λ⊗ I) = (Rv) ⊗ P (λ)

⇐⇒ (ΛT ⊗ I)L�(λ)(R⊗ I) = (v�R) ⊗ P�(λ) =
(
v� ⊗ P�(λ)

)
(R⊗ I)

⇐⇒ (ΛT ⊗ I)L�(λ) = v� ⊗ P�(λ)

⇐⇒ (revΛT ⊗ I) revL�(λ) = v� ⊗ revP�(λ)

⇐⇒ (ΛTR⊗ I) revL�(λ) = (εχP Rv)T ⊗ revP�(λ) = (εRv)T ⊗ P (λ)

⇐⇒ (ΛT ⊗ I)
(
ε(R⊗ I)revL�(λ)

)
= (Rv)T ⊗ P (λ) .

Thus the pencil ε(R ⊗ I)revL�(λ) is also in L2(P ) with left ansatz vector Rv, and
hence in DL(P ) with ansatz vector Rv. But (R ⊗ I)L(λ) ∈ DL(P ) with exactly the
same ansatz vector Rv, and so the uniqueness property of Theorem 3.4 implies that

ε(R⊗ I) revL�(λ) = (R⊗ I)L(λ) ,

or equivalently ε revL�(λ) = L(λ). Hence L(λ) is � -palindromic or � -anti-palindro-
mic, depending on the parameter ε, which implies all the variants of condition (i) in
Table 3.2.

Finally, the existence and uniqueness of a structured pencil L(λ) corresponding to
any admissible right ansatz vector v follow directly from the existence and uniqueness
in Theorem 3.4 of the DL(P )-pencil (R⊗ I)L(λ) for the ansatz vector Rv.

We next present the analogue of Theorem 3.5 for � -even and � -odd polynomials.
Here Σ = Σk as defined in (2.2) helps to concisely describe the restriction on the
ansatz vector v.

Theorem 3.6. Suppose the matrix polynomial P (λ) is � -even or � -odd. Then
for pencils L(λ) ∈ L1(P ) with right ansatz vector v, conditions (i) and (ii) in Table 3.2
are equivalent. Moreover, for any v ∈ F

k satisfying one of the admissibility conditions
for v in (ii), there exists a unique pencil L(λ) ∈ L1(P ) with right ansatz vector v and
the corresponding structure in (i).

Table 3.2

Structure
Equivalent conditions

of P (λ) (i) L(λ) is (ii) (Σ ⊗ I)L(λ) ∈ DL(P ) with
ansatz vector Σv and

T -even
T -even Σv = v

T -odd Σv = −v

T -odd
T -even Σv = −v

T -odd Σv = v

∗-even
∗-even Σv = v

∗-odd Σv = −v

∗-odd
∗-even Σv = −v

∗-odd Σv = v
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Proof. Follow the strategy, mutatis mutandis, of the proof of Theorem 3.5: replace
multiplications by R ⊗ I with multiplications by Σ ⊗ I, and replace taking reversals
with the substitution λ �→ −λ. Observe that for the vector Λ, this substitution is
equivalent to premultiplication by Σ, since ΣΛ = [(−λ)k−1, . . . ,−λ, 1]T .

Thus we see that the ansatz vectors of structured pencils closely reflect the struc-
ture of the pencil itself. This pleasing fact influences both the existence and the
construction of structured linearizations, as we will see in the following sections.

3.4. Construction of structured pencils. As we have seen in Theorems 3.5
and 3.6, pencils in L1(P ) with one of the �-structures listed in Table 2.1 are strongly
related to pencils in DL(P ). This observation leads to the following procedure for the
construction of potential structured linearizations:

(1) Choose a right ansatz vector v ∈ F
k that is admissible for the desired type of

�-structure.
(2) Construct the unique L̃(λ) ∈ DL(P ) with ansatz vector w = Rv or w = Σv,

according to the desired structure.
(3) Premultiply L̃(λ) by R−1 ⊗ I or Σ−1 ⊗ I to obtain a structured pencil in

L1(P ) with right ansatz vector v.
All that remains is to show how to carry out step (2). This can be done concretely

and explicitly using the following canonical basis for DL(P ) derived in [13]. Given a

matrix polynomial P (λ) =
∑k

i=0 λ
iAi, consider for j = 0, . . . , k the block diagonal

matrices Xj = diag(Lj ,−Uk−j), whose diagonal blocks are the block j × j block-
Hankel matrices

Lj =

⎡
⎢⎢⎢⎢⎣

Ak

. .
.

Ak−1

. .
.

. .
. ...

Ak Ak−1 . . . Ak−j+1

⎤
⎥⎥⎥⎥⎦

and Uj =

⎡
⎢⎢⎢⎢⎣

Aj−1 . . . A1 A0
... . .

.
. .
.

A1 . .
.

A0

⎤
⎥⎥⎥⎥⎦
.

Observe that Lj ,Uj ∈ F
jn×jn, with the convention that they are empty when j = 0.

Thus each Xj is a block k × k matrix in F
kn×kn. As an illustration we give the

complete list of matrices X0, X1, X2, X3 for k = 3:
⎡
⎣
−A2 −A1 −A0

−A1 −A0 0
−A0 0 0

⎤
⎦ ,

⎡
⎣
A3 0 0
0 −A1 −A0

0 −A0 0

⎤
⎦ ,

⎡
⎣

0 A3 0
A3 A2 0
0 0 −A0

⎤
⎦ ,

⎡
⎣

0 0 A3

0 A3 A2

A3 A2 A1

⎤
⎦ .

Matrices of this type have appeared in the literature; see, e.g., [9], [22], and for the
scalar (n = 1) case see [21]. One can easily compute the shifted sums

Xj �→(−Xj−1) = ej ⊗
[
Ak . . . A0

]
and Xj �↓ (−Xj−1) = eTj ⊗

⎡
⎢⎣
Ak

...
A0

⎤
⎥⎦ ,

thus verifying by (3.3) and (3.4) that the pencil λXj −Xj−1 is in DL(P ) with ansatz
vector ej for j = 1, . . . , k. Consequently the set {λXj −Xj−1 : j = 1, . . . , k} consti-
tutes the natural or canonical basis for DL(P ). A pencil λX+Y in DL(P ) with ansatz
vector w = [w1, . . . , wk]

T can now be uniquely expressed as a linear combination

(3.11) λX + Y =

k∑
j=1

wj

(
λXj −Xj−1

)
= λ

k∑
j=1

wjXj −
k∑

j=1

wjXj−1.
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Note that there are alternative procedures for the construction of pencils from DL(P );
an explicit formula, for example, is given in [28], while a recursive method using the
shifted sum is presented in [27].

3.5. Which structured pencils are linearizations?. Recall from section 3.1
that when P (λ) is regular, then any regular pencil in L1(P ) is a (strong) linearization
for P . Although there is a systematic procedure [28] for determining the regularity of
a pencil L(λ) ∈ L1(P ), there is, in general, no connection between this regularity and
the right ansatz vector of L(λ). By contrast, for pencils in DL(P ) there is a criterion
that characterizes regularity directly in terms of their ansatz vectors, which gives
these pencils an important advantage. Let v = [v1, v2, . . . , vk]

T be the ansatz vector
of L(λ) ∈ DL(P ) and define the associated v-polynomial to be the scalar polynomial

p(x ; v) := v1x
k−1 + v2x

k−2 + · · · + vk−1x + vk.

By convention, we say that ∞ is a root of p(x ; v) if v1 = 0. Then regularity of
L(λ) ∈ DL(P ) can be expressed in terms of the roots of this v-polynomial and the
eigenvalues of P , as follows.

Theorem 3.7 (eigenvalue exclusion theorem [28]). Suppose that P (λ) is a regular
matrix polynomial and L(λ) is in DL(P ) with nonzero ansatz vector v. Then L(λ)
is regular and thus a (strong) linearization for P (λ) if and only if no root of the
v-polynomial p(x ; v) is an eigenvalue of P (λ).

Note that in Theorem 3.7 we include ∞ as one of the possible roots of p(x ; v) or
eigenvalues of P . We can now quickly deduce the following theorem.

Theorem 3.8 (structured linearization theorem). Suppose the regular matrix
polynomial P (λ) and the nonzero pencil L(λ) ∈ L1(P ) have one of the 16 combinations
of � -structure considered in Tables 3.1 and 3.2. Let v be the nonzero right ansatz
vector of L(λ), and let

w =

{
Rv if P is � -palindromic or � -anti-palindromic ,

Σv if P is � -even or � -odd .

Then L(λ) is a (strong) linearization for P (λ) if and only if no root of the v-polynomial
p(x ;w) is an eigenvalue of P (λ).

Proof. For all eight structure combinations in Table 3.1, it was shown in The-
orem 3.5 that (R ⊗ I)L(λ) is in DL(P ) with ansatz vector Rv. Similarly, for the
eight even/odd structure combinations in Table 3.2 it was shown in Theorem 3.6 that
(Σ⊗I)L(λ) is in DL(P ) with ansatz vector Σv. Since L(λ) is a linearization for P (λ)
if and only if (R ⊗ I)L(λ) or (Σ ⊗ I)L(λ) is, the desired result follows immediately
from the eigenvalue exclusion theorem.

We illustrate the implications of Theorem 3.8 with an example.
Example 3.9. Suppose the T -palindromic polynomial P (λ) = λ2A + λB + AT

from Example 3.2 is regular. Theorem 3.3 restricts the admissible ansatz vectors
v ∈ F

2 of a T -palindromic pencil L(λ) ∈ L1(P ) to those that satisfy Rv = v, or
equivalently, v = (v1, v1)

T . We see from Theorem 3.8 that such an L(λ) will be
a strong linearization for P (λ) if and only if none of the roots of the v-polynomial
p(x ;Rv) = v1x + v1 are eigenvalues of P (λ), that is, if and only if −1 is not an

eigenvalue of P (λ). On the other hand, a T -anti-palindromic pencil L̃(λ) ∈ L1(P )
will be a linearization for P if and only if λ = 1 is not an eigenvalue of P (λ). This is

because every admissible ansatz vector for L̃(λ) is constrained by Theorem 3.5 to be
of the form ṽ = [ v1,−v1 ]T , forcing p(x ;Rṽ) = −v1x + v1, with only +1 as a root.
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This example also illustrates another way in which structure influences the play-
ers in our story: when P is T -palindromic, any ansatz vector admissible for a T -
(anti-)palindromic pencil in L1(P ) has components that read the same forwards or
backwards (up to sign). This in turn forces the corresponding v-polynomial to be
(anti-)palindromic. Theorems 3.5 and 3.6 imply that analogous parallels in structure
hold for other combinations of � -structures in P and L and the relevant v-polynomial
p(x ;Rv) or p(x ;Σv); for convenience these are listed together in Table 3.3.

Table 3.3

Parallelism of structures.

P (λ) L(λ) ∈ L1(P ) v-polynomial P (λ) L(λ) ∈ L1(P ) v-poly.

� -palindromic
� -palindromic � -palindromic

� -even
� -even � -even

� -anti-palindromic � -anti-palindromic � -odd � -odd

� -anti-palindromic
� -palindromic � -anti-palindromic

� -odd
� -even � -odd

� -anti-palindromic � -palindromic � -odd � -even

3.6. When pairings degenerate. The parallel of structures between matrix
polynomial, L1(P )-pencil, and v-polynomial (see Table 3.3) is aesthetically very pleas-
ing: structure in a v-polynomial forces a pairing of its roots, as in Theorem 2.2, which
is always of the same qualitative type as the eigenvalue pairing present in the orig-
inal structured matrix polynomial. However, it turns out that this root pairing can
sometimes be an obstruction to the existence of any structured linearization in L1(P )
at all.

Using an argument based mainly on the very simple form of admissible ansatz vec-
tors when k = 2, we saw in Example 3.9 that a quadratic T -palindromic matrix poly-
nomial having both 1 and −1 as eigenvalues cannot have a structured linearization in
L1(P ): the presence of −1 in the spectrum precludes the existence of a T -palindromic
linearization, while the eigenvalue 1 excludes T -anti-palindromic linearizations. We
now show that this difficulty is actually a consequence of root pairing, and therefore
can occur for higher degree polynomials.

When P (λ) has even degree, all its ansatz vectors have even length, and hence the
corresponding v-polynomials all have an odd number of roots (counting multiplicities
and including ∞). Root pairing then forces at least one root of every v-polynomial
to lie in a subset of C where this pairing “degenerates.” This means that for any
T -(anti-)palindromic matrix polynomial P (λ) of even degree, every v-polynomial of a
T -(anti-)palindromic pencil in L1(P ) has at least one root belonging to {−1,+1}. It
follows that any such P (λ) having both +1 and −1 as eigenvalues can have neither a T -
palindromic nor a T -anti-palindromic linearization in L1(P ). For T -even/odd matrix
polynomials P (λ) of even degree, every relevant v-polynomial has a root belonging to
{0,∞}; thus if the spectrum of P (λ) includes both 0 and ∞, then P cannot have a
T -even or T -odd linearization in L1(P ).

When no structured linearization for P (λ) exists in L1(P ), it is natural to ask
whether P (λ) has a structured linearization that is not in L1(P ), or perhaps has no
structured linearizations at all. The next examples show that both alternatives may
occur.

Example 3.10. Consider the T -palindromic polynomial P (λ) = λ2 +2λ+1. Then
the only eigenvalue of P (λ) is −1, so by the observation in Example 3.9 we see that
P (λ) cannot have any T -palindromic linearization in L1(P ). But does P (λ) have a
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T -palindromic linearization L(λ) which is not in L1(P )? Consider the general 2 × 2
T -palindromic pencil

(3.12) L(λ) = λZ + ZT = λ

[
w x
y z

]
+

[
w y
x z

]
=

[
w(λ + 1) λx + y
λy + x z(λ + 1)

]
,

and suppose it is a linearization for P . Since the only eigenvalue λ = −1 of P (λ) has
geometric multiplicity 1, the same must be true for L(λ), that is, rank L(−1) = 1.
But inserting λ = −1 in (3.12), we obtain a matrix that does not have rank 1 for
any values of w, x, y, z. Thus P (λ) does not have any T -palindromic linearization.

However, P (λ) does have a T -anti-palindromic linearization L̃(λ) in L1(P ) because
it does not have the eigenvalue +1. Choosing ṽ = (1,−1)T as the right ansatz vector
and following the procedure in section 3.4 yields the structured linearization

L̃(λ) = λZ̃ − Z̃T = λ

[
1 3
−1 1

]
−
[

1 −1
3 1

]
∈ L1(P ).

Example 3.11. Consider the T -palindromic matrix polynomial

P (λ) = λ2

[
0 1
−1 0

]
+

[
0 −1
1 0

]
.

Since detP (λ) = (λ2 − 1)2, this polynomial P (λ) has +1 and −1 as eigenvalues,
each with algebraic multiplicity 2. Thus P (λ) has neither a T -palindromic nor a
T -anti-palindromic linearization in L1(P ). However, it is possible to construct a
T -palindromic linearization for P (λ) that is not in L1(P ). Starting with the first
companion form C1(λ), one can verify that
⎡
⎢⎢⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤
⎥⎥⎦ · C1(λ) ·

⎡
⎢⎢⎣

1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ = λ

⎡
⎢⎢⎣

0 0 −1 0
0 0 0 1
0 1 0 0
−1 0 0 0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0 0 0 −1
0 0 1 0
−1 0 0 0
0 1 0 0

⎤
⎥⎥⎦

is a T -palindromic linearization for P (λ). Using shifted sums, it can easily be verified
that this linearization is in neither L1(P ) nor L2(P ).

Example 3.12. Consider the scalar matrix polynomial P (λ) = λ2 − 1 which is
T -anti-palindromic and has the roots ±1. Again, the presence of these eigenvalues
precludes the existence of either a T -palindromic or T -anti-palindromic linearization in
L1(P ). But even more is true. It turns out that P (λ) does not have any T -palindromic
or T -anti-palindromic linearization at all. Indeed, suppose that Lε(λ) = λZ + εZT

was a linearization for P (λ), where ε = ±1; that is, Lε(λ) is T -palindromic if ε = 1
and T -anti-palindromic if ε = −1. Since P (λ) does not have the eigenvalue ∞, neither
does L(λ), and so Z must be invertible. Thus Lε(λ) is strictly equivalent to the pencil
λI + εZ−1ZT . But this being a linearization for P (λ) forces the matrix εZ−1ZT to
have the simple eigenvalues +1 and −1, and hence det εZ−1ZT = −1. However, we
also see that

det εZ−1ZT = ε2 1

detZ
detZ = 1,

which is a contradiction. Hence P (λ) has neither a T -palindromic linearization nor a
T -anti-palindromic linearization.

One possibility for circumventing the difficulties associated with the eigenvalues
±1 is to first deflate them in a structure-preserving manner, using a procedure that
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works directly on the original matrix polynomial. Since the resulting matrix poly-
nomial P (λ) will not have these troublesome eigenvalues, a structured linearization
in L1(P ) can then be constructed. Such structure-preserving deflation strategies are
currently under investigation.

The situation is quite different for ∗-(anti-)palindromic and ∗-even/odd matrix
polynomials, because now the set where pairing degenerates is the entire unit circle
in C, or the imaginary axis (including ∞), respectively. The contrast between having
a continuum versus a finite set in which the root pairing degenerates makes a crucial
difference in our ability to guarantee the existence of structured linearizations in
L1(P ). Indeed, consider a regular ∗-palindromic matrix polynomial P (λ) of degree k.
Then the v-polynomial p(x ;Rv) corresponding to an admissible ansatz vector is again
∗-palindromic, with k − 1 roots occurring in pairs (λ, 1/λ) by Theorem 2.2. Thus if
k is even, at least one root of p(x ;Rv) must lie on the unit circle. But since the
spectrum of P (λ) is a finite set, it is always possible to choose v so that all the roots
of p(x ;Rv) avoid the spectrum of P (λ). Example 3.13 illustrates the case k = 2.

Example 3.13. Consider a regular matrix polynomial P (λ) = λ2A + λB + A∗

which is ∗-palindromic, that is, B = B∗. Choose ζ on the unit circle in C such that ζ
is not an eigenvalue of P (λ). Now choose z ∈ C so that ζ = −z/z. Then v = (z, z)T

satisfies Rv = v, and the associated v-polynomial p(x ;Rv) = zx+ z has ζ as its only
root. Therefore the ∗-palindromic pencil

L(λ) = λ

[
zA zB − zA∗

zA zA

]
+

[
zA∗ zA∗

zB − zA zA∗

]
∈ L1(P )

with right ansatz vector v is a (strong) linearization for P (λ) by Theorem 3.8.
The observations made in this section have parallels for �-even/odd structures.

A list of structured linearizations in L1(P ) for �-(anti-)palindromic and �-even/odd
matrix polynomials of degree k = 2, 3 is compiled in Tables 3.4, 3.5, and 3.6.

3.7. The missing structures. So far in section 3 our attention has been fo-
cused on finding structured linearizations only for the eight � -structures in Table 2.1.
But what about “purely” palindromic, anti-palindromic, even, and odd matrix poly-
nomials? Why have they been excluded from consideration? It turns out that these
structures cannot be linearized in a structure-preserving way. For example, consider
a regular palindromic polynomial P (λ) of degree k ≥ 2. By [11, Theorem 1.7] a pencil
can be a linearization for P (λ) only if the geometric multiplicity of each eigenvalue of
the pencil is less than or equal to n. On the other hand, any palindromic linearization
has the form L(λ) = λZ + Z, and thus must have the eigenvalue −1 with geometric
multiplicity kn. Analogous arguments exclude structure-preserving linearizations for
anti-palindromic, even, and odd polynomials.
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Table 3.4

Structured linearizations for λ2A + λB + C. Except for the parameters r ∈ R and z ∈ C, the
linearizations are unique up to a (suitable) scalar factor. The last column lists the roots of the
v-polynomial p(x ;Mv) corresponding to M = R or M = Σ, respectively.

Structure Structure v L(λ) with ansatz vector v Root of
of P (λ) of L(λ) p(x;Mv)

T -palin-
dromic

T -palin-
dromic

[
1
1

]
λ

[
A B − C
A A

]
+

[
C C

B −A C

]
−1

B = BT

C = AT

T -anti-
palin-
dromic

[
1
− 1

]
λ

[
A B + C
−A A

]
+

[
−C C

−B −A −C

]
1

T -anti-
palin-
dromic

T -palin-
dromic

[
1
− 1

]
λ

[
A B + C
−A A

]
+

[
−C C

−B −A −C

]
1

B = −BT

C = −AT

T -anti-
palin-
dromic

[
1
1

]
λ

[
A B − C
A A

]
+

[
C C

B −A C

]
−1

∗-palin-
dromic

∗-palin-
dromic

[
z
z̄

]
λ

[
zA zB − z̄C
z̄A zA

]
+

[
z̄C zC

z̄B − zA z̄C

]
−z/z̄

B = B∗

C = A∗

∗-anti-
palin-
dromic

[
z

− z̄

]
λ

[
zA zB + z̄C
−z̄A zA

]
+

[
−z̄C zC

−z̄B − zA −z̄C

]
z/z̄

T -even T -even

[
0
1

]
λ

[
0 −A
A B

]
+

[
A 0
0 C

]
∞

A = AT

B = −BT

C = CT
T -odd

[
1
0

]
λ

[
A 0
0 C

]
+

[
B C
−C 0

]
0

T -odd T -even

[
1
0

]
λ

[
A 0
0 C

]
+

[
B C
−C 0

]
0

A = −AT

B = BT

C = −CT
T -odd

[
0
1

]
λ

[
0 −A
A B

]
+

[
A 0
0 C

]
∞

∗-even ∗-even

[
i
r

]
λ

[
iA −rA
rA rB + iC

]
+

[
rA + iB iC
−iC rC

]
−ir

A = A∗

B = −B∗

C = C∗
∗-odd

[
r
i

]
λ

[
rA −iA
iA iB + rC

]
+

[
iA + rB rC
−rC iC

]
i

r
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Table 3.5

�-palindromic linearizations for the �-palindromic matrix polynomial λ3A + λ2B + λB� + A�.
The last column lists the roots of the v-polynomial p(x ;Rv) corresponding to Rv. All �-palindromic
linearizations in L1(P ) for this matrix polynomial are linear combinations of the first two lineariza-
tions in the case � = T , and are real linear combinations of the first three linearizations in the case
� = ∗. A specific example is given by the fourth linearization.

v L(λ) with right ansatz vector v Roots of
p(x ;Rv)

⎡
⎣

0
1
0

⎤
⎦ λ

⎡
⎣

0 0 −A�

A B 0
0 A 0

⎤
⎦ +

⎡
⎣

0 A� 0
0 B� A�

−A 0 0

⎤
⎦ 0,∞

⎡
⎣

1
0
1

⎤
⎦ λ

⎡
⎣

A B −A� B�

0 A−B� B −A�

A 0 A

⎤
⎦ +

⎡
⎣

A� 0 A�

B� −A A� −B 0
B B� −A A�

⎤
⎦ i,−i

⎡
⎣

i
0
−i

⎤
⎦ λ

⎡
⎣

iA iB + iA∗ iB∗

0 iA + iB∗ iB + iA∗

−iA 0 iA

⎤
⎦ +

⎡
⎣

−iA∗ 0 iA∗

−iB∗ − iA −iA∗ − iB 0
−iB −iB∗ − iA −iA∗

⎤
⎦ 1,−1

⎡
⎣

1
1
1

⎤
⎦ λ

⎡
⎣

A B −A� B� −A�

A B + A−B� B −A�

A A A

⎤
⎦ +

⎡
⎣

A� A� A�

B� −A B� + A� −B A�

B −A B� −A A�

⎤
⎦ −1 ± i

√
3

2

Table 3.6

�-even linearizations for the �-even matrix polynomial P (λ) = λ3A + λ2B + λC + D, where
A = −A�, B = B�, C = −C�, D = D�. The last column lists the roots of the v-polynomial
p(x ;Σv) corresponding to Σv. All �-even linearizations in L1(P ) for this matrix polynomial are
linear combinations of the first two linearizations in the case � = T , and are real linear combina-
tions of the first three linearizations in the case � = ∗. A specific example is given by the fourth
linearization.

v L(λ) with right ansatz vector v Roots of
p(x ;Σv)

⎡
⎣

0
0
1

⎤
⎦ λ

⎡
⎣

0 0 A
0 −A −B
A B C

⎤
⎦ +

⎡
⎣

0 −A 0
A B 0
0 0 D

⎤
⎦ ∞

⎡
⎣

1
0
0

⎤
⎦ λ

⎡
⎣

A 0 0
0 C D
0 −D 0

⎤
⎦ +

⎡
⎣

B C D
−C −D 0
D 0 0

⎤
⎦ 0

⎡
⎣

0
i
0

⎤
⎦ λ

⎡
⎣

0 −iA 0
iA iB 0
0 0 iD

⎤
⎦ +

⎡
⎣

iA 0 0
0 iC iD
0 −iD 0

⎤
⎦ 0,∞

⎡
⎣

1
0
4

⎤
⎦ λ

⎡
⎣

A 0 4A
0 C − 4A D − 4B

4A 4B −D 4C

⎤
⎦ +

⎡
⎣

B C − 4A D
4A− C 4B −D 0

D 0 4D

⎤
⎦ 2i,−2i
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4. Good vibrations from good linearizations. As an illustration of the im-
portance of structure preservation in practical problems, we indicate how the tech-
niques developed in this paper have had a significant impact on computations in an
eigenvalue problem occurring in the vibration analysis of rail tracks under excitation
arising from high speed trains. This eigenvalue problem has the form

(4.1)
(
κA(ω) + B(ω) + 1

κA(ω)T
)
x = 0,

where A,B are large, sparse, parameter-dependent, complex square matrices with B
complex symmetric and A highly singular. For details of the derivation of this model,
see [16] and [17]. The parameter ω is the excitation frequency and the eigenvalue
problem has to be solved over a wide frequency range of ω = 0–5,000 Hz. Clearly,
for any fixed value of ω, multiplying (4.1) by κ leads to the T -palindromic eigenvalue
problem introduced in (1.2). In addition to the presence of a large number of zero and
infinite eigenvalues caused by the rank deficiency of A, the finite nonzero eigenvalues
cover a wide range of magnitudes that increases as the finite element discretization is
made finer. The eigenvalues of the problem under consideration range from 1015 to
10−15, thereby making this a very challenging numerical problem.

Attempts at solving this problem with the QZ-algorithm without respecting its
structure resulted in computed eigenvalues with no correct digits even in quadruple
precision arithmetic. Furthermore, the symmetry of the spectrum with respect to the
unit circle was highly perturbed [16].

As an alternative, in [16], [17] a T -palindromic linearization for the eigenvalue
problem (4.1) was used. Based on this linearization, the infinite and zero eigenvalues
of the resulting T -palindromic pencil could be deflated in a structure-preserving way.
The resulting smaller T -palindromic problem was then solved via different methods,
resulting in eigenvalues with good accuracy in double precision arithmetic; i.e., the
computed eigenvalues were accurate to within the range of the discretization error of
the underlying finite element discretization. Thus physically useful eigenvalues were
determined, with no modification in the mathematical model or in the discretization
scheme. Only the numerical linear algebra was changed, to methods based on the
new structure-preserving linearization techniques described in this paper.

Thus we see that the computation of “good vibrations” (i.e., accurate eigenvalues
and eigenvectors) requires the use of “good linearizations” (i.e., linearizations that
reflect the structure of the original polynomial).

5. Conclusions. The numerical solution of structured nonlinear eigenvalue prob-
lems is an important component of many applications. Building on the work in [28], we
have developed a theory that provides criteria for the existence of strong linearizations
that reflect � -even/odd or � -(anti-)palindromic structure of a matrix polynomial, and
have presented a systematic method to construct such linearizations. As shown in [16],
[17], numerical methods based on these structured linearizations are expected to be
more effective in computing accurate eigenvalues in practical applications.
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Abstract. This paper investigates the effect of structure-preserving perturbations on the eigen-
values of linearly and nonlinearly structured eigenvalue problems. Particular attention is paid to
structures that form Jordan algebras, Lie algebras, and automorphism groups of a scalar product.
Bounds and computable expressions for structured eigenvalue condition numbers are derived for
these classes of matrices, which include complex symmetric, pseudo-symmetric, persymmetric, skew-
symmetric, Hamiltonian, symplectic, and orthogonal matrices. In particular we show that under
reasonable assumptions on the scalar product, the structured and unstructured eigenvalue condition
numbers are equal for structures in Jordan algebras. For Lie algebras, the effect on the condition
number of incorporating structure varies greatly with the structure. We identify Lie algebras for
which structure does not affect the eigenvalue condition number.
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1. Introduction. There is a growing interest in structured perturbation analysis
due to the substantial development of algorithms for structured problems. When
these algorithms preserve structure (see, for example, [2], [4], [13], and the literature
cited therein) it is often appropriate to consider condition numbers that measure
the sensitivity to structured perturbations. In this paper we investigate the effect of
structure-preserving perturbations on linearly and nonlinearly structured eigenvalue
problems.

Suppose that S is a class of structured matrices and define the (absolute) struc-
tured condition number of a simple eigenvalue λ of A ∈ S by

κ(A, λ; S) = lim
ε→0

sup
{ |λ̂− λ|

ε
: λ̂ ∈ Sp(A + E), A + E ∈ S, ‖E‖ ≤ ε

}
,(1.1)

where Sp(A+E) denotes the spectrum of A+E and ‖ ·‖ is an arbitrary matrix norm.
Let x and y be the normalized right and left eigenvectors associated with λ, i.e.,

Ax = λx, y∗A = λy∗, ‖x‖2 = ‖y‖2 = 1.

Moreover, let κ(A, λ) ≡ κ(A, λ; Cn×n) denote the standard unstructured eigenvalue
condition number, where n is the dimension of A. Clearly,

κ(A, λ; S) ≤ κ(A, λ).
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If this inequality is not always close to being attained, then κ(A, λ) may severely
overestimate the worst case effect of structured perturbations. Note that the standard
eigenvalue condition number allows complex perturbations even if A is real. Our
definition in (1.1) automatically forces the perturbations to be real when A is real
and S ⊂ R

n×n.
In this paper we consider the case where S is a smooth manifold. This covers linear

structures and some nonlinear structures, such as orthogonal, unitary, and symplectic
structures. We show that for such S, the structured problem in (1.1) simplifies to
a linearly constrained optimization problem. We obtain an explicit expression for
κ(A, λ; S), thereby extending Higham and Higham’s work [11] for linear structures in
C

n×n.
Associated with a scalar product in R

n or C
n are three important classes of struc-

tured matrices: an automorphism group, a Lie algebra, and a Jordan algebra. We
specialize our results to each of these three classes, starting with the linear struc-
tures. We show that under mild assumptions on the scalar product, the structured
and unstructured eigenvalue condition numbers are equal for structures in Jordan
algebras. For example, this equality holds for real and complex symmetric matrices,
pseudo-symmetric, persymmetric, Hermitian, and J-Hermitian matrices. For Lie al-
gebras, the effect on the condition number of incorporating structure varies greatly
with the structure. We identify Lie algebras for which structure does not affect the
eigenvalue condition number, such as skew-Hermitian structures, and Lie algebras for
which the ratio between the unstructured and structured eigenvalue condition number
can be large, such as skew-symmetric or perskew-symmetric structures. Our treat-
ment extends and unifies recent work on these classes of matrices by Graillat [9] and
Rump [17].

Finally we show how to compute structured eigenvalue condition numbers when
S is the automorphism group of a scalar product. This includes the classes of uni-
tary, complex orthogonal, and symplectic matrices. We provide bounds for the ratio
between the structured and unstructured condition number. In particular we show
that for unitary matrices this ratio is always equal to 1. This latter result also holds
for orthogonal matrices with one exception: when λ is real and simple, the structured
eigenvalue condition number is zero.

Note that for λ �= 0 a relative condition number, on both data and output spaces,
can also be defined, which is just κ(A, λ; S)‖A‖/|λ|. Our results comparing structured
and unstructured absolute condition numbers clearly apply to relative condition num-
bers without change.

The rest of this paper is organized as follows. Section 2 provides the definition
and a computable expression for the structured eigenvalue condition number of a
nonlinearly structured matrix. In section 3, we introduce the scalar products and the
associated structures to be considered. We treat linear structures (Jordan and Lie
algebras) in section 4 and investigate the corresponding structured condition numbers.
Nonlinear structures (automorphism groups) are discussed in section 5.

2. Structured condition number. It is well known that simple eigenvalues
λ ∈ Sp(A) depend analytically on the entries of A in a sufficiently small open neigh-
borhood BA of A [18]. To be more specific, there exists a uniquely defined analytic

function fλ : BA → C so that λ = fλ(A) and λ̂ = fλ(A+E) is an eigenvalue of A+E
for every A + E ∈ BA. Moreover, one has the expansion

λ̂ = λ +
1

|y∗x|y
∗Ex + O(‖E‖2).(2.1)
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Combined with (1.1) this yields

κ(A, λ; S) =
1

|y∗x| lim
ε→0

sup
{ |y∗Ex|

ε
: A + E ∈ S, ‖E‖ ≤ ε

}
.(2.2)

The difficulty in obtaining an explicit expression for the supremum in (2.2) de-
pends on the nature of S and the matrix norm ‖ · ‖. For example, when ‖ · ‖ is
the Frobenius norm or the matrix 2-norm and for unstructured perturbations (i.e.,
S = C

n×n), the supremum in (2.2) is attained by E = εyx∗, which implies the well-
known formula [20]

κν(A, λ) = 1/|y∗x|, ν = 2, F.

Note that κν(A, λ) ≥ 1 always, but κν(A, λ; S) can be less than 1 for ν = 2, F .

When S is a smooth manifold (see [12] for an introduction to smooth manifolds),
the task of computing the supremum (2.2) simplifies to a linearly constrained opti-
mization problem.

Theorem 2.1. Let λ be a simple eigenvalue of A ∈ S, where S is a smooth real
or complex submanifold of K

n×n (K = R or C). Then for any norm ‖ · ‖ on K
n×n

the structured condition number of λ with respect to S is given by

κ(A, λ; S) =
1

|y∗x| max {|y∗Hx| : H ∈ TAS, ‖H‖ = 1} ,(2.3)

where TAS is the tangent space of S at A.

Proof. We show that limε→0 βε = φ, where

βε := sup

{
|y∗Ex|

ε
: A + E ∈ S, ‖E‖ ≤ ε

}
, ε > 0,

φ := max {|y∗Hx| : H ∈ TAS, ‖H‖ = 1 } .

Let d denote the real dimension of S. By definition of a smooth submanifold of a
finite dimensional vector space there exist open neighborhoods U ⊂ R

d of 0 ∈ R
d and

V ⊂ K
n×n of A and a continuously differentiable map F : U → V with the following

properties.

(i) F (U) = S ∩ V.
(ii) F is a homeomorphism between U and S ∩ V.
(iii) If D0F : R

d → K
n×n denotes the differential of F at 0 ∈ R

d, then
(a) for all ξ ∈ U , F (ξ) = A + D0F (ξ) + R(ξ) and the map R : U → K

n×n

satisfies

lim
ξ→0

‖R(ξ)‖/|||ξ||| = 0,(2.4)

where ||| · ||| is an arbitrary norm on R
d,

(b) D0F is an injective linear map, i.e., 0 < s := min|||ξ|||=1 ‖D0F (ξ)‖,
(c) TAS = range(D0F ).

A map F with all the properties (i)–(iii) is called a local parametrization of S at the
point A. The neighborhoods U and V can be chosen such that

(d) ‖R(ξ)‖ ≤ 1
2 s |||ξ||| for all ξ ∈ U .
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Suppose now that A + E ∈ S and 0 < ‖E‖ ≤ ε. If ε is small enough, then, by (i)
and (ii), there is a unique nonzero ξ ∈ U such that A+E = F (ξ) = A+D0F (ξ)+R(ξ).
Hence

E = D0F (ξ) + R(ξ).(2.5)

By (b) and (d),

ε ≥ ‖E‖ ≥ ‖D0F (ξ)‖ − ‖R(ξ)‖ ≥ s

2
|||ξ|||.(2.6)

This implies

‖D0F (ξ)‖
ε

≤ ‖E‖
ε

+
‖R(ξ)‖

ε
≤ 1 +

2

s

‖R(ξ)‖
|||ξ|||(2.7)

and

|y∗R(ξ)x|
ε

≤ 2

s

|y∗R(ξ)x|
|||ξ||| ≤ 2 c

s

‖R(ξ)‖
|||ξ||| ,(2.8)

where c := max{|y∗Mx| : M ∈ K
n×n, ‖M‖ = 1}. Using (2.5), (2.7), (2.8), and (c)

we obtain the estimate

|y∗Ex|
ε

≤ |y∗D0F (ξ)x|
ε

+
|y∗R(ξ)x|

ε

≤
(

1 +
2

s

‖R(ξ)‖
|||ξ|||

)
|y∗D0F (ξ)x|
‖D0F (ξ)‖ +

2 c

s

‖R(ξ)‖
|||ξ|||

≤
(

1 +
2

s

‖R(ξ)‖
|||ξ|||

)
φ +

2 c

s

‖R(ξ)‖
|||ξ||| .(2.9)

The relations (2.4) and (2.9) yield limε→0 βε ≤ φ. In order to show equality let Ĥ ∈
TAS be such that ‖Ĥ‖ = 1 and |y∗Ĥx| = φ. By (c) there exists a ξ̂ ∈ R

d with

D0F (ξ̂) = Ĥ. For t ≥ 0 let Et = D0F (t ξ̂) + R(t ξ̂) and εt = ‖Et‖. Then A + Et =

F (t ξ̂) ∈ S, limt→0 εt = 0, and limt→0 |y∗Etx|/εt = |y∗Ĥx| = φ. Thus, limε→0 βε ≥ φ,
and the proof is complete.

It is convenient to introduce the notation

φ(x, y; S) = max
{
|y∗Ex| : E ∈ S, ‖E‖ = 1

}
(2.10)

so that (2.3) can be rewritten as

κ(A, λ; S) = φ(x, y;TAS)/|y∗x|.(2.11)

In a similar way to [19], an explicit expression for κ(A, λ; S) can be obtained if
one further assumes that the matrix norm ‖ · ‖ under consideration is the Frobenius
norm ‖ · ‖F . Let us rewrite

y∗Ex = vec(y∗Ex) = (xT ⊗ y∗) vec(E) = (x⊗ y)∗ vec(E),

where ⊗ denotes the Kronecker product and vec denotes the operator that stacks the
columns of a matrix into one long vector [8, p. 180]. Note that TAS is a linear vector
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space of dimension m ≤ n2. Hence, there is an n2 ×m matrix B such that for every
E ∈ TAS there exists a uniquely defined parameter vector p with

vec(E) = Bp, ‖E‖F = ‖p‖2.(2.12)

Any matrix B satisfying these properties is called a pattern matrix for TAS; see
also [10], [19], and [6]. The relationships in (2.12) together with (2.10) yield

φF (x, y;TAS) = max {|(x⊗ y)∗Bp| : ‖p‖2 = 1, p ∈ K
m} ,(2.13)

where K = R or C. We will use the subscripts F and 2 to refer to the use of the
Frobenius and matrix 2-norm in (2.10).

When K = C the supremum is taken over all p ∈ C
m and consequently, from (2.11),

κF (A, λ; S) =
1

|y∗x| ‖(x⊗ y)∗B‖2.(2.14)

Complications arise if K = R but λ is a complex eigenvalue or if B is a complex
matrix. In this case, the supremum is also taken over all p ∈ R

m but (x⊗ y)∗B may
be a complex vector. In a similar way as in [5] for the standard eigenvalue condition
number we can show that the real structured eigenvalue condition number is within
a small factor of the complex one in (2.14). To be more specific,

1√
2|y∗x|

‖(x⊗ y)∗B‖2 ≤ κF (A, λ; S) ≤ 1

|y∗x| ‖(x⊗ y)∗B‖2;(2.15)

see also [9], [17]. To obtain an exact expression for the real structured eigenvalue
condition number, let us consider the relation

|(x⊗ y)∗Bp|2 =
∣∣Re

(
(x⊗ y)∗B

)
p
∣∣2 +

∣∣ Im (
(x⊗ y)∗B

)
p
∣∣2,

which together with (2.13) implies

κF (A, λ; S) =
1

|y∗x|

∥∥∥∥
[
Re

(
(x⊗ y)∗B

)
Im

(
(x⊗ y)∗B

)
]∥∥∥∥

2

.(2.16)

For a real pattern matrix B, this formula can be rewritten as

κF (A, λ; S) =
1

|y∗x| ‖[xR ⊗ yR + xI ⊗ yI , xI ⊗ yR − xR ⊗ yI ]
TB‖2,(2.17)

where x = xR + ıxI and y = yR + ıyI with xR, xI , yR, yI ∈ R
n. If additionally λ is

real, we can choose x and y real and (2.17) reduces to (2.14).
The difficulty in computing (2.14), (2.16), or (2.17) lies in characterizing the

tangent space TAS and building the pattern matrix B. We show in section 5 how
these tasks can be achieved when S is an automorphism group.

It is difficult to compare the explicit formula for κF (A, λ; S) in (2.14) or (2.16) to
that of the standard condition number κF (A, λ) = 1/|y∗x| unless S has some special
structure. Noschese and Pasquini [16] show that for perturbations having an assigned
zero structure (or sparsity pattern), (2.14) reduces to

κF (A, λ; S) = ‖(yx∗)|S‖F /|y∗x|,
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where (yx∗)|S means the restriction of the rank-one matrix yx∗ to the sparsity struc-
ture of S. For example if the perturbation is upper triangular, then (yx∗)|S is the
upper triangular part of yx∗.

Starting from (2.11) we compare in sections 4 and 5 the structured condition
number to the unstructured one for structured matrices belonging to the Jordan
algebra, Lie algebra, or automorphism group of a scalar product.

3. Structured matrices in scalar product spaces. In this paper a scalar
product refers to any nondegenerate bilinear or sesquilinear form 〈·, ·〉 on K

n, where
K = R or C. A real or complex bilinear form 〈·, ·〉 has a unique matrix representation
given by 〈·, ·〉 = xTMy, while a sesquilinear form can be represented by 〈·, ·〉 = x∗My,
where the matrix M is nonsingular. We will denote 〈·, ·〉 by 〈·, ·〉

M
as needed. A

bilinear form is symmetric if 〈x, y〉 = 〈y, x〉, and skew-symmetric if 〈x, y〉 = −〈y, x〉.
Hence for a symmetric form M = MT and for a skew-symmetric form M = −MT .
A sesquilinear form is Hermitian if 〈x, y〉 = 〈y, x〉 and skew-Hermitian if 〈x, y〉 =
−〈y, x〉. The matrices associated with such forms are Hermitian and skew-Hermitian,
respectively.

The adjoint A	 of A ∈ K
n×n with respect to 〈·, ·〉

M
is the unique matrix satisfying

〈Ax, y〉M = 〈x,A	y〉
M for all x, y ∈ K

n.

It can be shown that the adjoint is given explicitly by

A	 =

{
M−1ATM for bilinear forms,

M−1A∗M for sesquilinear forms.

It is well known [1] that the set of self-adjoint matrices

J =
{
S ∈ K

n×n : 〈Sx, y〉M = 〈x, Sy〉M
}

=
{
S ∈ K

n×n : S	 = S
}

forms a Jordan algebra, while the set of skew-adjoint matrices

L =
{
L ∈ K

n×n : 〈Lx, y〉
M

= −〈x, Ly〉
M

}
=

{
L ∈ K

n×n : L	 = −L
}

forms a Lie algebra. The sets L and J are linear subspaces, but they are not closed
under multiplication. A third class of matrices associated with 〈·, ·〉M are those pre-
serving the form, i.e.,

G =
{
G ∈ K

n×n : 〈Gx,Gy〉M = 〈x, y〉M
}

= {G ∈ K
n×n : G	 = G−1}.

They form a Lie group under multiplication. We refer to G as an automorphism
group. Table 3.1 shows a sample of well-known structured matrices in J, L, or G

associated with some scalar products. In the rest of this paper we concentrate on
structures belonging to at least one of these three classes.

The eigenvalues of matrices in J, L, and G have interesting pairing properties as
shown by the following theorem.

Theorem 3.1 ([14, Thms. 7.2 and 7.6]). Let A ∈ L or A ∈ J. Then the
eigenvalues of A occur in pairs as shown below, with the same Jordan structure for
each eigenvalue in a pair.

Bilinear Sesquilinear

A ∈ J “no pairing” λ, λ

A ∈ L λ,−λ λ,−λ

A ∈ G λ, 1/λ λ, 1/λ
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Table 3.1

A sampling of structured matrices associated with scalar products 〈·, ·〉M , where M is the matrix
defining the scalar product.

Space M Automorphism group Jordan algebra Lie algebra
G = {G : G� = G−1} J = {S : S� = S} L = {K : K� = −K}

Bilinear forms

Rn I Real orthogonals Symmetrics Skew-symmetrics

Cn I Complex orthogonals Complex symmetrics Cplx skew-symmetrics

Rn Σp,q Pseudo-orthogonals Pseudo-symmetrics Pseudo–skew-symmetrics

Cn Σp,q Cplx pseudo-orthogonals Cplx pseudo-symm. Cplx pseudo skew-symm.

Rn R Real perplectics Persymmetrics Perskew-symmetrics

R2n J Real symplectics Skew-Hamiltonians Hamiltonians

C2n J Complex symplectics Cplx J-skew-symm. Complex J-symmetrics

Sesquilinear forms

Cn I Unitaries Hermitian Skew-Hermitian

Cn Σp,q Pseudo-unitaries Pseudo-Hermitian Pseudo–skew-Hermitian

C2n J Conjugate symplectics J-skew-Hermitian J-Hermitian

Here, R =
[ 1

. .
.

1

]
and Σp,q = [

Ip 0
0 −Iq

] ∈ Rn×n are symmetric and J = [ 0 In
−In 0 ] is

skew-symmetric.

There is no eigenvalue structure property that holds for Jordan algebras of all
bilinear forms. However, for certain special classes of J there may be additional
structure in the eigenvalues. For example, it is known that the eigenvalues of any real
or complex skew-Hamiltonian matrix all have even multiplicity [7]. More generally
we have the following result.

Proposition 3.2 ([14, Prop. 7.7]). Let J be the Jordan algebra of any skew-
symmetric bilinear form on K

n. Then for any A ∈ J, the eigenvalues of A all have
even multiplicity. Furthermore, all Jordan blocks of a fixed size appear an even number
of times.

Hence we will not consider matrices in these algebras since they cannot have
simple eigenvalues.

Many of the results presented in the next two sections require the scalar product
defining the structure to be unitary and orthosymmetric: a scalar product 〈·, ·〉

M is
unitary if αM is unitary for some α > 0; a scalar product is said to be orthosymmetric
if

M =

{
βMT , β = ±1 for bilinear forms,

βM∗, |β| = 1 for sesquilinear forms.

We refer to [14, Definitions A.4 and A.6] for a list of equivalent properties. Note that
the classes of structured matrices listed in Table 3.1 are all associated with a scalar
product which is both unitary and orthosymmetric with α = 1 and β ± 1.

Remark 3.3. For a sesquilinear form 〈x, y〉
M = x∗My, orthosymmetry means that

M = βM∗ for some β ∈ C with |β| = 1. Then the matrix H := β̄1/2 M is Hermitian
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and 〈x, y〉H = β̄1/2 〈x, y〉
M
, for all x, y ∈ C

n. Hence

〈Ax, y〉H = 〈x,Ay〉
H

⇔ β̄1/2 〈Ax, y〉M = β̄1/2 〈x,Ay〉M ⇔ 〈Ax, y〉M = 〈x,Ay〉M

showing that the Jordan algebra of 〈·, ·〉
H

is identical to the Jordan algebra of 〈·, ·〉
M
.

Similarly the Lie algebras of 〈·, ·〉
H and 〈·, ·〉

M
are identical. Consequently, results for

orthosymmetric sesquilinear forms just need to be established for Hermitian sesquilin-
ear forms.

4. Jordan and Lie algebras. Let S be the Jordan algebra or Lie algebra of
a scalar product on K

n. Since S is a linear subspace of K
n×n, the tangent space at

A ∈ S is S itself. Hence (2.11) becomes

κ(A, λ; S) =
1

|y∗x|φ(x, y; S) =
1

|y∗x| max {|y∗Ex| : E ∈ S, ‖E‖ = 1} .(4.1)

Clearly, if there exists E ∈ S such that Ex = y and ‖E‖ = 1, then κ(A, λ; S) = κ(A, λ).
When S is the Lie or Jordan algebra of an orthosymmetric scalar product, the next
theorem gives necessary and sufficient conditions on two given vectors x and b for
there to exist E ∈ S mapping x to b .

Theorem 4.1 ([15, Thm. 3.2]). Let S be the Lie algebra L or Jordan algebra J of
an orthosymmetric scalar product 〈·, ·〉

M on K
n. Then for any given pair of vectors x,

b ∈ K
n with x �= 0, there exists E ∈ S such that Ex = b if and only if the conditions

given in the following table hold:

Bilinear forms Sesquilinear forms
S

Symmetric Skew-symmetric Hermitian

J always bTMx = 0 b∗Mx ∈ R

L bTMx = 0 always b∗Mx ∈ ıR

Mackey, Mackey, and Tisseur show that when the scalar product is both orthosym-
metric and unitary and S = {E ∈ S : Ex = b} �= ∅ then minE∈S ‖E‖2 = ‖b‖2/‖x‖2

[15, Thm. 5.10]. The minimal 2-norm structured mapping in S is in general not
unique. An explicit characterization of the set M = {E ∈ S : ‖E‖2 = minA∈S ‖A‖2}
is given in [15, Thm. 5.10] and it is shown that minE∈M ‖E‖F ≤

√
2‖b‖2/‖x‖2. The

next result follows.
Lemma 4.2. Let S be the Lie or Jordan algebra of a scalar product 〈·, ·〉M which

is both orthosymmetric and unitary and let x, b ∈ K
n of unit 2-norm be such that

the relevant condition in Theorem 4.1 is satisfied. Then there exists E ∈ S such that
Ex = b with ‖E‖2 = 1 and ‖E‖F ≤

√
2.

The next lemma will also be useful when S ⊂ R
n×n is a real algebra but the right

and left eigenvectors are complex.
Lemma 4.3 ([17, Lem. 2.5]). Let x ∈ C

n with ‖x‖2 = 1 be given. Then there
exists a real symmetric matrix S such that Sx = μx with μ ∈ C, |μ| = 1 and ‖S‖2 = 1,
‖E‖F =

√
2.

4.1. Jordan algebras. Graillat [9] and Rump [17] show that for the structures
symmetric, complex symmetric, persymmetric, complex persymmetric, and Hermi-
tian, the structured and unstructured eigenvalue condition numbers are equal for the
2-norm. These are examples of Jordan algebras (see Table 3.1). The next theorem
extends these results to all Jordan algebras of a unitary and orthosymmetric scalar
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product. Unlike the proofs in [9] and [17], our unifying proof does not need to consider
each Jordan algebra individually.

Theorem 4.4. Let λ be a simple eigenvalue of A ∈ J, where J is the Jordan
algebra of an orthosymmetric and unitary scalar product 〈·, ·〉M on K

n. Then, for the
2-norm,

κ2(A, λ; J) = κ2(A, λ).

Proof. Since the scalar product 〈·, ·〉
M is unitary, αM is unitary for some α > 0.

Let x and y be right and left eigenvectors of A associated with λ normalized so that
‖x‖2 = ‖y‖2 = 1. From (4.1) and since φ2(x, y;λ) ≤ 1, we just need to find E ∈ J of
unit 2-norm such that |y∗Ex| = 1.

For bilinear forms, orthosymmetry of 〈·, ·〉M means that M = ±MT . Suppose first
that M = MT , that is, the bilinear form is symmetric. When K = C, Lemma 4.2 says
that there exists E ∈ J such that Ex = y and ‖E‖2 = 1. Hence |y∗Ex| = |y∗y| = 1.

When K = R, A is real but if λ is complex, then x, y ∈ C
n and we cannot use

Lemma 4.2 to say that there exists a real E ∈ J of unit 2-norm sending x to y.
However, A ∈ J implies A = A	 = M−1ATM so that

Ax = λx ⇐⇒ x∗AT = λx∗ ⇐⇒ x∗MA = λx∗M

so that we can take y = (αM)∗x as a normalized left eigenvector for A associated
with λ. From Lemma 4.3 we know there exists a real symmetric S such that Sx = μx,
|μ| = 1, and ‖S‖2 = 1. Let E = αMS ∈ R

n×n. Since αM is real orthogonal and
M = MT we have

E	 = M−1ETM = (αM)−1S(αM)T (αM) = αMS = E

showing that E ∈ J. Moreover ‖E‖2 = ‖αMS‖2 = ‖S‖2 = 1 and Ex = αMSx =
μαMx so that |y∗Ex| = |μxT (αM)T (αM)x| = |μxTx| = 1.

We do not need to consider the skew-symmetric bilinear case (M = −MT ) since
from Proposition 3.2 the eigenvalues of matrices in Jordan algebras of skew-symmetric
bilinear forms all have even multiplicity.

When 〈·, ·〉 is an orthosymmetric sesquilinear form, Remark 3.3 says that we just
need to establish the result for M = M∗, that is, for Hermitian sesquilinear forms.
Let μ ∈ C, |μ| = 1 be such that (μy)∗Mx ∈ R. Then from Lemma 4.2 there exists
E ∈ J such that Ex = μy and ‖E‖2 = 1.

The proof above also shows that for the Frobenius norm,

1√
2
κF (A, λ) ≤ κF (A, λ; J) ≤ κF (A, λ).

For Jordan algebras J of sesquilinear forms, eigenvalues come in pairs λ and λ̄ and
if λ is simple so is λ̄ (see Theorem 3.1). For unitary scalar products, αM is unitary
for some α > 0, and, if x and y are normalized right and left eigenvectors associated
with λ, then αMy and αMx are normalized right and left eigenvectors associated
with λ̄. Hence, |(αMx)∗(αMy)| = |x∗y| so that

κ(A, λ; J) = κ(A, λ̄; J).



STRUCTURED EIGENVALUE CONDITION NUMBERS 1061

4.2. Lie algebras. We show that, with the exception of symmetric bilinear
forms, incorporating structure does not affect the eigenvalue condition number for
matrices in Lie algebras of scalar products that are both orthosymmetric and unitary.
These include as special cases the skew-symmetric, complex skew-symmetric, and
skew-Hermitian matrices considered by Rump [17].

Theorem 4.5. Let λ be a simple eigenvalue of A ∈ L, where L is the Lie algebra
of an orthosymmetric and unitary scalar product 〈·, ·〉

M
on C

n.
• For symmetric bilinear forms,

κ2(A, λ; L) =

⎛
⎝ max

b∈(Mx)⊥
‖b‖2=1

|y∗b|

⎞
⎠ κ2(A, λ),

• For skew-symmetric bilinear forms or sesquilinear forms,

κ2(A, λ; L) = κ2(A, λ).

Proof. Since the scalar product 〈·, ·〉
M

is unitary, αM is unitary for some α > 0.
Let x and y be right and left eigenvectors of A associated with λ normalized so that
‖x‖2 = ‖y‖2 = 1.

For bilinear forms, orthosymmetry implies M = ±MT . Suppose first that M =
MT , that is, 〈·, ·〉M is a symmetric bilinear form. From (4.1) we just need to show
that

η := max
{
|y∗b| : b ∈ (Mx)⊥, ‖b‖2 = 1

}

is equal to φ2(x, y; L). Let E ∈ L be of unit 2-norm and such that |y∗Ex| = φ2(x, y; L).
Let b = Ex. Theorem 4.1 implies that bTMx = 0, i.e., b ∈ (Mx)⊥. Also, ‖b‖2 =
‖Ex‖2 ≤ 1. Hence φ2(x, y; L) ≤ η. Let b ∈ (Mx)⊥ be of unit 2-norm and such that
|y∗b| = η. Lemma 4.2 then implies that there exists E ∈ L such that Ex = b and
‖E‖2 = 1. Hence φ2(x, y; L) ≥ |y∗Ex| = |y∗b| = η.

Now for skew-symmetric bilinear forms, Lemma 4.2 implies that there exists E ∈
L such that Ex = y and ‖E‖2 = 1 so that |y∗Ex| = |y∗y| = 1 and equality between
the structured and unstructured eigenvalue condition numbers follows.

Finally when 〈·, ·〉
M is an orthosymmetric sesquilinear form, Remark 3.3 says that

we just need to prove the result for an Hermitian sesquilinear form (M = M∗). Let
μ ∈ C, |μ| = 1 be such that 〈μy, x〉

M
= μ̄y∗Mx ∈ ıR. Then from Lemma 4.2 there

exists E ∈ L such that Ex = μy and ‖E‖2 = 1. Hence |y∗Ex| = |μy∗y| = 1. The
result follows then from (4.1).

With a very similar proof we can show that for Lie algebras of orthosymmetric
and unitary scalar products and for perturbations measured in the Frobenius norm,

1√
2
γL κF (A, λ) ≤ κF (A, λ; L) ≤ γL κF (A, λ),

where γ
L

= max b∈(Mx)⊥
‖b‖2=1

|y∗b| for symmetric bilinear forms and γ
L

= 1 otherwise.

Note that Theorem 4.5 deals with complex perturbations only. However, for real
bilinear forms the results still hold when λ is real. For complex λ, in view of (2.15)
we know that the real structured eigenvalue condition number is within a small factor
of the complex one.

Now suppose that 〈·, ·〉M is symmetric bilinear. For A ∈ L we have A	 = −A and

λ〈x, x〉
M = 〈λx, x〉M = 〈Ax, x〉M = 〈x,A	x〉M = −〈x,Ax〉M = −λ〈x, x〉M
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so that if λ �= 0, 〈x, x〉
M

= (Mx)Tx = 0, that is, x ∈ (Mx)⊥. Hence for λ �= 0,

|y∗x| ≤ max
b∈(Mx)⊥
‖b‖2=1

|y∗b| ≤ 1.

When λ = 0 is an eigenvalue of A ∈ L,

Ax = 0 ⇐⇒ −A	x = 0 ⇐⇒ M−1ATMx = 0 ⇐⇒ (Mx)TA = 0

so that we can take y = Mx as a left eigenvector of λ = 0. Hence if λ = 0 is simple,

κ2(A, 0; L) = 0 < κ2(A, 0).

This result may be surprising but from Theorem 3.1 we know that eigenvalues of
Lie algebras of bilinear forms come in pairs λ,−λ so that for odd dimensions n,
λ = 0 has to be an eigenvalue. Any perturbation of A leaves a simple 0 eigenvalue
unchanged. For the special case where M = I, i.e., when L is the set of complex
skew-symmetric matrices, Rump [17] exhibits a 3× 3 example showing that the ratio
κ2(A, λ; L)/κ2(A, λ) for λ �= 0 can be arbitrarily small. Our result shows that this
ratio can be arbitrarily small for all Lie algebras of symmetric bilinear forms on K

n.
Since the eigenvalues of matrices in L come in pairs λ,−λ for bilinear forms and

λ,−λ̄ for sesquilinear forms (see Theorem 3.1) then if 0 �= λ is simple so is −λ (or
−λ̄). We can show that for unitary scalar products,

κ(A, λ; L) =

{
κ(A,−λ; L) for bilinear forms,

κ(A,−λ̄; L) for sesquilinear forms.

5. Automorphism groups. We now consider structured condition numbers for
automorphism groups G associated with the scalar product 〈·, ·〉

M ,

G = {A ∈ K
n×n : A	 = A−1}.

This includes the groups of symplectic matrices (M = J), real and complex orthogonal
matrices (M = I), as well as Lorentz transformations (M = diag(1, 1, 1,−1)). We
first show how to compute κF (A, λ; G) in (2.14) and (2.16), then consider properties
of the structured condition number, and finally provide lower bounds for κ2(A, λ; G).

5.1. Computation of κF (A, λ; G). An automorphism group G forms a smooth
manifold. The Jacobian of the function

Φ(A) =

{
ATMA−M for bilinear forms,

A∗MA−M for sesquilinear forms

at A ∈ K
n×n can be represented as the linear function

JA(X) =

{
ATMX + XTMA for bilinear forms,

A∗MX + X∗MA for sesquilinear forms.

The tangent space TAG at A ∈ G coincides with the kernel of this Jacobian,

TAG = {X ∈ K
n×n : JA(X) = 0} = {AH ∈ K

n×n : H	 = −H} = A·L,(5.1)

where L is the Lie algebra of 〈·, ·〉M .



STRUCTURED EIGENVALUE CONDITION NUMBERS 1063

Table 5.1

Pattern matrices LM for M ·L = Sym(K), Skew(K), or Herm(C). LM is such that for any
H ∈ M ·L there exists a uniquely defined parameter vector q with vec(H) = LMq , ‖H‖F = ‖q‖2.
Here n = 2.

M ·L Sym(K) Skew(K) Herm(C)

LM

⎡
⎣

1 0 0

0 1/
√

2 0

0 1/
√

2 0
0 0 1

⎤
⎦

⎡
⎣

0

1/
√

2

−1/
√

2
0

⎤
⎦

⎡
⎣

1 0 0 0

0 1/
√

2 −ı/
√

2 0

0 1/
√

2 ı/
√

2 0
0 0 0 1

⎤
⎦

As the Lie algebra L in (5.1) is independent of A, it is often simple to explicitly
construct a pattern matrix L such that for every H ∈ L there exists a uniquely defined
parameter vector q with vec(H) = Lq. To obtain a pattern matrix B for A·L in the
sense of (2.12), we can compute a QR decomposition (I ⊗ A)L = BR, where the
columns of B form an orthonormal basis for the space spanned by the columns of L,
and R is an upper triangular matrix. Hence,

vec(AH) = (I ⊗A) vec(H) = (I ⊗A)Lq = Bp,

where p = Rq, and ‖AH‖F = ‖ vec(AH)‖2 = ‖p‖2.
According to (2.14) we have

κF (A, λ; G) =
1

|y∗x| ‖(x⊗ y)∗B‖2 =
|λ|
|y∗x| ‖(x⊗ y)∗LR−1‖2(5.2)

if K = C or if K = R with λ real. Otherwise, when K = R and λ is complex or, when
B is complex, (2.16) implies that

κF (A, λ; G) =
1

|y∗x|

∥∥∥∥
[
Re

(
λ(x⊗ y)∗LR−1

)
Im

(
λ(x⊗ y)∗LR−1

)
]∥∥∥∥

2

.(5.3)

It is shown in [15, Lem. 5.9] that when the scalar product 〈·, ·〉M defining the
structure is orthosymmetric, left multiplication by M is a bijection from K

n×n to
K

n×n that maps L and J to Skew(K) and Sym(K) for bilinear forms and a scalar
multiple of Herm(C) for sesquilinear forms, where

Skew(K) = {A ∈ K
n×n : AT = −A}, Sym(K) = {A ∈ K

n×n : AT = A}

are the sets of symmetric and skew-symmetric matrices on K
n×n and Herm(C) is the

set of Hermitian matrices. More precisely, for bilinear forms on K
n, (K = R,C) write,

M ·L =

{
Skew(K) if M = MT ,

Sym(K) if M = −MT ,
(5.4)

and for sesquilinear forms on C
n,

M ·L = β1/2 ı Herm(C),(5.5)

where, by orthosymmetry, β is such that M = βM∗, |β| = 1. For any H ∈ L,
MH ∈ M ·L and if L

M is pattern matrix for M ·L, that is, vec(MH) = LMq where q
is a uniquely defined vector of parameters, then

vec(H) = vec(M−1MH) = (I ⊗M−1) vec(MH) = (I ⊗M−1)L
M
q

so that L := (I ⊗ M−1)LM is a pattern matrix for L. An advantage of using left
multiplication by M is that pattern matrices for Sym(K), Skew(K), and Herm(C) are
easy to construct (see Table 5.1 for examples of such matrices).
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5.2. Properties of κ(A, λ; G). The eigenvalues of A ∈ G come in pairs λ
and 1/λ for bilinear forms, and in pairs λ and 1/λ for sesquilinear forms. In both
cases these pairs have the same Jordan structure, and hence the same algebraic and
geometric multiplicities (see Theorem 3.1). Hence if λ is simple so is 1/λ or 1/λ̄.
For unitary scalar products, there are interesting relations between the structured
condition numbers of these eigenvalue pairings.

Theorem 5.1. Let λ be a simple eigenvalue of A ∈ G, where G is the automor-
phism group of a unitary scalar product on K

n. For any unitarily invariant norm, the
(absolute) unstructured eigenvalue condition number satisfies

κ(A, λ) =

{
κ(A, 1/λ) for bilinear forms,

κ(A, 1/λ̄) for sesquilinear forms,

whereas the (absolute) structured eigenvalue condition number satisfies

κ(A, λ; G) =

{
|λ|2 κ(A, 1/λ; G) for bilinear forms,

|λ|2 κ(A, 1/λ̄; G) for sesquilinear forms.

Proof. We just prove the bilinear case, the proof for the sesquilinear case being
similar. The scalar product 〈·, ·〉

M being unitary implies that αM is unitary for some
α > 0. If x and y are normalized right and left eigenvectors associated with λ, then
x̃ = αMy and ỹ = αMx are right and left normalized eigenvectors belonging to the
eigenvalue 1/λ. It is easily checked that |ỹ∗x̃| = |y∗x|, and since ‖ · ‖ is unitarily
invariant, φ(x̃, ỹ; Kn×n) = φ(x, y; Kn×n) so that κ(A, λ) = κ(A, 1/λ).

Let E ∈ TAG = A·L. Then E = AH for some H in the Lie algebra L of 〈·, ·〉M
and

|y∗Ex| = |λ| |y∗Hx|.(5.6)

Also, A ∈ G ⇒ MTA = A−TMT , αM unitary ⇒ M−T = α2M , and H ∈ L ⇒
α2MTHM = −HT . Hence,

|(αMx)∗E(αMy)| = |α2xTMTAHMy|
= |α2(xTA−T )(MTHM)y|

=
1

|λ| |x
THT y|

=
1

|λ| |y
∗Hx| =

1

|λ|2 |y
∗Ex|

so that from (2.10) and (2.11), κ(A, λ; G) = κ(A, 1/λ; G)/|λ|2.
Theorem 5.1 shows that the relative structured eigenvalue condition numbers for

λ and 1/λ if the form is bilinear or λ and 1/λ̄ if the form is sesquilinear, are equal.
On the other hand, the ratio between the relative unstructured eigenvalue condition
numbers for λ and 1/λ ( or λ and 1/λ̄) is 1/|λ|2. Hence, if we use a non–structure-
preserving algorithm, we should compute the larger of λ and 1/λ (or 1/λ̄). In other
words, we should compute whichever member of the pair (λ, 1/λ) (or the pair (λ, 1/λ̄))
lies outside the unit circle and then obtain the other one by reciprocation.

5.3. Bounds for κ(A, λ; G). Lower bounds for the eigenvalue structured con-
dition number can be derived when 〈·, ·〉M is orthosymmetric and unitary.
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Theorem 5.2. Let λ be a simple eigenvalue of A ∈ G, where G is the auto-
morphism group of an orthosymmetric and unitary scalar product 〈·, ·〉M on K

n. If
K = C or, if K = R with λ real we have for both the Frobenius norm and the 2-norm
(ν = 2, F ),

• for symmetric bilinear forms,

|λ|
‖A‖2

max
b∈(Mx)⊥
‖b‖2=1

|y∗b| κν(A, λ) ≤ κν(A, λ; G) ≤ max
b∈(Mx)⊥
‖b‖2=1

|y∗b| κν(A, λ),

• for skew-symmetric bilinear or sesquilinear forms,

|λ|
‖A‖2

κν(A, λ) ≤ κν(A, λ; G) ≤ κν(A, λ).

For K = R and λ complex, the lower bounds for the Frobenius norm need to be
multiplied by 1/

√
2.

Proof. Let x and y be right and left eigenvectors of A associated with λ normalized
so that ‖x‖2 = ‖y‖2 = 1. Let L be the Lie algebra of 〈·, ·〉M . From (2.11) and (5.1)
we have

κ(A, λ; G) =
1

|y∗x|φ(x, y;A·L) =
1

|y∗x| max {|y∗AHx| : H ∈ L, ‖AH‖ = 1} .

By definition of orthosymmetry and from Remark 3.3 we just need to prove the
result for symmetric and skew-symmetric bilinear forms and for Hermitian sesquilinear
forms.

Suppose first that 〈·, ·〉
M is a symmetric bilinear form on K

n. Let Hν ∈ L be
such that ‖AHν‖ν = 1 and |y∗AHνx| = φν(x, y;A ·L), ν = 2, F . Let bν = AHνx.
Theorem 4.1 implies that (A−1bν)

TMx = 0. Since M = MT and A ∈ G, that is,
A−1 = A	 = M−1ATM , we have

(A−1bν)
TMx = 0 ⇐⇒ bTν MAM−1Mx = λ bTν Mx = 0

so that bν ∈ (Mx)⊥. Also, ‖bν‖2 = ‖AHνx‖2 ≤ 1. Hence

φν(x, y;A·L) = |y∗AHνx| = |y∗bν | ≤ max
{
|y∗b| : b ∈ (Mx)⊥, ‖b‖2 = 1

}
,

which proves the upper bound. For the lower bound we take v ∈ (Mx)⊥ of unit
2-norm and such that |y∗v| = max

{
|y∗b| : b ∈ (Mx)⊥, ‖b‖2 = 1

}
. From Lemma 4.2

there exists S ∈ L such that Sx = v and ‖S‖2 = 1. Let H̃ν = ξνS with ξν > 0 such

that ‖AH̃ν‖ν = 1, ν = 2, F . From ‖AH̃ν‖ν ≤ ‖A‖ν‖H̃ν‖2 we have that ξν ≥ 1/‖A‖ν .
Hence

φν(x, y;A·L) = |λ|max {|y∗Hx| : H ∈ L, ‖AH‖ν = 1}
≥ |λ||y∗H̃νx|

≥ |λ|
‖A‖ν

|y∗v|

=
|λ|

‖A‖ν
max

{
|y∗b| : b ∈ (Mx)⊥, ‖b‖2 = 1

}

proving the lower bound.
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The lower bound for the skew-symmetric bilinear or Hermitian sesquilinear cases
is derived in a similar way to that for the symmetric bilinear case. The only difference
being that, from Lemma 4.2, there exists S ∈ L of unit 2-norm such that Sx = y if the
form is skew-symmetric bilinear and Sx = μy for some μ ∈ C such that (μy)∗Mx ∈ ıR,
|μ| = 1 when the form is Hermitian sesquilinear.

Note that A ∈ G implies

λ〈x, x〉
M = 〈Ax, x〉M = 〈x,A−1x〉M =

1

λ
〈x, x〉

M
.(5.7)

Hence if λ �= ±1 we have, for bilinear forms, 〈x, x〉
M = xTMx = 0, that is, x ∈ (Mx)⊥

so that

|y∗x| ≤ max
b∈(Mx)⊥
‖b‖2=1

|y∗b| ≤ 1, λ �= ±1.(5.8)

If λ = ±1, then

Ax = ±x ⇔ x = ±A−1x ⇔ x = ±A	x ⇔ Mx = AT Mx ⇔ (Mx)∗ = ±(Mx)∗A

so that y = Mx is a left eigenvector of A associated with λ. If M = MT , then
Theorem 5.2 implies that for both the 2-norm and Frobenius norm,

κν(A, λ; G) = 0 for λ = ±1.(5.9)

When M = I and 〈·, ·〉 is a sesquilinear form, G is the set of unitary matrices
(see Table 3.1). But unitary matrices are normal and therefore κν(A, λ) = 1, ν =
2, F . Thus we can expect κν(A, λ; G) ≤ 1. Theorem 5.2 implies that the structured
condition number is exactly 1. If 〈·, ·〉M with M = I is a real (symmetric) bilinear
form, G is the set of orthogonal matrices. Theorem 5.2 combined with (5.8) and (5.9)
says that κν(A, λ; G) = 0 if λ = ±1 and κν(A, λ; G) = 1 otherwise. We refer to [3] for
a more general perturbation analysis of orthogonal and unitary eigenvalue problems,
based on the Cayley transform.

Suppose G is the automorphism group of a skew-symmetric bilinear form 〈·, ·〉
M

(M = −MT ). For an eigenvalue λ of A with |λ| ≈ ‖A‖2, the bounds in Theorem 5.2
imply

κν(A, λ; G) ≈ κν(A, λ), ν = 2, F.

From Theorem 5.1 we then have

|λ|2κν(A, 1/λ; G) ≈ κν(A, 1/λ), ν = 2, F

showing that if |λ| is large, the unstructured eigenvalue condition number for 1/λ is
much larger than the structured one. The lower bounds in Theorem 5.2 may not be
tight when max(|λ|, 1/|λ|) � ‖A‖ν as shown by the following example. Suppose that
M = J and that 〈·, ·〉J is a real bilinear form (K = R). Then G is the set of real
symplectic matrices (see Table 3.1). Let us consider the symplectic matrix

A =

[
D D
0 D−1

]
, D = diag(104, 102, 2).(5.10)

Define the ratio

ρ = κF (A, λ; G)/κF (A, λ) ≤ 1
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Table 5.2

Condition numbers for the eigenvalues of the symplectic matrix A in (5.10), ratio ρ between the
structured and unstructured condition number, and lower bound γ for this ratio.

λ 104 102 2 1/2 10−2 10−4

κF (A, λ; G) 1.2 1.2 1.5 0.4 1.2 × 10−4 1.2 × 10−8

ρ 0.87 0.87 0.89 0.22 8.7 × 10−5 8.7 × 10−9

γ 0.5 5 × 10−3 1 × 10−4 2.5 × 10−5 5 × 10−7 5 × 10−9

between the structured and unstructured eigenvalue condition numbers. κF (A, λ; G)
is computed using (5.2) and its values and these of ρ are displayed in Table 5.2 together
with the lower bound γ = |λ|/(

√
2‖A‖2) of Theorem 5.2. This example demonstrates

the looseness of the bounds of Theorem 5.2 for eigenvalues in the interior of the
spectrum. Hence for these eigenvalues the computable expressions in section 5.1 are
of interest.

6. Conclusions. We have derived directly computable expressions for struc-
tured eigenvalue condition numbers on a smooth manifold of structured matrices.
Furthermore, we have obtained meaningful bounds on the ratios between the struc-
tured and unstructured eigenvalue condition numbers for a number of structures re-
lated to Jordan algebras, Lie algebras, and automorphism groups. We have identified
classes of structured matrices for which this ratio is 1 or close to 1. Hence for these
structures, the usual unstructured perturbation analysis is sufficient.

The important task of finding computable expressions for structured backward
errors of nonlinearly structured eigenvalue problems is still largely open and remains
to be addressed.
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Abstract. In this paper we analyze inexact inverse iteration for the nonsymmetric general-
ized eigenvalue problem Ax = λMx, where M is symmetric positive definite and the problem is
diagonalizable. Our analysis is designed to apply to the case when A and M are large and sparse
and preconditioned iterative methods are used to solve shifted linear systems with coefficient matrix
A − σM. We prove a convergence result for the variable shift case (for example, where the shift is
the Rayleigh quotient) which extends current results for the case of a fixed shift. Additionally, we
consider the approach from [V. Simoncini and L. Eldén, BIT, 42 (2002), pp. 159–182] to modify the
right-hand side when using preconditioned solves. Several numerical experiments are presented that
illustrate the theory and provide a basis for the discussion of practical issues.
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1. Introduction. Consider the generalized eigenvalue problem

Ax = λMx,(1.1)

where A is an n × n nonsymmetric matrix, and M is an n × n symmetric positive
definite matrix with x ∈ C

n, λ ∈ C. In our analysis we restrict ourselves to the case
where M−1A is diagonalizable; that is, (1.1) has a full set of eigenvectors. Here n is
large and A and M are assumed to be sparse.

Large-scale eigenvalue problems arise in many applications, such as the determi-
nation of linearized stability of a three-dimensional fluid flow. Typically only a few
eigenvalues are of interest to the user, and therefore iterative projection methods such
as Arnoldi’s method [1] and its modern variants [11, 7], or Davidson-type methods
[13, 22], and subspace iteration [8, 24, 12] are applied. However, to speed up the con-
vergence (see [2, section 3.3]), often these methods are applied to a “shift-invert” form
of (1.1) with the resulting large, sparse linear systems solved iteratively. To obtain a
reliable and efficient eigenvalue solver one requires a good understanding of the inter-
action between the iterative linear solver and the iterative eigenvalue solver. In this
paper we study inexact inverse iteration, the simplest inexact iterative method, as a
first step in helping to understand more sophisticated inexact eigenvalue techniques.

The classical inverse iteration algorithm to find a single eigenvalue of (1.1) is given
as follows.

Algorithm 1. inverse iteration.
Given x(0), then iterate:
(1) Choose σ(i).
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(2) Solve (A − σ(i)M)y(i) = Mx(i).
(3) Set x(i+1) = y(i)/ϕ(y(i)).

Here ϕ(y(i)) denotes a scalar normalizing function. Common choices for ϕ are
ϕ(y(i)) =‖y(i) ‖M and ϕ(y(i)) = zHy(i) for some fixed vector z. Often the choice
z = ek is made, where ek denotes the kth canonical unit vector and k corresponds
to a component of large modulus in the desired eigenvector. One can keep σ(i) fixed,
so that σ(i) = σ(0), to obtain a fixed shift method. Alternatively, one can obtain
a variable shift method by updating σ(i), typically by the Rayleigh quotient or by
σ(i+1) = σ(i) + 1/(zHMy(i)) if ϕ(y(i)) = zHMy(i); see [25, p. 637], [6]. An early
fundamental paper on Rayleigh quotient iteration for nonsymmetric problems with
exact solves is [16].

We consider the following inexact version of inverse iteration.

Algorithm 2. inexact inverse iteration.
Given x(0), then iterate:
(1) Choose σ(i) and τ (i).
(2) Find y(i) such that ‖(A − σ(i)M)y(i) − Mx(i)‖≤ τ (i).
(3) Set x(i+1) = y(i)/ϕ(y(i)).

Algorithm 2 is an example of an “inner-outer” iterative algorithm; see, for exam-
ple, [5]. Here the outer iteration being indexed by i is the standard step in inverse
iteration, and the inner iteration refers to the iterative solution of the linear sys-
tem (A − σ(i)M)y(i) = Mx(i) to a prescribed accuracy. Since most iterative linear
solvers have stopping conditions based on the residual we use the residual condition
‖(A− σ(i)M)y(i) −Mx(i)‖≤ τ (i). In practice there are various ways to formulate the
inner iteration stopping condition (usually as a relative condition). Here we use an
absolute stopping condition to simplify the analysis.

An early paper on inexact inverse iteration for the standard symmetric eigenvalue
problem is [19]. More recently [23, 21, 14, 9, 3] various aspects of inexact inverse
iteration for the symmetric eigenvalue problem have been considered, usually with
the shift chosen as the Rayleigh quotient. It is known (see [10, 6]) that with a fixed
and not too accurate shift one needs to solve the shifted linear equations more and
more accurately. Additionally, for nonsymmetric generalized eigenvalue problems, the
analysis in [6] shows how the accuracy of the inner solves affects the convergence of
the outer iteration. Here we extend the convergence theory to the case of variable
shifts, for example, when the Rayleigh quotient is used. In this case we show that the
tolerance for the inexact solve need not decrease, provided the shift tends towards the
desired eigenvalue. The analysis in this paper will be independent of a specific linear
solver; we assume only that the residual of the inexact linear solve can be controlled.

The plan of the paper is as follows. Section 2 gives some basic results and no-
tation. Section 3 contains a convergence analysis for inexact inverse iteration. In
particular, if Rayleigh quotient shifts are chosen, we see how to regain the quadratic
convergence that is achieved using exact linear solves. Alternatively, we show that if
the linear systems are solved to a fixed tolerance, we can still achieve a convergent
method but with the rate of convergence being only linear. In section 4 we extend
the approach of [21] based on modifying the right-hand side of the standard inverse
iteration formulation with the aim of reducing the number of inner iterations needed
per outer iteration but maintaining the variable shift. This idea is motivated by the
work in [20] and has proven to be effective for the symmetric eigenvalue problem. We
give a convergence theory and compare it with more standard approaches. In the
paper several numerical examples are given to both illustrate the theory and aid the



INEXACT INVERSE ITERATION 1071

discussion.
Throughout this paper we use ‖ · ‖ for ‖ · ‖2; however, most results are norm

independent.

2. Some basic results. We restrict our attention to the case where the general-
ized eigenvalue problem Ax = λMx is diagonalizable; that is, there exist an invertible
matrix V and a diagonal matrix Λ (both possibly complex) such that

AV = MVΛ,(2.1)

and so the eigenvalues of A lie on the diagonal of Λ and the columns of V are the right
eigenvectors, that is, Avj = λjMvj , j = 1, . . . , n. The corresponding decomposition
in terms of the left eigenvectors is

UA = ΛUM,(2.2)

where U can be chosen as U = V−1M−1 and so UMV = I. Hence the rows of U
are the left eigenvectors, that is, uj = UTej with uT

j A = λju
T
j M, j = 1, . . . , n. Note

that for the theory we leave the scaling of the eigenvectors open, but we could ask
that ‖vj ‖= 1 or ‖vj ‖M= 1. In either case UMV = I provides the corresponding
scaling for uj .

Using the decomposition (2.1) and assuming that σ is not an eigenvalue of (1.1)
we can write

(A − σM)V = MV(Λ − σI)

⇔ V(Λ − σI)−1 = (A − σM)−1MV.(2.3)

Similarly we can use (2.2) to obtain

U(A − σM) = (Λ − σI)UM

⇔ (Λ − σI)−1U = UM(A − σM)−1.(2.4)

2.1. The generalized tangent. In order to analyze the convergence of inexact
inverse iteration described in Algorithm 2 we use the following splitting:

x(i) = α(i)(c(i)v1 + s(i)w(i)),(2.5)

where w(i) ∈ span(v2, . . . ,vn) and ‖ UMw(i) ‖= 1. The splitting implies that
V−1w(i) ∈ span(e2, . . . , en) and scaling implies that ‖V−1w(i) ‖=‖UMw(i) ‖= 1.
Defining

α(i) :=‖UMx(i)‖

gives |s(i)|2 + |c(i)|2= 1, since from (2.5) we have

UMx(i) = α(i)c(i)UMv1 + α(i)s(i)UMw(i),(2.6)

and so

1 =
‖UMx(i)‖

α(i)
= ‖c(i)e1 + s(i)UMw(i)‖

=
(
|c(i)|2 + |s(i)|2

) 1
2
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since e1 ⊥ UMw(i). Thus we interpret s(i) as a generalized sine and c(i) as a gener-
alized cosine, which is in the spirit of the orthogonal decomposition in [17] used for
the symmetric eigenvalue problem analysis. For convenience we introduce the matrix
F, defined by

F := (I − e1e
T
1 )UM = UM(I − v1u

T
1 M),(2.7)

and note that Fv1 = 0 and Fvj = ej , so that

(UM − F)x(i) = α(i)c(i)e1,(2.8)

and

Fx(i) = α(i)s(i)UMw(i).(2.9)

Hence ‖(UM−F)x(i)‖ measures the length of the component of x(i) in the direction
of v1 and Fx(i) picks out the second term in (2.6). So it is natural to introduce
as a measure for convergence of x(i) to span(v1) the generalized tangent (cf. [6,
section 2.1])

t(i) :=
|s(i)|
|c(i)|

=
‖Fx(i)‖

‖(UM − F)x(i)‖
.(2.10)

Clearly ‖ 1
c(i)α(i) x

(i) − v1 ‖= t(i) ‖ w(i) ‖, and so t(i) measures the quality of the

approximation of x(i) to v1. Note that t(i) is independent of the factor α(i) and that
in the inverse iteration algorithm x(i) is scaled so that ϕ(x(i)) = 1.

For future reference we recall that for x ∈ C
n the Rayleigh quotient for (1.1) is

defined by

�(x) :=
xHAx

xHMx
(2.11)

and that

�(x(i)) − λ1 =
(x(i))H(A − λ1M)x(i)

(x(i))HMx(i)
= O(|s(i)|)(2.12)

since (A−λ1M)x(i) = α(i)s(i)(A−λ1M)w(i), using (2.5). Thus, the Rayleigh quotient
converges linearly in |s(i)| to λ1. Also, since

(A − �(x(i))M)x(i) = (A − λ1M)x(i) + (λ1 − �(x(i)))Mx(i)(2.13)

we have that the eigenvalue residual r(i) defined by

r(i) :=
(
A − �(x(i))M

)
x(i)(2.14)

satisfies

‖r(i)‖ = O(|s(i)|).(2.15)

Note that while both (2.12) and (2.15) indicate that convergence is linear in |s(i)|, it
is often the case that convergence to an eigenvalue is faster than convergence to the
corresponding eigenvalue residual.
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3. Convergence of inexact inverse iteration. In this section we provide
the convergence analysis for inexact inverse iteration using a variable shift strategy.
In section 3.1 we provide a lemma which gives a bound on the generalized tangent
t(i+1). This bound is then used in the convergence theorem in section 3.2. Numerical
experiments are presented to illustrate the theory.

Practical choices for σ(i) are the update technique

σ(i+1) = σ(i) + 1/ϕ(y(i)),(3.1)

the Rayleigh quotient given by (2.11), or the related

σ(i) =
zHAx(i)

zHMx(i)
,(3.2)

where z is some fixed vector chosen to maximize |zHMx(i)|. For M = I it is common
to take z = ek, where k corresponds to the component of maximum modulus of x(i)

(for example, see [18]). If the choice ϕ(y(i)) = zHMy(i) is made, then for exact solves
it is easily shown that

σ(i+1) = σ(i) +
1

zHMy(i)
=

zHAx(i+1)

zHMx(i+1)
,(3.3)

so that (3.1) and (3.2) are equivalent. For inexact solves we use (3.2), and it is easily
shown that λ1 − σ(i) = O(t(i)) (cf. (2.12)).

3.1. One step bound. Let us assume that the sought eigenvalue, say λ1, is
simple and well separated. Next, we assume the starting vector x(0) is neither the
solution itself nor is it deficient in the sought eigendirection, that is, 0 <|s(i) |< 1.
Further, we assume that the shift σ(i) satisfies

|λ1 − σ(i)| ≤ 1

2
|λ2 − λ1| ∀i,(3.4)

where |λ2 − λ1|= minj �=1 |λj − λ1|. Hence |λ1 − σ(i)|<|λ2 − σ(i)|.
Now consider step (2) of inexact inverse iteration, given by Algorithm 2, and

define

d(i) := Mx(i) − (A − σ(i)M)y(i).(3.5)

Rearranging this equation and using the scaling of x(i+1) from step (3) in Algorithm 2
together with the fact that A − σ(i)M is invertible we obtain the update equation

ϕ(y(i))x(i+1) = (A − σ(i)M)−1(Mx(i) − d(i)).(3.6)

This is the equation on which the following analysis is based.
Lemma 3.1. Assume the shifts satisfy (3.4) and that the bound on the residual

τ (i) in Algorithm 2 satisfies

‖d(i)‖ ≤ τ (i) < β |uT
1 Mx(i)| / ‖u1‖(3.7)

for some β ∈ (0, 1). Then

t(i+1) ≤ |λ1 − σ(i)|
|λ2 − σ(i)|

|α(i)s(i)| + ‖Ud(i)‖
(1 − β) |uT

1 Mx(i)|
.(3.8)
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Proof. Recall that uT
1 Mx(i+1) = α(i+1)c(i+1), and uT

1 = eT1 U. Hence premulti-
plying the update equation (3.6) by uT

1 M and using UM(A−σ(i)M)−1 = (Λ−σ(i)I)U
(see (2.4)), we obtain

ϕ(y(i))α(i+1)c(i+1) = eT1 (Λ − σ(i)I)−1U(Mx(i) − d(i))

= (λ1 − σ(i))−1uT
1 (Mx(i) − d(i)).(3.9)

Further, using (3.7)

|uT
1 Mx(i)| − |uT

1 d(i)| ≥ (1 − β) |uT
1 Mx(i)| .(3.10)

Hence

|ϕ(y(i))||α(i+1)c(i+1)| ≥ |uT
1 Mx(i)| − |uT

1 d(i)|
|λ1 − σ(i)|

≥ (1 − β)
|uT

1 Mx(i)|
|λ1 − σ(i)|

.(3.11)

To obtain an upper bound on |s(i+1) | we apply F, defined by (2.7), to (3.6) to
obtain

ϕ(y(i))Fx(i+1) = (I − e1e
T
1 )UM(A − σ(i)M)−1(Mx(i) − d(i))(3.12)

and using (2.4),

ϕ(y(i))Fx(i+1) = (I − e1e
T
1 )(Λ − σ(i)I)−1U(Mx(i) − d(i))

= (Λ − σ(i)I)−1(I − e1e
T
1 )U(Mx(i) − d(i)).(3.13)

Taking norms we obtain

‖ϕ(y(i))Fx(i+1)‖ = ‖(Λ − σ(i)I)−1(I − e1e
T
1 )U(Mx(i) − d(i))‖

≤ ‖(Λ − σ(i)I)−1(I − e1e
T
1 )‖ ‖(I − e1e

T
1 )U(Mx(i) − d(i))‖

≤ 1

|λ2 − σ(i)|

(
|α(i)s(i)| + ‖(I − e1e

T
1 )Ud(i)‖

)
.(3.14)

With t(i+1) defined by (2.9), and using (2.8), we have

t(i+1) =
‖ϕ(y(i))Fx(i+1)‖

‖ϕ(y(i))(UM − F)x(i+1)‖

≤ ‖ϕ(y(i))Fx(i+1)‖
|ϕ(y(i))α(i+1)c(i+1)|

.

Hence, using (3.10), (3.11), and (3.14),

t(i+1) ≤ |λ1 − σ(i)|
|λ2 − σ(i)|

|α(i)s(i)| + ‖(I − e1e
T
1 )Ud(i)‖

|uT
1 Mx(i)| − |uT

1 d(i)|
.

This result is similar to results in [23, 21, 3] in the symmetric case and [6, 15] in
the unsymmetric case. One advantage of our approach over that in [6, 15] is that it
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can be applied to both fixed and variable shift strategies, though here we concentrate
on the variable shift analysis.

Condition (3.7) asks that τ (i) be bounded in terms of |uT
1 Mx(i) |= α(i) | c(i) |

which is related to the cosine of the angle between v1 and x(i), the exact and the
approximate eigenvectors. In Algorithm 2 we used an absolute tolerance criteria for
the inexact solves involving τ (i). Now Lemma 3.1 shows that this constraint naturally
should be relative to the scaling of x(i).

In the case where d(i) = 0, we can take β = 0 in (3.7), and (3.8) reduces to

t(i+1) ≤ |λ1−σ(i)

λ2−σ(i) |t(i), the familiar expression when exact solves are employed. If (3.4)

holds and ‖d(i)‖≤ τ (i) ≤ C |s(i)|, as is the case if the solve tolerance is bounded by
‖r(i)‖ defined in (2.14), then (3.8) indicates that we can expect Algorithm 2 to achieve
quadratic convergence, the same asymptotic rate of convergence as the exact solves
case. However, if (3.4) holds and ‖d(i)‖≤ τ (i) ≤ constant, then we would expect a
reduced rate of convergence in Algorithm 2. These expectations about the (outer)
convergence rate of Algorithm 2 are made precise in the following section.

3.2. Convergence theorem for variable shifts. The following theorem pro-
vides sufficient conditions under which an inexact inverse iteration algorithm with
linearly converging shifts achieves linear convergence, even if the residual tolerance is
fixed.

Theorem 3.2. Given A, M ∈ R
n×n with M symmetric positive definite. Let

the generalized eigenvalue problem Ax = λMx be diagonalizable and have simple
eigenpair (λ1,v1). Further let x(i) = α(i)(c(i)v1 + s(i)w(i)) with |s(0)|< 1 and let the
shift updates satisfy

|λ1 − σ(i)| ≤ |λ1 − λ2|
2

|s(i)| ∀i.(3.15)

Assume that, for d(i) defined by (3.5), ‖d(i)‖≤ τ (i) with

τ (i) < α(i)βc(i)/ ‖U‖,(3.16)

where

0 ≤ β <
1− |s(0)|

2
.(3.17)

Then inexact inverse iteration as given in Algorithm 2 using a variable shift converges
(at least) linearly, t(i+1) ≤ qt(i) ≤ qi+1t(0), where

q :=
|s(0)| +β

1 − β
< 1.(3.18)

Proof. With |λ1 − σ(i)|≤ 1
2 |λ1 − λ2| |s(i)| and hence |λ2 − σ(i)|> 1

2 |λ2 − λ1|, we
have

|λ1 − σ(i)|
|λ2 − σ(i)|

< |s(i)| .(3.19)

Thus, from (3.8),
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t(i+1) ≤ |s(i)| |α(i)s(i)| + ‖U‖ τ (i)

(1 − β) |α(i)c(i)|

≤ t(i)
|s(i)| +β |c(i)|

1 − β

≤ t(i)
|s(0)| +β

1 − β
.(3.20)

Set q = (|s(0)| +β)/(1 − β). If β satisfies (3.17), then q < 1, and linear convergence
is proved by induction.

This theorem shows that for a close enough starting guess, namely |s(0)|< 1− 2β,
and for a shift converging linearly, say using (3.2) or (2.11), then we obtain a linearly
converging method, provided the inner iteration is solved to a strict enough tolerance
(which itself does not tend to zero).

Not surprisingly, if we ask that the bound on the tolerances τ (i) is linear in
|s(i) | instead of being held fixed as allowed by (3.16), then one achieves quadratic
convergence. This is stated in the following corollary.

Corollary 3.3. Assume the conditions of Theorem 3.2 are satisfied but that
(3.16) is replaced by

τ (i) ≤ α(i) min(βc(0)/‖U‖, γ |s(i)|)(3.21)

for some constant γ ≥ 0; then the convergence is (at least quadratic), that is, t(i+1) →
0 (monotonically) with t(i+1) ≤ q(t(i))2 for some q > 0.

Conditions (3.16), (3.17), and (3.18) make precise statements such as “τ (i) is small
enough” and “x(0) is close enough to v1.” Those are unlikely to be of any quantitative
use since they are probably too restrictive and contain quantities that are unknown
(for example ‖U‖ and |λ2 − λ1|). Of course, the conditions (3.16), (3.18), and (3.21)
are not necessary, and in our experiments considerably larger values for τ (i) have been
used successfully. Condition (3.15) is easily satisfied if σ(i) is given by (3.2) and if z is
sufficiently close to the left eigenvector u1. However, this is a theoretically sufficient
condition, and as is the case in many practical situations convergence occurs without
this condition being fulfilled.

We now present some numerical results to illustrate the theory given in Theo-
rem 3.2 and Corollary 3.3. In our experiments different choices of shift produced no
significant changes in the results, so we present numerical results for the Rayleigh
quotient shift only.

Example 1. Consider A and M derived by discretizing

−Δu + 5ux + 5uy = λu in D := [0, 1] × [0, 1],

u = 0 on Γ := ∂D,

using the Galerkin FEM on regular triangular elements with piecewise linear functions.
This eigenvalue problem is also discussed in [6]. Here we use a 32 by 32 grid which
leads to 961 degrees of freedom. For the discrete eigenvalue problem it is known that
λ1 ≈ 32.2 and λ2 ≈ 61.7 with all other eigenvalues satisfying Re(λj) > 61.8. Note that
the eigenvalue residual r(i) defined by (2.14) is proportional to |s(i) | (using (2.15)),
and so this provides a practical way to implement a decreasing tolerance. As inexact
linear solver we use preconditioned full GMRES (that is, without restarts), where
the preconditioner P ≈ A is obtained by an incomplete modified LU decomposition
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Table 3.1

Generalized tangent t(i) and number of inner iterations k(i) for RQIf (a) and (b) and RQId
(c). In (a) τ0 = 0.1, in (b) τ0 = 0.001, and in (c) τ0 = 0.2 and τ1 = 0.5.

(a) (b) (c)

t(i) k(i−1) t(i) k(i−1) t(i) k(i−1)

0 5.0e-02 5.0e-02 5.0e-02
1 9.0e-03 11 4.4e-04 23 1.6e-02 13
2 2.4e-04 19 8.0e-08 36 2.8e-05 35
3 4.6e-06 29 7.7e-12 51 2.9e-10 54
4 2.6e-08 37 6.8e-12 51
5 4.7e-11 47
6 1.0e-11 52∑
k(i−1) 195 110 153

with drop tolerance = 0.1. In Table 3.1 we present numerical results obtained when
calculating λ1. Each row in Table 3.1 provides the generalized tangent, t(i) (calculated
knowing the exact solution v1), and k(i−1) the number of inner iterations used by
preconditioned GMRES to satisfy the residual condition. We use the following two
versions of Algorithm 2.

RQIf, Rayleigh quotient iteration with fixed tolerance, that is, σ(i) = �(x(i)) and
τ (i) = τ0‖Mx(i)‖.

RQId, Rayleigh quotient iteration with decreasing tolerance, that is, σ(i) = �(x(i))
and τ (i) = min{τ0, τ1‖r(i)‖/σ(i)}‖Mx(i)‖.

As ‖r(i)‖ / |�(i)| is proportional to |s(i)| and ‖Mx(i)‖ is proportional to α(i) we expect
according to Theorem 3.2 linear convergence for RQIf and according to Corollary 3.3
quadratic convergence for RQId.

In Table 3.1, cases (a) and (b) illustrate the behavior of RQIf with τ0 = 0.1 and
0.001, respectively. Case (c) gives results for RQId, that is, Rayleigh quotient shifts
and a decreasing tolerance based on the eigenvalue residual (2.14). We present results
for the approximation of (λ1,v1) and stop the entire calculation once the relative
eigenvalue residual ‖r(i)‖ /�(i) is smaller than τouter = 10−14.

Discussion of results. Case (a) shows that the Rayleigh quotient iteration with
fixed tolerance τ0 = 0.1 achieves linear convergence (indeed, in this experiment, super-
linear convergence). Case (c) shows that the Rayleigh quotient iteration with linearly
decreasing tolerance based on the eigenvalue residual achieves quadratic convergence
as predicted by Corollary 3.3. Thus we recover the convergence rate attained for
nonsymmetric problems if the Rayleigh quotient iteration is used with exact solves.
We point out that the last iteration in (c) is stopped due to the fact that the relative
outer tolerance condition is satisfied within GMRES, and so quadratic convergence
is lost in the final step. Case (b) shows results obtained using the Rayleigh quotient
iteration with a small fixed tolerance. First, we note that since τ0 is small the method
behaves very similarly to the exact solves case. Further, case (b) exhibits initially
quadratic convergence as the s(i) dominates τ (i) in the numerator of (3.8). However,
this quadratic convergence is lost when the tangent, t(i), has reduced to the order of
the stopping tolerance, and then τ (i) dominates s(i).

4. Modified right-hand side. In this section we analyze a variation of inexact
inverse iteration where the right-hand side is altered with the aim of improving the
performance of the preconditioned iterative solver at the risk of slowing down the
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outer convergence rate. This idea has been used in [20] and [21]. Instead of solving

(A − σM)y(i) = Mx(i)(4.1)

[20] used the system

(A − σM)y(i) = x(i)(4.2)

with no theoretical justification but with the remark that computational time is saved
with the modified right-hand side. Also, for the solution of the standard symmetric
eigenvalue problem Ax = λx using a preconditioner P ≈ (A − σI), Simoncini and
Eldén [21] solve

P−1(A − σI)y(i) = x(i)(4.3)

rather than the obvious system

P−1(A − σI)y(i) = P−1x(i).(4.4)

The motivation for this alteration is that in (4.3) the right-hand side x(i) is both close
to a null vector of P−1(A − σI) and close to a scaled version of the solution. The
vector P−1x(i) has neither of these properties. Here we combine the two ideas. Let
P ≈ (A − σM) be a preconditioner for use within GMRES. Given an approximate
eigenvector x(i) to obtain an improved eigendirection using preconditioned GMRES
we solve

P−1(A − σ(i)M)y(i) = x(i)(4.5)

rather than the obvious P−1(A−σ(i)M)y(i) = P−1Mx(i). As we shall show below, by
changing the right-hand side from P−1Mx(i) to x(i) the convergence theory changes.
The expected gain is that (4.5) will prove to be significantly cheaper to solve in terms
of inner iterations. For the standard symmetric eigenvalue problem where the shift
was chosen as the Rayleigh quotient this was indeed the case. We shall see that
for nonsymmetric problems the situation is not so clear-cut. In this paper we shall
concentrate on the outer convergence theory. The algorithm derived from solving
(4.5) which uses the Rayleigh quotient shift is defined as follows.

Algorithm 3. inexact inverse iteration with modified right-hand side.
Given x(0), then iterate:
(1) Choose τ (i), and set σ(i) = �(x(i)).
(2) Find y(i) such that ‖x(i) − P−1(A − σ(i)M)y(i)‖ ≤ τ (i).
(3) Set x(i+1) = y(i)/ϕ(y(i)).

Note that we use a standard residual condition rather than the stopping condition
used in [21, section 7]. We define the residual obtained by solving (4.5) approximately
as

d(i) := x(i) − P−1(A − σ(i)M)y(i)(4.6)

so that the inexact solve step can be written as

(A − σ(i)M)y(i) = Px(i) − Pd(i),(4.7)

which should be compared with the inexact solve step

(A − σ(i)M)y(i) = Mx(i) − d(i)(4.8)
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in section 3. From (4.8) we obtain

ϕ(y(i))x(i+1) = (A − σ(i)M)−1P(x(i) − d(i))(4.9)

(cf. (3.6)), which is used in the following analysis. First, assume the residual d(i)

satisfies the bound

‖d(i)‖ ≤ τ (i) ≤ β′ |uT
1 Px(i)| / ‖UP‖(4.10)

for some β′ ∈ ([0, 1) (cf. (3.7)), and hence it is easily shown that

|uT
1 Px(i)| − |uT

1 Pd(i)| ≥ (1 − β′) |uT
1 Px(i)| .(4.11)

Next, we introduce the expression

TP (z) :=
‖(I − e1e

T
1 )UPz‖

|uT
1 Pz|

,(4.12)

where z ∈ C
n. By analogy with (2.7) and (2.10), TP (z) looks like a generalized

tangent with respect to P rather than M. However, for a general preconditioner
TP (v1) �= 0. In fact, TP (v1) measures the effect of P on the eigenvector v1, and we
shall see in Theorem 4.2 that large values of TP (v1) will slow down or possibly destroy
the convergence of Algorithm 3. Note that, under (4.11),

TP (x(i) − d(i)) ≤ 1

1 − β′

(
TP (x(i)) +

‖UPd(i)‖
|uT

1 Px(i)|

)
.(4.13)

Now we give a one step bound for Algorithm 3 using a variable shift σ(i).
Lemma 4.1. Assume σ(i) satisfies (3.4) and (3.15). Further assume that (4.11)

holds. Then

t(i+1) ≤ |λ1 − σ(i)|
|λ2 − σ(i)|

TP (x(i) − d(i))

≤ |s(i)| TP (x(i) − d(i)),(4.14)

where TP (·) is given by (4.12).
Proof. With the notation in sections 2 and 3 we have

t(i+1) =
‖Fϕ(y(i))x(i+1)‖

‖(UM − F)ϕ(y(i))x(i+1)‖

=
‖F(A − σ(i)M)−1(Px(i) − Pd(i))‖

‖(UM − F)(A − σ(i)M)−1(Px(i) − Pd(i))‖

=
‖(I − e1e

T
1 )UM(A − σ(i)M)−1(Px(i) − Pd(i))‖

|eT1 UM(A − σ(i)M)−1(Px(i) − Pd(i))|

=
‖(I − e1e

T
1 )(Λ − σ(i)I)−1U(Px(i) − Pd(i))‖

|eT1 (Λ − σ(i)I)−1U(Px(i) − Pd(i))|

≤ |λ1 − σ(i)|
|λ2 − σ(i)|

‖(I − e1e
T
1 )UP(x(i) − d(i))‖

|eT1 UP(x(i) − d(i))|
,
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Table 4.1

Generalized tangent t(i) and number of inner iterations k(i) for RQIf (a) and RQImodrhs
(b) with τ0 = 0.05 for both methods.

(a) (b)

t(i) k(i−1) t(i) k(i−1)

0 2.0e-02 2.0e-02
1 1.6e-02 30 1.6e-02 30
2 2.9e-05 41 1.2e-04 37
3 4.7e-08 47 9.8e-07 37
4 2.0e-08 47 4.4e-08 36
5 1.7e-08 24∑
k(i−1) 165 164

from which the required result follows.
Clearly a formal statement of the convergence of Algorithm 3 merely requires con-

ditions that ensure the second term on the right-hand side of (4.14) remains bounded
below 1 for all i. For completeness we present such a theorem.

Theorem 4.2. Assume that the conditions of Lemma 4.1 hold, and let τ (i) satisfy
(4.10) with β′ ∈ [0, 1). Assume that TP (v1) �= 0 and

q :=
1

1 − β′ (2TP (v1) + β′) < 1.(4.15)

Then, for x(0) close enough to v1, Algorithm 3 converges linearly with t(i+1) ≤ qt(i).
Proof. Due to the condition on τ (i), (4.10), we can use (4.13) and (4.10) (again)

to give TP (x(i) + d(i)) ≤ (1 − β′)−1(TP (x(i)) + β′). Hence it remains to show that
TP (x(i)) ≤ 2TP (v1), which is valid for x(0) close enough to v1 as TP (v1) �= 0.

Lemma 4.1 and Theorem 4.2 show that the quantity TP (v1) plays an important
role in the convergence of Algorithm 3, and ideally TP (v1) should be small. In practi-
cal situations we will have little knowledge of the effect of P on v1, but it is clear that
if uT

1 Pv1 is small, and hence TP (v1) is large; then Algorithm 3 may converge slowly
or may possibly fail to converge. Note that we ignore the unlikely case TP (v1) = 0
in Theorem 4.2, though in this case one could recover quadratic convergence using
a decreasing tolerance. We present numerical values for TP (v1) in Table 4.2. First,
we compare the performance of Algorithm 3 with the variable shift method RQIf
discussed in Example 1.

Example 2. Again we consider the convection diffusion problem of Example 1;
however, now we seek the interior eigenvalue λ20 = 337.7. Here we use preconditioned
full GMRES with multigrid as preconditioner to solve the linear systems that arise.
The preconditioner consists of one V-cycle and uses 3 Jacobi iterations for both pre-
and postsmoothing on each grid. In case (a) of Table 4.1 we use RQIf with τ0 = 0.05
and in (b) we use RQImodrhs with τ0 = 0.05.

RQImodrhs, Algorithm 3 with σ(i) = �(x(i)) and tolerance τ (i) = τ0 ‖Px(i)‖.
We present numerical results for calculating λ20 up to a relative outer tolerance of
τouter = 10−10 in Table 4.1.

Discussion of results. From case (a) we observe that the number of inner itera-
tions k(i) increases as the outer process proceeds. This effect was already observed
when calculating the eigenvalue λ1 of the same example; see Table 3.1. However,
the rate of increase here is not as substantial due to the fact that the multigrid
preconditioner is a much better preconditioner than the one constructed by the in-
complete LU decomposition. Case (b) shows that even though the right-hand side



INEXACT INVERSE ITERATION 1081

Table 4.2

Generalized tangent t(i) for RQImodrhs with τ0 = 0.01 using two different preconditioners.
In (a) milu(A, 0.1), where TP (v1) = 0.34, and in (b) milu(A−320M, 10−4), where TP (v1) = 0.045.

(a) (b)

t(i) t(i)

0 2.0e-02 2.0e-02
1 3.1e-04 1.9e-04
2 4.7e-05 5.8e-07
3 2.6e-06 1.5e-09
4 1.3e-07
5 1.1e-08

has been modified RQImodrhs still provides a linearly converging method as stated
in Theorem 4.2. Further, the number of inner iterations used at each outer iteration
by RQImodrhs does not increase with i, which leads to an efficient iteration pro-
cess. (The link between the outer convergence and the cost of the inner solves using
GMRES is discussed further in [4].) We also observe, however, that RQImodrhs
requires more outer iterations. This is to be expected from the convergence theory
because of the nonzero term TP (v1) in (4.15) and is observed in other experiments;
see Table 8.6 in [4]. Note that the choices for τ0 in Example 2 are not optimal for
either method. For RQImodrhs the optimal value (that is, the value producing the
smallest total number of inner iterations) is τ0 = 0.1, and for RQIf the optimal value
is τ0 = 0.001. However, there was little difference in the performance of the methods.
In both cases the total number of inner iterations was around 130.

We remark that in our experience with several different examples for the gen-
eralized nonsymmetric eigenvalue problem the choice of the constant τ0 as used in
the bound on the tolerance is important for both the convergence and efficiency of
Algorithm 3. This is in contrast to the standard symmetric eigenvalue problem where
the corresponding algorithms are less sensitive to the choice of τ0, as reported in [3].

Next, we provide an example to demonstrate the effect of TP (v1) on the rate of
convergence.

Example 3. Again we consider the convection diffusion problem discussed in
Example 2, and we seek the interior eigenvalue λ20 = 337.7. To demonstrate the
effect of TP (v1) on the convergence of RQImodrhs we consider two different pre-
conditioner. In case (a) of Table 4.2 we use a modified incomplete LU decomposition
constructed from the unshifted system A using a drop tolerance of 0.1; we denote
this by milu(A, 0.1). The other preconditioner, which we use in case (b), is also
a modified incomplete LU decomposition constructed now from the shifted system
A − 320M using a drop tolerance of 10−4 (milu(A − 320M, 10−4)). In Table 4.2 we
present numerical results obtained using RQImodrhs with τ0 = 0.01 using in (a) the
“unshifted” preconditioner which has for this example TP (v1) = 0.34 and in (b) the
“shifted” preconditioner which has TP (v1) = 0.045.

Note that in our experience parameter values for τ0 smaller than 0.01 did not
alter the outer convergence. This is not surprising since τ0 � TP (v1), and hence
according to Theorem 4.2 the effect of the inexact solves on the rate of convergence
should not be significant.

Discussion of results. From Table 4.2 we observe that the outer convergence in
case (a) is linear with a rate t(i+1)/t(i) ≈ 0.05. Comparing this with the results
for case (b) we observe a significant improvement in the outer rate of convergence,
which results in a reduced number of outer iterations. In Algorithms 1 and 2 the
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preconditioner merely makes the solution of the linear system more efficient, whereas
in Algorithm 3 the preconditioner also affects the outer convergence rate, as seen by
the presence of TP (v1) term on the right-hand side in (4.15).

5. Conclusion. In this paper we provided a convergence theory for inexact in-
verse iteration with varying shifts applied to the nonsymmetric generalized eigenvalue
problem. Additionally we extended the approach from [21] of modifying the right-
hand side to the nonsymmetric generalized eigenvalue problem, presented a conver-
gence theory, and showed that the preconditioner affects the outer convergence rate.
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1. Introduction. In [4], an algorithm for computing invariant subspaces of ma-
trices and matrix pencils using spectral dichotomy techniques was proposed. The aim
of the present paper is to show that this algorithm can be used to analyze the stability
of symplectic matrices and linear Hamiltonian systems with periodic coefficients. It
can also be used to illustrate the theory of parametric resonance.

The spectral dichotomy methods originate from Lyapunov’s theory. It allows
one to determine whether a regular matrix pencil λB − A has eigenvalues on or
in a neighborhood of a curve γ in the complex plane. In the regions where no such
eigenvalues exist, the projector P (ρ) onto the deflating subspace of λB−A is computed
along with the matrix integral

(1.1) F (ρ) =

∮
γ=γ(ρ)

(
(λB −A)−1

)∗
(λB −A)−1 |dλ| = F (ρ)∗.

Up to a multiplicative constant, the matrix F ≡ F (ρ) and the projector P ≡ P (ρ) are
related by Lyapunov-type equations in the case where γ is a circle or the imaginary
axis. See [2, Chap. 10]. The 2-norm of F , denoted hereafter by ‖F‖, is used to measure
the numerical quality of the projector P . The larger this norm, the less accurate
the computed projector P , or in other words, a large ‖F‖ means that λB − A has
eigenvalues on or in a neighborhood of γ(ρ). The matrix F can be computed iteratively
as shown in [4, Thm. 2.2]. We mention that the algorithm proposed in [6] computes
P and ‖F‖ efficiently.

The spectral portrait is defined as the graph of the function

(1.2) ρ �−→ f(ρ) = ‖F (ρ) ‖.

When the pencil λB − A has an eigenvalue λ ∈ γ(ρ0), then the function f(ρ0) goes
to ∞. In other words, the graph of f has an asymptote on the line ρ = ρ0. It can
be shown [2, sect. 13.6] that the function log f is convex on each interval where f is
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finite. Numerically, the graph of f is composed of several strips separated by intervals
where f takes a prescribed large number. The larger this interval, the more ill-
conditioned the corresponding eigenvalues and deflating subspaces. The other values
of ρ correspond to regions of absence of eigenvalues where the trace of the projector
P remains constant.

Throughout this paper, the projector P (ρ) and the norm ‖F (ρ)‖ are computed
with the algorithms proposed in [4]. See in particular Algorithm 1 in [4]. The following
notation will be used: If H = H∗ is a Hermitian (symmetric) matrix, then the notation
H > 0 (H ≥ 0) means that H is positive definite (semidefinite). Unless otherwise
stated, the matrix J2k =

(
0k −Ik
Ik 0k

)
will be denoted by J . The identity (null) matrix

of order k will be denoted by Ik (0k) or just I (0) when the order is clear from the
context.

2. Stability of symplectic matrices. Let J be a real skew-symmetric non-
singular 2N × 2N matrix.1 A real 2N × 2N matrix W is said to be J-symplectic
if W ∗JW = J . The spectrum of W is generally composed of three groups: (i) N∞
eigenvalues outside the unit circle, (ii) N0 = N∞ eigenvalues inside the unit circle and
placed symmetrically with respect to the previous group, and (iii) N1 = 2N − 2N0

eigenvalues on the unit circle.
The symplectic matrices arise in several applications, among which are optimal

control (see, e.g., [5, Chap. 12]) and the theory of parametric resonance (see, e.g.,
[7]), which we discuss in section 3. In the first application, the unit circle is free of
eigenvalues, and it is important to construct, in a stable way, the projectors P0 and
P∞ onto the invariant subspaces of W associated to the eigenvalues respectively inside
and outside the unit circle. In the second application, all the eigenvalues should be
on the unit circle, i.e., P0 = P∞ = 0 and P1 = I, where P1 is the projector onto
the invariant subspace of W associated to the eigenvalues on the unit circle. These
necessary conditions are not sufficient to ensure the stability of W . Before going
through the details, we recall some definitions.

Definition 2.1. An eigenvalue λ of W on the unit circle is said to be of the first
(second) kind if any corresponding eigenvector x satisfies (iJx, x) > 0 ((iJx, x) < 0),
where (iJx, x) stands for the Euclidean inner product. When (Jx, x) = 0, then λ is
said to be of the mixed kind.

Definition 2.2. The J-symplectic matrix W is stable if ‖W k‖ < ∞ for all
k > 0. It is strongly stable if W + Δ remains stable under small perturbations Δ
which conserve the symplecticity of W + Δ.

It is clear that the stability implies that all eigenvalues of W lie on the unit circle
and are not defective. It was shown by Krein, Gelfand, and Lidskii (see [7, pp. 161,
192]) that the strong stability is equivalent to the following conditions, called hereafter
the KGL criterion:

• all the eigenvalues of W are on the unit circle;
• the eigenvalues of W are either of the first or second kind.

To these two conditions, one should actually add a third: the eigenvalues of the first
and second kinds must be well separated and separated from ±1, which are eigenvalues
of mixed kind (see below).

The symplectic matrix W often results from some Hamiltonian systems as ex-
plained below. Its spectrum is a priori unknown and its numerical computation may

1Although not relevant to what follows, we assume that J has the form indicated in the intro-
duction.
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be sensitive to perturbations. Thus, in practice, it is not easy to determine whether
or not W is strongly stable using the KGL criterion. From a computational point of
view, it is better to proceed as follows. Let

(2.1) S0(W ) =
1

2
J
(
W −W−1

)
.

Some simple but important properties of the matrix S0 ≡ S0(W ) are summarized
in the following proposition. These properties can be found in (or deduced from)
Theorem 2.1 in [3].

Proposition 2.3.

1. The matrix S0 is symmetric and satisfies W ∗S0W = S0.
2. If λ and μ are two eigenvalues of W such that λμ̄ 	= 1, then the corresponding

eigenvectors x and y are J-orthogonal, i.e., (Jx, y) = 0.
3. Let the columns of the rectangular matrices X and Y be invariant by W :

WX = XA and WY = Y B.

If the eigenvalues λi(A) and λj(B) of A and B, respectively, satisfy λi(A)λ̄j(B)
	= 1 for all i and j, then X∗JY = X∗S0Y = 0.

4. If the symmetric matrix S0 is positive (negative) definite, then all eigenvalues
of W lie on the unit circle.

It is clear that S0 is singular if and only if W has eigenvalues ±1. Moreover, if
(λ, x) is an eigenpair of W with λ = eiθ, θ ∈ (−π, π], then

(2.2) (S0x, x) = sin θ(iJx, x).

It follows therefore that if (S0x, x) > 0, then λ = ei|θ| is an eigenvalue of the first kind,
whereas λ = e−i|θ| is of the second kind, and, when (S0x, x) < 0, then λ = e−i|θ| is
of the first kind and λ = ei|θ| is of the second kind. Note that if θ = 0 or θ = π, then
λ = ±1. Such eigenvalues are necessarily of mixed kind. Indeed, the corresponding
eigenvector x is real and satisfies (Jx, x) = (x, J∗x) = −(x, Jx) = −(Jx, x), whence
(Jx, x) = 0 = (S0x, x). Therefore the matrix S0 is nonsingular when the KGL
criterion is satisfied. It was shown in [1] that the KGL criterion is equivalent to the

existence of a symmetric positive definite matrix Ŝ whose construction shows that
the quadratic form (S0x, x) is either positive or negative definite. This leads us to a
different classification of the spectrum of W .

Definition 2.4. An eigenvalue λ of W on the unit circle is an r-eigenvalue
(eigenvalue with a red color) if (S0x, x) > 0 for all corresponding eigenvectors x. It
is a g-eigenvalue (eigenvalue with a green color) if (S0x, x) < 0 for all corresponding
eigenvectors x.

The classification given in Definition 2.4 appears more convenient in practice
than that of Definition 2.1 since it deals with symmetric matrices and avoids complex
vectors. The invariant subspace associated with an r-eigenvalue (g-eigenvalue) can
be chosen real. The main difference between Definitions 2.1 and 2.4 is as follows: if
λ = ei|θ| and λ̄ = e−i|θ| are eigenvalues of W of, respectively, the first and second
kinds, then it easily follows from (2.2) and Proposition 2.3 that (S0z, z) has the
same sign for all z in the invariant subspace associated with λ and λ̄. Therefore the
eigenvalues λ and λ̄ will have the same color (green or red). On the other hand, the
eigenvector x is associated to a mixed eigenvalue if and only if (Jx, x) = 0, which, by
(2.2), turns out to be equivalent to (S0x, x) = 0 (note that if θ = 0 or θ = π, then
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S0x = 0). Therefore the classification in Definition 2.4 does not modify the mixed
eigenvalues, to which no color will be assigned.

Assume that the spectrum of W lies on the unit circle and is formed only by the
r- and g-eigenvalues. Let us denote by Pr (Pg) the projector associated to the r- (g-)
eigenvalues. Then, P1 = I = Pg + Pr and Proposition 2.3 yields P ∗

r JPg = 0 and
P ∗
r S0Pg = 0. It follows that

• P ∗
r J = JPr = P ∗

r JPr and P ∗
g J = JPg = P ∗

g JPg;
• P ∗

r S0 = S0Pr = P ∗
r S0Pr and P ∗

g S0 = S0Pg = P ∗
g S0Pg.

The KGL criterion can be reformulated as follows.
Theorem 2.5. The KGL criterion is equivalent to P1 = I = Pg + Pr.
Proof. If the KGL criterion is satisfied, then it is clear that P0 = P∞ = 0 and

P1 = I. Moreover, the eigenvalues λ = eiθ of W are either of the first or second kind.
In particular, eiθ 	= ±1, i.e., sin θ 	= 0. It follows from (2.2) that (S0x, x) takes nonzero
values of the same sign for all x ∈ Null (W − λI), which, according to Definition 2.4,
means that λ is of either red or green color. Therefore P1 = I = Pg + Pr.

Conversely, the condition P1 = I = Pg + Pr means that the spectrum of W lies
on the unit circle and is formed only by r- and/or g-eigenvalues. Therefore if

(
eiθ, x

)
is an eigenpair of W , then either (S0x, x) > 0 or (S0x, x) < 0, which, by (2.2), implies
that either sin θ (iJx, x) > 0 or sin θ (iJx, x) < 0. This means that sin θ 	= 0, i.e.,
eiθ 	= ±1 (i.e., S0 is nonsingular), and (iJx, x) > 0 or (iJx, x) < 0. Thus the second
condition of the KGL criterion is fulfilled.

Theorem 2.5 shows that W is strongly stable if and only if its spectrum lies on
the unit circle and is formed only by r- and/or g-eigenvalues. In practice, the strong
stability requires that the r- and g-eigenvalues should be well separated from each
other and from ±1. The properties of Pr and Pg and Theorem 2.5 imply that

• S0 = P ∗
r S0Pr + P ∗

g S0Pg;
• P ∗

r S0Pr ≥ 0 and P ∗
g S0Pg ≤ 0;

• rank (P ∗
r S0Pr) = rank (Pr) ≡ trPr and rank

(
P ∗
g S0Pg

)
= trPg;

• Pr − Pg is nonsingular and ‖Pr‖ = ‖Pg‖;
• P ∗

r S0Pr − P ∗
g S0Pg > 0.

In the next subsection, we discuss the use of spectral dichotomy methods to analyze
the spectral structure of symplectic matrices along the lines described above.

2.1. Spectral structure of symplectic matrices. First of all, note that if
λ0 is an eigenvalue of the J-symplectic matrix W , then so are λ−1

0 , λ̄0, and λ̄−1
0 .

Assuming λ0 	= ±1 and using the identity

λ0 − 1

λ0 + 1
= −1/λ0 − 1

1/λ0 + 1
,

λ̄0 − 1

λ̄0 + 1
=

(
λ0 − 1

λ0 + 1

)
,

we see that
∣∣∣∣
λ0 − 1

λ0 + 1

∣∣∣∣ =

∣∣∣∣
1/λ0 − 1

1/λ0 + 1

∣∣∣∣ =

∣∣∣∣
λ̄0 − 1

λ̄0 + 1

∣∣∣∣ =

∣∣∣∣
1/λ̄0 − 1

1/λ̄0 + 1

∣∣∣∣ .

Thus, the eigenvalues of W are on some circle of the equation
∣∣∣∣
λ− 1

λ + 1

∣∣∣∣ = ξ (0 < ξ < ∞).

Two eigenvalues λ and μ of W such that λμ̄ = 1 are on the same circle since λμ̄ = 1
implies that

∣∣μ−1
μ+1

∣∣ =
∣∣λ−1
λ+1

∣∣. The idea is to gather all the eigenvalues belonging to
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ξ
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(1) ξ

max
(1) ξ

min
(2) ξ

max
(2)ξ

3/2

Fig. 2.1. Shape of a spectral portrait. (In the print version of this figure, the dark shaded area
represents red, and the light shaded area represents green.)

such circles. The eigenvectors and invariant subspaces associated to eigenvalues on
different circles are J-orthogonal (Proposition 2.3).

Using Algorithm 1 of [4], we plot the one-dimensional spectral portrait

ξ �→ ‖E (ξ) ‖,

where

E (ξ) =
1

2π

∫ 2π

0

(
I − eiθ

A∗

ξ

)−1 (
I − e−iθA

ξ

)−1

dθ, A = (P1W + I)
−1

(P1W − I) .

In general, the spectral portrait looks like Figure 2.1. On the real ξ-axis, we

consider the interval of the form ξ
(j)
min < ξ < ξ

(j)
max with ‖E(ξ)‖ > Emax, where Emax

is a large number, and the corresponding projector P (j) onto the invariant subspace
associated to the nonzero eigenvalues of P1W in the annulus

ξ
(j)
min <

∣∣∣∣
λ− 1

λ + 1

∣∣∣∣ < ξ(j)
max.

Note that the number of nonzero eigenvalues of P1W in this annulus equals n(j) =
trP (j).

We also construct the symmetric matrix

S(j) =
(
P (j)

)∗
S0P

(j),

whose number of nonzero eigenvalues is at most equal to n(j).
If n(j) eigenvalues of S(j) are positive (negative) we will say that the interval

ξ
(j)
min < ξ < ξ

(j)
max is of red (green) color. If S(j) has n(j) positive and negative eigen-

values, then the interval ξ
(j)
min < ξ < ξ

(j)
max is indefinite.

If there are indefinite intervals, then the spectrum of W is not on the unit circle
(see [7, Chap. III, sect. 3]).

When all the intervals have only definite colors (red or green) and the intervals
with different colors are well separated, then W is strongly stable (see Theorem 2.5



1088 S. K. GODUNOV AND M. SADKANE

−4

−2

0

2

4

−4

−2

0

2

4
0

0.5

1

1.5

2

2.5

3

3.5

ℜ(λ)ℑ(λ)

t

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ℜ(λ)

ℑ
(λ

)

Fig. 2.2. Movement of eigenvalues of W (t), t ∈ [0, π] (left) and spectrum of W (t), t ∈ [0, 2π]
(right).

and the discussion thereafter). The projectors Pr and Pg are then given by

Pr =
∑

j with S(j)≥0

P (j) and Pg =
∑

j with S(j)≤0

P (j).

In each region ξ
(j)
max < ξ < ξ

(j+1)
min which separates two intervals of different colors, we

find the points ξ = ξj+ 1
2
, where ‖E (ξ) ‖ has a local minimum (these points separate

the r- and g-eigenvalues), and use ‖Em(W )‖ = maxj ‖E(ξj+ 1
2
)‖ as a criterion for the

distance between r- and g-eigenvalues. This criterion is, however, not sufficient since
the eigenvalues should also be separated from ±1, i.e., the matrix S0(W ) should be
well conditioned. Therefore, a good criterion is Φ(W ) < ∞, where

(2.3) Φ(W ) = max
(
‖Em(W )‖, ‖S0(W )‖‖S−1

0 (W )‖
)
.

In practice, the condition Φ(W ) < ∞ is replaced by Φ(W ) < tol, where tol is a
“small” quantity.

2.2. Example. Let

b(t) = 2 sin 4t, α(t) =
π

2
cos t (0 ≤ t ≤ 2π),

9ptB(t) =

(
b(t) b(t) − 1

b(t) + 1 b(t)

)
, W (t) =

(
cosα(t)B(t) − sinα(t)B(t)
sinα(t)B(t) cosα(t)B(t)

)
.

The matrix W (t) is J-symplectic for all t where J = diag (J2, J2). Its eigenvalues are
shown in Figure 2.2.

Figures 2.3–2.5 illustrate the spectral structure of W (t), where t is around 0.13.
More precisely, Figure 2.3 (top left and right) shows the spectral portraits of W (t),
i.e., the graphs of function

ρ �→ ‖FW (t)(ρ)‖ with FW (t)(ρ) =
1

2π

∫ 2π

0

(
I − eiθ

W (t)∗

ρ

)−1 (
I − e−iθW (t)

ρ

)−1

dθ

for t = 0.13069 and t = 0.13089.
From these graphs we see that the eigenvalues lie on the unit circle, i.e., P1(t) = I.

Likewise, Figure 2.3 (bottom left and right) shows the spectral portraits of W (t)
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Fig. 2.3. Spectral portraits of W (t) for t ≈ 0.13.
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Fig. 2.4. Spectral portraits of A(t) for t ≈ 0.13.

for t = 0.13092 and t = 0.13104, and the graphs show that the spectrum is now
outside the unit circle, i.e., P1(t) = 0. Figure 2.4 shows the spectral portraits of

A(t) = (W (t) + I)
−1

(W (t) − I) for t = 0.13069 and t = 0.13089. As explained in
section 2.1, these graphs help to find annuli which contain eigenvalues λ of W (t) such
that |λ − 1|/|λ + 1| = const. The projectors Pr and Pg are obtained from the ones
associated to eigenvalues in these annuli. Figure 2.5 shows the evolution of eigenvalues
of W (t), where t ≈ 0.13. Figure 2.5 (top left and right) shows that W (t) has two r-
and two g-eigenvalues. Figure 2.5 (bottom left and right) shows that the r- and g-



1090 S. K. GODUNOV AND M. SADKANE

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
t = 0.13069

ℜ(λ)

ℑ
(λ

)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ℑ
(λ

)

ℜ(λ)

t = 0.13089

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ℜ(λ)

ℑ
(λ

)

t = 0.13092

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ℜ(λ)

ℑ
(λ

)
t = 0.13104

Fig. 2.5. Eigenvalues of W (t) for t ≈ 0.13.

eigenvalues move off the unit circle after a meeting (of r- and g-eigenvalues) produced
for a certain t between 0.13089 and 0.13092.

Let us discuss the cases when t = 0.13069, t = 0.1308996937, and t = 0.13104 in
more detail.

• At t = 0.13069:
– The computed projectors are P1 = I, P0 = P∞ = 0. See the spectral

portrait of W (t) in Figure 2.3 (top left).
– The computed matrix S0 is given by

S0 =

⎛
⎜⎜⎝

−2.68 10−2 −2.60 10−18 2.22 10−16 9.98 10−1

3.47 10−18 −1.92 10−5 −9.98 10−1 −3.92 10−17

−3.33 10−16 −9.98 10−1 −2.68 10−2 −1.73 10−18

9.98 10−1 1.15 10−17 2.60 10−18 −1.92 10−5

⎞
⎟⎟⎠ ,

‖S0‖‖S−1
0 ‖ = 1.027.

– The computed projectors P (j), j = 1, 2, corresponding to the eigenvalues
of W (t) in the annuli 0.468 <

∣∣λ−1
λ+1

∣∣ < 0.989 and 0.989 <
∣∣λ−1
λ+1

∣∣ < 1.54
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are given by

P (1) =

⎛
⎜⎜⎝

5.00 10−1 −1.03 10−9 1.29 10−15 1.34 10−2

−1.44 10−6 5.00 10−1 −1.87 10+1 −1.05 10−15

−1.05 10−15 −1.34 10−2 5.00 10−1 −1.03 10−9

1.87 10+1 1.29 10−15 −1.44 10−6 5.00 10−1

⎞
⎟⎟⎠ ,

P (2) = I − P (1),

trP (1) = trP (2) = 2, P (1)P (2) = 0.

See the spectral portrait of A(t) in Figure 2.4 (left). We have Em(W ) =
3.35 104 and therefore the quantity Φ(W ) defined in (2.3), at t =
0.13068, is given by Φ(W ) = max(Em(W ), ‖S0‖‖S−1

0 ‖) = 3.35 104.

– The nonzero eigenvalues of S(j) ≡
(
P (j)

)∗
S0P

(j), j = 1, 2, are, respec-
tively, 1.8649 10+1 (double) and −1.8675 10+1 (double).

We conclude that W (t) has two r-eigenvalues and two g-eigenvalues, Pr =
P (1), Pg = P (2). See Figure 2.5 (top left). The matrix W (t) is strongly
stable.

• At t = 0.1308996937:
– The Euclidean inner products in Definition 2.1 are all of order 10−5, and

one might wonder if the KGL criterion is satisfied or not.
– The computed projectors and the matrix S0 are such that P1 = I,

P∞ = P0 = 0, ‖S0‖‖S−1
0 ‖ = 1.0272:

Pr =

⎛
⎜⎜⎝

5.00 10−1 −1.34 10−13 −8.95 10−14 1.31 10−5

−1.93 10−4 5.00 10−1 −1.90 104 −4.45 10−13

−4.45 10−13 −1.31 10−5 5.00 10−1 −1.33 10−13

1.90 104 −8.96 10−14 −1.93 10−4 5.00 10−1

⎞
⎟⎟⎠ ,

Pg = I − Pr, trPr = trPg = 2.

– The nonzero eigenvalues of P ∗
r S0Pr and P ∗

g S0Pg are, respectively, 1.9014 104

(double) and −1.9014 104 (double). We conclude that W (t) is strongly
stable and has two r-eigenvalues and two g-eigenvalues.

• At t = 0.13104:
– The computed projectors are

P1 = 0,

P∞ =

⎛
⎜⎜⎝

5.00 10−1 1.12 10−2 −8.19 10−15 −9.40 10−18

2.22 10+1 5.00 10−1 1.87 10−14 8.19 10−15

−7.88 10−15 −6.88 10−18 5.00 10−1 1.12 10−2

1.36 10−14 7.88 10−15 2.22 10+1 5.00 10−1

⎞
⎟⎟⎠ ,

P0 = I − P∞, trP0 = trP∞ = 2.

– See the spectral portrait of W (t) in Figure 2.3 (bottom right). The
spectrum is shown on Figure 2.5 (bottom right). The matrix W (t) is
not stable.

3. Stability of linear Hamiltonian systems. Consider a linear Hamiltonian
system with T -periodic coefficients, i.e., a differential equation of the form

(3.1) J
dx(t)

dt
= H(t)x(t),
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where the matrix H(t) is 2N×2N real symmetric and T -periodic: H(t+T ) = H(t) =
(H(t))

∗
. It is known that the matrizant X(t) of (3.1), i.e., the fundamental matrix

solution of (3.1) defined by the initial condition X(0) = I, is J-symplectic for all t,
i.e., X(t)∗JX(t) = J . Moreover, for all t, X(t + T ) = X(t)X(T ). Therefore for all
real t and integer k,

(3.2) X(t + kT ) = X(t)Xk(T ).

Definition 3.1. Equation (3.1) is stable if each of its solutions is bounded on
(−∞,+∞). It is strongly stable if there exists δ > 0 such that each Hamiltonian
system with T -periodic coefficient of the form

J
dx(t)

dt
= H̃(t)x(t)

satisfying

∫ T

0

‖H(t) − H̃(t)‖dt < δ

is stable.
It follows from (3.2) that the stability is actually equivalent to the stability of the

monodromy matrix X(T ), i.e., the matrizant evaluated at the period T [7, p. 162]. It
can be shown that the strong stability is equivalent to the strong stability of X(T )
[7, p. 196] (see Definition 2.2).

Note that in general the stability or strong stability of (3.1) does not necessarily
imply the stability or strong stability of X(t) for t < T . In the next theorem, we
propose (see properties 2 and 3) some sufficient and easily verifiable conditions that
ensure the strong stability of X(t) for 0 < t ≤ T .

To generalize (2.1), we consider the symmetric matrix

(3.3) S(t) =
1

2
J
(
X(t) −X(t)−1

)

defined for t ≥ 0. Some properties of S(t) and X(t) are summarized in the following
theorem.

Theorem 3.2.

1. For all t ≥ 0

X(t)∗S(t)X(t) = S(t) = S(t)∗.

S(t) satisfies the differential system

dS(t)

dt
=

1

2
(H(t)X(t) + X(t)∗H(t)) , S(0) = 0.

2. In a neighborhood of 0, we have

S(t) = tH(0) +
t2

2
H ′(0) + O(t3).

Thus, if H(0) > 0 (resp., H(0) < 0) and S(t) is nonsingular for 0 < t ≤ t̃,
then the spectrum of X

(
t̃
)

has only r-eigenvalues (resp., g-eigenvalues).
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3. If Φ (X(t)) = max
(
Em(X(t)), ‖S(t)‖‖S−1(t)‖

)
< ∞ for 0 < t ≤ T , then

X(t) is strongly stable for 0 < t ≤ T .
4. In a neighborhood of 0, if the spectrum of X(t) lies on the unit circle, then

the spectrum of J−1H(0) lies on the imaginary axis. From 2 we see that this
neighborhood can be chosen such that the number of r- and g-eigenvalues of
X(t), respectively, coincides with the number of positive and negative eigen-
values of H(0).

Proof.
1. The first property has been mentioned in Proposition 2.3. The second one is

easily obtained as

dS(t)

dt
=

1

2

(
J
dX(t)

dt
+

(
J
dX(t)

dt

)∗)

=
1

2

(
H(t)X(t) + (H(t)X(t))

∗)
.

2.
dS

dt
(0) =

1

2

(
H(0)X(0) + (H(0)X(0))

∗)
= H(0),

d2S(t)

dt2
=

1

2

[
d

dt
(H(t)X(t)) +

(
d

dt
(H(t)X(t))

)∗]
,

d

dt
(H(t)X(t)) =

dH(t)

dt
X(t) + H(t)J−1H(t)X(t).

Hence d2S
dt2 (0) = dH

dt (0). It is clear that if H(0) > 0 (H(0) < 0) and S(t) is
nonsingular for 0 < t ≤ t̃, then S(t) will remain positive (negative) definite
for all t ∈ ]0, t̃], and from Proposition 2.3 we obtain that the spectrum of X(t)
lies on the unit circle.

3. As explained at the end of section 2.1, the condition “Φ (X(t)) < ∞ for
0 < t ≤ T” means that the r- and g-eigenvalues of X(t) are separated and
well separated from ±1 for 0 < t ≤ T . In particular, the symplectic matrix
X(T ) and therefore the system (3.1) are strongly stable.

4. Since J−1S(t) = 1
2

(
X(t) −X(t)−1

)
, it is clear that J−1S(t) and X(t) have

the same eigenvectors. Let eiα(t) with α(t) ∈ R be an eigenvalue of X(t)
corresponding to an eigenvector u(t). Since X(0) = I we obtain by continuity
that α(0) = 2kπ with k ∈ Z. On the other hand,

J−1S(t)u(t) =
1

2

(
X(t)u(t) −X(t)−1u(t)

)
= i sinα(t)u(t).

The derivative of this expression is

J−1

(
dS(t)

dt
u(t) + S(t)

du(t)

dt

)
= i

dα(t)

dt
cosα(t)u(t) + i sinα(t)

du(t)

dt
.

At t = 0, we obtain

J−1 dS(0)

dt
u(0) = i

dα(0)

dt
u(0)

or

J−1H(0)u(0) = iα′(0)u(0).



1094 S. K. GODUNOV AND M. SADKANE

Property 2 in Theorem 3.2 shows in particular that the r- and g-eigenvalues cannot
meet in the interval (0, t̃]. If, for example, the conditions mentioned in property 2 are
satisfied for t̃ = T , then all the symplectic matrices X(t), 0 < t ≤ T , are strongly
stable. In particular the strong stability of X(T ) means that the system (3.1) is
strongly stable (see the discussion after Definition 3.1). However, it is possible that
for t0 > T and t0 	= kT, k = 2, 3, . . . , the matrix X(t0) becomes unstable because of a
“meeting” of an r-eigenvalue and a g-eigenvalue or because an eigenvalue becomes ±1.
These eigenvalues should move off the unit circle, as in Figure 2.5 (see [7, Chap. III,
sect. 3]). In such a case, we say that parametric resonance sets in. The zone around
t0 is a “dangerous” zone where X(t0) is not strongly stable. In order to detect these
points, one can monitor the function Φ (X(t)) , t > 0.

3.1. Example. Consider the following differential system:

(3.4)

⎧⎪⎪⎨
⎪⎪⎩

d2η1

dt2 + 4η1 + εη1 cos 7t + εη3 cos 14t = 0,

d2η2

dt2 + 3η2 + εη3 sin 35t = 0,

d2η3

dt2 + 2η3 + εη1 cos 14t + εη2 sin 35t = 0.

Let

η =

⎛
⎝

η1

η2

η3

⎞
⎠ and x =

(
η
dη
dt

)
,

where ε is a nonnegative parameter.
System (3.4) can be written as a Hamiltonian system with T -periodic coefficients

of the form (3.1) with T = 2π
7 ≈ 0.8976 and

H(t) = H0 + εH1(t) ≡
(

K0 + εK1(t) 0
0 I

)
,

where

K0 =

⎛
⎝

4 0 0
0 3 0
0 0 2

⎞
⎠ , K1(t) =

⎛
⎝

cos 7t 0 cos 14t
0 0 sin 35t

cos 14t sin 35t 0

⎞
⎠ .

Since ε ≥ 0, a simple calculation shows that H(0) > 0 if and only if 0 ≤ ε < 4.
Figure 3.1 shows the movement of eigenvalues of the matrizant Xε(t) with 0 ≤ t ≤ 4T ,
ε = 1 and ε = 2. For these parameters, the function t ∈ (0, 4T ] �→ Φ(Xε(t)) is plotted
in Figure 3.2. These figures show that Φ(Xε(t)) < ∞ for ε = 1, 2 and 0 < t ≤ T ≈
0.8976. The zones where Φ(Xε(t)) is large are emphasized in Figure 3.3. The strong
stability is a consequence of Theorem 3.2 (properties 2 or 3).

Remarks.
• The unperturbed system J dx(t)

dt = H0x(t) has the monodromy matrix X0(T ) =

eTJ−1H0 whose eigenvalues are λj (X0(T )) = e±iωjT with ω1 =
√

2, ω2 =√
3, ω3 = 2.

According to the terminology used in [7], the numbers ω1, ω2, ω3 are called
natural frequencies of the unperturbed system. The numbers

ωk,l,m =
ωk + ωl

m
, k, l = 1, 2, 3, m = 1, 2, . . . ,
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Fig. 3.1. Movement of eigenvalues of Xε(t) for t ∈ [0, 4T ], ε = 1, 2.
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are called critical frequencies of the perturbed system (i.e., ε 	= 0). They have
the following interpretation: for a given ε, there is no δ = δ (ωk,l,m) such that
all the solutions of the unperturbed system are bounded for 0 < ε < δ. In
other words, there exists a perturbation ε such that at t with t (ωk + ωl) =
0 (mod 2π), Φ(Xε(t)) is large.
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Fig. 3.4. Function t �→ Φ(X0(t)) for t ∈ (0, 4T ].

• The parameter t for which the resonance sets in corresponds to the situation
where Φ(Xε(t)) = ∞, that is, situations where either ‖Em(Xε(t)‖ = ∞ or
S0(Xε(t)) is singular. The control of the first condition is the subject of
subsection 2.1. The second condition can be controlled, for example, if Xε(t)
is known analytically. However, this corresponds to the particular case when
Xε(t) has the mixed eigenvalues ±1. This case is important but is not the
general one.
When ε = 0 in the system (3.4), the parameters t where S0(X0(t)) is singular
are given by t = kπ/ω, where k ≥ 1 and ω =

√
2,

√
3, 2. This gives the

parameters t = 1.5708, 1.8138, 2.2214, and 3.1416, which are in the interval
(0, 4T ]. Figure 3.4 shows that the function t �−→ Φ(X0(t)) has asymptotes
corresponding to these parameters and takes “large but not quite large” values
for other parameters. When ε is close to 0, the situation remains almost the
same. We see from the figure that the zones where Xε(t) ceases to be strongly
stable can be predicted from the case ε = 0.

Acknowledgment. The authors wish to thank the referees for their helpful
comments and suggestions.
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ON EIGENVALUE AND EIGENVECTOR ESTIMATES FOR
NONNEGATIVE DEFINITE OPERATORS∗
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Abstract. We present a perturbation approach to the Rayleigh–Ritz approximations in the
sense of Davis, Kahan, and Weinberger. We restrict ourselves to nonnegative definite self-adjoint
operators and obtain sharp bounds of relative type for both eigenvalues and eigenvectors. The
operators are allowed to have nontrivial null-spaces, and the test spaces need not be contained in
the domain of the considered operator.
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ods for eigenvalues of operators
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1. Introduction. A perturbation approach to Rayleigh–Ritz approximation was
introduced by Kahan in [12]. The main idea is to represent the eigenvalues (vectors),
which we do not know (but want to approximate), as perturbations of the Ritz values
(vectors), which we have computed. This concept lies behind the standard subspace
approximation theory of Davis and Kahan [3] and of Davis, Kahan, and Weinberger
[4]. In our previous paper [9] we have shown a way to apply this concept to less
regular test spaces than those which were considered in [3, 4]. In the present note
we continue this study and both improve and generalize the perturbation estimates
from [9].

Let us introduce some preliminary notation. Let h be a positive definite symmetric
form in a possibly infinite dimensional Hilbert space H. The form h generates the
positive definite operator H such that h(u, v) = (H1/2u,H1/2v). The test space for
the Rayleigh–Ritz method will be ran(X), where X : C

n → H is an isometry such
that ran(X) ⊂ Q(H) := D(H1/2). Set P = XX∗, P⊥ = I −XX∗ and define

• the block diagonal part of h as the positive definite form h′(u, v) = h(Pu, Pv)+
h(P⊥u, P⊥v),

• the block diagonal part of H as the operator H ′ such that h′(u, v) = (H
′1/2u,

H
′1/2v),

• the Rayleigh quotient as the matrix Ξ = (H1/2X)∗H1/2X ∈ C
n×n.

The standard theory of [3, 4] uses

max
‖x‖=1

|(x,Hx−H
′
x)| = ‖R‖ < ∞, R = HX −XΞ = HX −H ′X(1.1)

to obtain spectral estimates. The operator R is called the residual of the test subspace
ran(X).
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It has already been demonstrated—in [9]—that Kahan’s concept can yield non-
trivial estimates even when H −H ′ is not a bona fide operator, that is to say when
‖R‖ = ∞. We now continue the study from [9] and both sharpen the estimates and
extend the applicability of the theory to nonnegative H. Our results are generaliza-
tions of the known estimates for finite matrices [6, 16]. Familiarity with the paper [9]
is not a prerequisite for this work.

As a start we review some finite dimensional results from [6]. For the forms h
and h′ we have (in our notation)

max
x

|(H1/2x,H1/2x) − (H
′1/2x,H

′1/2x)|
(x,H ′x)

= sin Θ(H1/2X,H−1/2X),(1.2)

max
x

|(H1/2x,H1/2x) − (H
′1/2x,H

′1/2x)|
(x,Hx)

=
sin Θ(H1/2X,H−1/2X)

1 − sin Θ(H1/2X,H−1/2X)
,(1.3)

where sinΘ(H1/2X,H−1/2X) is the sine of the maximal canonical angle between the
subspaces ran(H1/2X) and ran(H−1/2X). We will slightly stretch the terminology
and (colloquially) call (1.2) and (1.3) the energy-scaled residual measures.

Eigenvalue estimates obtained from (1.1) are of the “absolute” type, i.e.,

|λ− μ| ≤ ‖R‖,(1.4)

whereas the estimates obtained from (1.2)–(1.3) will be of the “relative” type,

|λ− μ| ≤ μ sin Θ, |λ− μ| ≤ λ
sin Θ

1 − sin Θ
,(1.5)

which tacitly supposes that the operator H is nonnegative definite. (It would certainly
make sense to obtain similar estimates for indefinite operators as well—a typical
application would be, e.g., the Dirac operator in the quantum mechanics. However,
related finite dimensional considerations in [20] indicate that this case is technically
rather difficult, and our knowledge is far from being exhaustive. This lies in contrast
to our nonnegative definite case, where we believe ourselves to have reached a kind of
“optimal” answers.)

We identify the following building blocks in (1.5):
• H and H ′ are considered as symmetric forms h(u, v) = (H1/2u,H1/2v) and

h′(u, v) = (H
′1/2u,H

′1/2v),
• monotonicity of the spectrum implies the estimates.

In [9] the perturbation estimate (1.3) was shown to hold for a positive definite operator
in an infinite dimensional Hilbert space. We now prove the sharper estimate (1.2) for
a nonnegative definite operator in a Hilbert space. That is, we allow H to have a
nonzero finite dimensional null-space. This generalization is technically not trivial.
We also give an alternative proof of (1.3) as a spinoff and generalize some further
results which were derived from (1.3) in reference [9].

The restriction ‖R‖ < ∞, necessary for (1.1) to give useful information in the un-
bounded operator setting, incurs ran(X) ⊂ D(H). For (1.2) and (1.3) to be applicable
we need to assume only

sin Θ(H1/2X,H−1/2X) < 1.

This new residual measure will give nontrivial information even when ran(X) ⊂ Q(H)
is such that ran(X) �⊂ D(H); see [9] and section 7 of this paper.

Notably, both approaches to measuring the residual share the following property:
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Table 1.1

Lower estimates for λ1(Hη) which can be obtained from the Ritz value μe = 10−2 by use of the
Temple–Kato estimate and by use of the sinΘ approach.

η Temple–Kato sin Θ

1 0.000000999801 0.009004962810
2 0.007500015625 0.009500623831
3 0.008888890261 0.009666851698
4 0.009375000244 0.009750078088
5 0.009600000064 0.009800039988

• sinΘ(H1/2X,H−1/2X)=0 if and only if ran(X) is an invariant subspace of H,
• R = 0 if and only if ran(X) is an invariant subspace of H.

An important feature of our theory is that it gives an abstract framework for a
consideration of both eigenvalue and eigenvector estimates. To get a better feeling for
the estimate (1.5) consider a simple example. Let

Hη =

[
1

100 − 1
100

− 1
100 1 + η2

]
=

[
1 0
−1 1

] [
1

100 0
0 η2

] [
1 −1
0 1

]
(1.6)

and e =
[
1 0

]∗
. We will analyze an approximation of the first eigenvalue of the

matrix Hη by the Ritz value μe = (e,Hηe) = 10−2 for η large.

As a starting point for developing a practical procedure to compute the estimates
(1.5) we use the formula

sin2 Θ(H1/2X,H−1/2X) = max
x∈ran(X)

(x,H−1x) − (x,H
′−1x)

(x,H−1x)
,(1.7)

which is implicit in [9, section 4]. Since

H
′−1
η =

[
100 0
0 1

1+η2

]
, H−1

η =

[
100 + η−2 η−2

η−2 η−2

]

we compute, with the help of (1.7),

λ1(Hη) =
1 + 50 η2 −

√
1 + 2500 η4

100
,

λ2(Hη) =
1 + 50 η2 +

√
1 + 2500 η4

100
,

sin Θ(H1/2
η e,H−1/2

η e) =
1√

100η2 + 1
.

As a comparison we will use an estimate which can be obtained from the Temple–
Kato inequality from [19]; see (1.8) below. The obtained lower bounds for λ1(Hη) are
displayed in Table 1.1.

We can observe in Table 1.1 the same behavior which was shown on an infinite
dimensional model problem from [9]. Namely, the estimate

(1 − sin Θ)μe ≤ λ1,
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which is linear in sinΘ, outperforms the estimate

μe −
‖Hηe−H ′

ηe‖2

λ2 − μ
≤ λ1,(1.8)

which is quadratic in ‖Hηe−H ′
ηe‖.

As an infinite dimensional analogue of (1.6) we consider the following operator.
Let χ[1,2] be the characteristic function of the interval [1, 2] ⊂ R. We consider Hη,
which is defined by

(H1/2
η u,H1/2

η v) =

∫ 2

0

(1 + η2χ[1,2])u
′v′ dx,(1.9)

and we choose

u1(x) =

{√
2 sin(πx), 0 ≤ x ≤ 1,

0, 1 ≤ x,
(1.10)

as a test function. Now u1 ∈ Q(Hη) but u1 �∈ D(Hη), so neither of the Temple–Kato
estimates (for eigenvectors or eigenvalues) applies, since ‖Hηu1 − μu1‖ = ∞.

Improved eigenvalue and eigenvector approximation estimates can be summed up
in the following procedure:1

• Let H be positive definite, and let P be an orthogonal projection such that
ran(P ) ⊂ Q(H) and n = dim ran(P ) < ∞.

• If sinΘ < 1 (as defined by (1.7)), then there exist n eigenvalues of the operator
H which are approximated by the n Ritz values from the subspace ran(P ) in
the sense of (1.5).

• If sin Θ
1−sin Θ < λn+1−μn

λn+1+μn
, then the Ritz values from the subspace ran(P ) approxi-

mate the first n eigenvalues of H (counting the eigenvalues according to their
multiplicities), and we have an eigenvector estimate. (Analogous estimates
hold for any other contiguous spectral interval.)

2. The notation and preliminaries. The environment in this article will be a
Hilbert space H, with the scalar product (·, ·). The scalar product is antilinear in the
first variable and linear in the second. We start with a closed symmetric form h(·, ·),
which is additionally assumed to be nonnegative:

h[u] = h(u, u) ≥ 0, u ∈ Q(h).(2.1)

Here Q(h) denotes the domain of the form h. In what follows, when we say the
nonnegative form h, we shall always mean the closed symmetric form h that satisfies
(2.1). The form h shall be called positive definite when it is closed symmetric and
there exists mh > 0 such that

h[u] = h(u, u) ≥ mh‖u‖2, u ∈ Q(h).

There is also an equivalent operator version of these definitions. The self-adjoint
operator H is called nonnegative if

(u,Hu) ≥ 0, u ∈ D(H).

1Here we have assumed that we are approximating the lower end of the spectrum. Analogous
procedures can be formulated for other contiguous spectral intervals.
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Subsequently, H is called positive definite if there exists mH > 0 such that

(u,Hu) ≥ mH‖u‖2, u ∈ D(H).

In this chapter we assume Q H
= H, but later we shall also allow Q H

to be any
nontrivial subspace of H. For nonnegative self-adjoint operators one defines, with the
help of the spectral theorem, the usual functional calculus. We write the spectral
decomposition of the self-adjoint operator H as

H =

∫
λ dEH(λ),

where EH(λ) is the right continuous spectral family associated with the operator H.
When there can be no confusion we simply write E(λ).

The representation theorem for nonnegative forms [13, p. 331] implies that there
exists a self-adjoint operator H such that D(H1/2) = Q(h) and

h(u, v) = (H1/2u,H1/2v), u, v ∈ Q(h).

Following [7], we call D(H) the operator domain of H and Q(H) = D(H1/2) the
quadratic form domain of H. We write D and Q when there can be no confusion.
With the help of the spectral theorem we see that

D(H) =

{
u ∈ H : ‖Hu‖2 =

∫
λ2 d(E(λ)u, u) < ∞

}
,

Q(H) =

{
u ∈ H : h[u] = ‖H1/2u‖2 =

∫
λ d(E(λ)u, u) < ∞

}
.

In general, when dealing with the forms in a Hilbert space we shall follow the
terminology of Kato; cf. [13]. In one point we will depart from the conventions in [13].
A nonnegative form

h(u, v) = (H1/2u,H1/2v)

will be called nonnegative definite when λe(H) := inf σess(H) > 0. Analogously, a
nonnegative operator H such that λe(H) > 0 will be also called nonnegative defi-
nite. We will often say nonnegative, meaning the nonnegative definite. Now, we give
definitions of some terms that will frequently be used; cf. [7, 13].

Definition 2.1. A bounded operator A : H → U is called degenerate if ran(A)
is finite dimensional.

Definition 2.2. Let H and A be nonnegative operators. We define the order
relation ≤ between the nonnegative operators by saying that

A ≤ H

if Q(H) ⊂ Q(A) and

‖A1/2u‖ ≤ ‖H1/2u‖, u ∈ Q(H),

or equivalently if

a[u] ≤ h[u], u ∈ Q(h),

when a and h are nonnegative forms defined by the operators A and H and A ≤ H.
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A main principle that we shall use to develop the perturbation theory will be the
monotonicity of the spectrum with regard to the order relation between nonnegative
operators. This principle can be expressed in many ways. The relevant results, which
are scattered over the monographs [7, 13], are summed up in the following theorem;
see also [15, Corollary A.1].

Theorem 2.3. Let A =
∫
λ dEA(λ) and H =

∫
λ dEH(λ) be nonnegative

operators in H, and let A ≤ H. By 0 ≤ μ1 ≤ μ2 ≤ · · · < λe(A) and 0 ≤ λ1 ≤ λ2 ≤
· · · < λe(H) denote the discrete eigenvalues of A and H; then

1. λe(A) ≤ λe(H),
2. dim EH(γ) ≤ dim EA(γ), for every γ ∈ R,
3. μk ≤ λk, k = 1, 2, . . . .

We close this introductory section with the well-known theorem about the per-
turbation of the essential spectrum.

Theorem 2.4. Let H and A be positive definite operators. If the operator

H−1 − A−1

is compact, then σess(H) = σess(A).

3. The generalized inverse and angle between the subspaces. There are
many ways to express that u ∈ Q(h) is an eigenvector of the operator H. We will give
a geometric characterization of this property. Assume that ‖u‖ = 1 and μ = h[u]. An
elementary trigonometric argument yields

‖H1/2u− μH−1/2u‖ = 0 ⇔ sin Θ(H1/2u,H−1/2u) = 0.(3.1)

Equation (3.1) implies that u is an eigenvector of H if and only if sinΘ(H1/2u,H−1/2u) =
0. The ability to assess the size of sinΘ(H1/2u,H−1/2u) will be central to the analysis
of the Rayleigh–Ritz method in this paper.

In this section we give the background information on the angles between two
finite dimensional subspaces of a Hilbert space, as given in [3, 13, 21]. Basic results
on generalized inverses of (unbounded) operators defined between two Hilbert spaces
will be presented as well. These results will be applied to the problem of computing
sinΘ(H1/2X ,H−1/2X ) for the given positive definite H and some finite dimensional
X ⊂ Q(H).

Closed subspaces of the Hilbert space H can be represented as images of the
corresponding orthogonal projections. We shall freely speak about the dimension of
the projection P , meaning the dimension of the range of the projection P . In the
case in which P is finite dimensional, we have another representation for the subspace
ran(P ). For a given n-dimensional subspace ran(P ) ⊂ Q there exists an isometry
X : C

n → H such that ran(P ) = ran(X), where P = XX∗. Therefore, ran(X) is an
alternative representation of the n-dimensional subspace ran(P ). The isometry X will
be called the basis of the subspace ran(P ). We shall freely use both representation of
the finite dimensional subspace. PX = XX∗ will generically denote the orthogonal
projection on the space ran(X) (for some isometry X : C

n → H).
Let ran(P ) and ran(Q) be two finite dimensional subspaces of the Hilbert space

H. The function ∠ that measures the separation of the pair of subspaces ran(P ) and
ran(Q) will be called an angle function if it satisfies the following properties:

1. ∠(P,Q) ≥ 0, and ∠(P,Q) = 0 if and only if ran(P ) ⊂ ran(Q) or ran(Q) ⊂
ran(P );

2. ∠(P,Q) = ∠(Q,P );
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3. ∠(P,Q) ≤ ∠(P,R)+∠(R,Q) if dim(ran(P )) ≤ dim(ran(R)) ≤ dim(ran(Q)) or
dim(ran(P )) ≥ dim(ran(R)) ≥ dim(ran(Q));

4. ∠(UP,UQ) = ∠(P,Q), for any unitary U .
In what follows we will use the following angle functions (see [21]):

Θ(P,Q) = arcsin max{‖P (I −Q)‖, ‖Q(I − P )‖},(3.2)

Θp(P,Q) = arcsin min{‖P (I −Q)‖, ‖Q(I − P )‖}.(3.3)

The function Θ(P,Q) from (3.2) will be called the maximal canonical angle between
the subspaces P and Q. The function Θp(P,Q) from (3.3) will be called the maximal
principal angle between the subspaces P and Q.

The following lemma, which is a consequence of [13, Theorem I-6.34], gives an
insight into the behavior of the canonical and the principal angles which were defined
by (3.2) and (3.3).

Lemma 3.1. Let P and Q be two orthogonal projections such that dim(ran(P )) ≤
dim(ran(Q)), and let

‖P (I −Q)‖ < 1;

then we have the following alternative. Either
1. dim(ran(P )) = dim(ran(Q)) and

sin Θ(P,Q) = sin Θp(P,Q) = ‖P −Q‖ < 1, or

2. dim(ran(P )) < dim(ran(Q)) and

sin Θp(P,Q) = ‖P (I −Q)‖ < 1.

For most of our needs, Lemma 3.1 describes the relation between the finite dimen-
sional subspaces ran(P ) and ran(Q) in sufficient detail. However, sometimes it will
be necessary to analyze the structure of the finite dimensional projections PV = V V ∗

and PU = UU∗ in further detail. To this end we define the canonical angles θ1, . . . , θn
between the spaces ran(U) and ran(V ) as

θi = arccosσi, i = 1, . . . , n,(3.4)

where σ1, . . . , σn are the singular values of the matrix

V ∗U ∈ C
m×n.

We have assumed that m = dim ran(V ), n = dim ran(U), and m ≤ n. The canonical
angles are related to the angle function (3.2) through the formula (see [21])

sin Θ(PV , PU ) = max
i

sin θi.

We also define the acute principal angles θp1 ≤ θp2 ≤ · · · ≤ θpk, where k ≤ n, as those
canonical angles θi which satisfy the condition 0 < θi < π/2. Subsequently, we obtain
a connection to the angle function (3.3) through the formula

sin Θp(PV , PU ) = max
i

sin θpi .

In dealing with the projections and degenerate operators it is useful to have a
notion of the generalized inverse. We will use the definition of the generalized inverse
of a closed densely defined operator in H from [18]; see also [13, Chapter IV.5].
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Definition 3.2. Let T : H → U be a closed operator such that D(T) = H. The
operator T† : U → H is defined by

D(T†) = ran(T) ⊕ ran(T)⊥,

T†u = (T |ker(T)⊥)−1Pran(T)u, u ∈ D(T†),

and it is called the Moore–Penrose generalized inverse of T .
The properties of the generalized inverse2 are analyzed in the monograph [18]. In

particular we use the following characterization.
Theorem 3.3 (see [18, Theorem I.5.7]). Let T : H → U be the closed operator,

and let D(T) = H; then T† is the unique closed operator such that

T†TT† = T† on D(T†),

TT† = Pran(T)

∣∣
D(T†)

,

T†T = Pker(T)⊥
∣∣
D(T)

,

where PM is the orthogonal projection on M. The operator T† is bounded if and only
if T has a closed range.

The nonnegative operator H† has the spectral decomposition

H† =

∫
1

λ
dE(λ), D(H†) =

{
u ∈ H :

∫
1

λ2
d(E(λ)u, u) < ∞

}
,

and the functional calculus implies

H†1/2 = H1/2†.

Theorem 3.3 shows a relation between the Moore–Penrose generalized inverses
and orthogonal projections in a Hilbert space. This is precisely the reason why the
generalized inverses will be useful in our study.

A bounded operator W : H → U is called partially isometric if there exists a
closed subspace M ⊂ H such that

‖Wu‖ = ‖PMu‖, u ∈ H.

This is equivalent to

W ∗W = PM.

The set M = ran(W ∗) ⊂ H is called the initial set of the partial isometry W , and
ran(W ) ⊂ U is called the final set. Since ker(W ∗) ⊕ ran(W ) we see

WW ∗ = Pran(W ),

and so W ∗ is also the partial isometry with the initial set ran(W ). We shall also use
the notation

W ∗W = PW∗ , WW ∗ = PW .

2The generalized inverses can also be defined in more general settings. Their properties are also
analyzed in [18].
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It is obvious that

W ∗ = W †,

and we have the following lemma.
Lemma 3.4. A bounded operator W : H → U is partially isometric if and only if

WW ∗W = W.

For the proof, see [13].
Lemma 3.5. Let V and W be two partial isometries; then

‖PV PW ‖ = ‖V PW ‖ = ‖V ∗W‖.

Proof. Using Lemma 3.4, we compute

‖PV PW ‖2 = spr(PWPV PW ) = spr(WW ∗V V ∗WW ∗)

= spr(W ∗V V ∗WW ∗W ) = spr(W ∗V V ∗W ) = ‖V ∗W‖.

In this computation we have used the identity

spr(ABC) = spr(CAB),

which holds for bounded operators A,B,C.

4. Geometrical properties of the Ritz value perturbation. In this section
we will present a perturbation approach to the Rayleigh–Ritz approximation of the
spectrum of a positive definite operator. The nonnegative definite case is technically
more complex and warrants a separate section. Although this chapter is devoted to
the positive definite case, some of the statements and definitions will be given in full
generality in which they will be later used in the text.

Let 0 ≤ h be a nonnegative form, and let ran(X) ⊂ Q(h) be the n-dimensional
test space. The matrix

ΞH,X = (H1/2X)∗H1/2X ∈ C
n×n

will be called the Rayleigh quotient associated with the basis X. When there can be
no confusion, we shall denote the Rayleigh quotient by Ξ and drop the indices. The
eigenvalues of the matrix Ξ will be numbered in the ascending order

μ1 ≤ μ2 ≤ · · · ≤ μn.(4.1)

We call the numbers μi the Ritz values of the operator H (form h) from the subspace
ran(X). This definition is correct since the eigenvalues of the matrix Ξ do not depend
on the choice of the basis X. In the rest of this chapter we will use P = XX∗ to
denote the projection onto the range of the isometry X : C

n → H.
For the given h and ran(X) ⊂ Q(h), P = XX∗, we define the symmetric forms

δh and h′ using the formulae

δh(u, v) = h(Pu, (I − P )v) + h((I − P )u, Pv), u, v ∈ Q(h),(4.2)

h′(u, v) = h(Pu, Pv) + h((I − P )u, (I − P )v), u, v ∈ Q(h).(4.3)
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Obviously, (4.2) and (4.3) imply

h′(u, v) = h(u, v) − δh(u, v), u, v ∈ Q(h).(4.4)

Before we can proceed we need the following definition.
Definition 4.1. If H is a self-adjoint operator and P a projection, to say that

P commutes with H means that u ∈ D(H) implies Pu ∈ D(H) and

HPu = PHu, u ∈ D(H).

In what follows we will describe the properties of the symmetric form h′ and of
the operator H′ that it generates.

Lemma 4.2. Let the nonnegative definite form h and the subspace ran(X) ⊂ Q
be given. Let H be the nonnegative definite operator defined by the form h. The
form h′ from (4.3) is closed and positive, and it defines the self-adjoint operator H′.
Furthermore, H′ is positive definite if H is positive definite, σess(H) = σess(H

′), and

H′X = XΞ(4.5)

for Ξ = (H1/2X)∗H1/2X ∈ C
n×n.

Proof. The operators H1/2P and H1/2(I − P ) are closed and so is the form

h′(u, v) = h(Pu, Pv) + h((I − P )u, (I − P )v).

This form is obviously nonnegative, so it defines a nonnegative self-adjoint operator
H′. We will now show that the subspace ran(X) reduces H′. Indeed, for y ∈ Q,
x ∈ C

n we have

h′(y,Xx) = (H1/2y,H1/2Xx) − (H1/2(I − P )y,H1/2Xx)

= (H1/2XX∗y,H1/2Xx)

= (ΞX∗y, x).

This is equivalent to

(H
′1/2y,H

′1/2Xx) = (y,XΞx), y ∈ Q, x ∈ C
n.

It implies ran(X) ⊂ D(H′) and

(y,H′Xx−XΞx) = 0

for all y ∈ H, x ∈ C
n. Hence,

H′X = XΞ,(4.6)

which is equivalent to the statement that P commutes with H′ (see Definition 4.1).
We now prove that σess(H) = σess(H

′). Assume that h is a positive definite form;
then h′ from (4.3) is positive definite, too. From (4.4) we obtain

δh(H−1u,H
′−1v) = (H

′−1u− H−1u, v), u, v ∈ H.

On the other hand,

δh(H−1u,H
′−1v) = (H1/2PH−1u,H1/2P⊥H

′−1v) + (H1/2P⊥H−1u,H1/2PH
′−1v)
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defines a compact operator. Theorem 2.4 implies σess(H) = σess(H
′), and the state-

ment of the theorem is proved for a positive definite h. In the general case, take α > 0.
The form h̃(u, v) = h(u, v) + α(u, v) is positive definite. Furthermore, we establish

h̃′(u, v) = α(u, v) + h′(u, v),

δh̃(u, v) = δh(u, v),

and so σess(H̃) = σess(H̃
′). The conclusion σess(H) = σess(H

′) follows by the spectral
mapping theorem.

Corollary 4.3. Let the nonnegative definite form h and the subspace ran(X) ⊂
Q be given. The projections P = XX∗ and Pran(H′) commute, and ker(H′) ⊂ ker(H).

Remark 4.4. For positive definite h Lemma 4.2 describes the operator H′ in
sufficient detail. For a general nonnegative h the operator H′ has somewhat more
complex structure. Further properties of the operator H′, constructed in the case in
which h is a general nonnegative form, will be discussed in section 4.1.

We now concentrate on the positive definite case.
Theorem 4.5. Let the subspace ran(X) ⊂ Q be given, and let h be positive

definite. Assume sinΘ := sinΘ(H1/2X,H−1/2X) < 1; then

(1 − sin Θ)h′[u] ≤ h[u] ≤ (1 + sin Θ)h′[u], u ∈ Q(h),(4.7) (
1 − sin Θ

1 − sin Θ

)
h[u] ≤ h′[u] ≤

(
1 +

sin Θ

1 − sin Θ

)
h[u], u ∈ Q(h).(4.8)

Proof. The product H1/2H′−1/2 is well defined since Q = D(H1/2) = D(H′1/2).
This implies that the form

δhs(x, y) = δh(H
′−1/2x,H

′−1/2y)

defines the bounded operator δHs. After the substitutions u = H′−1/2x, v = H′−1/2y
we obtain

max
u,v∈Q(h)

|δh(u, v)|√
h′[u]h′[v]

= ‖δHs‖.(4.9)

We now show ‖δHs‖ = sinΘ. Set

V = H1/2PH
′−1/2,(4.10)

W = H1/2P⊥H′−1/2,(4.11)

with P⊥ = I − P . Relation (4.4) implies

δh(H
′−1/2u,H

′−1/2v) = h(P⊥H
′−1/2u, PH

′−1/2v) + h(PH
′−1/2u, P⊥H

′−1/2v)

= (Wu, V v) + (V u,Wv),(4.12)

which can be written as

δHs = V ∗W + W ∗V.(4.13)

The equations (4.10)–(4.13) yield

VW ∗ = WV ∗ = 0,(4.14)

‖δHs‖ = ‖W ∗V V ∗W + V ∗WW ∗V ‖ = ‖V ∗W‖.(4.15)



1108 LUKA GRUBIŠIĆ

As the next step we establish that V and W are partial isometries such that

ran(V ) = ran(H1/2P ),(4.16)

ran(W )⊥ = ran(H−1/2P ).(4.17)

The proof will follow from Lemma 4.2. It runs along the same lines in both cases,
so we will present the proof only for W . Take some u, v ∈ H; then

(Wu,Wv) = (H1/2P⊥H′−1/2u,H1/2P⊥H′−1/2v)

= h(P⊥H′−1/2u, P⊥H′−1/2v) = h′(P⊥H′−1/2u, P⊥H′−1/2v) = (P⊥u, v),

and so W ∗W = P⊥. This proves that W is a partial isometry.
Relation (4.16) is obvious, since

ran(H1/2PH
′−1/2) = ran(H1/2P )

is guaranteed by the assumption ran(P ) ⊂ Q(h) and the injectivity of H
′−1/2.

The proof of (4.17) requires a bit more work. One computes

W ∗H−1/2P = H
′−1/2P⊥H1/2H−1/2P = 0,

which implies

ran(H−1/2P ) ⊂ ker(W ∗) = ran(W )⊥.

On the other hand,

W ∗ = P⊥A,(4.18)

where A = H′−1/2H1/2 : H → H is a homeomorphism (of linear topological vector
spaces), and so

dim ker(W ∗) = dim ker(P⊥) = dim ran(P ) = dim ran(H−1/2P ),

and (4.17) is established. The assumption sinΘ < 1 and Lemma 3.5 guarantee

sin Θ = ‖V ∗W‖.

Finally, using (4.9), we establish

(1 − sin Θ)h′[u] ≤ h[u] ≤ (1 + sin Θ)h′[v],

which is the statement (4.7).
It is a well-known fact that, given some 0 < λ, μ and 0 < η < 1, the implication

|λ− μ|
μ

≤ η ⇒ |λ− μ|
λ

≤ η

1 − η
(4.19)

holds. Since h and h′ are positive definite forms, the relation (4.8) is proved.
Example 4.6. Let −∂xx be considered as the self-adjoint operator with

D(−∂xx) = {u ∈ H2[0, 1] : u(0) = u(1) = 0}.
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The partial integration establishes that −∂xx is defined by the positive definite form

h(u, v) =

∫ 1

0

∂xu ∂xv dx, u, v ∈ Q(−∂xx) = H1
0 [0, 1].(4.20)

The operator ∂xu, u ∈ H1
0 [0, 1] is closed but not self-adjoint; therefore (4.20) is an

alternative operator representation (factorization) to the “square root” representation
(4.21) of the form h (the operator −∂xx).

Take any positive definite form h; then

h(u, v) = (H1/2u,H1/2v)(4.21)

is only one of the possible operator representations of the form h. All of the pre-
ceding results are independent of the choice of the operator representation h(u, v) =
(Ru,Rv), since

sin Θ = max
u,v∈Q

|δh(u, v)|√
h′[u]h′[v]

(4.22)

and h′ depends only on h and ran(P ).

Furthermore, all of the representations of the form h are in a sense equivalent.
Let R : H → H′ be a closed operator such that

h(x, y) = (Rx,Ry) =
(
H1/2x,H1/2y

)
(4.23)

and Q = D(R) = D(H1/2); then by [13, Chapter VI.7]

R = UH1/2, R∗ = H1/2U∗,(4.24)

where U is the isometry from H′ onto ran(R). Independence of the estimate (4.7) from
the representation (4.23) could have also been proved by the unitary invariance of the
canonical angle and (4.24). Formula (4.22) is an important corollary of Theorem 4.5.
In the next theorem we prove that also

sin Θ

1 − sin Θ
= max

u,v∈Q

|δh(u, v)|√
h[u]h[v]

(4.25)

holds. Equations (4.22) and (4.25) demonstrate that the constants sinΘ and sinΘ
1−sinΘ

in (4.7) and (4.8) cannot be improved upon.

The following lemma is taken out of the joint paper [9]; cf. [5]. We present it here
without a proof.

Lemma 4.7. Let the form h be positive definite, and let the forms h′ and δh be
as in (4.4); then

max
u,v∈Q

|δh(u, v)|√
h[u]h[v]

=
sin Θ

1 − sin Θ
(4.26)

holds. Here sinΘ = sinΘ(H1/2X,H−1/2X), where ran(X) ⊂ Q was the subspace used
to define h′ and δh.
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4.1. The nonnegative definite case. In the nonnegative case we have to pro-
vide an alternative definition for a subspace that will play the role of ran(H−1/2X).
We have shown W = H1/2P⊥H′−1/2 to be a partial isometry such that

W = ran(H1/2P⊥)⊥ = ran(W )⊥ = ran(H−1/2X).

The left part of the equality is also well defined in the case in which H1/2 is not
invertible, so we set

W = ran(H1/2P⊥)⊥.

The construction (4.4) was performed with the assumption that h is nonnegative
definite and ran(X) ⊂ Q. Lemma 4.2 says σess(H) = σess(H

′), and so H
′†1/2 is a

bounded operator and

V = H1/2PH
′†1/2,(4.27)

W = H1/2P⊥H
′†1/2(4.28)

are everywhere defined. Corollary 4.3 enables us to conclude that ran(V ) = ran(H1/2P )
and ran(W ) = ran(H1/2P⊥), so we set

V = ran(V ), W = ran(W )⊥.(4.29)

Lemma 4.2 states that, given a positive definite H, the constructed operator H′

must always be positive definite. In the general nonnegative situation we have only
the result of Corollary 4.3. It establishes that H′ is a nonnegative definite operator
and that ker(H′) ⊂ ker(H). This does not give sufficient information on the structure
of H′. Formulae like (4.7)–(4.8) are meaningful in the nonnegative definite case,
too. They, however, invariably imply ker(H) = ker(H′). We, therefore, proceed
in two steps. First, we establish a general (theoretical) condition on the subspace
X = ran(P ), which guarantees that ker(H) = ker(H′). Second, we give a practical
computational formula.

The subspaces W and V need not have the same dimension, so we will have to
use the principal angle to compare them; cf. Lemma 3.1. In what follows we show
that

sin Θp(V,W)

takes the role of sinΘ(H1/2X,H−1/2X) in the nonnegative version of Theorem 4.5. In
the case when H1/2 is invertible (4.17) implies V = ran(H1/2X) and W = ran(H−1/2X).
The subspaces H−1/2X and H1/2X have the same dimension, so Corollary 3.1 yields

sin Θp(V,W) = sin Θ(H1/2X,H−1/2X).

We establish the properties of V and W and give a characterization of the subspace
W in the following lemma.

Lemma 4.8. Let X = ran(P ), V = H1/2PH
′†1/2, and W = H1/2P⊥H

′†1/2; then

V ∗V = Pran(H′P ),(4.30)

W ∗W = Pran(H′P⊥),(4.31)

WV ∗ = VW ∗ = 0,(4.32)

W = inv(H1/2)X ,(4.33)
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where W is from (4.29) and

inv(H1/2)X = {x : H1/2x ∈ X}

denotes the inverse image of the subspace X under the mapping H1/2.
Proof. The relations (4.30)–(4.32) follow analogously as in the proof of Theo-

rem 4.5. It remains only to prove (4.33).
We first show that inv(H1/2)X ⊂ W = ran(W )⊥. Take any u ∈ inv(H1/2)X ; then

H1/2u = z ∈ X .

This implies

0 = (z, P⊥H
′†1/2v) = (u,H1/2P⊥H

′†1/2v), v ∈ H,

which proves u ∈ ran(W )⊥ = W.
The other inclusion follows in two steps. Take u ∈ W; then

(u,H1/2P⊥H
′†1/2v) = 0, v ∈ H.

On the other hand, the subspace

ran(P⊥H
′†1/2)⊥ = ran(P⊥Pran(H′))

⊥ ⊂ Q(H)

is finite dimensional, so we conclude u ∈ Q(H). Corollary 4.3 implies

0 = (H1/2u, P⊥Pran(H′)v) = (H1/2u, Pran(H′)P⊥v) = (H1/2u, P⊥v), v ∈ H,

which proves H1/2u ∈ X . With this conclusion we have established (4.33).
As a direct consequence of Corollary 3.1 and (4.33) we obtain the following result.
Corollary 4.9. Let X = ran(P ), V = H1/2PH

′†1/2, and W = H1/2P⊥H
′†1/2;

then

‖PVPW⊥‖ ≤ ‖PV⊥PW‖,

and so

sin Θp(H
1/2X , inv(H1/2)X ) = ‖V ∗W‖.(4.34)

It would be pleasing to use H1/2† in the place of inv(H1/2). This is possible only
under additional restrictions on the subspace ran(P ). To get a better feeling for the
meaning of sinΘp(H

1/2X , inv(H1/2)X ) consider the following example.
Example 4.10. Take

H =

[
1 1
1 1

]
, X =

[
1
0

]
;

then

H ′ =

[
1 0
0 1

]

is, unlike H, a positive definite matrix. Now,

H1/2 =

[
1√
2

1√
2

1√
2

1√
2

]
, H1/2† =

[
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2

]
,
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and we compute

ran(V ) = span{[1 1]∗}, ran(W )⊥ = span{[−1 1]∗},

which proves that in this case sinΘp(ran(V ), ran(W )⊥) = 1 and

ran(W )⊥ = ker(H) �= ran(H1/2†P ).

Instead of advocating the use of the general formula (4.33) we will establish a
“compatibility condition” under which we may use the generalized inverse of H1/2 to
check the statement of the theorems.

The next result is a nonnegative analogue of Theorem 4.5. It will enable us to, in
effect, “deflate away” the kernel of the nonnegative form h and reduce the problem
to the positive definite case.

Theorem 4.11. Let the subspace X = ran(P ) ⊂ Q be given, and let h be a
nonnegative form. Assume sinΘp(H

1/2X , inv(H1/2)X ) = sinΘp < 1. Then

(1 − sin Θp)h
′[u] ≤ h[u] ≤ (1 + sin Θp)h

′[u], u ∈ Q(h),(4.35) (
1 − sin Θp

1 − sin Θp

)
h[u] ≤ h′[u] ≤

(
1 +

sin Θp

1 − sin Θp

)
h[u], u ∈ Q(h).(4.36)

Proof. The proof is similar to the proof of Theorem 4.5. Let h′ and δh be as in
(4.4). Set δHs to be the operator defined by the form

δhs(x, y) = δh(H
′†1/2x,H

′†1/2y), x, y ∈ H.

The form δhs is closed and everywhere defined, and thus δHs is a bounded operator.
We obviously have ker(H

′†1/2) = ker(H′) ⊂ ker(δHs), and so Pran(H′) commutes with
the operator δHs. With the use of Corollary 4.3 one computes, analogously as in
Theorem 4.5,

δh(H
′†1/2x,H

′†1/2y) = h(P⊥H
′†1/2x, PH

′†1/2y) + h(PH
′†1/2x, P⊥H

′†1/2y)

= (Wx, V y) + (V x,Wy),

and so

δHs = V ∗W + W ∗V.(4.37)

Since H
′1/2H

′†1/2 = Pran(H′) we obtain

max
u,v∈ran(H′)∩Q

|δh(u, v)|√
h′[u]h′[v]

= ‖δHs‖ = ‖V ∗W‖.(4.38)

Corollary 4.9 implies that the assumption sinΘp < 1, in fact, reads

sin Θp = ‖V ∗W‖ < 1.

With this in hand, we have established

(1 − sin Θp)h
′[u] ≤ h[u] ≤ (1 + sin Θp)h

′[u], u ∈ Q(h),

which implies ker(H′) = ker(H). The relation (4.36) follows by the same argument
used in Theorem 4.5.
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The main insight into the structure of the operator H′, gained from Theorem 4.11,
is summed up in the following corollary.

Corollary 4.12. Take a nonnegative form h and a subspace X = ran(P ) ⊂ Q.
If sinΘp(H

1/2X , inv(H1/2)X ) < 1, then ran(H′) = ran(H).
Corollary 4.12 gives precise meaning to the statement “deflate away.” Set R =

ran(H) = ran(H′) and N = ker(H) = ker(H′). The projections PN and P commute,
and so

PN∩ran(P ) = PNP, P̃ = P − PN∩ran(P )

are both orthogonal projections. A direct calculation shows

X̃ := ran(P̃ ) = ran(P ) � (N ∩ ran(P )) = ran(H′) ∩ ran(P ) = ran(H′P ).

The form

h̃(u, v) = h(PRu, PRv)

is positive definite in R and ran(P̃ ) ⊂ Q(h̃) ∩R. Now, apply the construction (4.2)–

(4.4) to the form h̃ and the projection P̃ . By H̃ : R → R denote the operator defined

by the form h̃ in R; then ran(P̃ ) ⊂ R and

h̃′(u, v) = h′(PRu, PRv).

We conclude that

sin Θ(H̃1/2X̃ , H̃−1/2X̃ ) = sin Θp(H
1/2X , inv(H1/2)X ) < 1,

and h̃ and P̃ satisfy the assumptions of Theorem 4.5. If we were to a priori as-
sume ran(H′) = ran(H), then this argument would give an alternative proof of The-

orem 4.11. “Deflate away” means that we assume that we were given h̃ and P̃ as
input.

Remark 4.13. Another consequence of Corollary 4.12 is that we can invoke
Lemma 4.7 to conclude that the constant

sinΘp

1−sinΘp
(in (4.36)) cannot be sharpened.

Furthermore, Example 4.10 shows that the assumption

sin Θp(H
1/2X , inv(H1/2)X ) < 1

is a necessary requirement to establish the inequalities (4.35) and (4.36) as well as to
guarantee that ran(H) = ran(H′) (equivalently, ker(H) = ker(H′)).

Remark 4.14. Let X = ran(P ), and let the forms h and h′ be as in Theorem 4.11.
Set

hε(u, v) := h(u, v) + ε2(u, v), u, v ∈ Q(h);

then h′
ε(u, v) = h′(u, v) + ε2(u, v). Now,

lim
ε→0

sup
u∈Q(h)

|h[u] − h′[u]|
h′[u] + ε2‖u‖2

= lim
ε→0

sup
u∈Q(h)

|hε[u] − h′
ε[u]|

h′
ε[u]

≤ 1,

and we define

R := lim
ε→0

sup
u∈Q(h)

|h[u] − h′[u]|
h′[u] + ε2‖u‖2
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and obtain an inequality like (4.35). This in turn implies that R < 1 is equivalent to
ker(H) = ker(H′). An optimality argument yields

sinΘp(H
1/2X , inv(H1/2)X ) = lim

ε→0
sup

u∈Q(h)

|h[u] − h′[u]|
h′[u] + ε2‖u‖2

= R

as an alternative analytical formula for sinΘp. We have opted for a geometrical ar-
gument, since it sets the scene for a complete analysis of the singular values of δHs;
cf. [10]. Theorem 4.11 illustrates (when compared with Theorem 4.5) the natural
limits of our geometric/operator-block-matrix approach—nonnegative definite oper-
ators have a different structure than positive definite operators and should not be
seen, within this theory, as ε2 close to a positive definite ones; cf. Remark 4.16. Fur-
thermore, numerical experience from the matrix case, as well as formula (1.7) in this
paper, show that sinΘp(H

1/2X , inv(H1/2)X ) is the quantity which is more accessible
to computation than

lim
ε→0

sup
u∈Q(h)

|h[u] − h′[u]|
h′[u] + ε2‖u‖2

,

which requires the solution of a double optimization problem.

4.1.1. Important special case. The assumption that P and Pker(H) commute,
together with Corollary 4.3, yields ker(H) = ker(H′) and ran(H) = ran(H′). This
implies

inv(H1/2)X = H1/2†X .(4.39)

The projections P and Pker(H) certainly commute when ker(H) ⊥ ran(P ) or when3

ker(H) ⊂ ran(P ). This discussion is summed up in the following corollary.

Corollary 4.15. Assume that P = XX∗ and Pker(H) commute, and let

sinΘp(H
1/2X,H1/2†X) < 1;

then

(1 − sin Θp)h
′[u] ≤ h[u] ≤ (1 + sin Θp)h

′[u], u ∈ Q(h),(4.40) (
1 − sin Θp

1 − sin Θp

)
h[u] ≤ h′[u] ≤

(
1 +

sin Θp

1 − sin Θp

)
h[u], u ∈ Q(h).(4.41)

Remark 4.16. To assess the restriction that P and Pker(H) should commute,
consider the definition of the relatively accurate approximation of the number λ ∈ R+.
μ ∈ R+ is a relatively accurate approximation of λ ∈ R+ if

1. λ = μ when λ = 0,

2. |λ−μ|
μ < 1 when λ �= 0.

This implies that we can expect to compute a “relatively accurate” Ritz value ap-
proximation of the spectrum of the nonnegative definite operator H only in the case
when we have computed a basis for ker(H); cf. [1].

3The other situation when P and Pker(H) commute is when ran(P ) ⊂ ker(H); this situation is,
however, trivial and we have tacitly left it out.
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Remark 4.13 implies that we may assume that the condition of Corollary 4.15 is
ker(H) ⊥ ran(P ). To compute the basis of the set inv(H1/2)X we need to repeatedly
solve the equation

H1/2u = xi, i = 1, . . . , dim(X ).

The vectors xi are assumed to be a basis for X . The restriction that ker(H) ⊥ ran(P )
amounts to nothing more than imposing a compatibility condition on xi (e.g., think
of the Laplacian with Neumann boundary conditions).

4.2. A first approximation estimate. Theorem 2.3 and Lemma 4.2 yield the
first eigenvalue estimates. The next theorem will give an eigenvalue estimate with
the minimum restrictions on the subspace ran(X) ⊂ Q. Sharper bounds are possible
when we impose additional assumptions on ran(X). Even this (first order) estimate
will compare favorably with other higher order bounds that can be found in the
literature; cf. [9].

Theorem 4.17. Let 0 ≤ h, and let the n-dimensional subspace ran(P ) ⊂ Q,
P = XX∗, be given. Define

Ξ = (H1/2X)∗H1/2X, Ξ ∈ C
n×n,

and assume μn < λe(H). Here, the Ritz values are numbered as in (4.1). If ran(P )
is such that sinΘp < 1, then there are n eigenvalues of the operator H, counting the
eigenvalues according to their multiplicities, such that

|λij − μj | ≤ μj sin Θp, j = 1, . . . , n,(4.42)

|λij − μj | ≤ λij

sin Θp

1 − sin Θp
, j = 1, . . . , n,(4.43)

where i(·) : N → N is a permutation.
Proof. Corollary 4.12 readily implies the conclusion (4.42) for the Ritz values

μj = 0, j = 1, . . . , dim(ker(Ξ)). Therefore, we may safely assume that h is a positive
definite form. Lemma 4.2 implies σess(H) = σess(H

′), and thus the assumption μn <
λe(H) guarantees that μn is a discrete eigenvalue of H′. Theorem 4.11 established

(1 − sin Θp)h
′[u] ≤ h[u] ≤ (1 + sin Θp)h

′[u], u ∈ Q(h),(
1 − sin Θp

1 − sin Θp

)
h[u] ≤ h′[u] ≤

(
1 +

sin Θp

1 − sin Θp

)
h[u], u ∈ Q(h).

The conclusion follows directly from Theorem 2.3.
For the numerical evidence concerning the performance of the estimate (4.43), see

the numerical tests from [9].

5. Localizing the approximated eigenvalues. There are many ways to match
the computed Ritz values to a part of the spectrum of the operator H of the same
multiplicity. These approaches usually differ with regard to the amount of additional
information allowed about the spectrum of the operator H. Here, we present two
possible answers to that problem.

Theorem 4.17 can be interpreted as a first localization result. It gives an estimate
of the infimum of

max
j=1,...,n

|λij − μj |
μj
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over all of the permutations i(·) : N → N. So, we would be correct in stating that the
Ritz values are approximating the eigenvalues of H that are closest to σ(Ξ).

Having only limited additional information, we got a limited answer. We know
that there is a collection of eigenvalues of operator H, having the joint multiplicity
n, that is being approximated by the Ritz values from the subspace ran(X). The
information we have on the location of those eigenvalues in the spectrum of H is only
that they are the eigenvalues closest to computed Ritz values.

Only when we have additional information about the location of the part of
the spectrum that we do not want to approximate can we guarantee that we are
approximating the part of the spectrum we are interested in. A best known example
of such estimates is the Temple–Kato inequality. Assume λ1 < λ2 and let u ∈ D(H)
be a unit vector such that (u,Hu) < γ ≤ λ2; then

(u,Hu) ≥ λ1 ≥ (u,Hu) − (Hu,Hu) − (u,Hu)2

γ − (u,Hu)
.(5.1)

For a proof see [19]. The estimate (5.1) is valid for a general self-adjoint operator H.
In the following we shall formulate another assumption with the same effect, namely
to separate the “unwanted” component of the spectrum from the Ritz values. Our
result, however, does not need the regularity constraint u ∈ D(H). Moreover, we
will obtain sharp bounds for the matching cluster of eigenvalues. In the last section
of this chapter we will demonstrate that on some examples our bound considerably
outperforms the estimate (5.1).

We now give a theorem that determines those eigenvalues of the operator H,
given by a symmetric form h, which are approximated by the Ritz values associated
with the test subspace ran(X) ⊂ Q. Before we proceed with the formulation of the
theorem we state a well-known fact that, given 0 < λ, μ and sin Θp < 1, the relation

|λ− μ|
μ

≤ sin Θp < 1

implies the relation

|λ− μ|
λ

≤ sin Θp

1 − sin Θp
≤ 2 sin Θp.(5.2)

Theorem 5.1. Set γr = min
{
(λp − μk)(λp + μk)

−1|k = 1, . . . , n; p = n +

1, . . . ,∞
}

and ηΘp = sinΘp(1−sinΘp)
−1. Take a nonnegative form h and the subspace

ran(X) ⊂ Q. Assume r = dim(ker(H)) ≤ n, set P = XX∗, and let h′ be as in (4.3).
By μ1 ≤ · · · ≤ μn, denote the eigenvalues of the matrix Ξ = (H1/2X)∗H1/2X ∈ C

n×n.
If γr ≥ 0 and ηΘp

< min{γr, 1}, then

|λi − μi| ≤ μi sin Θp, i = 1, . . . , n.(5.3)

Proof. The assumption ηΘp
< min{γr, 1} and Theorem 4.11 imply ker(H) ⊂

ran(X). Also, by Theorem 4.11 we have ker(H) = ker(H′), so we are allowed to
“deflate away” the kernel of H. Therefore, set P1 = Pran(H′P ) and proceed as if h
were positive definite and P = P1.

The rest of the proof is completely analogous to the proof of [9, Theorem 5.1].
The only difference is that in the place of η = sinΘp/(1−sinΘp) from [9, Theorem 5.1]
one uses a sharper quantity sinΘp.
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If we are provided with the information that

ηΘp =
sin Θp

1 − sin Θp
< γc := min

⎧⎨
⎩ min

k=1,...,n
p=1,...,q−1

μk − λp

λp + μk
, min

k=1,...,n
p=q+n,...,∞

λp − μk

λp + μk
, 1

⎫⎬
⎭ ,(5.4)

then μ1 ≤ · · · ≤ μn approximate the “inner” eigenvalues

λq ≤ λq+2 · · · ≤ λq+n−1 .

This statement is made precise in the following theorem.
Theorem 5.2. Take a nonnegative definite form h and a subspace ran(X) ⊂ Q.

By μ1 ≤ · · · ≤ μn denote the eigenvalues of the matrix Ξ = (H1/2X)∗H1/2X ∈ C
n×n.

If ηΘp < γc, where γc is as in (5.4), then ran(P ) ⊂ ran(H′) and

|λi+q−1 − μi| ≤ μi sin Θp, i = 1, . . . , n.

Proof. The assumption (5.4) and Theorem 4.11 and Corollary 4.12 imply

ran(H′) = ran(H) and ran(P ) ⊂ ran(H).

The rest of the proof follows analogously as in the proof of Theorem 5.1.
Remark 5.3. Theorems 5.1 and 5.2 imply that the spectrum of the operator H can

stably (sensibly) be divided in two disjoint parts: the part that is being approximated
by the σ(Ξ) and the rest of the spectrum. To understand this statement assume that
the conditions of Theorem 5.1 hold. In this case both of the “block diagonal” forms

h(u, v) = h(E(λn)u,E(λn)v) + h(E(λn)⊥u,E(λn)⊥v) �
[

Λ
Λc

]
,

h′(u, v) = h(Pu, Pv) + h(P⊥u, P⊥v) �
[

Ξ
Ξc

]

have “diagonal blocks” with disjoint spectra. We have assumed Λ = diag(λ1, . . . , λn)
and Ξ = diag(μ1, . . . , μn) and that Ξc and Λc were unbounded operators defined by
the forms h′ and h in the spaces ran(P⊥) and ran(E(λn)⊥). In fact, we will colloquially
call h′ the block diagonal part of the operator H with respect to the subspace ran(P ).
We will use the notation hP to denote h′ in situations when it is not clear with respect
to which test space ran(P ) this construction was performed.

6. Eigenvector approximation estimates. For the computed Ritz values

0, 0, . . . , 0, μr+1, μr+2, . . . , μn

Theorem 4.17 guarantees the existence of the eigenvalues

λi1 ≤ λi2 ≤ · · · ≤ λin ,

which are being approximated by the Ritz values (provided sinΘp < 1) in the sense of

|λij − μj | ≤ μj sin Θp, j = 1, . . . , n.

Assume that v1, . . . , vn are mutually orthogonal eigenvectors that belong to the
eigenvalues λi1 ≤ λi2 ≤ · · · ≤ λin . If the conditions of Theorems 5.1 and 5.2 are
satisfied, Remark 5.3 assures us that

span{v1, . . . , vn} = ran(E({λi1 , λi2 , . . . , λin})).
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Here we have assumed that H =
∫
λ dE(λ). To ease the presentation we generically

use

Ê = E({λi1 , λi2 , . . . , λin})

to denote the projection on the subspace that is selected by a result like Theorem 5.1.
The central role in the analysis of the eigenvector approximations will be played

by the following lemma.
Lemma 6.1. Let h be a nonnegative form, and let H† be bounded. Take ran(P ) ⊂

Q such that sinΘp < 1, and define

s(x, y) = δh(H†1/2x,H
′†1/2y), x, y ∈ H.

The form s defines a bounded operator S and

S = H1/2H
′†1/2 − H†1/2H′1/2,(6.1)

|(x, Sy)| = |s(x, y)| ≤ sin Θp√
1 − sin Θp

‖x‖‖y‖, x, y ∈ H.(6.2)

Proof. The closed graph theorem implies that the operator

S = H1/2H
′†1/2 − H†1/2H′1/2

is bounded. Also, ker(H) = ker(H′) = ker(S) and Pker(S) commutes with S. It is
sufficient to prove the estimate for x, y ∈ ran(H). The inequality (4.38) gives

|δh(H†1/2x,H
′†1/2y)| ≤ sin Θp‖y‖ h′[H†1/2x]1/2.

Analogously, (4.35) implies

‖H′1/2H†1/2‖ ≤ 1√
1 − sin Θp

.(6.3)

Altogether, the estimate (6.2) follows.
The operator S has the special structure. Assume H′u = μu and Hv = λv; then

(v, Su) = λ1/2(v, u)μ1/2 − λ−1/2(v, u)μ1/2

=
λ− μ√

λμ
(v, u) .(6.4)

The equation (6.4) introduces the distance function

λ− μ√
λμ

,

which measures the distance between the Ritz values and the spectrum of the operator
H. This distance function will play an important role in the estimates that follow.
The next theorem extends the scope, as well as strengthens the eigenvector estimate
from [9, 16], and is even new in the matrix case. It can be seen as the eigenvector
companion result of Theorem 4.17.

Theorem 6.2. Let h be a nonnegative form, and let ran(P ) ⊂ Q be such that it
satisfies the assumptions of Theorem 4.17. Let u1, . . . , un be the mutually orthogonal
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eigenvectors belonging to the eigenvalues μ1, . . . , μn of H′P ; then there exist mutually
orthogonal eigenvectors v1, . . . , vn of H, belonging to the eigenvalues λi1 , . . . λin , and

‖vj − uj‖ ≤
√

2 sin Θp√
1 − sin Θp

max
k �=j

√
μjλik

|λik − μj |
.(6.5)

The eigenvalues λij , j = 1, . . . , r, are numbered in the ascending order as given by
Theorem 4.17.

Proof. Assume μ1 = · · · = μr = 0. Corollary 4.12 implies that ui ∈ ker(H) for
i = 1, . . . , r, and so we take

vi = ui, i = 1, . . . , r.

For vj , j = r + 1, . . . n, take any orthonormal set of eigenvectors belonging to the
eigenvalues λij , j = r + 1, . . . , n. Since both ui and vi, for i = r + 1, . . . , n, are
perpendicular to ker(H) we may assume that H is positive definite and we are only
given ui, i = r + 1, . . . n, as test vectors. Take s from Lemma 6.1 and use (6.1) to
compute

s(vk, uj) = δh(H−1/2vk,H
′−1/2uj) =

(
vk,H

1/2H
′−1/2uj

)
−
(
H

′1/2H−1/2vk, uj

)

= (λ
1/2
ik

μ
−1/2
j − λ

−1/2
ik

μ
1/2
j ) (vk, uj)

and

∑
k �=j

| (vk, uj) |2 ≤ max
k �=j

λikμj

(λik − μj)2

∑
k �=j

|s(vk, uj)|2 ≤ max
k �=j

λikμj

(λik − μj)2
‖S∗uj‖2

≤ max
k �=j

λikμj

(λik − μj)2
sin2 Θp

1 − sin Θp
.

Scaling vj , uj so that (vj , uj) ≥ 0, we obtain

‖vj − uj‖ =
√

2
[
1 − (vj , uj)

]1/2
=

√
2

⎡
⎢⎣1 −

⎡
⎣1 −

∑
k �=j

| (vk, uj) |2
⎤
⎦

1/2
⎤
⎥⎦

1/2

≤
√

2

[
1 −

[
1 − max

k �=j

λikμj

(λik − μj)2
sin2 Θp

1 − sin Θp

]1/2
]1/2

≤
√

2 sin Θp√
1 − sin Θp

max
k �=j

√
μjλik

|λik − μj |
.

This proves the lemma in the case in which σess(H) = ∅. In the general case we use
the formula

√
λeμj

λe − μj

∣∣∣
(
EH1/2(

[√
λe,∞

〉
)uj , Suj

)∣∣∣ ≥
∣∣∣
(
EH1/2(

[√
λe,∞

〉
)uj , uj

)∣∣∣

and analogous argument.
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6.1. Alternative approaches to the vector perturbation problem. The
eigenvalue (invariant subspace) perturbation problem has been the focus of attention
of many researchers. A comparison between various approaches is not easy, since at
the heart of each subspace estimate lies an approximation problem which in general
cannot be solved explicitly. As a consequence a compromise—which is dictated by
the structure of a particular problem (operator) under study—has to be made prior
to optimization so that we can establish a computational formula. Subsequently, each
of these estimates is a tool which is keyed (e.g., sharp) on the class of problems for
which it was designed.

The results of this article are designed so that the obtained formulae perform well
on the class of nonnegative operators. Particular attention is paid to robustness of
the estimates in the presence of singularities. On the other hand, section 4.1 shows
that this theory, unlike the theory of [17], cannot be extended to indefinite operators
without serious alterations.

To illustrate this issue let us consider the matrices

Hη =

⎡
⎣

1
101 0 − 1

101
0 1

100 0
− 1

101 0 1 + η2

⎤
⎦ =

⎡
⎢⎣

1√
101

0 0

0 1
10 0

− 1√
101

0
√

100
101 + η2

⎤
⎥⎦

⎡
⎢⎣

1√
101

0 − 1√
101

0 1
10 0

0 0
√

100
101 + η2

⎤
⎥⎦ ,

and let w =
[
1 0 0

]∗
be given. The numerically sharpest estimate4 of sin∠(w, v1(Hη))

from [3] is the tan2Θ-Theorem (cf. [14, 17]), and it reads

sin ∠(w, v1(Hη)) ≤ sin

(
1

2
arcsin

(
2
‖Hηw − (w,Hηw)w‖
λ2(H) − (w,Hηw)

))
.(6.6)

On the other hand, Theorem 6.2 yields

sin ∠(w, v1(Hη)) ≤ ‖v1(Hη) − w‖ ≤
√

2 sin Θη√
1 − sin Θη

√
(w,Hηw)λ2(Hη)

|λ2(Hη) − (w,Hηw)| .(6.7)

An important difference between (6.6) and (6.7) is in the way in which the singularity
of Hη, as η → ∞, is handled. Estimate (6.6) yields

sin ∠(w, v1(Hη)) ≤ sin

(
1

2
arctan

(
2

1
100 − 1

101

1

101

))
,

which remains constant as η → ∞. On the other hand, (6.7) yields

sin ∠(w, v1(Hη)) ≤

√
1

100
1

101

1
100 − 1

101

√
2

101+101η2√
1 −

√
1

101+101η2

,

which tends to 0 as η → ∞. This is realistic since

lim
η→∞

H−1
η =

⎡
⎣

101 0 0
0 100 0
0 0 0

⎤
⎦

4We assume Hηvi(Hη) = λi(Hη)vi(Hη), for eigenvalues and eigenvectors of Hη .
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and sin∠(v1(Hη), w) = 1
101 η2− 100

10201 η4 + 19997
2060602 η6 +O( 1

η8 ) as η → ∞. On this example,

for η ≥ 50, estimate (6.7) considerably outperforms (6.6). As η grows larger, (6.7)
gets sharper in comparison with (6.6), which remains constant. For a comparison of
the estimates from [3] and the estimates from this article on an example of Sturm–
Liouville eigenvalue problems with coupled boundaries, see [9]. This matrix example
also shows that there is still a possibility of improvement of the estimates, by perhaps
a change of the eigenvector-perturbation metric sin∠(v1(Hη), w). This is a subject of
ongoing research, and the results will be published elsewhere.

7. A simple model problem. We will now present an application of our theory
to the singularly perturbed Sturm–Liouville eigenvalue problem (1.9). Estimates (5.1)
and [2, Theorem 6.21](Kato–Temple eigenvector estimate) do not apply due to overly
stringent regularity assumptions on the test vector; cf. (1.9)–(1.10).

Consider the family of positive definite forms

hη(u, v) = hb(u, v) + η2he(u, v) =

∫ 2

0

u′v′ dx + η2

∫ 2

1

u′v′ dx, u, v ∈ H1
0 [0, 2].

(7.1)

By Hη denote the positive definite operator which is defined by the form hη from (7.1).
We are interested in eigenvalues and eigenvectors of the operator Hη for large η. Here,
H1

0 [0, 2] denotes the first order Sobolev space with zero trace on the boundary.
This is the eigenvalue problem for the vibration of a highly inhomogeneous string.

We are considering only an academic example where we can efficiently compute all
the information we need. For more realistic applications, see [8].

If we identify the functions from H1
0 [0, α], α > 0, with their extension by zero to

the whole of [0, β] for β ≥ α, then we can write

H1
0 [0, α] ⊂ H1

0 [0, β], 0 < α < β.(7.2)

Let χ[0,1] be the characteristic function of the interval [0, 1], and let χ[0,1]c = 1−χ[0,1].
Keeping (7.2) in mind, we conclude that

Hη = −∂x(1 + η2χ[0,1]c)∂x, D(Hη) = H2[0, 2] ∩H1
0 [0, 2].

It is known that the forms hη converge to the form

h∞(u, v) =

∫ 1

0

u′v′ dx, u, v ∈ H1
0 [0, 1] ,

in the norm resolvent sense.5 Operators Hη and H∞ have discrete spectra, and all the
eigenvalues are nondegenerate; cf. [23]. Since we will be considering the whole family
of operators Hη, additional notation will be introduced to ease the understanding.
By

λη
1 < · · · < λη

n < · · ·

we denote the increasingly ordered eigenvalues of the operator Hη, and by

λ∞
1 < · · · < λ∞

n < · · ·

5More on the properties of this convergence can be found in [11, 22].
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the eigenvalues of the operator H∞.

The eigenpairs of the operator H∞—which is defined in L2[0, 1]—are (n2π2,√
2sin(nπx)), n ∈ N. The functions

un(x) =

{√
2 sin(nπx), 0 ≤ x ≤ 1,

0, 1 ≤ x,
n ∈ N,(7.3)

are in H1
0 [0, 1] and also in H1

0 [0, 2]. Therefore, they can be used as test functions for
an approximation of the eigenvalues of Hη (for large η). Furthermore, according to
(1.7) we obtain

sin2 Θη(ui) := sin2 Θ(H−1/2
η ui,H

1/2
η ui) =

(ui,H
−1
η ui) − (ui,H

†
∞ui)

(ui,H
−1
η ui)

.

Let us now concentrate on the approximation of the lowest eigenvalue. We com-
pute the Ritz value

hη(u1, u1) = π2.

When sinΘη(u1) < 1, Theorem 4.17 guarantees the existence of an eigenvalue λη
i1

such
that

|λη
i1
− λ∞

1 |
λ∞

1

≤ sin Θη(u1) .

A direct computation shows that

(u1,H
−1
η u1 − H†

∞u1)

=

∫ 1

0

[∫ x

0

2

(
y
(
1 + (1 + η2) (1 − x)

)
2 + η2

− y (1 − x)

)
sin(π y) sin(π x) dy

+

∫ 1

x

2

(
x
(
1 + (1 + η2) (1 − y)

)
2 + η2

− x (1 − y)

)
sin(π y) sin(π x) dy

]
dx(7.4)

=
2

(2 + η2)π2
= O(η−2).

This establishes that sinΘη(u1) → 0, and thus Theorem 4.17 will be applicable
for η ≥ 1 such that

(u1,H
−1
η u1) − (u1,H

†
∞u1)

(u1,H
−1
η u1)

=
2

4 + η2
< 1.

Furthermore, based on [11] and [22], we conclude that the assumptions of Theorem 6.2
must be satisfied for η large. We will now investigate this claim further.

The eigenvalues of the operator Hη satisfy the equation

√
1 + η2 cot(

√
λη) + cot

(√
λη

1 + η2

)
= 0,(7.5)
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and the nonnormalized eigenvectors are

v̂ηi (x) =

⎧⎪⎪⎨
⎪⎪⎩

sin(
√

λη
i x), 0 ≤ x ≤ 1,

sin(
√
λη
i )

sin
(√ λη

i

1+η2

) sin

⎛
⎝
√

λη
i

1 + η2
x

⎞
⎠ , 1 ≤ x.

Set vηi = ‖v̂ηi ‖−1 v̂ηi ; then Theorems 5.1 and 6.2 imply

sin ∠(vη1 , u1) = ‖vη1 − u1‖ ≤ π
√

λη
2

λη
2 − π2

2√
4 + η2 −

√
8 + 2η2

.

From (??) we establish the uniform estimate

‖vη1 − u1‖ ≤ 1.333334√
4 + η2 −

√
8 + 2η2

, η ≥ 2.

This illustrates a way to obtain rigorous eigenvector estimates. First, we have lo-
calized the approximated eigenvalue by an application of Theorem 5.1. This has
selected the approximated eigenvector. Theorem 6.2 then yields an accuracy of that
approximation.

Let us note that

h∞(un, un) = hη(un, un) = n2π2,

sin Θη(un) =
(un,H

−1
η un) − (un,H

†
∞un)

(un,H
−1
η un)

=
2

4 + η2
.

This implies that we can get estimates for all λη
i and vηi by an analogous procedure.

In establishing the convergence results for higher eigenvalues and eigenvectors it was
important that we a priori knew that all λη were nondegenerate. Our theory has
successfully been applied to similar singularly perturbed operators which were defined
in L2(Ω), Ω ⊂ R

n; see [8]. For those operators such a claim does not hold. There it is
important to generalize the subspace results from [9] as well as to obtain higher order
estimates (in sinΘη) for eigenvalues. These results were obtained in the Ph.D. thesis [8]
and will be reported elsewhere.

Remark 7.1. Note that neither the results from [3] nor the results from [17] apply
to this problem, since both D(Hη) �⊂ D(H′

η) and D(H′
η) �⊂ D(Hη). This prevents a

direct application of the tanΘ-theorems from [3, 17]; cf. [17, Theorem 1]. In view of
the remarks from section 6.1 we feel that our compromise between the computability
of the estimates and the applicability of the theory to the class of operators we are
interested in is well suited to the form-theoretic approach.

8. Conclusion. A method to compute an estimate of the accuracy of the sub-
space approximation method is presented. It can also be used to obtain accurate
lower estimates of a desired group of eigenvalues. The bounds have to be viewed as
a combination of the Ritz value bound, which gives the existence of the matching of
the Ritz values and eigenvalues, and the subspace bound, which describes the nature
of that matching.
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Fig. 8.1. Various test functions for H∞ and Hη, η large.

The case study that was just performed can be described as leading to a “pseu-
dospectral” method. We have used the completely solvable (“well-behaved”) operator

(H1/2
∞ u,H1/2

∞ v) = h∞(u, v) =

∫ 1

0

u′v′ dx, u, v ∈ H1
0 [0, 1] ,

to analyze the singularly perturbed operator Hη. Since the eigenvalue problem for
the operator H∞ was completely solvable, we have used the eigenfunctions of the
operator H∞ to define a test space for the operator Hη. Analogously, we could have
used other test functions from H1

0 [0, 1] to analyze the operator Hη. For instance,
assume that we have used the linear finite elements to compute an approximation
ũi of the function ui; see Figure 8.1. Theorem 4.17 can be invoked if we find a way

to estimate sinΘ(H
−1/2
η ũi,H

1/2
η ũi). The study of singularly perturbed eigenvalue

problems and finite element spectral approximations has been performed in [8]. The
results will be presented in subsequent reports.
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Zagreb, for many stimulating discussions.

REFERENCES
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matrix to high relative accuracy, and the second stage applies previously existing algorithms to
this decomposition to get the eigenvalues and eigenvectors. Rank revealing decompositions are also
interesting in other problems, such as the numerical determination of the rank and the approximation
of a matrix by a matrix with smaller rank.
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1. Introduction. When traditional algorithms are used to compute the eigen-
values and eigenvectors of ill-conditioned real symmetric matrices in floating point
arithmetic, only the eigenvalues with largest absolute values are computed with guar-
anteed relative accuracy. The tiny eigenvalues may be computed with no relative
accuracy at all—and even with the wrong sign. The eigenvectors are computed with
small error with respect to the absolute eigenvalue gap. This means that if ε is the
machine precision, and vi and v̂i are, respectively, the exact and computed eigenvec-
tors corresponding to an eigenvalue λi, then the acute angle between these vectors is
bounded as θ(vi, v̂i) ≤ O(ε)/gapi, where gapi = (minj �=i |λi − λj |)/maxk |λk|. This
implies that if there is more than one tiny eigenvalue, then the corresponding eigenvec-
tors are computed with large errors, even if the tiny eigenvalues are well separated in
the relative sense. See [1, section 4.7] for a survey on errors bounds for the symmetric
eigenproblem.

Our goal is to derive algorithms for computing eigenvalues and eigenvectors of
some structured n × n symmetric matrices to high relative accuracy by respecting
the symmetry of the problem, and with cost O(n3), i.e., roughly the same cost as
traditional algorithms for dense symmetric matrices. By high relative accuracy we
mean that the eigenvalues λi, the eigenvectors vi, and their computed counterparts
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†Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911

Leganés, Spain (dopico@math.uc3m.es).
‡Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139

(plamen@math.mit.edu).

1126



EIGENDECOMPOSITIONS OF SYMMETRIC MATRICES 1127

λ̂i and v̂i will satisfy

|λ̂i − λi| ≤ O(ε)|λi| and θ(vi, v̂i) ≤
O(ε)

min
j �=i

∣∣∣λi−λj

λi

∣∣∣
for i = 1, . . . , n.(1)

These conditions guarantee that the new algorithms compute all eigenvalues, including
the tiniest ones, with correct sign and leading digits. Moreover, the eigenvectors
corresponding to relatively well separated tiny eigenvalues are accurately computed.
In the case of a multiple eigenvalue, or a cluster of very close eigenvalues in the relative
sense, the previous bound for θ(vi, v̂i) becomes infinite or very large. In this case, we
understand by high relative accuracy that the sines of the canonical angles between
the unperturbed and the perturbed invariant subspaces corresponding to the cluster of
eigenvalues are bounded by O(ε) over the relative gap between the eigenvalues inside
the cluster and those outside the cluster [27]. This means that the new algorithms
compute accurate bases of invariant subspaces corresponding to cluster of eigenvalues
well separated in the relative sense from the rest of the eigenvalues.

In this work, we focus on the following classes of symmetric matrices: diago-
nally scaled Cauchy matrices (this class includes usual symmetric Cauchy matrices),
Vandermonde matrices, and nonsingular totally nonnegative (TN) matrices. Sym-
metric diagonally scaled Cauchy matrices are defined through two ordered sets of real
numbers, {x1, x2, . . . , xn} and {s1, s2, . . . , sn}, and they are of the form

C = SC ′S, where C ′
ij =

1

xi + xj
, 1 ≤ i, j ≤ n, and S = diag(s1, s2, . . . , sn);

i.e., they are the two-sided product of a usual symmetric Cauchy matrix C ′ times a
diagonal matrix S. It should be noticed that if S is the identity matrix, then C = C ′,
and C is just a usual symmetric Cauchy matrix. Symmetric Vandermonde matrices
depend only on one real parameter a, and they are defined as

A =
[
a(i−1)(j−1)

]n
i,j=1

.

This is the only type of Vandermonde matrices that is symmetric. As far as we know,
this is the first time that the class of symmetric Vandermonde matrices has been
studied in the literature. TN matrices are the matrices with all minors nonnegative.
For symmetric diagonally scaled Cauchy matrices, we assume that the parameters
{xi}ni=1 and {si}ni=1 are given, i.e., we are not given just the entries of the matrices.
This is a very natural assumption in situations where Cauchy matrices appear, such
as, for instance, in rational interpolation theory. For symmetric Vandermonde ma-
trices, we adopt the (also natural) assumption that the parameter a is given. In the
case of TN matrices, we assume that the TN structure is explicitly revealed; i.e., any
TN matrix is represented as a product of nonnegative bidiagonal matrices [18, 19].
This bidiagonal decomposition is particularly attractive because its nontrivial entries
determine the eigenvalues of the matrix with high relative accuracy, and it can be
computed very accurately for many important classes of TN matrices [26]. To finish
this short presentation of the type of matrices we are dealing with, we want to stress
that the symmetric diagonally scaled Cauchy and the symmetric Vandermonde matri-
ces are, in general, indefinite matrices, while the symmetric nonsingular TN matrices
are positive definite.

There exist O(n3) algorithms for computing eigendecompositions of symmetric
diagonally scaled Cauchy and symmetric Vandermonde matrices with high relative
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accuracy, but these algorithms do not respect the symmetry of the problem. They are
based on the idea of rank revealing decomposition (RRD): an RRD of G ∈ R

m×n, m ≥
n, is a factorization G = XDY T , where D ∈ R

r×r is diagonal and nonsingular, and
X ∈ R

m×r and Y ∈ R
n×r are well-conditioned matrices of full column rank (notice

that this implies r = rank(G)). Demmel et al. presented in [6] an algorithm for
computing the singular value decomposition (SVD) of G with high relative accuracy

when the computed factors X̂, D̂, and Ŷ of an RRD satisfy the following forward
error bounds:

|Dii − D̂ii| = O(ε)|Dii|,

‖X − X̂‖2 = O(ε)‖X‖2,

‖Y − Ŷ ‖2 = O(ε)‖Y ‖2,

(2)

where ‖ · ‖2 is the spectral, or two-norm. Throughout this paper we will use the
expression accurate RRD to mean an RRD that satisfies the error bounds (2). Algo-
rithms for computing accurate RRDs of general diagonally scaled Cauchy and Van-
dermonde matrices were derived in [5], and therefore it is possible to compute the
SVD of these matrices with high relative accuracy. Finally, an algorithm for com-
puting a high relative accuracy eigendecomposition of a symmetric matrix, given an
SVD computed with high relative accuracy, was developed in [11]. We note that when
these algorithms are used, the symbols O(ε) appearing in (1) should be replaced with
O(max{κ2(X), κ2(Y )} ε), where κ2(X) ≡ ‖X‖2 · ‖X−1‖2 is the spectral condition
number of X.

The process outlined in the previous paragraph does not respect the symmetry of
the problem in two stages. First, the RRDs of diagonally scaled Cauchy and Vander-
monde matrices computed in [5] are not symmetric, i.e., X �= Y , when G is symmetric.
Second, even when G is symmetric and X = Y , the algorithm in [6] computes the
SVD of G without respecting the symmetry of the problem. Respecting the symmetry
is a very important property of eigenvalue algorithms (as well as other computations
in the field of numerical linear algebra) because it often leads to increased speed,
decreased storage requirements, and improved stability properties [3, 10, 21].

As two of our major contributions we present algorithms for computing accurate
symmetric RRDs of symmetric diagonally scaled Cauchy matrices and symmetric
Vandermonde matrices, i.e., decompositions G = XDXT with X well conditioned
and D diagonal, which satisfy the bounds (2). In this context, it is important to
stress that RRDs have been computed in practice as LDU factorizations provided
by Gaussian elimination with complete pivoting (GECP) [6]. As can be seen in [21,
section 4.4] and [22, Chapter 11], just preserving the symmetry of general dense
symmetric indefinite matrices in a stable factorization of LU type requires much more
complicated algorithms and pivoting strategies than the usual Gaussian elimination.
In our algorithms, we need to preserve the symmetry and also attain the accuracy (2).
This demands a careful exploitation of the structure of the problems that allows us to
get important benefits from the point of view of operational cost. The algorithm we
present for computing RRDs of symmetric diagonally scaled Cauchy matrices needs
only half the operations required by the general nonsymmetric algorithm presented in
[5]. In the case of symmetric Vandermonde matrices, the improvements are much more
significant: the cost of the algorithm in [5] is O(n3) and requires complex arithmetic,
and the cost of the algorithm we develop is 2n2 and requires only real arithmetic. We
note, however, that for symmetric Vandermonde matrices our algorithm computes
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accurate RRDs only if |a| ≤ 2
3 or |a| ≥ 3

2 . For the rest of the values of the parameter,
i.e., 2

3 < |a| < 3
2 , our algorithm computes LDLT factorizations with componentwise

relative errors of O(ε), but they are not RRDs because L may be ill conditioned. This
means that the factorizations A = LDLT we compute of symmetric Vandermonde
matrices cannot be used to compute accurate eigendecompositions for values of |a|
close to one. However, they can be potentially useful in other contexts such as, for
instance, in fast solvers of systems of linear equations Ax = b, where A is a symmetric
Vandermonde matrix. The operational savings we have just described may not be
of primary interest for computing accurate eigendecompositions, because in that case
an O(n3) algorithm with high cost has to be applied to the RRD, but they are very
important in other applications of RRDs.

Once an accurate symmetric RRD of a symmetric indefinite matrix G is computed,
the J-orthogonal algorithm, introduced in [35] and carefully analyzed in [33], can be
used to compute an eigendecomposition of G to high relative accuracy, preserving the
symmetry of the process. Also, the signed SVD algorithm of [11] may be used, but
then the symmetry is lost in this second stage. It should be noticed that the error
bounds for the J-orthogonal algorithm [33] are not exactly of type (1) because the
O(ε) symbols are rigorously κε, where κ is the maximum of the condition numbers of
some intermediate matrices appearing in the algorithm, which has not been bounded
by any moderate magnitude. The error bounds for the signed SVD algorithm [11]
are exactly of type (1) because the error for the eigenvectors depends on a different,
smaller eigenvalue relative gap than the one in (1). However, in practice, both the
J-orthogonal and signed SVD algorithms compute the eigenvalues and eigenvectors
to high relative accuracy.

Our third major contribution is to develop algorithms for computing accurate
RRDs of a nonsingular TN matrix whenever its bidiagonal factors are given. RRDs
of general, not necessarily symmetric, TN matrices can be computed by combin-
ing algorithms in [26] and in [6], but the computation of symmetric RRDs requires
a new approach. It should be remarked that algorithms for computing eigenval-
ues and singular values of general nonsingular TN matrices already have been pre-
sented in [26]. If the TN matrix is symmetric, the techniques in [26] allow us to
modify these algorithms to compute eigenvalues to high relative accuracy respecting
the symmetry. However, the algorithms in [26] do not use RRDs computed by a finite
process.

Nonsingular symmetric TN matrices are positive definite; thus a symmetric RRD
A = XDXT has positive elements on the diagonal matrix D. In this case we can
compute an accurate eigendecomposition of A starting from this RRD, using a simpler
and more efficient approach than the J-orthogonal or signed SVD algorithms. To do
so, we compute the singular values and left singular vectors of XD1/2 by using the
one-sided Jacobi method with the rotations applied on the left [10, section 5.4.3] (see
also the seminal reference [9]). This yields eigenvalues and eigenvectors with high
relative accuracy as in (1), where the O(ε) symbols are replaced with O(ε κ2(X)).
Obviously, this process preserves the symmetry.

In the previous paragraphs we have stressed the essential role of accurate RRDs
in computing spectral problems to high relative accuracy. However, the computation
of accurate RRDs is an interesting problem in its own right that can be used in other
problems, such as the numerical determination of the rank, and the approximation of
a matrix by a matrix with smaller rank [34, Chapter 5]. This is one of the reasons
why reducing the cost in computing accurate RRDs is an important issue.
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The three classes of symmetric matrices we consider—diagonally scaled Cauchy,
Vandermonde, and TN—require three very different techniques for computing their
accurate symmetric RRDs. In this regard, in [30] accurate symmetric RRDs of total
signed compound and diagonally scaled totally unimodular matrices are computed by
using an approach related to the one we used for diagonally scaled Cauchy matrices,
i.e., combining accurate computation of Schur complements with the Bunch–Parlett
pivoting strategy for the diagonal pivoting method [4]. Two other interesting classes
of structured matrices for which there are algorithms for computing accurate RRDs
are weakly diagonally dominant M-matrices [7, 31] and polynomial Vandermonde
matrices [8]. For symmetric weakly diagonally dominant M-matrices, the general
algorithm presented in [7] for nonsymmetric matrices respects the symmetry because it
performs only diagonal pivoting. The algorithm in [8] does not preserve the symmetry
for symmetric matrices, but the symmetric polynomial Vandermonde matrices are
nonsymmetric, except in very special cases.

The paper is organized as follows. In section 2 we study how the eigenvalues and
eigenvectors of a symmetric matrix are changed by errors of type (2) in a symmetric
RRD. In section 3 we present the algorithm, and its error analysis, for computing
symmetric RRDs of symmetric diagonally scaled Cauchy matrices. The same is done
in section 4 for symmetric Vandermonde matrices. Section 5 includes the algorithms
for computing accurate RRDs (symmetric and nonsymmetric) of nonsingular TN ma-
trices. We present numerical experiments in section 6. Finally, in the appendix the
technical proof of Theorem 3.1 for the rounding error analysis of diagonally scaled
Cauchy matrices is carefully developed in a more general setting.

2. Perturbation properties of symmetric RRDs. Let G be an m×n matrix,
and let G = XDY T be an RRD of G. It was shown in [6, Theorem 2.1] that the
RRD of G determines its SVD to high relative accuracy; i.e., small relative normwise
perturbations of X and Y , and small relative componentwise perturbations of D,
produce small relative changes in all singular values of G, and produce small changes in
the singular vectors with respect to the singular value relative gap. Next we prove that
a symmetric RRD of a symmetric matrix determines its eigenvalues and eigenvectors
to high relative accuracy.

Theorem 2.1. Let A = XDXT and Ã = X̃D̃X̃T be RRDs of the real symmetric
n×n matrices A and Ã. Let λ1 ≥ · · · ≥ λn be the eigenvalues of A and λ̃1 ≥ · · · ≥ λ̃n

be the eigenvalues of Ã. Let q1, . . . , qn and q̃1, . . . , q̃n be the corresponding orthonormal
eigenvectors. Let us assume that

‖X̃ −X‖2

‖X‖2
≤ β,

|D̃ii −Dii|
|Dii|

≤ β for all i,

where 0 ≤ β < 1. Let η = β (2 + β)κ2(X) be smaller than 1; then

|λi − λ̃i| ≤ (2η + η2) |λi|, 1 ≤ i ≤ n,

and

sin θ(qi, q̃i) ≤
η

1 − η

⎛
⎝1 +

2 + η

minj �=i
|λ̃i−λj |

|λj |

⎞
⎠, 1 ≤ i ≤ n,
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where θ(qi, q̃i) is the acute angle between qi and q̃i. In the case of multiple eigenvalues,
or clusters of very close eigenvalues in the relative sense, a similar bound holds for
the sines of the canonical angles of the corresponding invariant subspaces.

Proof. The proof is similar to that of Theorem 2.1 in [6]. The main idea is to

express Ã as a symmetric multiplicative perturbation of A, i.e., Ã = (I+E)A(I+E)T .
This is combined with [12, Theorem 2.1] and [27, Theorem 3.1].

A more general version of Theorem 2.1, including similar perturbation results
for invariant subspaces [27], can be developed. These bounds are useful when sev-
eral eigenvalues form a tight cluster, well separated from the remaining eigenvalues,
because in this case the invariant subspace is well conditioned, while the individual
eigenvectors are very ill conditioned. It is also possible to present perturbation results
for eigenvectors with the relative gap defined using exclusively eigenvalues of A, at
the cost of bounding the sine of the double angle, i.e., sin 2θ(qi, q̃i) [10, Theorem 5.7],
[28, Theorem 2.2].

3. Symmetric diagonally scaled Cauchy matrices. For a real symmetric
matrix A, the LU factorization computed using Gaussian elimination, with partial or
complete pivoting, does not always preserve the symmetry of the problem. Symmetric
pivoting strategies, i.e., permuting rows and columns in the same way, may be unstable
or may not exist. A trivial instance is when all the entries on the main diagonal are
zero. The most widely used factorization [1, 21, 22] for symmetric matrices is the
following special block LU factorization:

PAPT = LDb L
T ,

where P is a permutation matrix, L is unit lower triangular, and Db is block diagonal
with diagonal blocks of dimension 1 or 2. The 2 × 2 diagonal blocks are symmetric
indefinite matrices, and the corresponding diagonal blocks of L are the 2× 2 identity
matrix. This method is sometimes called the diagonal pivoting method [22] and can be
implemented with partial, complete, or rook pivoting. We are interested in computing
a symmetric RRD; therefore we will focus on the Bunch–Parlett complete pivoting
strategy [4], which in practice1 produces a well-conditioned matrix L. Notice that
LDb L

T is not an RRD because Db is not diagonal. To get an RRD, we will perform
a spectral factorization of each of the 2 × 2 blocks of Db; thus Db = V DV T with D
diagonal and V orthogonal and block diagonal as Db. Finally,

PAPT = LDb L
T = (LV )D(LV )T ≡ XDXT(3)

is a symmetric RRD. This procedure has been essentially introduced in [32] to compute
a symmetric indefinite decomposition GJGT , where J = diag(±1). Notice that a
GJGT factorization can be easily computed from XDXT as (X

√
|D|) J (

√
|D|XT ).

Moreover, if XDXT is accurately computed, then GJGT is also accurately computed,
and vice versa. In the rest of the paper we will focus on RRDs XDXT from the point
of view of both algorithms and error analysis.

To be more specific, the method can be described as follows. Let Π be a permu-
tation matrix such that

ΠAΠT =

[
E CT

C B

]
,(4)

1It can be proven that κ∞(L) < n (3.78)n, by using Theorem 8.12 and Problem 8.5 in [22].
This bound is similar to that appearing in GECP. Therefore, there exists a remote possibility of the
Bunch–Parlett pivoting strategy failing to compute a well-conditioned factor L.
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where E is a 1 × 1 or a 2 × 2 nonsingular matrix. The pivot E and the permutation
Π are chosen by comparing the numbers μ0 = maxi,j |aij | ≡ |ars| (r ≥ s) and μ1 =
maxi |aii| ≡ |app|. If μ1 ≥ αμ0, where α is a parameter (0 < α < 1), then E = app,
and if μ1 < αμ0, then E has dimension 2 and E21 = |ars|. The classical value for the
parameter is α = (1 +

√
17)/8 (≈ 0.64). Then we can factorize

ΠAΠT =

[
I 0

CE−1 I

] [
E 0
0 B − CE−1CT

] [
I E−1CT

0 I

]
.(5)

If E is a 2×2 matrix, let E = UΛUT be its orthogonal spectral factorization computed
by the Jacobi procedure [21, section 8.4]. Then

ΠAΠT =

[
U 0

CUΛ−1 I

] [
Λ 0
0 B − CE−1CT

] [
UT Λ−1UTCT

0 I

]
.(6)

The process is recursively repeated on the Schur complement B − CE−1CT .
In the case of diagonally scaled Cauchy matrices, it was shown in [5] how to

compute all the Schur complements with an entrywise small relative error. Therefore,
to compute an accurate symmetric RRD, the remaining task is to show that in (6)
the orthogonal diagonalization E = UΛUT of the 2× 2 pivot and the matrix CUΛ−1

can be accurately computed for each Schur complement.
Let us summarize some key results in [5]. The entries of an n × n symmetric

diagonally scaled Cauchy matrix C are Cij = sisj/(xi +xj), where the si and xi, 1 ≤
i ≤ n, are given real floating point numbers. Let S(m) be the mth Schur complement
of C (S(0) ≡ C). We enumerate the elements of S(m) as the corresponding elements
of C. The recurrence relation,

S(m)
rs = S(m−1)

rs

(xr − xm)(xs − xm)

(xm + xs)(xr + xm)
for m + 1 ≤ r, s ≤ n,(7)

allows us to compute accurately each Schur complement from the previous one. This
is what we need when the Bunch–Parlett pivoting strategy selects a 1 × 1 pivot. If a
2 × 2 pivot is selected, we apply (7) twice to obtain

S(m+1)
rs = S(m−1)

rs

(xr − xm)(xs − xm)

(xm + xs)(xr + xm)
· (xr − xm+1)(xs − xm+1)

(xm+1 + xs)(xr + xm+1)
.(8)

Combining (7) and (8) with (6), we get the following algorithm to compute a
symmetric RRD of a symmetric diagonally scaled Cauchy matrix.2

Algorithm 1. Symmetric RRD of a symmetric diagonally scaled Cauchy matrix.
Input: S = {s1, . . . , sn}; x = {x1, . . . , xn}
Output:

D is a rank× rank diagonal matrix, where rank is the rank of

the diagonally scaled Cauchy matrix defined by S and x.
X is an n× rank block lower triangular matrix, with diagonal

blocks of dimension 1 × 1 or 2 × 2.
IPIV is an n-dimensional vector containing a permutation of

{1, . . . , n} such that, if Q = In and P = Q(IPIV, :), then

P

[
sisj

xi + xj

]n
i,j=1

PT = XDXT .

2We will use MATLAB [29] notation for submatrices, e.g., A(i : j, k : l) will indicate the submatrix
of A consisting of rows i through j and columns k through l, and A(:, k : l) will indicate the submatrix
of A consisting of columns k through l.
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% Initializing variables

α = (1 +
√

17)/8 ≈ 0.64
rank = n
IPIV = 1 : n
D = zeros(n)
for p = 1 : n and q = 1 : p

A(p, q) = spsq/(xp + xq)
A(q, p) = A(p, q)

endfor
% Main loop

k = 1
while k ≤ n

μ0 = maximum entry of |A(k : n, k : n)| ≡ |A(r, s)| (r ≥ s)
μ1 = maximum entry of diag(|A(k : n, k : n)|) ≡ |A(p, p)|
if μ1 ≥ αμ0

if μ1 = 0
rank = k − 1
k = n + 1

else
swap entries k ↔ p in IPIV

swap entries k ↔ p in x

swap rows k ↔ p and swap columns k ↔ p in A
for r = k + 1 : n and s = k + 1 : r

A(r, s) = A(r, s)
(xr − xk)(xs − xk)

(xk + xs)(xr + xk)
A(s, r) = A(r, s)

endfor
D(k, k) = A(k, k)
A(k : n, k) = A(k : n, k)/A(k, k)
A(k, k + 1 : n) = zeros(1, n− k)
k = k + 1

endif
else

swap entries k ↔ s and swap entries k + 1 ↔ r in IPIV

swap entries k ↔ s and swap entries k + 1 ↔ r in x

swap rows k ↔ s and swap rows k + 1 ↔ r in A

swap columns k ↔ s and swap columns k + 1 ↔ r in A

for r = k + 2 : n and s = k + 2 : r

A(r, s) = A(r, s)
(xr − xk)(xs − xk)(xr − xk+1)(xs − xk+1)

(xk + xs)(xr + xk)(xk+1 + xs)(xr + xk+1)
A(s, r) = A(r, s)

endfor
% Orthogonal diagonalization of the 2 × 2 pivot A(k : k + 1, k : k + 1)

z = (A(k + 1, k + 1) −A(k, k))/A(k + 1, k)/2
if z = 0

t = 1
else

t = sign(z)/
(
abs(z) +

√
1 + z2

)
endif
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cs = 1/
√

1 + t2

sn = t · cs
U =

[
cs

−sn
sn
cs

]

D(k, k) = A(k, k) − t · A(k + 1, k)
D(k + 1, k + 1) = A(k + 1, k + 1) + t · A(k + 1, k)
A(k : k + 1, k : k + 1) = U
A(k + 2 : n, k : k + 1) = A(k + 2 : n, k : k + 1) · U

·diag[ 1
D(k,k) ,

1
D(k+1,k+1) ]

A(k : k + 1, k + 2 : n) =zeros(2, n− k − 1)
k = k + 2

endif
endwhile
X = A(:, 1 : rank)
D = D(1 : rank, 1 : rank)
Q =eye(n)
P = Q(IPIV, :)

The cost of Algorithm 1 is 4n3/3 + O(n2) flops, or 2n3/3 + O(n2) if all n2

possible values of (xr − xm) and 1/(xr + xm) are precomputed. Next, we show that
the computed symmetric RRD is accurate.

Theorem 3.1. Let

C =

[
sisj

xi + xj

]n
i,j=1

be a real symmetric diagonally scaled Cauchy matrix, where s1, . . . , sn and x1, . . . , xn

are floating point numbers. Let P, X̂, and D̂ be the matrices of the factorization
(3) computed by Algorithm 1 applied to C in floating point arithmetic with machine
precision ε. Let us apply Algorithm 1 in exact arithmetic to C, but choosing the same
dimensions and positions for the pivots as those selected in floating point arithmetic.
Let X and D be the exact factors; thus PCPT = XDXT . If

648 (n + 2) ε

1 − 648 (n + 2) ε
< 1,

then
1.

|D̂ii −Dii| ≤
146 (n + 4) ε

1 − 146 (n + 4) ε
|D(i, i)| for all i = 1, . . . , n.

2.

||X̂ −X||F ≤ 13
684 (n + 2) ε

1 − 684 (n + 2) ε
||X||F .

If, moreover,

12481n ε

1 − 12481n ε
<

1

2
,

then
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3.

||X̂(:, j) −X(:, j)||2 ≤ 144
√
n

684 (n + 2) ε

1 − 684 (n + 2) ε
||X(:, j)||2 for all j = 1, . . . , n.

According to Theorem 2.1 and (2), the third item in Theorem 3.1 is not necessary
for computing accurate eigenvalues and eigenvectors. It is included for the sake of
completeness and because it allows us to state error bounds for the column scaling
of X with minimum condition number. We remark that the numerical constants
appearing in the bounds above are not optimal: we have sometimes overestimated
the constants to get simpler bounds. However, the order of magnitude is correct up
to a factor smaller than 10. Theorem 3.1 remains valid if the rank, say ρ, of the
matrix is less that n. In this case, the last n − ρ diagonal elements of D are exactly
computed to be zero, and the corresponding columns of X are just the n− ρ columns
of the identity matrix, and they are also exactly computed.

The proof of Theorem 3.1 is technical and is presented in the appendix. However,
the argument explaining why Algorithm 1 accurately computes a symmetric rank
revealing factorization of the diagonally scaled Cauchy matrix C can be easily under-
stood. In the first place, the recurrence relation (7) allows us to compute the entries
of the Schur complements with a relative error bounded by 8nε/(1− 8nε). Therefore,
the elements of D and the entries of the columns of X corresponding to 1 × 1 pivots
are also computed with small relative errors. For the quantities corresponding to 2×2
pivots, the error analysis heavily depends on the properties of these pivots. As we
will prove in the appendix, the 2 × 2 pivots selected by the Bunch–Parlett complete
pivoting strategy are very well-conditioned indefinite matrices (with a spectral condi-
tion number less than 4.6 for the value α = 0.64 used in Algorithm 1), and the entries
of their unitary eigenvectors are greater than 0.47 (again for α = 0.64). Therefore,
the Jacobi algorithm computes with small relative error the eigenvalues (i.e., the ele-
ments of D) and the entries of the eigenvectors of the 2× 2 pivots. According to (6),
the upper 2 × 2 block of the corresponding two columns of X is just the eigenvector
matrix U , and therefore its entries are accurately computed. The rest of the elements
of these two columns of X are obtained through multiplying by U and by Λ−1, but
these two matrices are well conditioned and all their entries have been computed with
small relative error. This last step does not guarantee small entrywise relative errors
but it does guarantee small normwise relative errors for X.

4. Symmetric Vandermonde matrices. A symmetric Vandermonde matrix
is defined as

A =
[
a(i−1)(j−1)

]n
i,j=1

=

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1
1 a a2 . . . an−1

1 a2 a4 . . . a2(n−1)

...
...

... . . .
...

1 an−1 a2(n−1) . . . a(n−1)2

⎤
⎥⎥⎥⎥⎥⎦
,(9)

where a is a real number. The class of symmetric Vandermonde matrices depends
only on one parameter, and it is the only class of matrices which are, simultaneously,
symmetric and of Vandermonde type. Symmetric Vandermonde matrices with n > 2
are singular when a = 0, a = 1, and a = −1. In these cases they have only, 2, 1, and
2, respectively, nonzero eigenvalues that can be accurately computed by any standard
symmetric eigenvalue algorithm because they are of similar magnitudes. In fact, when
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a = 1, the only nonzero eigenvalue is equal to n. We assume that a is different from
0, 1 and −1. The matrix A is positive definite if a > 1 and, in this case, A is also
totally positive. Therefore, when a > 1, an accurate bidiagonal factorization of A
can be computed [26, section 3], and its eigenvalues can be obtained to high relative
accuracy with the method presented in [26]. The algorithm we introduce in section 5
for computing accurate symmetric RRDs of symmetric totally positive matrices can
also be applied to symmetric Vandermonde matrices with a > 1.

In this section, we present a method for computing an accurate RRD of A, in the
sense of (2), by respecting the symmetry of A. This allows us to compute eigenvalues
and eigenvectors to high relative accuracy, as explained in the introduction.

The method we present to compute an accurate RRD of A is very different from
the one we used for diagonally scaled Cauchy matrices. The Schur complement of a
Vandermonde matrix does not inherit the Vandermonde structure. Moreover, row and
column permutations coming from any pivoting strategy also destroy the symmetric
Vandermonde structure. Our approach avoids the computation of the Schur comple-
ments and, also, avoids pivoting. To be more precise, in the case |a| < 1, we use exact
formulas for the elements of the LDLT factorization of A, where L is unit lower trian-
gular and D is diagonal, and we prove that the condition number of L in the 1-norm
is O(n2) when |a| ≤ 2

3 . In the case |a| > 1, we use exact formulas for the elements

of the L̄D̄L̄T factorization of the converse of A, i.e., A# ≡
[
An−i+1,n−j+1

]n
i,j=1

, and

we will prove that κ1(L̄) = O(n2) when |a| ≥ 3
2 . Note that in both cases |a| ≤ 2

3 and
|a| ≥ 3

2 , we are dealing with matrices whose elements vary widely and in which the
largest elements are in the first positions. This is the reason why we are able to get
RRDs without using pivoting strategies. The formulas we use allow us to compute
accurate LDLT factorizations for any value of a, but only when |a| ≤ 2

3 or |a| ≥ 3
2

can we guarantee that they are RRDs. These limits are somewhat arbitrary since we
can consider values of a closer to |a| = 1 at the cost of increasing the bound for κ1(L).
However, it should be stressed that we cannot consider values of a as close as we want
to |a| = 1 because κ1(L) approaches 2n as |a| approaches 1.

In plain words, there are three limits for which the matrix A is extremely ill
conditioned and that have eigenvalues that can vary widely: |a| small enough, |a|
large enough, and |a| close enough to 1. We are able to compute eigenvalues and
eigenvectors of A to high relative accuracy by respecting the symmetry only in the first
two cases, i.e., when A contains elements with very different magnitudes. Eigenvalues
and eigenvectors for any value of a can be computed to high relative accuracy by
combining the algorithm presented in [5] to compute a nonsymmetric RRD of A with
the signed SVD (SSVD) algorithm in [11], at the cost of not respecting the symmetry
of the problem.

Consider first the case |a| < 1. We start with the LDU decomposition A = LDLT .
The entries of L and D are quotient of minors of A [15, section 1.II]:

di =
detA(1 : i, 1 : i)

detA(1 : i− 1, 1 : i− 1)
= a

1
2 (i−2)(i−1) ·

i−1∏
t=1

(at − 1),(10)

lij =
detA([1 : j − 1, i], 1 : j)

detA(1 : j, 1 : j)
=

j−1∏
t=1

1 − ai−j+t

1 − at
.(11)

Next, we prove that when |a| ≤ 2
3 , the entries of L and L−1 are bounded by e6;

thus L is well conditioned.
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Lemma 4.1. If 0 ≤ x ≤ 2
3 and j ≥ 1, then

j−1∏
t=1

1

1 − xt
≤ e6.

Proof. We start by observing that log(1 − xt) ≥ −3xt for t ≥ 1: If f(z) =
log(1− z)+ 3z, then f ′(z) = 1

z−1 +3 = 3z−2
z−1 ≥ 0, meaning f(z) is increasing on [0, 2

3 ]
and f(z) ≥ f(0) = 0 on the same interval. Therefore,

log

( ∞∏
t=1

(1 − xt)

)
≥ −3

∞∑
t=1

xt =
−3x

1 − x
≥ −6

and

j−1∏
t=1

1

1 − xt
≤

∞∏
t=1

1

1 − xt
≤ e6.

Next, we bound the entries lij of L: If 0 < a ≤ 2
3 , or − 2

3 ≤ a < 0 and i − j is
even, we have

1 − ai−j+t

1 − at
≤ 1

1 − |a|t ,

and using (11) and Lemma 4.1 we get

lij =

j−1∏
t=1

1 − ai−j+t

1 − at
≤

j−1∏
t=1

1

1 − |a|t ≤ e6.

Otherwise, if − 2
3 ≤ a < 0 and i− j is odd, we again have

lij =

j−1∏
t=1

1 − ai−j+t

1 − at
=

1 − ai−1

1 − ai−j
·
j−1∏
t=1

1 − ai−j−1+t

1 − at
≤ 1 + |a|i−1

1 + |a|i−j
· e6 ≤ e6.

Either way, lij ≤ e6 and ‖L‖1 ≤ e6n.
The entries of L−1 are also quotients of minors of A, as we now describe. From

the LDU decomposition A = LDU we get A−T# = L−T#D−T#U−T#. Therefore, by
formula (1.31) in [2],

(
L−1

)
ij

=
(
L−T#)n−j+1,n−i+1

=
detA−T#([1 : n− i, n− j + 1], 1 : n− i + 1)

detA−T#(1 : n− i + 1, 1 : n− i + 1)

=
detA−1(i : n, [j, i + 1 : n])

detA−1(i : n, i : n)

= (−1)i+j · detA([1 : j − 1, j + 1 : i], 1 : i− 1)

detA(1 : i− 1, 1 : i− 1)

= (−1)i+j · a 1
2 (i−j−1)(i−j) ·

j−1∏
t=1

1 − ai−j+t

1 − at
.(12)
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Similarly,
∣∣(L−1)ij

∣∣ ≤ e6 when |a| ≤ 2
3 , and

κ1(L) = ‖L‖1 · ‖L−1‖1 ≤ e12n2;

i.e., L is well conditioned when |a| ≤ 2
3 . The constant e12 and the factor n2 in the

previous bound are pessimistic, and the true values of κ1(L) are much smaller. They
are shown in the following table for some values of a in 30×30 Vandermonde matrices:

a −2/3 −0.5 −0.3 −0.05 0.05 0.3 0.5 2/3
κ1(L) 92.12 79.25 69.83 61.50 64.16 126.98 379.12 2694.99

When |a| > 1 we consider the converse of A:

A# ≡
[
An−i+1,n−j+1

]n
i,j=1

=
[
a(n−i)(n−j)

]n
i,j=1

.

The matrices A and A# are similar via an orthogonal similarity transformation,

A = JA#J,

where the matrix J = [δn−i+1,j ]
n
i,j=1 is the reverse identity (which is orthogonal and

involutary: J = JT = J−1). Therefore, it suffices to compute an accurate RRD of A#.
Consider the LDU decomposition A# = L̄D̄L̄T . The entries of L̄ and D̄ are quotients
of minors of A#; thus, after some long but elementary manipulations, we get

d̄i = a(n−i)2− i(i−1)
2 ·

i−1∏
t=1

(at − 1),(13)

l̄ij = a(n−1)(j−i)

j−1∏
t=1

ai−j+t − 1

at − 1
.(14)

For |a| ≥ 3
2 , the entries l̄ij are bounded as

l̄ij ≤
j−1∏
t=1

1

1 − |a|−t
≤ e6.

For the entries of L̄−1, we obtain analogously to (12),

(
L̄−1

)
ij

= (−1)i+j · a(j−i)(n− 1
2 (i−j+1)) ·

j−1∏
t=1

ai−j+t − 1

at − 1
.

Finally, since n− 1
2 (i− j − 1) ≥ j − 1 we have

∣∣(L̄−1
)
ij

∣∣ = a(j−i)(n− 1
2 (i−j+1)) ·

j−1∏
t=1

ai−j+t − 1

at − 1
≤

j−1∏
t=1

1

1 − |a|−t
≤ e6.
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Again, κ1(L̄) ≤ e12n2. Therefore, L̄ is well conditioned when |a| ≥ 3
2 , and

A = (JL̄)D̄(JL̄)T is an RRD of A. The true values of κ1(L̄) are much smaller
than the bound—in particular, for 30 × 30 matrices κ1(L̄) = 13.37 for a = 3

2 and
κ1(L̄) = 2.35 for a = − 3

2 . We have observed that κ1(L̄) decreases as |a| increases.
In order to guarantee high relative accuracy in each computed entry of L, L̄, D,

and D̄, we compute all expressions ai − 1 to high relative accuracy as ai − 1 when
ai < 0 and as (|a| − 1)(|a|i−1 + |a|i−2 + · · · + 1) when ai > 0.

The cost of computing factorizations with the formulas (10) and (11), or (13) and
(14), is O(n2). We need n2 flops to compute ai for i = 1, 2, . . . , n2, and n flops to

compute
∑j

p=0 |a|p for j = 1, 2, . . . , n. With this, at most n extra flops are needed to

compute ai − 1 for i = 1, 2, . . . , n. All the diagonal elements di, i = 1, 2, . . . , n, are
computed in 6n flops. If i− j = k, the n − k off-diagonal elements lij are computed
in 2(n − k) flops. Taking into account that k = 1, 2, . . . , n − 1, n2 + O(n) flops are
needed to compute all off-diagonal elements lij . The total cost of computing the
LDLT factorization using (10) and (11) is 2n2 + O(n) flops. A similar argument
shows that the total cost of computing the L̄D̄L̄T factorization using (13) and (14) is
2n2 + O(n) flops. This extremely fast performance is important in its own right, but
for the purpose of computing eigenvalues and eigenvectors to high relative accuracy
the cost of applying the J-orthogonal or SSVD algorithms to the RRD is O(n3),
and the cost O(n2) in the RRD computation does not significantly improve the total
cost.

5. Computing an RRD of a TN matrix. The matrices with all minors non-
negative are called totally nonnegative (TN). They appear in a wide range of problems
and applications (see [2, 14, 17, 24, 26] and references therein). One of the most im-
portant application is to one-dimensional oscillatory problems [16].

It has been recently shown [26, 25] that many accurate computations with nonsin-
gular n×n TN matrices are possible when these matrices are appropriately represented
as products of nonnegative bidiagonal matrices:

A = L(1) · L(2) · · ·L(n−1) ·D · U (n−1) · · ·U (2) · U (1),(15)

where D is diagonal. This decomposition was introduced in [18, 19], and it is a unique,
intrinsic representation for any nonsingular TN matrix A. This bidiagonal decomposi-
tion will be denoted by BD(A). We refer to [26, section 2.2] for a detailed explanation
of the structure of the factorization (15), and also for the essential relationship be-
tween this factorization and Neville elimination, an alternative process to Gaussian
elimination that allows one to compute (15) and to check whether a matrix is TN or
not.

The numerical virtues of BD(A) are discussed at length in [26, 25]. This decompo-
sition reveals the TN structure of A, and its nontrivial entries accurately determine the
eigenvalues, the SVD, the inverse, and other properties of a nonsingular TN matrix.
Starting with the representation (15), one can perform many highly accurate matrix
computations with nonsingular TN matrices [26, 25], and, in particular, the SVD of
a TN matrix A can certainly be computed given (15) (see Algorithm 6.1 from [26]).
The SVD is, of course, an RRD. This approach, however, relies on the convergence
properties of an algorithm for computing the SVD of a bidiagonal matrix.

Our goal in this section is to design algorithms that compute an accurate RRD
of a nonsingular TN matrix given its bidiagonal factorization (15) in O(n3) time by
using a finite process and respecting the symmetry; i.e., a symmetric TN matrix will
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have a symmetric RRD. This last requirement forces us to develop two algorithms:
one for general TN matrices and another specifically for symmetric TN matrices.

5.1. RRD of a nonsymmetric TN matrix. Given the bidiagonal decomposi-
tion (15) of a nonsingular TN matrix A, we can accurately compute a decomposition
A = QBHT , where Q and H are orthogonal and B is bidiagonal, using the first part
of Algorithm 6.1 from [26]. All entries of B are computed with relative errors of order
ε, while Q and H are computed by accumulating Givens rotations with normwise
errors of order ε, i.e., ‖Q − Q̂‖2 = O(ε). A similar bound holds for H. If B = D̄Ū ,
where D̄ is diagonal and Ū is unit upper bidiagonal, then B = D̄Ū need not be an
RRD of B.

How do we compute an RRD of B? We can simply run GECP on B. Since B is
acyclic (the bipartite graph of B does not have any cycles), the process of Gaussian
elimination with complete pivoting will not involve any subtractions and will therefore
be highly accurate (see section 6 and Algorithm 10.1 in [6]). More precisely, if P1

and PT
2 are the permutation matrices coming from the complete pivoting strategy

and B = P1LDUPT
2 , with L unit lower triangular, U unit upper triangular, and D

diagonal, then all the entries of the L, D, and U factors are computed with relative
errors of order ε.

Once we have B = P1LDUPT
2 , we obtain an RRD of A:

A = (QP1L) ·D · (UPT
2 HT ) ≡ XDY T .

A direct and standard error analysis shows that the computed factors satisfy the error
bounds (2). The cost of computing B is at most 16

3 n3 +O(n2) flops [26], and forming
Q and H requires not more than 6n3 +O(n2) flops. The cost of GECP on B does not

exceed 2
3n

3 + O(n2) flops and n3

3 comparisons. Finally, the last two matrix multipli-
cations require not more than 2n3 flops. The total cost does not exceed 14n3 +O(n2)

flops and n3

3 comparisons.

5.2. RRD of a symmetric TN matrix. The techniques of section 5.1 can
certainly be used to compute an RRD of a nonsingular symmetric TN matrix given
its bidiagonal decomposition. This approach does not, however, respect the symmetry
of the matrix. In this subsection we present a different RRD algorithm, which does
respect the symmetry.

Let the bidiagonal decomposition of a symmetric and nonsingular TN matrix A
be given. Then in (15) we have L(i) = (U (i))T . We can use the techniques of [26] to
apply highly accurate Givens rotations to A and reduce A to tridiagonal form T :

A = QTQT ,

where Q is orthogonal and T = LDLT is TN. All entries in the lower unit bidiagonal
factor L and in the diagonal factor D are computed with relative errors of order ε,
while the error in Q is ‖Q− Q̂‖2 = O(ε). Notice that the previous process computes
BD(T ) and Q starting from BD(A), and that the decomposition T = LDLT need not
reveal the rank of T since L need not be well conditioned.

The remaining task in getting an accurate symmetric RRD is to compute, given
BD(T ), an accurate RRD of T by using symmetric GECP:

T = PL̄D̄L̄TPT ,



EIGENDECOMPOSITIONS OF SYMMETRIC MATRICES 1141

where P is a permutation matrix, L̄ is unit lower triangular, and D̄ is diagonal. Then
the symmetric RRD of A is

A = (QPL̄)D̄(QPL̄)T .

We will show how to compute P and all the entries of L̄ and D̄ with relative
errors of order ε. Our approach is based on two key ideas: the first is that T is
positive definite, and thus the pivoting strategy in GECP will be diagonal, and the
second is that the elements of L̄ and D̄ are signed quotients of minors of T . We
will proceed in three steps as follows: (a) The bidiagonal factorization of a principal
submatrix of T is accurately computed starting from BD(T ) in Algorithm 3; (b) this
is used in Algorithm 4 to compute accurate minors of T ; and (c) the elements of L̄
and D̄ are computed as quotients of minors in Algorithm 5, together with P .

We can summarize the algorithm to compute a symmetric RRD of a nonsingular
symmetric TN matrix A as follows.

Algorithm 2. Computing a symmetric RRD A = XDXT of a symmetric
nonsingular TN matrix A given BD(A).

1. Apply Givens rotations as in [26, section 4.3] to compute an orthogonal matrix
Q and BD(T ) of a symmetric TN tridiagonal matrix T such that A = QTQT .

2. Compute a symmetric RRD of T = PL̄D̄L̄TPT using Algorithm 5.
3. Multiply to get A = (QPL̄)D̄(QPL̄)T ≡ XDXT .

Step 1 requires not more than 8
3n

3 +O(n2) flops to get BD(T ) (see [26]) and not
more than 3n3 + O(n2) additional flops to compute Q. We will see that the cost of
step 2 does not exceed 14 1

3n
3 +O(n2). Finally, the cost of step 3 does not exceed n3.

The total cost of Algorithm 2 does not exceed 21n3 + O(n2) flops.
We will show that the computation of the symmetric RRD T = PL̄D̄L̄TPT is

subtraction free. Combining this with the errors in Q, BD(T ), and matrix multipli-
cation, it can be easily shown that the computed RRD satisfies (2).

Once a symmetric RRD, A = XDXT , of the TN matrix A is computed, the
eigenvalues and eigenvectors of A can be accurately computed by using the one-sided
Jacobi algorithm to get the singular values and left singular vectors of XD1/2 [10,
section 5.4.3], [9]. The Jacobi rotations in this procedure have to be applied on the
left, and the whole process respects the symmetry. The techniques introduced in [26]
allow us to develop another symmetric method to compute accurate eigenvalues of a
nonsingular symmetric TN matrix A: First, step 1 of Algorithm 2 is performed to
get T = LDLT ; next, the differential quotient-difference algorithm with shifts (dqds)
[13] is applied on the Cholesky factor LD1/2 to compute its accurate singular values.
This approach does not use RRDs.

5.2.1. The bidiagonal decomposition of a principal submatrix of a TN
tridiagonal symmetric matrix. Let T be a nonsingular symmetric TN tridiagonal
matrix3 and S be a principal submatrix of T . The purpose of this section is to accu-
rately compute BD(S) given BD(T ).

Consider first the simple special case when the principal submatrix S is obtained

3The results of this section remain valid for positive definite tridiagonal matrices because a
positive definite tridiagonal matrix is TN if and only if its off-diagonal elements are nonnegative
[16, p. 81]. Therefore, any positive definite tridiagonal matrix is similar to a TN matrix through a
diagonal similarity transformation with elements ±1.
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by erasing the ith row and the ith column of T :

T =

⎡
⎢⎢⎢⎢⎣

t11 t12

t21
. . .

. . .

. . .
. . . tn−1,n

tn,n−1 tnn

⎤
⎥⎥⎥⎥⎦

;

S = T ([1 : i− 1, i + 1 : n], [1 : i− 1, i + 1 : n])

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t11 t12

t21
. . .

. . .

. . .
. . . ti−2,i−1

ti−1,i−2 ti−1,i−1

ti+1,i+1 ti+1,i+2

ti+2,i+1
. . .

. . .

. . .
. . . tn−1,n

tn,n−1 tnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Once we figure out how to compute BD(S) from BD(T ), we can proceed by induc-
tion and erase other rows and columns of S to obtain the bidiagonal decomposition
of any principal submatrix of T .

Since the process of Neville elimination of S and T does not differ for the first
i−1 rows and columns, we have BD(S(1 : i−1, 1 : i−1)) = BD(T (1 : i−1, 1 : i−1)),
and we need only compute BD(S(i+1 : n, i+1 : n)). Therefore, we may assume that
i = 1 without any loss of generality.

Let BD(T ) and BD(S) be given as

T = LDLT and S = T (2 : n, 2 : n) = L̄D̄L̄T ,

where D = diag(di)
n
i=1, D̄ = diag(d̄i)

n
i=2, and the unit lower bidiagonal matrices L

and L̄ have off-diagonal elements li, i = 1, 2, . . . , n − 1, and l̄i, i = 2, 3, . . . , n − 1,
respectively. From T = LDLT we have

t11 = d1; tii = l2i−1di−1 + di; ti−1,i = li−1di−1, i = 2, 3, . . . , n,(16)

and from T (2 : n, 2 : n) = L̄D̄L̄T we get

t22 = d̄2; tii = l̄2i−1d̄i−1 + d̄i; ti−1,i = l̄i−1d̄i−1, i = 3, 4, . . . , n.(17)

By comparing (16) and (17), we obtain

d̄2 = l21d1 + d2,

d̄i = di + l2i−1di−1 − l̄2i−1d̄i−1, i = 3, 4, . . . , n,(18)

l̄id̄i = lidi, i = 2, 3, . . . , n− 1.

We introduce auxiliary variables zi ≡ d̄i − di and get rid of the subtraction in (18):

z2 = l21d1,

d̄2 = z2 + d2,

l̄i = lidi/d̄i, i = 2, . . . , n− 1,(19)

zi+1 = d̄i+1 − di+1 = l2i di − l̄2i d̄i = (d̄i − di)l
2
i di/d̄i = li l̄izi, i = 2, . . . , n− 1,

d̄i+1 = zi+1 + di+1, i = 2, . . . , n− 1.
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The iterations (19) need only be performed for those i ≥ 2 for which li �= 0. These
iterations therefore cost 5(j − 1), where j < n is the smallest index such that lj = 0
(or j = n if lk �= 0 for k = 1, 2, . . . , n − 1). In the general case, when we remove the
ith row and the ith column of T , the cost is 5(j − i), where j ≥ i is defined as above.

We now implement the recurrences (19).
Algorithm 3. Let T = LDLT be a nonsingular symmetric TN tridiagonal ma-

trix, where D = diag(di)
n
i=1, di > 0, i = 1, 2, . . . , n, and L is a unit lower bidiagonal

matrix with off-diagonal entries li ≥ 0, i = 1, 2, . . . , n − 1. Let α = {α1, α2, . . . , αr},
1 ≤ α1 < α2 < · · · < αr ≤ n be a subset of indices. Given the vectors d =
(d1, d2, . . . , dn) and l = (l1, . . . , ln−1), the following subtraction-free algorithm com-
putes the decomposition T (α, α) = L̄D̄L̄T in at most 5r time:

function [d̄, l̄] = TNTridiagSubmatrix(d, l, α)
n = length(d)
d̄ = d; l̄ = l; l̄n = 0
Let β be the complement of α in the set {1, 2, . . . , n}
(In MATLAB notation: β = [1 : n]; β(α) = 0; β = β(β > 0))
for k = length(β) : −1 : 1

if βk < n
z = dβk

l2βk

j = βk + 1
d̄j = z + dj
while l̄j �= 0

l̄j = ljdj/d̄j
z = lj l̄jz
d̄j+1 = z + dj+1

j = j + 1
end

end

l̄βk−1 = 0; l̄βk
= 0

end

d̄ = d̄(α); l̄ = l̄(α); l̄ = l̄(1 : (r − 1))

5.2.2. A minor of a TN tridiagonal symmetric matrix. Next we consider
the problem of accurately computing the value of any minor of a nonsingular sym-
metric TN tridiagonal matrix T :

T (α, β) = T ([i1, . . . , ik], [j1, . . . , jk]),

where α = [i1, i2, . . . , ik], 1 ≤ i1 < i2 < . . . < ik ≤ n, and β = [j1, j2, . . . , jk],
1 ≤ j1 < j2 < . . . < jk ≤ n.

Let 1 ≤ k1 < k2 < · · · < kr ≤ k be all indices such that iks �= jks , s = 1, 2, . . . , r,
and let γ = {i1, i2, . . . , ik}\{ik1 , . . . , ikr}. Then [16, p. 80]

detT (α, β) = detT (γ, γ)tik1
jk1

· · · tikr jkr
.(20)

The minor detT (γ, γ) can be computed by first computing the bidiagonal decom-
position of T (γ, γ) using Algorithm 3 (then detT (γ, γ) = d̄1d̄2 · · · d̄k−r). Any entry
tiks jks

, iks �= jks , equals either zero, tm,m+1, or tm+1,m. The latter two are easily
computed from T = LDLT : tm,m+1 = tm+1,m = dmlm. The total cost of computing
any minor detT (α, β) following this procedure does not exceed 6k flops.



1144 FROILÁN M. DOPICO AND PLAMEN KOEV

Remark 1. A set of indices z ⊂ {1, 2, . . . , n} can be sorted in increasing order in
4n time by using the following MATLAB commands:

x=1:n; x(z)=0; y=1:n; z=y(x==0);

therefore, we can sort the index sets in T (α, β) in 8n time and allow index sets in
arbitrary order in Algorithm 4 below.

Algorithm 4 (minor of a TN tridiagonal matrix). Let T = LDLT be a non-
singular symmetric TN tridiagonal matrix with notation as in Algorithm 3. Given
the vectors d and l, and two sets of indices α and β, the following subtraction-free
algorithm computes |detT (α, β)| to high relative accuracy in at most 14n time:

function f = TNTridiagMinor(d, l, α, β)
. . .first sort α and β in increasing order (see Remark 1 above). . .

f = 1; γ = [ ]
for i = 1 : length(α)

if αi = βi

γ = [γ, αi]
elseif |αi − βi| = 1

f = fdsls, where s = min(αi, βi)
else

f = 0; return
end

end

[d̄, l̄] = TNTridiagSubmatrix(d, l, γ)
f = fd̄1d̄2 · · · d̄s, where s = length(γ)

5.2.3. Computing an RRD of a TN tridiagonal symmetric matrix. In
this section we present an O(n3) algorithm which, given the factorization T = LDLT

of a nonsingular symmetric TN tridiagonal matrix T , computes an accurate, sym-
metric RRD of T . The RRD in question is the LDU decomposition of T resulting
from GECP, with L (resp., U) being a unit lower (resp., upper) triangular matrix.
We compute each entry of this LDU decomposition as a quotient of minors of T . We
compute each minor of T accurately using Algorithm 4.

Since T is positive definite, the pivoting in GECP will be diagonal. The pivot
order is determined by comparing the diagonal entries in the Schur complements; if
γ = [γ1, γ2, . . . , γk] is the current pivot order at step k, and α = {1, 2, . . . , n}\γ, then
the diagonal entries of the kth Schur complement are4

detT ([γ, αj ], [γ, αj ])

detT (γ, γ)
, j = 1, 2, . . . , n− k.(21)

We need only compare the numerators in (21) and we compute those using Algo-
rithm 4.

4These expressions for the entries of the Schur complements are valid if for each step of Gaussian
elimination the row and column containing the chosen pivot are moved to the first positions in the
corresponding Schur complement and the rows and columns between the first and the ones containing
the pivot are displaced down one position. This is not the usual implementation of pivoting in
Gaussian elimination, which simply interchanges the first row and the first column with the pivot
row and the pivot column, respectively [21, 22]. Obviously both implementations produce similar
bounds on the elements of L and U , and, therefore, they are equivalent from the point of view of
computing RRDs.
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Once we obtain the pivot order γ, the entries of the LDU decomposition T =
PL̄D̄L̄TPT resulting from GECP are computed as

D̄ii =
detT (γ(1 : i), γ(1 : i))

detT (γ(1 : i− 1), γ(1 : i− 1))
;(22)

L̄ji =
detT (γ(1 : i), γ([1 : i− 1, j]))

detT (γ(1 : i), γ(1 : i))
, j > i,(23)

with each minor in (22) and (23) computed using Algorithm 4.
The sign of the minor detT (γ(1 : i), γ([1 : i−1, j])) equals sgn(γ(1 : i)) ·sgn(γ([1 :

i − 1, j])). Here sgn(δ) is the sign of [δ1, δ2, . . . ] as a permutation of the ordered set
{δ1, δ2, . . . }, defined as sgn(δ) ≡ (−1)t, where t ≡ #{(k, l)|k < l and δk > δl}; i.e., t is
the minimum number of transpositions necessary to sort the elements of δ in increasing
order. The first i− 1 entries of γ(1 : i) and γ([1 : i− 1, j]) coincide; therefore the sign

of detT (γ(1 : i), γ([1 : i− 1, j])) equals (−1)s, s =
∑i−1

k=1 xor(γi < γk, γj < γk).
Algorithm 5 (GECP on a TN tridiagonal matrix). Let T = LDLT be a

nonsingular symmetric TN tridiagonal matrix. Given the vectors d and l (defined in
Algorithm 3), the following subtraction-free algorithm computes the decomposition of
T = PL̄D̄L̄TPT resulting from Gaussian elimination with complete pivoting. Every
entry of D̄ and L̄ is computed to high relative accuracy, and the total cost does not
exceed 14 1

3n
3 + O(n2).

function [P, L̄, D̄] = TNTridiagGECP(d, l)
n = length(d)
L̄ = eye(n); P = eye(n); D̄ = eye(n);
α = 1 : n; γ = [ ]

. . .First, determine the pivot order. . .
for i = 1 : n

for j = 1 : n− i + 1
zj = TNTridiagMinor(d, l, [γ, αj ], [γ, αj ])

end

Let m be such that zm = max
1≤j≤n−i+1

zj

γi = αm

α = α([1 : m− 1,m + 1 : n− i + 1])
ti = zm

end

. . .Next, compute the entries of D̄ and L̄ using (22) and (23). . .
for i = 1 : n

D̄ii = ti/ti−1 ( . . . assume t0 = 1)
for j = i + 1 : n

. . .Compute the sign of L̄ji . . .
s = 1
for k = 1 : i− 1

s = s · (−1)^xor(γi < γk, γj < γk)
end

L̄ji = s · TNTridiagMinor(d, l, γ(1 : i), γ([1 : i− 1, j]))/ti
end

end

P = P (:, γ)
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6. Numerical experiments. We performed extensive numerical tests and con-
firmed the accuracy and cost of our algorithms. More precisely, we combined Al-
gorithm 1 and the one-sided J-orthogonal algorithm [33, Algorithm 3.3.1, page 66]
to compute, preserving the symmetry, accurate eigenvalues and eigenvectors of sym-
metric diagonally scaled Cauchy matrices with different dimensions and several dis-
tributions of random Cauchy parameters. The output was compared with that of
another O(n3) accurate algorithm (nonsymmetric RRD computed as in [5] combined
with the SSVD algorithm from [11]), and also with the output from the MATLAB
eig function in variable precision arithmetic (with precision set to log10 κ2(C) + 20
decimal digits, guaranteeing at least 16 correct significant digits in each eigenvalue).
The output of all three algorithms agreed to at least 14 digits for all the eigenvalues,
including the ones with tiniest absolute values. The computed eigenvectors also satis-
fied the bounds (1). Most test matrices had condition numbers well in excess of 1016,
so conventional eigenvalue algorithms (e.g., the MATLAB function eig in double [23]
precision) failed to get any correct digits in the eigenvalues with tiniest absolute values
and in the direction of the eigenvectors corresponding to these eigenvalues (when at
least two tiny eigenvalues λi such that |λi| ≤ 10−16‖C‖2 were present). We performed
similar tests on symmetric Vandermonde matrices for several dimensions and choices
of the parameter a, and also for symmetric TN matrices. In the case of symmetric
Vandermonde matrices, we also tested matrices with 2

3 < |a| < 3
2 and verified that the

factorizations obtained with the approach in section 4 are not RRDs when |a| is close
to one (κ2(L) → 2n as |a| → 1). For these matrices, eigenvalues and eigenvectors to
high relative accuracy can be obtained, at present, only through the nonsymmetric
procedure by first computing a nonsymmetric RRD as in [5] and then applying the
SSVD algorithm from [11].

We present in detail one of our tests. We consider the 20×20 symmetric Vander-
monde matrix A with a = 1

2 ; see (9). The condition number of A is κ2(A) ≈ 3.5 ·1053.
We compute its eigenvalues using the following algorithms:

• Algorithm A: The MATLAB eig function with 75-digit arithmetic.
• Algorithm B: Compute a symmetric RRD using the formulas in section 4

followed by the J-orthogonal algorithm [33, Algorithm 3.3.1, page 66].
• Algorithm C: Compute a nonsymmetric RRD as in [5] followed by the SSVD

algorithm of [11].
• Algorithm D: The MATLAB eig function in double [23] precision arithmetic.

The output of Algorithms A, B, and C agreed to at least 14 digits, so we plotted only
the output of Algorithms B and D in Figure 6.1. Since κ2(A) ≈ 3.5 · 1053, Algorithm
A computed all eigenvalues with at least 16 significant decimal digits of accuracy.
Algorithms B and C guarantee high relative accuracy for the computed eigenvalues.
The results from those algorithms agreed with the ones from Algorithm A to at least
14 digits. In contrast, the traditional Algorithm D returned only the eigenvalues of
largest absolute value accurately, with the accuracy gradually decreasing until the
eigenvalues with magnitude smaller than O(ε)||A||2 were computed with no correct
digits at all.

Appendix. Rounding error analysis for diagonally scaled Cauchy ma-
trices. Theorem 3.1 is proved in this appendix in a more general setting. The error
analysis we present remains valid when the Bunch–Parlett method is applied on any
matrix for which it is possible to compute the entries of its Schur complements with
relative errors bounded by kε/(1 − kε), where k is an integer positive number and ε
is the machine precision. For scaled Cauchy matrices, k = 8n according to (7).
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Eigenvalues of 20×20 symmetric Vandermonde matrix with a=1/2

Fig. 6.1. Plots of the absolute values of the eigenvalues of the 20×20 symmetric Vandermonde
matrix with a = 1

2
. The “�” and “©” symbols represent, respectively, the negative and positive

eigenvalues computed with an accurate algorithm. The “×” and “+” symbols represent, respectively,
the negative and positive eigenvalues computed by Algorithm D (implemented as the MATLAB
function eig in double precision arithmetic). Data below the dotted line may be inaccurate for
Algorithm D.

We use the conventional error model for floating point arithmetic [22, section 2.2]:

fl(a b) = (a b)(1 + δ),

where a and b are real floating point numbers,  ∈ {+,−,×, /}, and |δ| ≤ ε. Moreover,
we assume that neither overflow nor underflow occurs. We also use the following
notation introduced in [22, Chapter 3]: θq is any number such that

|θq| ≤
qε

1 − qε
≡ γq.(24)

Moreover, the results in [22, Lemma 3.3] will be frequently used throughout this
section without being explicitly referred to. We will assume that 0 < γq for all the
symbols γq appearing in this section.

In what follows, α is the parameter used in the Bunch–Parlett pivoting strategy
to decide whether a 1× 1 or 2× 2 pivot is selected (see Algorithm 1). We present the
error bounds in this section depending on α, where 0 < α < 1. Thus values different
from the classical one, α = (1 +

√
17)/8, are also considered.

A.1. Auxiliary results on the Jacobi method. Let us write the Jacobi pro-
cedure [21] to orthogonally diagonalize a 2 × 2 real symmetric matrix as a matrix
factorization. The following equation holds:

[
a c
c b

]
=

[
cs sn
−sn cs

] [
a− c t 0

0 b + c t

] [
cs −sn
sn cs

]
,(25)
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where

ζ =
b− a

2c
, t =

sign(ζ)

|ζ| +
√

1 + ζ2
,(26)

cs =
1√

1 + t2
, sn = cs · t,(27)

and sign(0) = 1.
In general, disastrous cancellations may appear in the Jacobi procedure above,

and the eigenvalues computed in floating point arithmetic may be inaccurate. How-
ever, it is well known that the Jacobi procedure is backward stable because only
orthogonal matrices are involved. Theorem A.1 below shows this, providing precise
error bounds that we will use in the detailed error analysis of the next subsections.
The Jacobi method computes accurate eigenvalues for well-conditioned matrices be-
cause it is backward stable. We will see that this is the case for the 2 × 2 pivots
selected by the Bunch–Parlett pivoting strategy.

Theorem A.1. Let

Ã =

[
ã c̃

c̃ b̃

]

be a matrix of real floating point numbers. Let us apply to Ã the Jacobi procedure
(25) in floating point arithmetic with machine precision ε. Let c̃s, s̃n, λ̃1 = ã − c̃ t̃,

and λ̃2 = b̃ + c̃ t̃ be the exact magnitudes for Ã, and let ĉs, ŝn, λ̂1, and λ̂2 be the
corresponding computed counterparts. Then

1. ĉs = c̃s (1 + θ113).
2. ŝn = s̃n (1 + θ141).

3. λ̂1 = λ̃1 + e1 with |e1| ≤ (|ã| + |c̃ t̃|)γ29.

4. λ̂2 = λ̃2 + e2 with |e2| ≤ (|b̃| + |c̃ t̃|)γ29.
Moreover, the computed eigendecomposition

[
ĉs ŝn
−ŝn ĉs

] [
λ̂1 0

0 λ̂2

] [
ĉs −ŝn
ŝn ĉs

]

is nearly the exact eigendecomposition of Ã + E; more precisely,

Ã + E =

[
c̃s s̃n
−s̃n c̃s

] [
λ̂1 0

0 λ̂2

] [
c̃s −s̃n
s̃n c̃s

]
,

where ‖E‖2 ≤
√

2 γ29‖Ã‖F ≤ 2 γ29 ‖Ã‖2.

Proof. The bounds for ĉs, ŝn, λ̂1, and λ̂2 follow from a direct application of
Lemmas 3.1 and 3.3 in [22]. For the backward error bound, notice that

E =

[
c̃s s̃n
−s̃n c̃s

] [
e1 0
0 e2

] [
c̃s −s̃n
s̃n c̃s

]
.

Then ‖E‖2 = max{|e1|, |e2|} ≤ γ29 max{|ã| + |c̃ t̃|, |b̃| + |c̃ t̃|} ≤ γ29 max{|ã| + |c̃|, |b̃| +
|c̃|} ≤

√
2 γ29‖Ã‖F .
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A.2. Properties of 2 × 2 Bunch–Parlett pivots. The 2 × 2 pivots selected
by the Bunch–Parlett complete pivoting strategy are very well conditioned symmetric
indefinite matrices. The next lemma quantifies this fact.

Lemma A.2. Let H be a real symmetric 2 × 2 matrix such that α |h21| >
max{|h11|, |h22|}, where 0 < α < 1. Then the spectral condition number, κ2(H),
of H is bounded as

κ2(H) <
1 + α

1 − α
.

This bound cannot be improved. In particular, if α = 0.6404, then κ2(H) < 4.6.
Proof. Let us write the matrix H as

H =

[
0 h21

h21 0

]
+

[
h11 0
0 h22

]
≡ H0 + H1.

The singular values of H0 are both equal to |h21|. Then using Weyl’s perturbation
theorem for singular values (see, for instance, [10, Corollary 5.1]), we get

κ2(H) ≤ |h21| + ‖H1‖2

|h21| − ‖H1‖2
<

|h21| + α|h21|
|h21| − α|h21|

=
1 + α

1 − α
.

The bound cannot be improved because the matrix H =
[
α
1

1
α

]
has κ2(H) =

1+α
1−α .

The entries of the eigenvectors of the 2 × 2 pivots selected by the Bunch–Parlett
strategy are bounded below by 1/3. This means that small normwise variations in
the eigenvectors imply small variations in the components.

Lemma A.3. Let H be a real symmetric 2 × 2 matrix such that α |h21| >
max{|h11|, |h22|}, where 0 < α < 1. Let

[
cs

−sn
sn
cs

]
be the orthogonal eigenvector matrix

of H; then

1√
2
≤ cs ≤ α +

√
1 + α2

√
1 +

(
α +

√
1 + α2

)2 ,

1√
1 +

(
α +

√
1 + α2

)2 ≤ sn ≤ 1√
2
.

In particular, if α = 0.6404, then 0.47 ≤ sn and cs ≤ 0.88. The following simple
lower bound for sn is valid for any α: 1/3 < sn.

Proof. From (26), |ζ| ≤ α and 1/(α +
√

1 + α2) ≤ |t| ≤ 1. Combining these
bounds with (27), the lemma is proved.

A.3. Forward errors in RRDs. The entries of the Schur complements of diag-
onally scaled Cauchy matrices are computed by (7) with relative errors less than γ8n.
In this section we assume that the entries of the Schur complements are computed
with relative errors less than γk; thus the error analysis remains valid for other cases.

A nagging problem will arise in the analysis: the computed 2× 2 pivots fulfill the
conditions of Bunch and Parlett, i.e., α |ĥ21| > max{|ĥ11|, |ĥ22|}, but the exact pivots
may not. This justifies the following lemma.

Lemma A.4. Let

Ã =

[
a(1 + βa) c(1 + βc)
c(1 + βc) b(1 + βb)

]
≡
[

ã c̃

c̃ b̃

]
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be a matrix of real floating point numbers, where max{|βa|, |βb|, |βc|} ≤ γk, and α |c̃| >
max{|ã|, |b̃|}, with 0 < α < 1. Denote A ≡

[
a
c
c
b

]
. If

4
√

2
1 + α

1 − α
γk ≤ 1,(28)

then

κ2(A) ≤ 2
1 + α

1 − α
.(29)

Proof. Notice that

Ã = A + E1 with ‖E1‖F ≤ γk‖A‖F ≤
√

2 γk‖A‖2.(30)

Let σ1 ≥ σ2 and σ̃1 ≥ σ̃2 be the singular values of A and Ã, respectively. Now
Corollary 5.1 from [10] implies

κ2(Ã) =
σ̃1

σ̃2
≥ σ1 −

√
2 γk‖A‖2

σ2 +
√

2 γk‖A‖2

= κ2(A)
1 −

√
2 γk

1 +
√

2 γk κ2(A)
.

From this we get

κ2(A) ≤ κ2(Ã)

1 − 2
√

2 γk κ2(Ã)
.

The result follows from (28) and Lemma A.2, which implies

κ2(Ã) ≤ (1 + α)/(1 − α).

Obviously the rigorous factor 2 in (29) is pessimistic, and in practice κ2(A) ≈
κ2(Ã) ≤ (1+α)/(1−α). However, at the cost of the nonessential factor 2, Lemma A.4
allows us to get rigorous error bounds instead of first-order error bounds. In particular,
we can prove the following lemma.

Lemma A.5. Let

Ã ≡
[

ã c̃

c̃ b̃

]
=

[
a(1 + βa) c(1 + βc)
c(1 + βc) b(1 + βb)

]

be a matrix of real floating point numbers, where max{|βa|, |βb|, |βc|} ≤ γk, and α |c̃| >
max{|ã|, |b̃|}, with 0 < α < 1. Denote A ≡

[
a
c
c
b

]
. Let the eigenvalues of A be

λ1 ≥ λ2; v1 and v2 be the corresponding orthonormal eigenvectors; and cs and sn be
the components of the eigenvectors, i.e., v1 = [cs , −sn]T and v2 = [sn , cs]T or vice

versa. Let λ̂1, λ̂2, v̂1, v̂2, ĉs, and ŝn be their corresponding computed counterparts by
applying the Jacobi process in (25)–(27) to Ã in floating point arithmetic with machine
precision ε. If

4
√

2
1 + α

1 − α
γk+29 ≤ 1 and γ141+48k ≤ 1,(31)

then
1.

|λ̂i − λi|
|λi|

≤ 4
1 + α

1 − α
γk+29, i = 1, 2;(32)
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2.

‖v̂i − vi‖2 ≤ γ4k+141, i = 1, 2;(33)

3.

ĉs = cs (1 + θ16k+113) and ŝn = sn (1 + θ48k+141).(34)

We have chosen to get error bounds for cs and sn that do not depend on α. At
the cost of complicating the bounds, it is possible to get sharper bounds depending on
α. Moreover, we have frequently overestimated the bounds to get simpler expressions.
It is well known that the precise value of the constants appearing in roundoff error
bounds are, in any case, pessimistic.

Proof of Lemma A.5. According to Theorem A.1, λ̂1 and λ̂2 are the exact eigen-
values of

Ã + E with ‖E‖2 ≤
√

2γ29‖Ã‖F ,

while v̂1 and v̂2 differ from the exact eigenvectors of Ã + E by only small relative
changes in each component. Therefore, by taking into account (30), we get that λ̂1

and λ̂2 are the exact eigenvalues of

A + E2 ≡ A + E1 + E with ‖E2‖2 ≤
√

2 γk+29‖A‖F ≤ 2 γk+29‖A‖2,(35)

and v̂1, v̂2 are small relative componentwise perturbations of the eigenvectors of A +
E2. Weyl’s perturbation theorem for eigenvalues implies that |λ̂i − λi| ≤ ‖E2‖2 ≤
2 γk+29‖A‖2. By using (29) we obtain (32):

|λ̂i − λi|
|λi|

≤ 2 γk+29κ2(A) ≤ 4
1 + α

1 − α
γk+29, i = 1, 2.

Let us focus on the eigenvectors. In the first place, we are going to relate the
eigenvectors v1 and v2 of A to the eigenvectors ṽ1 and ṽ2 of Ã. Notice that according
to Theorem A.1, the components of v̂1 and v̂2 are small relative perturbations of the
components of ṽ1 and ṽ2. Therefore, once ṽ1 and ṽ2 are related to v1 and v2, the
difference between v̂i and vi, i = 1, 2, is easily obtained. Let θ(vi, ṽi) be the acute
angle between vi and ṽi. Then [10, Theorem 5.4] and (30) lead to

1

2
sin 2 θ(vi, ṽi) ≤

√
2 γk ‖A‖2

|λ1 − λ2|
.(36)

Let λ̃1 ≥ λ̃2 be the eigenvalues of Ã. Using again Weyl’s theorem, we obtain |λ̃i−λi| ≤√
2γk‖A‖2, i = 1, 2. Therefore, |λ̃i − λi|/|λi| ≤

√
2γkκ2(A). Lemma A.4 implies

|λ̃i − λi|
|λi|

≤ 2
√

2
1 + α

1 − α
γk,(37)

and the first assumption in (31) leads to |λ̃i − λi|/|λi| ≤ 1/2. Therefore, λ̃i and λi

have the same sign. The matrix Ã is indefinite, as is A, thus |λ1 − λ2| > ‖A‖2, and

1

2
sin 2 θ(vi, ṽi) ≤

√
2 γk.(38)
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The first assumption in (31) implies sin 2 θ(vi, ṽi) < 1/2; thus 1/
√

2 ≤ cos θ(vi, ṽi).
From this bound and (38), we obtain sin θ(vi, ṽi) ≤ 2 γk, and, by using that ‖vi−ṽi‖2 ≤√

2 sin θ(vi, ṽi),

‖vi − ṽi‖2 ≤ 2
√

2 γk < γ4k, i = 1, 2.(39)

Now, notice that the error bounds for ĉs and ŝn appearing in Theorem A.1 lead to
‖v̂i − ṽi‖2 ≤ γ141. Finally,

‖v̂i − vi‖2 ≤ ‖v̂i − ṽi‖2 + ‖ṽi − vi‖2 ≤ γ4k+141, i = 1, 2,

which is (33).
Let us prove the third item. We prove only the error bound for sn. The bound

for cs is proved in a similar way. The bound (39) implies

∣∣∣∣
sn− s̃n

s̃n

∣∣∣∣ ≤
2
√

2 γk
|s̃n| < 6

√
2 γk,

where we have used that 1/3 < |s̃n|, according to Lemma A.3. Then

∣∣∣∣
sn− s̃n

sn

∣∣∣∣ ≤
6
√

2 γk

1 − 6
√

2 γk
≤ (2 +

√
2) 6

√
2 γk < γ48k,(40)

where we have used that 6
√

2γk ≤ 1/
√

2. The previous bound can also be written as
s̃n = sn(1 + θ48k). Combining this expression with Theorem A.1, we get the bound
in (34) for the sine.

Lemma A.5 allows us to prove the main theorem of this section. In this theorem,
we extend the symbols θx and γx introduced in (24) to noninteger values of x ≥ 1.
In particular, it is easy to check that Lemma 3.3 in [22] remains valid for these non-
integer values.

Theorem A.6. Let B = BT be an n × n real matrix, and let S(m) be its mth
Schur complement, 0 ≤ m ≤ n − 1. Let us assume that all the entries of the Schur
complements of B can be computed with relative error bounded by γk in floating point
arithmetic with machine precision ε, i.e.,

Ŝ
(m)
ij = S

(m)
ij (1 + β

(m)
ij ), |β(m)

ij | ≤ γk for all i, j,m,(41)

where Ŝ(m) are the computed Schur complements. Let us also assume that the Bunch–
Parlett pivoting strategy applied to B in floating point arithmetic does not permute
any rows or columns of B.

Let X̂D̂X̂T be the RRD of B computed in floating point arithmetic by applying

the Bunch–Parlett method to the Schur complements Ŝ(m), 0 ≤ m ≤ n − 1, followed
by the Jacobi spectral diagonalization of the 2 × 2 pivots, as in (6). Let us apply this
algorithm to B in exact arithmetic by choosing the same dimensions for the pivots
as those selected in floating point arithmetic. Let X and D be the exact factors, i.e.,
B = XDXT . If

4
√

2
1 + α

1 − α
γk+29 ≤ 1 and γ141+48k ≤ 1,

then
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1.

|D̂ii −Dii| ≤ 4
1 + α

1 − α
γk+29 |Dii|, 1 ≤ i ≤ n;

2.

‖X̂ −X‖F ≤ 2
√

2
1 + α

1 − α
γh(α) ‖X‖F ,(42)

where

h(α) =

(
8

1 + α

1 − α
+ 49

)
k + 232

1 + α

1 − α
+ 144;(43)

3.

‖X̂(:, j) −X(:, j)‖2 ≤ 4
√

2n(1 + α)

(1 − α)2(1 − γg(α))
γh(α)‖X(:, j)‖2, 1 ≤ j ≤ n;(44)

where

g(α) =

(
32

(
1 + α

1 − α

)2

+ 196
1 + α

1 − α

)
k,(45)

and it is assumed that γg(α) < 1.
Theorem 3.1 follows from Theorem A.6, taking k = 8n, α = 0.6404, and increas-

ing some of the bounds to get simpler expressions.
Proof of Theorem A.6. The first item is trivial in the case of 1 × 1 pivots, and it

is a consequence of (32) for the 2 × 2 pivots, selected by the Bunch–Parlett strategy.
If X(:, s) is a column of X corresponding to a 1 × 1 pivot, we simply combine

roundoff errors to get X̂(i, s) = X(i, s)(1 + θ2k+1), and then

‖X̂(:, s) −X(:, s)‖2 ≤ γ2k+1 ‖X(:, s)‖2.(46)

Therefore, we need only focus on the columns corresponding to 2 × 2 pivots.
Let us assume for the rest of the proof that X(:, j : j + 1) are two columns of

X corresponding to a 2 × 2 pivot. Let us denote the nontrivial part of X as follows:
X(j : j + 1, j : j + 1) ≡ X11 and X(j + 2 : n, j : j + 1) ≡ X21. We will also use
S21 ≡ S(j−1)(j+2 : n, j : j+1). The 2×2 pivot is S11 ≡ S(j−1)(j : j+1, j : j+1), and
its orthogonal diagonalization is denoted by S11 = UΛUT . Finally, Λ ≡ diag(λ1, λ2).
The corresponding computed magnitudes will be denoted by the same hatted letters.

According to (6),

‖X̂11 −X11‖F = ‖Û − U‖F ≤
√

2 γ4k+141 = γ4k+141‖X11‖F ,(47)

where (33) has been used. To study the error in X21, it is convenient to define

f(α) ≡ 4
1 + α

1 − α
.

Thus, (32) implies that λ̂p = λp(1 + θf(α) (k+29)), for p = 1, 2. Notice that, by (6),
X21 = S21UΛ−1. Then for the computed magnitude,

(X̂21)pq =

2∑
l=1

(Ŝ21)pl (Û)lq

λ̂q

(1 + θ
(p,l,q)
3 ) =

2∑
l=1

(S21)pl Ulq

λq
(1 + θ

(p,l,q)
h(α) ),
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where h(α) is given by (43), and (34) has been used to bound the errors in the entries
of U . The previous equation leads to

|X̂21 −X21| ≤ γh(α) |S21| |UΛ−1|,

where, for any matrix B, |B| is the matrix whose entries are the absolute values of
the entries of B. Now, we use that the Frobenius norm is unitarily invariant to get

‖X̂21 −X21‖F ≤ γh(α) ‖S21U‖F ‖Λ−1‖F
≤

√
2 γh(α) ‖S21UΛ−1 Λ‖F ‖Λ−1‖2

≤
√

2 γh(α) ‖S21UΛ−1‖F κ2(Λ)

≤ 2
√

2
1 + α

1 − α
γh(α) ‖X21‖F ,(48)

where (29) and κ2(S11) = κ2(Λ) have been used. This inequality and (47) imply

‖X̂(:, j : j + 1) −X(:, j : j + 1)‖F ≤ 2
√

2
1 + α

1 − α
γh(α) ‖X(:, j : j + 1)‖F .

The normwise bound (42) is finally obtained by combining the above inequality with
(46).

The proof of the columnwise error bound (44) needs more work in the case of
columns of X corresponding to 2 × 2 pivots. It relies on two properties. The first is
that the absolute values of the entries of the matrix Ŝ21Ŝ

−1
11 are bounded by 1/(1−α)

because Ŝ11 is a 2 × 2 pivot chosen by the Bunch–Parlett pivoting strategy [4, 22]
(see also [20, page 118] for a simple proof). The second is that X11 = U , and, as a
consequence, both columns of X(:, j : j + 1) have a norm greater than or equal to 1.

We will use some additional notation in the rest of the proof. Let Ŝ11 = Ũ Λ̃ŨT

be the exact orthogonal diagonalization of Ŝ11. Notice that we have previously used

S11 = UΛUT , the exact orthogonal diagonalization of the exact block S11, and Û Λ̂ÛT ,
the computed orthogonal diagonalization of Ŝ11. We will also use the matrices X̃11 ≡
Ũ and X̃21 = Ŝ21Ũ Λ̃−1. Finally, Λ̃ ≡ diag(λ̃1, λ̃2).

According to [20, page 118],

‖X̃21‖F = ‖Ŝ21Ŝ
−1
11 ‖F ≤

√
2(n− j − 1)

1 − α
≤

√
2n

1 − α
.(49)

Let us relate ‖X̃21‖F to ‖X21‖F . Notice that

(X̃21)pq =

2∑
l=1

(Ŝ21)pl (Ũ)lq

λ̃q

.(50)

The difference between the eigenvalues and eigenvectors of Ŝ11 and those of S11 can
be bounded as done in (37) and (40) for A and Ã. Therefore, λ̃q = λq (1 + θf(α) k)

and (Ũ)lq = Ulq(1 + θ48k). Moreover, (Ŝ21)pl = (S21)pl (1 + θk), and (50) implies

(X̃21)pq =

2∑
l=1

(S21)pl Ulq

λq
(1 + θ(2f(α)+49)k).
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This implies |X̃21 − X21| ≤ γ(2f(α)+49)k |S21| |UΛ−1|. An argument similar to that
leading to (48) implies

‖X̃21 −X21‖F ≤ γg(α) ‖X21‖F ,

where g(α) is given by (45). This bound and (49) yield

‖X21‖F ≤ ‖X̃21‖F + ‖X21 − X̃21‖F ≤
√

2n

1 − α
+ γg(α) ‖X21‖F

and

‖X21‖F ≤
√

2n

(1 − α)(1 − γg(α))
.

We substitute this bound in (48) to get

‖X̂21 −X21‖F ≤ 4
√
n (1 + α)

(1 − α)2 (1 − γg(α))
γh(α).

This inequality and (47) imply

‖X̂(:, j : j + 1) −X(:, j : j + 1)‖F ≤ 4
√

2n (1 + α)

(1 − α)2 (1 − γg(α))
γh(α).

The bound (44) follows from (46) and the previous bound because max{‖X̂(:, j) −
X(:, j)‖2, ‖X̂(:, j + 1) − X(:, j + 1)‖2} ≤ ‖X̂(:, j : j + 1) − X(:, j : j + 1)‖F and
1 ≤ ‖X(:, j)‖2, 1 ≤ ‖X(:, j + 1)‖2.
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the singular value decomposition with high relative accuracy, Linear Algebra Appl., 299
(1999), pp. 21–80.

[7] J. Demmel and P. Koev, Accurate SVDs of weakly diagonally dominant M-matrices, Numer.
Math., 98 (2004), pp. 99–104.

[8] J. Demmel and P. Koev, Accurate SVDs of polynomial Vandermonde matrices involving
orthonormal polynomials, Linear Algebra Appl., 417 (2006), pp. 382–396.
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NUMERICAL METHODS FOR THE TRIDIAGONAL HYPERBOLIC
QUADRATIC EIGENVALUE PROBLEM∗

BOR PLESTENJAK†

Abstract. We consider numerical methods for the computation of the eigenvalues of the tridi-
agonal hyperbolic quadratic eigenvalue problem. The eigenvalues are computed as zeros of the
characteristic polynomial using the bisection, Laguerre’s method, and the Ehrlich–Aberth method.
Initial approximations are provided by a divide-and-conquer approach using rank two modifications,
and we show that these initial approximations interlace with the exact eigenvalues. The above
methods need a stable and efficient evaluation of the quadratic eigenvalue problem’s characteristic
polynomial and its derivatives. We discuss how to obtain these values using three-term recurrences,
the QR factorization, and the LU factorization. Numerical results show that the presented methods
are more efficient than solving a linearized generalized eigenvalue problem.

Key words. quadratic eigenvalue problem, inertia, Laguerre’s method, Ehrlich–Aberth method,
bisection, LU factorization, QR factorization, divide-and-conquer
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1. Introduction. We consider a Hermitian quadratic eigenvalue problem (QEP)

Q(λ)x = (λ2M + λC + K)x = 0,(1.1)

where M,C, and K are n×n Hermitian matrices. If (1.1) is satisfied for a nonzero x ∈
C

n and λ ∈ C, then λ is an eigenvalue and x is the corresponding (right) eigenvector.
The characteristic polynomial f(λ) = det(Q(λ)) is of degree less than or equal to 2n.
A QEP is regular when f is not identically zero. A regular QEP has 2n eigenvalues,
finite or infinite. The finite eigenvalues are the zeros of f while the infinite eigenvalues
correspond to the zero eigenvalues of the reversed QEP λ2Q(1/λ) = λ2K + λC +M .
If M is nonsingular, then we have 2n finite eigenvalues with up to 2n eigenvectors,
which are not necessarily linearly independent. QEPs appear in various applications;
for a recent survey of the QEP see [21].

We say that a QEP is hyperbolic [13] if M is positive definite and

(x∗Cx)2 > 4(x∗Mx)(x∗Kx)

for all x �= 0. For a hyperbolic QEP the eigenvalues are all real. In this paper we
focus on the tridiagonal hyperbolic QEP, where matrices M , C, and K are Hermi-
tian and tridiagonal. An example of a tridiagonal quadratic eigenvalue problem is a
damped mass-spring system (see, e.g., [21]). Our goal is to compute all or some of
the eigenvalues. For the computation of the eigenvalues we apply polynomial solvers
to the characteristic polynomial.

New theoretical results are presented in two theorems. In the first theorem we
generalize the inertia. The second result is that the initial approximations, obtained

∗Received by the editors February 20, 2005; accepted for publication (in revised form) by I. C. F.
Ipsen June 2, 2006; published electronically December 18, 2006. The research was supported in part
by Ministry of Higher Education, Science and Technology of Slovenia research project Z1-3136.
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(bor.plestenjak@fmf.uni-lj.si).
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by a divide-and-conquer approach, interlace with the exact eigenvalues. These two
results enable us to show that all the eigenvalues can be computed using Laguerre’s
method. The eigenvectors can be later obtained by the inverse iteration; for a stable
algorithm see [7].

We show that some of the presented methods can be applied to more general
problems, e.g., to the banded polynomial eigenvalue problems, though there is as yet
no theory to support this approach.

The paper is organized as follows. In section 2 we recall some results on hyperbolic
QEPs. The inertia of a hyperbolic QEP is discussed in section 3. In sections 4, 5,
and 6 three different approaches, based respectively on the three-term recurrences,
QR factorization, and LU factorization, for the computation of the derivatives of
the characteristic polynomial are presented. The divide-and-conquer approach for
the initial approximations is presented in section 7. In sections 8 and 9 Laguerre’s
method and the Ehrlich–Aberth method are applied to the computation of the zeros
of the characteristic polynomial, respectively.

Some numerical examples are given in section 10, followed by conclusions.

2. Auxiliary results. The following properties of the hyperbolic QEPs are
gathered from [8, 13, 18]. A hyperbolic QEP has 2n real eigenvalues and eigenvectors.
All eigenvalues are semisimple and there is a gap between the largest n (primary) and
the smallest n (secondary) eigenvalues. There are n linearly independent eigenvectors
associated with the primary and the secondary eigenvalues, respectively.

For each x �= 0 the equation

μ2x∗Mx + μx∗Cx + x∗Kx = 0

has two distinct real solutions μ1(x) < μ2(x). If x is an eigenvector, then at least
one of μ1(x) and μ2(x) is the corresponding eigenvalue. Values μ1(x) and μ2(x) are
generalizations of the Rayleigh quotient. As for the single symmetric matrix case,
there exists a minimax theorem for hyperbolic QEPs as well.

Theorem 2.1 (Duffin [8]). If λ2n ≤ · · · ≤ λ1 are the eigenvalues of a hyperbolic
QEP, then

λn+i = max
S⊂Cn

dim(S)=i

min
0 �=x∈S

μ1(x) and λi = max
S⊂Cn

dim(S)=i

min
0 �=x∈S

μ2(x)

for i = 1, . . . , n.
Theorem 2.2 (Markus [18]). A Hermitian QEP where M is positive definite

is hyperbolic if and only if there exists γ ∈ R such that the matrix Q(γ) is negative
definite.

Remark 2.3. The scalar γ in Theorem 2.2, such that Q(γ) is negative definite, lies
in the gap between the primary and the secondary eigenvalues, i.e., λn+1 < γ < λn.

3. Inertia of a hyperbolic QEP. The inertia of a Hermitian matrix A is a
triplet of nonnegative integers (ν, ζ, π), where ν, ζ, and π are, respectively, the number
of negative, zero, and positive eigenvalues of A. The following theorem shows that
the inertia of a Hermitian matrix Q(σ) is related to the number of eigenvalues of the
QEP Q that are larger or smaller than σ, respectively.

Theorem 3.1. Let M,C, and K be Hermitian n× n matrices such that Q(λ) =
λ2M + λC + K is a hyperbolic QEP, and let λ2n ≤ · · · ≤ λn+1 < λn ≤ · · · ≤ λ1 be
the eigenvalues of the QEP Q. If (ν, ζ, π) is the inertia of the matrix Q(σ), then ζ is
the algebraic multiplicity of σ as an eigenvalue of the QEP Q and
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(a) if σ > λn, then ν is the number of eigenvalues of Q larger than σ and π + n
is the number of eigenvalues of Q smaller than σ;

(b) if σ < λn+1, then ν is the number of eigenvalues of Q smaller than σ and
π + n is the number of eigenvalues of Q larger than σ.

Proof. For each λ ∈ R, Q(λ) is a Hermitian n × n matrix with n real ordered
eigenvalues

μn(λ) ≤ · · · ≤ μ1(λ),(3.1)

where μ1, . . . , μn are continuous functions of λ. It is easy to see that σ is an eigenvalue
of the QEP Q of algebraic multiplicity k exactly when there exists 1 ≤ i ≤ n such
that

μi(σ) = μi+1(σ) = · · · = μi+k−1(σ) = 0.

Since M is a Hermitian positive definite matrix,

lim
λ→±∞

μi(λ) = ∞

for all i. By Theorem 2.2 there exists σ0 ∈ R such that μi(σ0) < 0 for all i. Because
each μi is a continuous function, it has at least two zeros, one on the right and one
on the left side of σ0. As each zero of μi is also an eigenvalue of the QEP Q which
has 2n eigenvalues, it follows that each μi has exactly two zeros.

As μ1, . . . , μn are continuous and ordered as in (3.1), it is not hard to deduce that
if σ > σ0 and σ is not an eigenvalue of Q, then the number of negative eigenvalues of
Q(σ) equals the number of eigenvalues of Q that are larger than σ. This proves (a),
and similarly we can prove (b).

Remark 3.2. Theorem 3.1 is a generalization of a similar theorem in [20], where
M is a positive definite matrix and K is a negative definite matrix. In this case Q(0)
is negative definite and a proof similar to the one above can be done without applying
Theorem 2.2.

Based on the inertia we could apply the bisection to obtain the kth eigenvalue.
The algorithm is similar to the algorithm for the symmetric eigenvalue problem. To
derive more efficient methods, we use some faster methods that were successfully ap-
plied to tridiagonal eigenvalue problems: Laguerre’s method [16, 17] and the Ehrlich–
Aberth method [4].

The above methods need stable and efficient computation of ν(Q(λ)), f(λ),
f ′(λ)/f(λ), and f ′′(λ)/f(λ), where f(λ) = det(Q(λ)). We discuss how to obtain
these values using the three-term recurrences, the QR factorization, and the LU fac-
torization in the next three sections.

4. Three-term recurrences. Let Q(λ) = (λ2M + λC + K), where M,C, and
K are n× n tridiagonal matrices. We can write

Q(λ) =

⎡
⎢⎢⎢⎢⎣

a1(λ) b1(λ) 0
b1(λ) a2(λ) b2(λ)

. . .
. . .

. . .

bn−2(λ) an−1(λ) bn−1(λ)
0 bn−1(λ) an(λ)

⎤
⎥⎥⎥⎥⎦
,

where ai(λ) = λ2Mii+λCii+Kii and bi(λ) = λ2Mi+1,i+λCi+1,i+Ki+1,i are quadratic
polynomials. The determinant of a tridiagonal matrix can be computed using a three-
term recurrence; see, e.g., [11]. If fk(λ) = det(Qk(λ)), where Qk(λ) is the leading
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k × k submatrix of Q(λ), then

f0 = 1, f1 = a1,
f ′
0 = 0, f ′

1 = a′1,
f ′′
0 = 0, f ′′

1 = a′′1 ,

and

fr+1 = ar+1fr − b2rfr−1,

f ′
r+1 = a′r+1fr + ar+1f

′
r − 2brb

′
rfr−1 − b2rf

′
r−1,

f ′′
r+1 = a′′r+1fr + 2a′r+1f

′
r + ar+1f

′′
r − 2b′2r fr−1 − 2brb

′′
rfr−1 − 4brb

′
rf

′
r−1 − b2rf

′′
r−1

for r = 1, . . . , n − 1. For the sake of brevity the argument λ is omitted in the above
equations.

As the above recurrences may suffer from overflow and underflow problems [15],
we define

di =
fi

fi−1
, gi =

f ′
i

fi
, hi =

f ′′
i

fi
.

Then fn = d1 · · · dn,

d1 = a1,

g0 = 0, g1 =
a′1
a1

,

h0 = 0, h1 =
a′′1
a1

,

and

dr+1 = ar+1 −
b2r
dr

,

gr+1 =
1

dr+1

(
a′r+1 + ar+1gr −

1

dr
(2brb

′
r + b2rgr−1)

)
,

hr+1 =
1

dr+1

(
a′′r+1 + 2a′r+1gr + ar+1hr −

1

dr
(2b′2r + 2brb

′′
r + 4brb

′
rgr−1 + b2rhr−1)

)

for r = 1, . . . , n− 1.
Remark 4.1. One can see that d1, . . . , dn are the diagonal elements from the

LDL∗ factorization of the matrix Q(λ).
Remark 4.2. The algorithm may break down if dr = 0 for some r = 1, . . . , n− 1.

In such a case we introduce small perturbations and set

dr =
ε

dr−1

(
|λ|2|Mr−1,r−1| + |λ||Cr−1,r−1| + |Kr−1,r−1| + ε

)
,

where ε is the machine precision. This corresponds to a small relative perturbation
of the matrices M , C, and K. A similar approach is used in [16].

5. A QR factorization approach. If f(λ) �= 0, then it follows from Jacobi’s
formula for the derivative of the determinant that

f ′(λ)/f(λ) = tr(Q(λ)−1Q′(λ)).(5.1)
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If we denote A = Q(λ) and B = Q′(λ), then we need to compute tr(A−1B), where in
our case A and B are tridiagonal matrices. In [4] one can find a stable O(n) compu-
tation of tr(A−1) via QR factorization. In this section we generalize this algorithm to
compute tr(A−1B). We start with a sketch of the algorithm for tr(A−1); for details
and the theory, see [4].

Let A be a tridiagonal matrix and let A = UR, where

R =

⎡
⎢⎢⎢⎢⎣

r1 s1 t1
. . .

. . .
. . .

rn−2 sn−2 tn−2

rn−1 sn−1

rn

⎤
⎥⎥⎥⎥⎦

is an upper triangular tridiagonal matrix and U is the product of n− 1 Givens rota-
tions, U∗ = Gn−1 · · ·G2G1, where

Gi([i, i + 1], [i, i + 1]) =

[
ψi θi
−θi ψi

]
and |ψi|2 + |θi|2 = 1.

Then

U∗ =

⎡
⎢⎢⎢⎢⎢⎣

v1u1 ψ1 0
v2u1 v2u2 ψ2

...
...

. . .
. . .

...
... vn−1un−1 ψn−1

vnu1 vnu2 · · · vnun−1 vnun

⎤
⎥⎥⎥⎥⎥⎦
,

where

D = diag(1,−ψ1, ψ1ψ2, . . . , (−1)n−1ψ1ψ2 · · ·ψn−1),
u = D−1[1, θ1, . . . , θn−1]

T ,
v = D[θ1, . . . , θn−1, 1]T .

If we solve Rw = v, then

tr(A−1) =

n∑
i=1

uiwi.(5.2)

Kressner [12] generalized the above approach into an O(n) algorithm for the
computation of tr(A−1B), where both matrices A and B are tridiagonal. Suppose
that

B =

⎡
⎢⎢⎢⎢⎣

x1 z1 0
y1 x2 z2

. . .
. . .

. . .

yn−2 xn−1 zn−1

0 yn−1 xn

⎤
⎥⎥⎥⎥⎦
.

To compute tr(A−1B) we need the diagonal elements of A−1B. From

(A−1B)ii = eTi R
−1U∗Bei
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= zi−1e
T
i R

−1U∗ei−1 + xie
T
i R

−1U∗ei + yie
T
i R

−1U∗ei+1

and

eTi R
−1U∗ei−1 = ui−1wi,

eTi R
−1U∗ei = uiwi,

eTi R
−1U∗ei+1 = ui+1wi +

1

ri
(ψi − viui+1)

it follows that

(5.3)

tr(A−1B) =

n∑
i=2

zi−1ui−1wi +

n∑
i=1

xiuiwi +

n−1∑
i=1

yi

(
ui+1wi +

1

ri
(ψi − viui+1)

)
.

As reported in [4], formula (5.2) is not stable. To make it stable, we have to
avoid the explicit multiplication by the matrix D or D−1. If we define R̂ = D−1RD,
v̂ = D−1v, û = Du, and solve R̂ŵ = v̂ for ŵ, then

tr(A−1) =

n∑
i=1

ûiŵi.(5.4)

Notice that

R̂ =

⎡
⎢⎢⎢⎢⎣

r̂1 ŝ1 t̂1
. . .

. . .
. . .

r̂n−2 ŝn−2 t̂n−2

r̂n−1 ŝn−1

r̂n

⎤
⎥⎥⎥⎥⎦
,

where r̂i = ri, ŝi = −ψisi, and t̂i = −ψiψi+1ti.
Using the same notation it follows from

uiwi = ûiŵi,

ui−1wi−1 = −ψi−1ûi−1ŵi,

ui+1wi−1 = −ûi+1ŵi(ψi)
−1,

viui+1 = −v̂iûi+1(ψi)
−1

that we may rewrite formula (5.3) in a stable form:

tr(A−1B) =

n∑
i=2

xiûiŵi−
n∑

i=1

zi−1ψi−1ûi−1ŵi−
n−1∑
i=1

yi

ψi

(
ûi+1ŵi +

1

ri
(|ψi|2 + v̂iûi+1)

)
.

6. An LU factorization approach. In [5] one can find an algorithm for the
computation of the derivative of the determinant using the LU factorization. Suppose
that det(Q(λ)) �= 0 and that PQ(λ) = LU is the result of Gaussian elimination with
partial pivoting for Q(λ), where L is a lower triangular matrix with ones on the
diagonal and U is an upper triangular matrix. Then

f(λ) = det(Q(λ)) = det(P ) · u11u22 · · ·unn.
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If we fix the permutation matrix P , then for each μ in a small neighborhood of λ
there exist analytic matrices L(μ) and U(μ) such that

L(μ)U(μ) = PQ(μ)(6.1)

is the LU factorization of PQ(μ). By differentiating (6.1) at μ = λ we get

PQ′ = L′U + LU ′ = MU + LV,

where M = L′ is a lower triangular matrix with zeros on the diagonal and V = U ′

is an upper triangular matrix. Matrices M and V of the proper form and such that
PQ′ = MU + LV can be computed from Q′, P, L, and U (see Algorithm 6.1). It
follows that

f ′(λ) = det(P )

n∑
i=1

vii

n∏
j=1
j �=i

ujj

and

f ′(λ)

f(λ)
=

n∑
i=1

vii
uii

.

Algorithm 6.1 (Bohte [5]). The algorithm solves the equation B = MU + LV
for M and V , where L is a lower triangular matrix with ones on the main diagonal,
U is a nonsingular upper triangular matrix, B is a square n×n matrix, M is a lower
triangular matrix with zeros on the main diagonal, and V is an upper triangular
matrix.

for r = 1 to n
for k = r to n

vrk = brk −
∑r−1

j=1(mrjujk + lrjvjk)
for i = r + 1 to n

mir = 1
urr

(
bir −

∑r−1
j=1(mijujr + lijvjr) − lirvrr

)

For the second derivative we have

PQ′′ = L′′U + 2L′U ′ + LU ′′ = NU + 2MV + LW,(6.2)

where N = L′′ is a lower triangular matrix with zeros on the diagonal and W = U ′′

is an upper triangular matrix. It follows that

f ′′(λ)

f(λ)
=

n∑
i=1

wii

uii
+

(
n∑

i=1

vii
uii

)2

−
n∑

i=1

v2
ii

u2
ii

.

From the relation (6.2) we get PQ′′ − 2MV = NU + LW , which means that we can
apply Algorithm 6.1 for the computation of N and W as well.

An implementation of Algorithm 6.1 for banded matrices computes f ′/f and f ′′/f
in a linear time. The algorithm is more expensive than the three-term recurrences in
section 4, but its advantage is that it can be applied to nontridiagonal matrices as
well. Let us also mention that in [5] one can find a slightly modified algorithm that
is able to compute f ′(λ) even if f(λ) = 0.
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7. Divide-and-conquer. We choose m ≈ n/2 and write

Q(λ) = Q0(λ) + bm(λ)(em−1e
T
m+1 + em+1e

T
m−1),

where

Q0(λ) =

[
Q1(λ) 0

0 Q2(λ)

]
.

Q0(λ) is a rank two modification of Q(λ). If we apply Theorem 2.2, then it is not

hard to see that Q1 and Q2 are hyperbolic QEPs. The eigenvalues λ̃2n ≤ · · · ≤ λ̃1 of
Q0, a union of the eigenvalues of Q1 and Q2, are approximations to the eigenvalues
λ2n ≤ · · · ≤ λ1 of Q.

We can show that the eigenvalues of Q0 and Q interlace. To show this useful
property we introduce a convex combination of Q0 and Q. Let Qt be a QEP defined
by

Qt(λ) = (1 − t)Q0(λ) + tQ(λ).

Lemma 7.1. The QEP Qt is hyperbolic for t ∈ [0, 1].
Proof. From Theorem 2.2 it follows that there exists γ such that Q(γ) is negative

definite. Being principal submatrices of Q(γ), matrices Q1(γ) and Q2(γ) are negative
definite as well. Since it is a block diagonal matrix with negative definite blocks Q1(γ)
and Q2(γ), the matrix Q0(γ) is negative definite, too. For t ∈ [0, 1] it is now easy
to see that Qt(γ) = (1 − t)Q0(γ) + tQ(γ) is negative definite and Theorem 2.2 yields
that Qt is a hyperbolic QEP.

The following theory is a generalization of Theorem 5.2 in [17] for the generalized
symmetric tridiagonal eigenvalue problem.

Lemma 7.2. Let λ2n(t) ≤ · · · ≤ λ1(t) be the ordered eigenvalues of the QEP
Qt for t ∈ [0, 1]. Each eigencurve λi(t) is then either constant or strictly monotone

for t ∈ [0, 1] and i = 1, . . . , 2n. If we define λ̃0 = ∞ and λ̃2n+1 = −∞, then each

eigencurve λi(t) lies on the interval [λ̃i+1, λ̃i−1].
Proof. From the construction of Qt (see, for example, the three-term recurrences

in section 4) it follows that the determinant of Qt(λ) can be expressed as

p(t, λ) := detQt(λ) = p1(λ) + t2p2(λ),

where p1 and p2 are polynomials of degree 2n.
If for a chosen λ0 we have p2(λ0) �= 0, then the equation p(t, λ0) = 0 has at most

one solution on (0, 1]. If p2(λ0) = 0 and p1(λ0) �= 0, then none of the eigencurves
passes the line λ = λ0. If p2(λ0) = 0 and p1(λ0) = 0, then λ0 is an eigenvalue of Qt

for t ∈ [0, 1] and at least one eigencurve λi(t) is constant and equal to λ0.
It follows from the above discussion that the eigencurves λi(t) for i = 1, . . . , 2n

are either constant or strictly monotone for t ∈ [0, 1] (see Figure 7.1). For each λ̃i

either the only solution of p(t, λ̃i) = 0 is at t = 0 or the eigencurve λi(t) is constant

and equal to λ̃i. Therefore, λi(t) is bounded below and above by λ̃i+1 and λ̃i−1,
respectively.

Theorem 7.3. Let λ̃2n ≤ · · · ≤ λ̃1 be the eigenvalues of Q0(λ) and λ2n ≤ · · · ≤ λ1

the eigenvalues of Q(λ). Then

(a) λ̃1 ≤ λ1 and λ2n ≤ λ̃2n,

(b) λ̃i+1 ≤ λi ≤ λ̃i−1 for i = 2, . . . , n− 1 and i = n + 2, . . . , 2n− 1,
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Fig. 7.1. Eigenvalues of Q0 and Q interlace.

(c) λ̃n+1 ≤ λn+1 < λn ≤ λ̃n.
Proof. As matrices Q1(λ) and Q2(λ) are submatrices of Q(λ), it follows from

Theorem 2.1 that the primary eigenvalues of Q1 and Q2 lie in the interval [λn, λ1].
Because of that, the primary eigenvalues of Q0 lie in the interval [λn, λ1]. Similarly
we can show that the secondary eigenvalues of Q0 lie in the interval [λ2n, λn+1]. Thus
we prove points (a) and (c).

Point (b) follows from Lemma 7.2. We know that λi and λ̃i are connected by

a monotone eigencurve λi(t), which is bounded below and above by λ̃i+1 and λ̃i−1,
respectively.

Remark 7.4. Unlike the divide-and-conquer method for the symmetric tridiagonal
matrices, here λ̃i = λ̃i+1 does not imply that one of the eigenvalues of Q is λ̃i. Only

if λ̃i−1 = λ̃i = λ̃i+1 can one deduce that λ̃i is an eigenvalue of Q.
In the conquer phase we use a numerical method that computes the eigenvalues

λ1, . . . , λ2n of the QEP Q from the initial approximations λ̃1, . . . , λ̃2n. Two numerical
methods that may be applied for this task are presented in the next two sections. We
are not claiming that these are the optimal methods. Other polynomial solvers applied
to the classical or to the generalized eigenvalue problem with tridiagonal matrices (see,
e.g., [14, 19]) could be applied to the QEP as well.

8. Laguerre’s method. To the characteristic polynomial f(λ) = det(Q(λ)) we
can apply Laguerre’s method, a well-known globally convergent method for finding
polynomial zeros. One step of Laguerre’s iteration is

L±(x) = x +
2n⎛

⎝−f ′(x)

f(x)
±

√√√√(2n− 1)

(
(2n− 1)

(
−f ′(x)

f(x)

)2

− 2n
f ′′(x)

f(x)

)⎞
⎠
.(8.1)

For more details on the method and its properties see, e.g., [16, 22].
For a real polynomial having all real roots the method is globally convergent with

a cubic convergence in a neighborhood of a simple eigenvalue. If we add λ2n+1 = −∞
and λ0 = ∞, then for x ∈ (λi+1, λi) we have

λi+1 < L−(x) < x < L+(x) < λi.
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Fig. 8.1. The cubic convergence region around a simple eigenvalue λi.

In the divide-and-conquer algorithm we use Laguerre’s method to compute the
eigenvalues λ2n ≤ · · · ≤ λ1 of Q from the initial approximations λ̃2n ≤ · · · ≤ λ̃1 that
are the eigenvalues of Q0. We know from Theorem 7.3 that λ̃i+1 ≤ λi ≤ λ̃i−1 and

that we can use λ̃i as an initial approximation for λi. From ν(Q(λ̃i)) we see if λi > λ̃i

or λ̃i < λi and then use the appropriate L+ or L− sequence. The global convergence
of Laguerre’s method guarantees that we get all the eigenvalues by computing them
independently one by one.

Although the convergence close to a simple eigenvalue should be cubic, we can
expect very slow convergence at the beginning if λ̃i is closer to λi−1 or λi+1 than to
λi (see Figure 8.1).

The necessary condition [22] for the cubic convergence near a simple eigenvalue
λ is that the sign of −f ′(x)/f(x) agrees with the sign of λ − x (see Figure 8.1). To

improve the convergence we first use the bisection on interval [λ̃i+1, λ̃i] (or [λ̃i, λ̃i−1])
until the condition for the cubic convergence is achieved.

Due to rounding errors, the condition −f ′(x)/f(x)(λ − x) > 0 might also be
achieved near λi−1 or λi+1. An additional criterion that we use is that near λi the
sign of f ′(x) has to agree with (−1)i+1.

9. Ehrlich–Aberth method. This method simultaneously approximates all ze-
ros of a polynomial f(λ) = det(Q(λ)). From an initial approximation x(0) ∈ C

2n the
method generates a sequence x(j) ∈ C

2n that locally converges to the eigenvalues of
the QEP Q. The Ehrlich–Aberth iteration is given by

x
(k+1)
j = x

(k)
j −

f(x
(k)
j )

f ′(x
(k)
j )

1 −
f(x

(k)
j )

f ′(x
(k)
j )

2n∑
l=1
l �=j

1

x
(k)
j − x

(k)
l

(9.1)

for j = 1, . . . , 2n. For details on the method and its properties see, e.g., [3, 4].
If the method is implemented in the Gauss–Seidel style then the convergence for

simple roots is cubical and linear for multiple roots. We iterate only those eigenvalues
that have not converged yet.

As in the previous section, we use the Ehrlich–Aberth method to compute the
eigenvalues of Q using the eigenvalues of Q0 as initial approximations. It may happen
that Q0 has multiple eigenvalues. In such a case we have a division by zero in (9.1).
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In IEEE arithmetic this leads to ∞ in the denominator and consequently to x
(k+1)
j =

x
(k)
j . To prevent this, we always slightly perturb the eigenvalues of Q0 before we use

them as initial approximations.

10. Numerical examples. We implemented Laguerre’s method and the Ehrlich–
Aberth method for the computation of the eigenvalues of the tridiagonal QEPs in
Fortran 95. The code can be downloaded from author’s web site.1 Using Compaq
Visual Fortran 6.6 on PC Pentium 4 2.6 GHz 1 GB RAM we tested both methods on
a limited set of tridiagonal QEPs. In the numerical examples we compare the aver-
age number of iterations, the computational time and the accuracy of the computed
eigenvalues. As a measure of the accuracy we use the maximum relative error

max
i=1,...,2n

|λ̃i − λi|
|λi|

,

where λi is the exact eigenvalue computed either analytically or using variable pre-
cision in Mathematica 5. For all tridiagonal QEPs in this section we tested all three
algorithms for the evaluation of the derivative of the determinant. As the choice has
almost no effect on the accuracy and the number of needed steps, we include only the
results for the fastest method, the three-term recurrences.

For comparison we also applied the Lapack [1] routine ZGGEV to the linearized
generalized eigenvalue problem

[
0 K
K C

]
z = λ

[
K 0
0 −M

]
z.(10.1)

The main stopping criterion is the relative size of a correction. We take ε = 10−15

and stop the iteration for λj when

|λ(k+1)
j − λ

(k)
j | ≤ |λ(k+1)

j |ε.

Another stopping criterion for Laguerre’s method are different inertias of Q(λ
(k+1)
j )

and Q(λ
(k)
j ). In the Ehrlich–Aberth method we use a heuristic that stops the iteration

once the large majority of the eigenvalues has converged and the corrections for the
remaining eigenvalues stop becoming smaller.

In both methods one step (an iteration for one eigenvalue approximation) has
linear time complexity. If we compare the number of operations needed for (8.1)
and (9.1) and for the three-term recurrences in section 4, then we can observe that
one step of Laguerre’s method is more expensive and is roughly equivalent to 1.8
Ehrlich–Aberth steps.

Example 10.1. In the first numerical example we use random tridiagonal matrices,
where the elements are uniformly distributed in such intervals that the obtained QEP
is hyperbolic. For the matrices M and K, the diagonal and codiagonal elements are
uniformly distributed in [0.5, 1] and [0, 0.1], respectively. The diagonal and codiagonal
elements of the matrix C are uniformly distributed in [4, 5] and [0, 0.5], respectively.

The numerical results are presented in Table 10.1. In the first two columns are
the results for the Ehrlich–Aberth method; in the first column we use real arithmetic
while in the second column we use complex perturbations and complex arithmetic.

1http://www-lp.fmf.uni-lj.si/plestenjak/papers.htm



1168 BOR PLESTENJAK

Table 10.1

The average number of iterations in the last divide-and-conquer step, the computational time,
and the maximum relative error of the computed eigenvalues in Example 10.1.

n Ehrlich-Aberth R Ehrlich-Abert C Laguerre-bisection ZGGEV

Average number of iterations in the last D&C

100 1.9 1.9 1.9
200 1.8 1.8 2.1
400 1.6 1.6 1.2
800 1.6 1.5 1.3

Time in seconds

100 0.02 0.03 0.02 0.60
200 0.05 0.13 0.06 5.02
400 0.13 0.39 0.23 52.95
800 0.48 1.48 0.83 684.63

Maximum relative error

100 5e-15 4e-16 5e-15 5e-14
200 5e-15 4e-16 5e-15 9e-14
400 5e-15 4e-16 5e-15 1e-13
800 5e-15 4e-16 5e-15 1e-13

Complex perturbations increase the computational time for one iteration but in some
cases (see, e.g., Example 10.2), where we have multiple or close eigenvalues, we might
have faster convergence. In the third column are the results for Laguerre’s method,
and in the last column are the results for the Lapack routine ZGGEV applied to
the linearized generalized eigenvalue problem (10.1) of size 2n. The cost of ZGGEV,
which is not optimized for block tridiagonal matrices, is O(n3), compared to O(n2)
for the methods presented in this paper. Because of that ZGGEV is slower than the
presented methods even for a moderate size of matrices.

We tested the methods on matrix dimensions from 100 to 800. The results in
Table 10.1 are organized in three parts. In the upper part is the average number
of iterations in the last divide-and-conquer step. For Laguerre’s method we count
bisection steps as well. As the dimension of the matrices increases, better the eigen-
values of Q0(λ) approximate the eigenvalues of Q(λ) and fewer iterations are needed
in the final phase. The middle part in Table 10.1 contains the computational times in
seconds. One can see that although Laguerre’s method needs fewer iterations, it runs
slower than the Ehrlich–Aberth method which does not compute the second deriva-
tives. In the lower part of the table are the maximum relative errors of the computed
eigenvalues. In this example all methods perform well and give small relative errors.
The maximum condition number of the eigenvalues (we use the condition number
defined in [6] and implemented in MATLAB 7.0 routine polyeig) in Example 10.1 is
of order 1.

Example 10.2. In this example we use matrices with constant diagonals and
codiagonals, such that the QEP is hyperbolic. We take M = tridiag(0.1, 1, 0.1),
C = tridiag(0.5, 5, 0.5), and K = tridiag(0.2, 1, 0.2). For such problem the eigenvalues
can be computed analytically. All eigenvalues are simple, but we can expect problems
in the divide-and-conquer approach because the eigenvalues of Q0 appear in pairs.
The eigenvalues are not sensitive, the maximum condition number for the eigenvalues
in this example is of order 1.

Numerical results, organized in the same way as in Example 10.1, are presented in
Table 10.2. We can see that the number of iterations is larger than in Example 10.1.
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Table 10.2

The average number of iterations in the last divide-and-conquer step, the computational time,
and the maximum relative error of the computed eigenvalues in Example 10.2.

n Ehrlich-Aberth R Ehrlich-Abert C Laguerre-bisection ZGGEV

Average number of iterations in the last D&C

100 19.9 18.5 5.8
200 19.6 17.6 5.7
400 19.0 17.1 5.7
800 18.5 16.5 5.6

Time in seconds

100 0.08 0.22 0.03 0.64
200 0.33 0.92 0.13 5.33
400 1.30 3.70 0.53 58.42
800 5.17 14.59 2.09 865.13

Maximum relative error

100 3e-15 5e-16 3e-15 6e-15
200 3e-15 5e-16 3e-15 5e-15
400 3e-15 6e-16 3e-15 2e-14
800 3e-15 6e-16 3e-15 3e-15

Table 10.3

The average number of iterations in the last divide-and-conquer step, the computational time,
and the maximum relative error of the computed eigenvalues in Example 10.3.

QEP 1 QEP 2

ZGGEV Ehrlich–Aberth C ZGGEV Ehrlich–Aberth C

n Time Error Time Avg. iter Error Time Error Time Avg. iter Error

100 0.75 4e-13 0.03 1.9 1e-13 0.59 7e-15 0.23 20.1 2e-15
200 6.16 3e-12 0.11 1.7 9e-15 5.23 4e-14 1.02 19.5 2e-15
400 67.09 4e-12 0.39 1.6 4e-14 46.64 6e-14 4.09 18.9 4e-15

The Ehrlich–Aberth method has problems with close initial approximations. In this
case Laguerre’s method gives the best performance.

Example 10.3. The Ehrlich–Aberth method in complex arithmetic can also be
applied to the QEPs that are nonhyperbolic and where the eigenvalues might be
complex. The interlacing property of the eigenvalues of Q0 and Q is no longer true,
but we can still expect that the eigenvalues of Q0 are good initial approximations
to the eigenvalues of Q. When the solutions are complex, Laguerre’s method is not
globally convergent anymore, and without the inertia and the interlacing property we
have no guarantee that the method returns all the eigenvalues.

For the first nonhyperbolic QEP we use random symmetric tridiagonal matrices.
The diagonal elements of matrices M , C, and K are uniformly distributed in [0, 1].
The codiagonal elements of matrices M , C, and K are uniformly distributed in [0, 0.1],
[0, 0.5], and [0, 0.2], respectively. The maximum condition number of the eigenvalues
is of order 102 and this reflects in slightly larger errors than in the previous examples.

For the second nonhyperbolic QEP we use the example from [21], where M =
tridiag(0.1, 1, 0.1), C = tridiag(−3, 9,−3), and K = tridiag(−5, 15,−5). All eigenval-
ues are simple, but the eigenvalues of Q0 are double. The maximum condition number
of the eigenvalues is of order 102.

Numerical results in Table 10.3 show that the Ehrlich–Aberth method can be
applied to such QEPs.
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Table 10.4

The average number of iterations in the last divide-and-conquer step for the banded quadratic
eigenvalue problem with matrices of dimension n and bandwidth p from Example 10.5.

p n = 50 n = 100 n = 200

1 3.9 2.9 2.3
2 5.8 4.2 3.3
3 6.2 5.3 4.4
4 6.4 5.9 5.3
5 9.3 6.4 6.4

Example 10.4. We consider the second-order model of vibration of a rotating
axel in a power plant from [2]. We have a second-order differential equation

Mz̈ + Cż + Kz = Du,

where M , C, and K are tridiagonal symmetric matrices of dimension n = 211. After
the Fan, Lin, and Van Dooren scaling [9], the norms of the matrices are ‖M‖ = 2,
‖C‖ = 8 · 10−6, and ‖K‖ = 2. One eigenvalue of the corresponding QEP is 0, which
makes the resulting system neither observable nor detectable. The largest real part
of the remaining nonzero eigenvalues is ρ = −0.01626759.

If we apply the Ehrlich–Aberth method, then the relative error of the computed
ρ is of order 10−12. The average number of iterations in the last divide-and-conquer
step is 6.8. If we use the linearization (10.1) and ZGGEV, then the relative error of
the computed ρ is of order 10−9. If we reduce the linearized 422× 422 problem into a
421× 421 problem for the nonzero eigenvalues as in [2], then the relative error of the
computed ρ falls to 10−10. This example shows that we can get more accurate results
without a linearization. The eigenvalues in this example have condition numbers of
orders from 1 up to 106.

Example 10.5. The above ideas can be extended to QEPs with banded matrices
as well. We can apply the Ehrlich–Aberth method as long as we have an efficient
method for the computation of the characteristic polynomial and its derivative. For
banded matrices these values can be computed in a linear time using the algorithm
based on the LU factorization from section 6.

As in the previous examples, the initial approximations are obtained by the divide-
and-conquer scheme. The matrices M , C, and K are represented as 2 × 2 block
matrices and then the approximations are obtained by a recursive application of the
method to the diagonal block subproblems.

The following example was done in MATLAB 7.0. We take three matrices of
dimension n with normally distributed elements: M=randn(n), C=randn(n), and
K=randn(n), set mij = cij = kij = 0 for |i − j| > p, where p is the bandwidth,
and apply a MATLAB implementation of the Ehrlich–Aberth method.

As expected, the results in Table 10.4 show that the average number of iterations
in the last divide-and-conquer step does increase with the bandwidth. However, for
a small bandwidth, one step is performed in linear time and the results in Table 10.4
show that the Ehrlich–Aberth method can be considered as an alternative for the
banded quadratic eigenvalue problems. For all combinations of p and n in Table 10.4
the maximum relative error of the computed eigenvalues is below 10−14 and smaller
than the error obtained by the MATLAB function polyeig that applies QZ to the
linearized problem.
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11. Conclusions. We have presented two numerical methods for the tridiago-
nal hyperbolic QEP that use the divide-and-conquer approach. Both methods can
be easily parallelized. Laguerre’s method and the bisection require hyperbolicity,
while the Ehrlich–Aberth method might be applied to more general problems—for
instance, non-Hermitian tridiagonal quadratic eigenvalue problems, tridiagonal poly-
nomial eigenvalue problems, banded polynomial eigenvalue problems, and others. In
these applications, the algorithm based on the LU factorization might be used for an
efficient computation of the derivative of the determinant.

Let us mention that at the moment there are no methods for transforming a gen-
eral QEP to a tridiagonal form. In future, this might change with structure preserving
transformations (SPT) [10].
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viding the generalization of the QR factorization approach in section 5. The author
would also like to thank Dario Bini and Françoise Tisseur for useful suggestions and
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1. Introduction. It is well known that, given an arbitrary real square matrix,
conventional, general-purpose eigenvalue algorithms like QR or divide-and-conquer
can only guarantee full accuracy in the computation of the eigenvalues with largest
absolute value. If one is interested in obtaining all eigenvalues with correct sign and
correct leading digits, then more specifically devised algorithms are needed. Given a
matrix A ∈ R

n×n, the best one can expect is that all computed eigenvalues λ̂i and
corresponding eigenvectors q̂i, i = 1, . . . , n, satisfy

|λ̂i − λi|
|λi|

= O(κε),

Θ(q̂i, qi) =
O(κε)

relgap(λi)
,

(1)

where λi, qi and i = 1, . . . , n, are, respectively, the exact eigenvalues and eigenvec-
tors of A; ε is the machine precision; O(·) is the customary big-oh Landau notation;
Θ(·, ·) stands for the angle between two n-vectors; relgap(λi) is the usual relative gap

relgap(λi) = min{minj �=i
|λj−λi|

|λi| , 1}, i = 1, . . . , n; and κ is some constant of moderate

size, eventually depending on the dimension n but independent of the condition num-
ber of A. The algorithms achieving these, or some slightly relaxed, error bounds are
the so-called high relative accuracy algorithms for the eigenvalue problem. A similar
definition can be given for high relative accuracy algorithms for the singular value
decomposition (SVD), replacing eigenvalues by singular values.

Several high relative accuracy algorithms are known so far, both for the SVD
and for the standard eigenvalue problem. Their scope, however, is limited, in the
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sense that each algorithm is specifically designed for a particular class of matrices,
taking advantage of the structure properties specific to that class in order to pre-
serve the accuracy of the computation. Some such classes for the SVD are, for in-
stance, bidiagonal matrices [8, 17], matrices of the form BD with D diagonal and B
well-conditioned [10, 16, 23], acyclic, Cauchy and Vandermonde matrices [11], unit-
displacement-rank matrices [7], or weakly diagonally dominant M-matrices [9, 24].
Some of these classes can be grouped into a larger class of matrices for which it is
possible to compute accurately a rank-revealing decomposition [11]. For the eigen-
value problem, some classes allowing accurate eigendecomposition are symmetric
scaled diagonally dominant [4]; symmetric positive definite [10]; symmetric tridiag-
onal [21, 12, 13]; symmetric Cauchy and Vandermonde [15]; matrices of the form
H = BD, where D is diagonal and B is well conditioned [30]; and symmetric indefi-
nite matrices allowing for an accurate initial factorization [25, 27, 14]. So far, the only
class of nonsymmetric matrices whose eigenvalues can be computed to high relative
accuracy is the class of totally nonnegative matrices [22].

Among all these different methods we will concentrate on a family of algorithms [11,
14, 25] which proceed in two stages: In the first stage, the algorithm computes an ini-
tial factorization of the matrix. Then an appropriately chosen Jacobi-type algorithm
is applied to the factors. To achieve the accuracy bounds (1), both stages must be
performed accurately enough. The accuracy of the second stage is usually ensured
once and for all through a detailed error analysis, valid for any factorized matrix.
Once this is done, the accuracy of the overall algorithm depends entirely on the accu-
racy of the preprocessing factorization in the first stage. In other words, the classes
of matrices such that these algorithms compute all its eigenvalues and eigenvectors to
high relative accuracy become those classes for which it is known how to compute a
sufficiently accurate initial factorization.

In the case of the SVD, for instance, several classes of matrices were identified
in [11] such that special versions of Gaussian elimination with complete pivoting
(GECP), conveniently adapted to each class, lead to accurate nonsymmetric factor-
izations of the form A = XΔY T . Two of these classes are the diagonally scaled totally
unimodular (DSTU) matrices and total signed compound (TSC) matrices (see sections
3.1 and 3.2 below for definitions). Our main contribution in this paper is to prove
that, for both DSTU and TSC structures, the subclass of symmetric matrices allows
for the computation of symmetric factorizations of the form A = XΔXT in a suffi-
ciently accurate way to compute eigenvalues and eigenvectors with the accuracy (1).
Therefore, for any symmetric matrix which is either DSTU or TSC, all its eigenvalues
and eigenvectors can be computed to high relative accuracy. The leading idea of the
factorization algorithms we propose is, as in [11], to take advantage of the special
properties of each structure in order to completely avoid subtraction throughout the
factorization process.

Two high relative accuracy algorithms are available to compute eigenvalues and
eigenvectors of general, possibly indefinite, symmetric matrices: the J-orthogonal al-
gorithm [29, 25] and the signed SVD algorithm [14]. None of them, strictly speaking,
has error bounds of the form (1). For the J-orthogonal method, the constant κ in (1)
is the maximum of the condition numbers of some intermediate matrices produced by
the algorithm, and these condition numbers could be, in principle, arbitrarily large.
The signed SVD method, on the other hand, has an error bound for eigenvectors of
the form (1), but with a potentially smaller quantity, relgap∗, in the denominator
instead of the usual relative gap (see (9) below). Nevertheless, both algorithms are
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able in practice to compute eigenvalues and eigenvectors to high relative accuracy.
Both algorithms begin by initially factorizing the matrix, although in a slightly

different way. To be more precise, we begin by defining rank-revealing decompositions.
Definition 1. Given A ∈ R

m×n with m ≥ n, a rank-revealing decomposition
(RRD) of A is any factorization A = XΔY T such that X ∈ R

m×r, Y ∈ R
n×r, Δ ∈

R
r×r for r ≤ min{m,n}, where Δ is diagonal and nonsingular and both matrices X,Y

are well-conditioned.
For instance, the SVD is an RRD factorization, but others can be obtained, for

instance, via Gaussian elimination with complete pivoting (GECP), QR with complete
pivoting, or, as we will see, via the diagonal pivoting method.

The signed SVD method begins by computing an RRD, either symmetric with
X = Y , or nonsymmetric with X �= Y .1 Since in our case the matrix A is symmetric,
preservation of structure advises keeping the symmetry in the factorization. There-
fore, we restrict ourselves in this paper to the analysis of symmetric RRDs of the
form

A = XΔXT .(2)

The J-orthogonal algorithm, on the other hand, begins by computing a so-called
symmetric indefinite factorization

PAPT = GJGT ,(3)

where P is a permutation matrix, J is square diagonal with diagonal elements ±1
and G has full column rank. Although this is not exactly an RRD, its computation
is equivalent to computing the symmetric RRD above, since it suffices to scale Δ on
both sides with |Δ|−1/2 = diag(|Δii|−1/2) to obtain A = GJGT , where G = X|Δ|1/2
and J = |Δ|−1/2Δ|Δ|−1/2. Therefore, we concentrate in what follows in obtaining a
symmetric RRD (2).

The way we obtain the symmetric RRD is via the so-called block LDLT factor-
ization

PAPT = LDLT ,(4)

where P is a permutation matrix, L is unit lower triangular, and D is block-diagonal
with 1 × 1 and 2 × 2 diagonal blocks. Of course, this is not an RRD, since D is not
diagonal. However, it suffices to orthogonally diagonalize the 2 × 2 blocks in D via
Givens rotations to obtain an RRD, a procedure which was introduced in [26, 27] to
obtain symmetric indefinite decompositions: let Q ∈ R

n×n be an orthogonal, block-
diagonal matrix conformal to D, each 2 × 2 diagonal block of Q being the Givens
rotation used to diagonalize the corresponding diagonal block of D. Then A = XΔXT

with

X = PTLQ and Δ = QTDQ.(5)

Notice that L and X have the same condition number in any unitarily invariant norm.

1There might be advantages in computing a nonsymmetric RRD of a symmetric matrix, due to
the additional freedom in pivoting: a class of structured symmetric matrices might allow for accurate
nonsymmetric RRDs but not for accurate symmetric ones. Whether such a class exists, however, is
still an open question.



1176 MARÍA JOSÉ PELÁEZ AND JULIO MORO

One can easily show,2 adapting the proof of [11, Theorem 2.1] from the SVD
context to the eigenvalue problem, that the symmetric RRD (2) determines the eigen-
decomposition to high relative accuracy, i.e., that, as stated in [11] for the SVD,
having any symmetric RRD is as good as having an eigendecomposition, because any
small change (in the sense given by (7) below) in the factors of the RRD produces
small changes in the eigenvalues and eigenvectors.

Once we have this, the error analyses of both the J-orthogonal and the signed
SVD method guarantee the accuracy of the computed eigenvalues and eigenvectors
only if the initial factorization is computed accurately enough. Proving this for DSTU
ad TSC matrices is our goal in the present paper, but since the error analyses of both
methods are very different, the accuracy requirements on the factorizations are also
diverse. We will deal in what follows only with the signed SVD method, whose error
analysis is more amenable to our approach, but we stress that similar results hold for
the J-orthogonal method.

To analyze the accuracy of the computed RRD we proceed in two stages: First, we
see how to compute block LDLT factorizations of symmetric DSTU and TSC matrices
with componentwise small relative error, i.e., if L̂ and D̂ are the factors computed in
floating point arithmetic and L and D are the exact factors, it will be shown that

|l̂ij − lij | = O(ε)|lij |, |d̂ij − dij | = O(ε)|dij |(6)

for every i, j ∈ {1, . . . , n}. To prove this it is enough to show that no subtraction
is ever performed throughout the factorization process. Products, quotients, square
roots, and sums of quantities of like sign are harmless operations from the point of
view of producing large forward errors. The only possible source of forward instability
is cancellation, and we will rule it out by avoiding subtraction (even if the subtracted
quantities are not close to each other).

In a second stage, we will show that the RRD obtained from the block LDLT

factorization via Givens diagonalization, as in (5), satisfies the requirements which
ensure the accuracy (1). According to the error analysis in [14], these requirements
are that the factor Δ in (2) be computed with small componentwise relative errors,
and the factor X be computed with small normwise relative error in any norm, i.e.,

‖X̂ −X‖ = O(ε)‖X‖, |Δ̂ii − Δii| = O(ε)|Δii|, i = 1, . . . , n,(7)

if X̂, Δ̂ are the factors computed in floating point arithmetic and X,Δ are the exact
ones (actually, we will prove a sharper bound for X in Theorem 6). All this leads
to the conclusion that all eigenvalues and eigenvectors of symmetric DSTU and TSC
matrices can be computed with high relative accuracy via the signed SVD method,
provided the initial RRD is computed with these special factorization algorithms. To
be more precise, the eigenvalues are computed with an error of the form (1), where κ
is given by

κ = κ(R′)κ(X),(8)

2This has been done in [15]: if A = XDXT and Ã = X̃D̃X̃T are RRDs of the symmetric

matrices A and Ã, and both the normwise relative error ‖X̃−X‖/‖X‖ in X and the componentwise

relative error |D̃ii − Dii|/|Dii| in D are bounded by a quantity β smaller than 1, then, setting
η = β(2 + β)κ(X), the relative error in the eigenvalues is bounded by O(η) and the sine of the

canonical angles between the eigenvectors of A and Ã is bounded by O(η) divided by the relative
gap (see [15, section 2] for more details).
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κ(·) denotes the condition number in the two-norm, X is the nondiagonal factor in
(2), and R′ is the best conditioned row diagonal scaling of the triangular factor R
of a QR factorization with column pivoting of the product XΔ. Since it was proved
in [11, Theorem 3.2] that κ(R′) is at most of order O(n3/2κ(X)), we see that, up to a
moderate constant, the factor κ is of the order of the condition number of the factor
X in the RRD. Therefore, it is important to guarantee that κ(X) is moderate. We
will do this for symmetric DSTU matrices in Theorem 3, proving that κ(X) = O(n2).
No such bound is available so far for TSC matrices.

As for the eigenvectors, they are computed with an error of the form (1) but
replacing the usual relative gap with

relgap∗(|λi|) = min

⎧⎨
⎩min

j∈S
j �=i

∣∣∣∣
|λj | − |λi|

λi

∣∣∣∣ , 1
⎫⎬
⎭ ,(9)

where the index set S is equal to {1, . . . , n} unless the eigenvalue, say λj0 , whose
absolute value is closest to |λi| has opposite sign to λi. In that case, S is obtained
from {1, . . . , n} by removing j0 and the index k of any other eigenvalue within a
relative distance of order O(κε) of λj0 .

The paper is organized as follows. We begin in section 2 with a brief review of
some basic properties of the block LDLT factorization, which will be needed later on.
Then, we show in section 3 how to achieve accurate block LDLT decompositions of
symmetric DSTU and TSC matrices. The factorization algorithm for n × n DSTU
matrices has a computational cost of order O(n3), while the one for TSC matrices
has a worst-case cost of O(n4). Section 4 is devoted to showing that, given any block
LDLT factorization satisfying (6), all further manipulations required to derive (2)
from (4) do not spoil the accuracy. More precisely, we show that the componentwise
accuracy is preserved in Δ, and it is tranformed at worse in columnwise accuracy for
X. Some numerical experiments are presented in section 5 which confirm the high
accuracy of the proposed algorithms. Finally, we collect in Appendix A the proofs of
the results in section 2.

We end this introduction with a brief comment on singular matrices: we will
assume that all matrices A under examination are nonsingular. If A is singular,
the number of zero eigenvalues is determined from any RRD satisfying (7), and the
signed SVD method can be enhanced to compute the null vectors using a complete
QR factorization with complete pivoting. However, this is out of the scope of our
error analysis in this paper.

2. Block LDLT factorizations of symmetric matrices. One of the possible
symmetric analogues of the LU decomposition is the block LDLT decomposition
(4). Any symmetric matrix admits such a factorization [18, Chapter 11], and the
most common procedure to compute it is the diagonal pivoting method: it begins by
choosing a permutation matrix P , an integer s = 1 or s = 2, and an s × s nonsingular
pivot matrix E such that

PAPT =

(
E CT

C B

)
,

so

PAPT =

(
Is 0

CE−1 In−s

)(
E 0
0 B − CE−1CT

)(
Is E−1CT

0 In−s

)
.(10)
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The block LDLT factorization of A follows from simply repeating this same process
on the succesive (n−s)×(n−s) Schur complements B−CE−1CT . The whole process
costs n3/3 arithmetic operations plus the cost of determining the permutations.

Several symmetric strategies are available for choosing the pivot matrix E, anal-
ogous to either partial, complete, or rook pivoting in LU. Since our final goal is an
RRD, we will mostly use the Bunch–Parlett pivoting strategy [3], a symmetric ana-
logue of complete pivoting which usually produces well-conditioned factors L (see [2]
for a detailed analysis of element growth of the L factor). This pivoting strategy can
be summarized as follows:

α = (1 +
√

17)/8 0.64
μ0 = maxi,j |aij | =: |apq|
μ1 = maxi|aii| =: |arr|
If μ1 ≥ αμ0 then

choose E = [arr] as 1 × 1 pivot
else

choose E =

(
app apq
apq aqq

)
as 2 × 2 pivot

(11)

Any 2 × 2 pivot E chosen with this strategy is a symmetric indefinite, well-
conditioned matrix whose condition number is bounded by (1 + α)/(1 − α) ≈ 4.6 in
the 2-norm. The value (1 +

√
17)/8 of the constant α is chosen to ensure that the

growth factor corresponding to two successive 1 × 1 pivots equals the growth factor
corresponding to a 2 × 2 pivot.

It is well known that any final or intermediate value computed by Gaussian elim-
ination with any pivoting strategy is either a minor or a quotient of minors of the
original matrix (see Lemma 5.1 in [11]). This is a consequence of the properties of
Schur complements: given any matrix A (eventually nonsymmetric), partitioned as

A =

(
A11 A12

A21 A22

)
,

with A11 square and nonsingular, the Schur complement3 of A11 in A is

C = A22 −A21A
−1
11 A12.(12)

One of the simplest properties of C is that detA = detA11 det C or, equivalently, that
det C = detA/detA11. Hence, det C is a quotient of minors of A. To prove that
every intermediate quantity in the block LDLT factorization (4) is also a quotient
of minors of the original matrix, some properties of Schur complements are needed.
Due to their technical character, all proofs are postponed to Appendix A. We will use
MATLAB notation to state the results; i.e., A([r1, . . . , rp], [c1, . . . , cp]) denotes the
p×p submatrix of A containing the elements in rows r1, . . . , rp and columns c1, . . . , cp.
We also abbreviate as 1 : k the list of all integers from 1 to k.

Lemma 1. Let A ∈ R
n×n, let k < n and let Ak be the upper left k × k principal

submatrix of A. Then

3In order not to complicate the notation, the definition (12) and Lemma 1 are given in terms
of Schur complements of the upper left leading principal submatrix, which is the only one we will
employ below. Of course, all results hold true if A11 is replaced by any square nonsingular submatrix
of A.
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(a) the (i, j) element of the (n− k)× (n− k) Schur complement Ck of Ak in A is
given by

Ck(i, j) =
detA([1 : k, k + i], [1 : k, k + j])

detA([1 : k], [1 : k])
(13)

for each i, j ∈ {1, . . . , n− k};
(b) for any s ≤ n−k, the minor of Ck containing rows i1 < · · · < is and columns

j1 < · · · < js is given by

det Ck([i1, . . . , is], [j1, . . . , js]).

=
detA([1 : k, k + i1, . . . , k + is], [1 : k, k + j1, . . . , k + js])

detA[1 : k], [1 : k]
.

(14)

In particular, any minor of Ck is a quotient of minors of A.
As a consequence of Lemma 1, we prove our previous claim.
Theorem 1. Let A be a real symmetric matrix and let PAPT = LDLT be

a block LDLT factorization of A as described in ( 4), obtained using any pivoting
strategy. Then every entry of L or D is either zero or a quotient of minors (or just
a minor) of A.

It is interesting to observe at this point that the block LDLT factorization does
not enjoy all the good properties of the LDU decomposition obtained from Gaussian
elimination. For instance, it is not true, as it is for Gaussian elimination, that every
minor of L is a quotient of minors of A: if we consider the symmetric matrix

A =

⎛
⎝

13 39 65
39 128 274
65 274 903

⎞
⎠

which can be factorized as A = LDLT with

L =

⎛
⎝

1
3 1
5 7 1

⎞
⎠ , D =

⎛
⎝

13
11 2
2 11

⎞
⎠ ,

one can check that

detL([2, 3], [1, 2]) =

∣∣∣∣
3 1
5 7

∣∣∣∣ = 16

is not a quotient of minors of A.
We finish this section with explicit formulas for the elements of L and D as

quotients of minors of A. These formulas, which will be needed later to recompute
the entries of L, are, to our knowledge, new in the literature. They are an extension of
classical formulas for Gaussian elimination (see, e.g., [20, section 1.4]). Such classical
formulas no longer hold in our case, since, as shown by the example above, not every
minor of L is a quotient of minors of A, and this is an essential ingredient of the proofs
for Gaussian elimination. For the sake of simplicity, the formulas are written with no
reference to the pivoting permutations, but the same result holds for the factorization
(4), appropriately renaming rows and columns according to the permutation matrix
P .
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Lemma 2. Let A ∈ R
n×n be a symmetric matrix factorized as A = LDLT

with L ∈ R
n×n unit lower triangular and D ∈ R

n×n block-diagonal with 1 × 1 and
2 × 2 diagonal blocks. Let D = diag(D1, . . . , Dr) with Dk ∈ R

sk×sk , sk = 1 or
2, k = 1, . . . , r, and partition L conformally as L = [L1 | · · · |Lr] with Lk ∈ R

n×sk .
For each k ∈ {1, . . . , r}, set nk = s1 + . . . + sk. Then, for each k ∈ {1, . . . , r}, the
elements (i, j) of L with j ∈ {nk − sk + 1, . . . , nk} are given by

L(i, j) =
detA([1 : j − 1, i, j + 1 : nk], [1 : nk])

detA([1 : nk], [1 : nk])
, i = nk + 1, . . . , n,(15)

and if n0 = 0, the elements (i, j) of D with i, j ∈ {nk − sk + 1, . . . , nk} are given by

D(i, j) =
detA([1 : nk−1, i], [1 : nk−1, j])

detA([1 : nk−1], [1 : nk−1])
.(16)

3. Accurate factorization of symmetric DSTU and TSC matrices. In
this section we show that, for both DSTU and TSC matrices, the block LDLT fac-
torization (4) can be computed with componentwise small relative error, as stated in
(6). To prove it, we will modify the diagonal pivoting method in such a way that no
subtraction is ever performed throughout the factorization process. Since cancellation
is the only possible source of forward instability, the overall process will produce a
small relative forward error in each single component of L and D.

3.1. Diagonally scaled totally unimodular matrices.
Definition 2. A matrix Z with integer entries is called totally unimodular (TU)

if all its minors are −1, 0, or 1. In particular, the entries of Z must be either −1, 0,
or 1. A matrix A is diagonally scaled totally unimodular (DSTU) if A = DLZDR,
where Z is totally unimodular, and DL and DR are diagonal matrices.

The class of TU matrices contains some well-known classes as particular cases (see,
e.g., [1, section 2.3]). Some of them are acyclic matrices, finite element matrices from
linear mass-spring systems, or reduced node-arc incidence (RNAI) matrices [28]. In
our case we are interested only in symmetric DSTU matrices, i.e., symmetric matrices
A which can be written as

A = DZD,(17)

where Z is symmetric TU and D = diag(d1, . . . , dn) is diagonal. The matrix Z is
supposed to be known exactly, but the elements of D are known only to high relative
accuracy.

A first important property of DSTU matrices is that, as can be easily checked, any
Schur complement of a DSTU is still DSTU. Hence, we may use the special properties
of DSTU matrices at any stage of the factorization. The second important property,
which is the key to avoid subtraction, is the following.

Lemma 3. Any minor of a symmetric DSTU matrix (17) is a monomial with
coefficients 0, 1 or −1 in the diagonal elements di of D.

As a consequence of this, any minor of a DSTU matrix is determined to high
relative accuracy, and so are the elements of any of its Schur complements since,
according to Theorem 1, each of them is just a quotient of minors of the original
matrix.

Another interesting property of DSTU matrices is that the 2×2 pivots chosen by
the Bunch–Parlett strategy have a very special structure.
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Lemma 4. Any 2 × 2 pivot choosen by the Bunch–Parlett pivoting strategy on a
symmetric DSTU matrix has, at least, one zero entry on the diagonal.

Proof. A 2 × 2 pivot is chosen whenever

μ1 = maxi|aii| := |arr| < α |apq| =: αmaxi,j |aij | = αμ0.

If we suppose that both app and aqq are nonzero, then

|app| ≤ μ1 < α |apq|, |aqq| ≤ μ1 < α |apq|,(18)

so apq = dpdqzpq is nonzero and, consequently, also dp and dq are different from zero.
This, together with (18), implies that

|dp| < α2|dp|,(19)

in contradiction with the fact that α < 1. Hence, either app = 0 or aqq = 0.
Notice that inequality (19) is also in contradiction with α = 1. Therefore, Lemma

4 holds even if α = 1, a fact we will need in section 3.1.2 once we slightly modify the
pivoting strategy.

3.1.1. Accurate block LDLT factorization of symmetric DSTU matri-
ces. We distinguish two cases, depending on the size of the pivot chosen at each
stage.

• Case 1: The chosen pivot E = [arr] is 1 × 1.
Notice first that the elements of L computed at this stage are just a quotient

lir = (CE−1)ir =
air
arr

of elements of the Schur complement computed in the previous stage. There-
fore, lir is computed with small forward error, provided air and arr are com-
puted with small forward error as well. Computing the elements of D, how-
ever, may involve subtraction, since they are given by the formulas

(B − CE−1CT )ij = aij − lirarj .(20)

According to Theorem 1 and Lemma 3, each of the operands above is ei-
ther zero or, up to a sign, a product of powers of the diagonal elements of
D. Actually, a simple computation shows that each operand is a monomial
with coefficients ±1 or 0 in the two variables di and dj . Hence, (20) can be
rewritten as

m1 = m2 + m3

where each operand mi for i = 1, 2, 3 is a monomial with coefficient ±1 or 0
in the two variables di and dj . There are four possibilities for this arithmetic
operation, depending on whether m2 and m3 are zero or not. Three of the
possibilities give rise to no operation at all. The fourth possibility, in which
both m2 and m3 are nonzero, can have only m1 = 0 as the result of the
arithmetic operation, since the only way to obtain a coefficient 1,−1, or 0 in
the monomial m1 is that the nonzero coefficients of m2 and m3 are ±1 and
cancel each other. In other words, whenever the arithmetic operation (20)
has two nonzero operands we assign the result to zero without performing
the arithmetic operation. Thus we avoid the possible cancellation which this
operation might have produced.
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• Case 2: The chosen pivot E is 2 × 2 with largest off-diagonal element apq, p <
q.
Taking into account Lemma 4, the entries in the two columns of L are com-
puted as

lip = (CE−1)ip =
−aipaqq

a2
pq

+
aiqapq
a2
pq

,(21)

liq = (CE−1)iq =
aipapq
a2
pq

− aiqapp
a2
pq

.(22)

Again, both expressions can be written in the form m1 = m2 + m3, where
each mi is a monomial with coefficients 0, 1, or −1 in three variables, namely
di and the reciprocals of dp and dq. The same argument employed above
applies here, i.e., we can avoid any potential subtraction by setting m1 = 0
whenever both operands m2 and m3 are nonzero.
Something similar happens with the elements of D: the elements of the Schur
complement of an arbitary matrix are of the form

(B − CE−1CT )ij

= aij −
aipaqqapj − aiqapqapj − aipapqaqj + aiqappaqj

appaqq − a2
pq

,(23)

but in our case, due to Lemma 4, we have appaqq = 0. Replacing this fact in
(23), we obtain that the entries of the Schur complement are a sum

m1 = m2 + m3 + m4 + m5(24)

of at most four operands, each of which is a monomial in the variable didj
with coefficients ±1 or 0, as is the result m1 of (24). If all four operands
are zero, or if there is a single nonzero operand, no operation is performed.
If we have exactly two or four nonzero operands in (24), the same argument
employed above implies that m1 must be zero, since the only possible sum in
{1,−1, 0} of two or four numbers in {1,−1} is zero. Finally, in the case when
exactly three operands are nonzero, two of them must necessarily cancel each
other, and the result m1 is equal to the third operand. Therefore, if the three
nonzero operands are mr,ms,mt, then we can assign

m1 = −|mt|sign(mrmsmt),

where mt is any of the three operands, since all three have the same absolute
value |didj |.

Thus we have proved the following result.
Theorem 2. Algorithm 1 computes all entries of the factors L and D of the block

LDLT factorization of a symmetric DSTU matrix to high relative accuracy, i.e.,

|l̂ij − lij | = O(ε)|lij |, |d̂ij − dij | = O(ε)|dij |,

where L̂ and D̂ are the factors computed in floating point arithmetic by Algorithm 1
and L, D are the the exact factors which the diagonal pivoting method would compute
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in exact arithmetic choosing the pivots with the same dimensions and positions as
those chosen in floating point arithmetic to compute L̂ and D̂.

It should be noted that any attempt to theoretically estimate the constants inside
the O(ε) in Theorem 2 is bound to be pessimistic. Take, for instance, the number pk
of floating point operations required to compute the elements of D at stage k of the
LDLT factorization. This quantity is given by the recursive formula pk+1 = 2pk + 1,
so pk = 2k+1 − 1. Therefore, the constant inside the O(ε) given by a straightforward
error analysis would be exponential. However, this is never observed in practice.

Finally, the previous analysis suggests the following O(n3) algorithm.
Algorithm 1. Block LDLT

factorization of a symmetric DSTU matrix

A.

Input: symmetric n × n DSTU matrix A

Output: unit lower triangular matrix L, block diagonal matrix D with 1 × 1 and 2 × 2
diagonal blocks, permutation matrix P such that PAPT = LDLT .

1. for i = 1 to n
2. choose pivot according to Bunch–Parlett pivoting strategy
3. if 1 × 1 pivot aii
4. Dii = aii
5. for j = i + 1 to n
6. lji = aji/aii
7. endfor
8. for j = i + 1 to n
9. for k = i + 1 to n

10. ajk = ajk − ajiaik
Dii

11. (*)If the last subtraction has two nonzero operands, set ajk = 0
12. endfor
13. endfor

14. elseif 2 × 2 pivot,

(
aii ai,i+1

ai+1,i ai+1,i+1

)

15. Dii = aii, Di,i+1 = Di+1,i = ai,i+1, Di+1,i+1 = ai+1,i+1

16. for j = i + 1 to n

17. lji =
aj,i+1ai,i+1

a2
i,i+1

− ajiai+1,i+1

a2
i,i+1

18. (*) If the last subtraction has two nonzero operands, set lji = 0

19. endfor
20. for j = i + 2 to n

21. lj,i+1 =
aj,iai,i+1

a2
i,i+1

− aj,i+1aii
a2
i,i+1

22. (*) If the last subtraction has two nonzero operands, set lj,i+1 = 0
23. endfor
24. for j = i + 1 to n
25. for k = i + 1 to n
26. m2 = ajk,m3 = −ajqapqapk

a2
pq

,m4 = −ajpapqaqk
a2
pq

27. if app = 0

28. m5 =
ajpaqqapk

a2
pq
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29. else m5 =
ajqappaqk

a2
pq

30. endif

31. ajk = m2 + m3 + m4 + m5

32. (*) If the last addition has two or four nonzero operands,

set ajk = 0

33. (*) If the last subtraction has three nonzero operands mr,ms,mt,

34. set ajk = −|mr|sign(mrmsmt)

35. endfor

36. endfor

37. endif

38.endfor

3.1.2. A new pivoting strategy. In addition to its accuracy, another feature
of the GECP decomposition PAPT = LDU of nonsymmetric n × n DSTU matrices is
that the condition numbers of L and U grow at most quadratically with the dimension
n [11, Theorem 10.2]. To prove the same for the triangular factor L in the block LDLT

decomposition we will slightly change the pivoting strategy. Consider the following
one:

if μ0 = maxi,j |aij | = maxi|aii| = μ1

choose 1 × 1 pivot
else

choose 2 × 2 pivot

(25)

With this strategy, the entries of L are trivially bounded by 1 in absolute value, while
the best one can say for Bunch–Parlett is that |lij | ≤ 1/α ≈ 1.6 (for the elements
generated by 1 × 1 pivots). Also, the condition number in the 2-norm of the pivots
is bounded by 4.6 for Bunch–Parlett and by 2.6 for this new strategy. Notice that
the change in the value of α does not affect the validity of the results in section 3.1.1,
since Lemma 4 remains true for all α ≤ 1.

We are now in the position to prove that, with this modified pivoting strategy,
the condition number of the factor L of the block LDLT factorization (4) grows at
most quadratically with the dimension of the factorized matrix.

Theorem 3. Let A be a symmetric DSTU matrix. There is a DSTU matrix B
whose unit lower triangular factor computed by Gaussian elimination with complete
pivoting coincides with the triangular factor of the block LDLT factorization of A
obtained using the pivoting strategy (25). Therefore, the condition number of the
latter triangular factor grows at most quadratically with the dimension of A.

Proof. Without loss of generality, we may restrict ourselves to comparing the first
two steps of GECP with the corresponding steps of the diagonal pivoting method. If
the first pivot in the diagonal pivoting method is 1 × 1, then it applies to A the same
permutations as GECP, and the entries of the first column of both triangular factors
trivially coincide. Moreover, since the pivot is chosen from the diagonal, the matrix is
symmetrically permuted by GECP and the Schur complements also coincide for both
methods.

Now, suppose that the first pivot in the diagonal pivoting method is 2 × 2, say

(
app apq
aqp 0

)
.
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The proof for the case app = 0 is completely analogous. Then, if we denote by Pij the
permutation which interchanges rows i and j, the diagonal pivoting method permutes
the matrix A into P2qP1p A P1pP2q in order to place the 2 × 2 pivot matrix in the
upper left corner. GECP, on the other hand, would permute A to P1pAP1q to place
apq in the upper left corner of the matrix. However, it will be convenient for our
purpose to apply some additional permutations: applying P2q on the rows places the
zero entry aqq in the (2, 1) position. Applying P2q and P2p on the columns places the
entry aqp = apq in the (2, 2) position and reorders the entries in such a way that, if
we rename

M1 = P2qP1p A P1pP2q, M2 = P2qP1pAP1qP2qP2p,

both matrices M1 and M2 are identical, except for the first two columns, which are
switched. Now, denote by mij the (i, j) element of the symmetric matrix M1 (recall
that m22 = 0, and m12 is the entry of M1 with largest absolute value). Then the
diagonal pivoting method computes the entries of the first two columns of L as

li1 =
mi2

m12
, i = 3, . . . , n,

li2 =
mi1m12 −mi2m11

m2
12

, i = 3, . . . , n,

and the entries of the (n− 2) × (n− 2) Schur complement are

(B − CE−1CT )ij = mij +
−mi2m12m1j −mi1m12m2j + mi2m11m2j

m2
12

, i, j = 3, . . . , n.

(26)

We will prove that the first two steps of Gaussian elimination on M2 produce exactly
the same two rows of L and the same (n− 2) × (n− 2) Schur complement. The first
step of Gaussian elimination on M2 trivially produces a first column with a zero in
the first position, and li1 = mi2/m12, i = 3, . . . , n as above. The (n − 1) × (n − 1)
resulting Schur complement has the form

⎛
⎜⎜⎜⎜⎜⎜⎝

m12 · · · m2j · · ·
...

...
...

...

mi1 −
mi2m11

m12

... mij −
mi2m1j

m12

...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎠

.(27)

In the second step, GECP looks for the entry with largest absolute value in this matrix.
We claim this entry is again m12; if not, there must be some new entry, which was
not in M2, larger than m12 in absolute value. Any entry of the Schur complement
(27) vanishes whenever it is the result of a subtraction with nonzero operands, so
the only possibly new elements are quotients −(mi2m1j)/(m12). These quotients are
still monomials with coefficient ±1 in the two diagonal entries of D corresponding to
the indices i and j before A was permuted to M2. In any case, since both i, j are
different from either 1 or 2, both d̃i and d̃j are different from dp and dq. Consequently,
the absolute value of any new element in (27) is strictly smaller than the maximum
|m12| = |dpdq|.
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Hence, no permutation is needed in the second step of GECP on M2. This step
produces a second column for L with entries

li2 =
mi1 −

m11mi2

m12

m12
=

mi1m12 −m11mi2

m2
12

which coincide with the entries li2 above, replacing i by j (recall that mij = mji).
Finally, the (n− 2)× (n− 2) Schur complement computed by GE in this second step
has entries

(
mij −

mi2m1j

m12

)
−

(
m1i −

m11mi2

m12

)
m2j

m12
.

A straightforward computation shows the equality of this formula with (26). This
proves that, as claimed, two steps of Gaussian elimination on M2 produce the same two
columns for L as one 2 × 2 step of the diagonal pivoting method on M1. Furthermore,
the remaining (n− 2) × (n− 2) Schur complement is also the same.

Therefore, repeating the argument for the subsequent steps of both decomposi-
tions, we obtain that the factor L of the symmetric decomposition (4) of A is equal
to the lower triangular factor of the LDU decomposition of a nonsymmetric matrix
B = AQ for an appropriate permutation matrix Q. Notice that B is DSTU if A is
DSTU, since

B = DLZ̃DR,

with DL = D, DR = QTDQ, Z̃ = ZQ, and the latter is trivially TU. The bound on
the condition number of L follows trivially from Theorem 10.2 in [11].

The proof of Theorem 3 relies somewhat indirectly on [11, Theorem 10.2]. Trying
a more direct path, with a proof analogous to the one of [11, Theorem 10.2] is unfea-
sible, since we lack one of the essential ingredients, namely the property of Gaussian
elimination that the elements of any minor of L are a quotient of minors of the original
matrix A and, therefore, the elements of L−1 are quotients of minors of A. This no
longer holds for the LDLT factorization, as shown by the 3× 3 example in section 2.

3.2. Total signed compound matrices.

Definition 3. Let S be a set of matrices with given sparsity and sign pattern,
i.e., all matrices in S have their nonzero entries in the same position and with the
same sign. The set S is total signed compound (TSC) if, for every A ∈ S and for
every square submatrix M of A, the Laplace expansion

detM =
∑
π

[sign(p)m1,π1m2,π2 . . .ms,πs ](28)

of the determinant of M is either a sum of monomials of like sign, with at least
one nonzero monomial, or identically zero (i.e., no nonzero monomial appears in the
expression).

There are well-known classes of pattern matrices among the TSC, provided their
particular sign distribution conforms to the TSC condition. Two such examples are,
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for instance, the tridiagonal pattern⎛
⎜⎜⎜⎜⎝

+ +
+ − +
+ + +

+ − +
+ +

⎞
⎟⎟⎟⎟⎠

and the arrowhead pattern ⎛
⎜⎜⎜⎜⎝

+ + + + +
+ −
+ −
+ −
+ −

⎞
⎟⎟⎟⎟⎠

.

TSC matrices are rather sparse (there are at most 3n − 2 nonzero entries in an n ×
n TSC matrix), and there are O(n) algorithms for computing the determinant of
an n × n TSC matrices. Moreover, such algorithms compute the determinant to
high relative accuracy, since, due to the TSC property, no cancellation occurs in
the calculation (recall that the determinant is determined to high relative accuracy,
since it is subtraction-free). The O(n) cost is achieved by making use of an alternative,
constructive definition of TSC matrices: every TSC matrix can be constructed starting
from a 1 × 1 nonzero matrix and repeatedly applying four construction rules (see [1,
11] for more details). If we restrict ourselves to symmetric TSC matrices, one can
prove that only three construction rules are needed.

Theorem 4. Every TSC symmetric matrix can be obtained by starting with a 1
× 1 nonzero matrix and applying the following three construction rules repeatedly in
some order:

1. If A is symmetric and TSC, then permuting two rows and the corresponding
columns, or multiplying by −1 one row and the corresponding column, leaves
A symmetric TSC.

2. If A1 and A2 are symmetric TSC matrices, then so is the direct sum(
A1 0
0 A2

)
.

3. If the n × n Ã is symmetric and TSC, with ãii �= 0, then so is the (n+ 1) ×
(n + 1) matrix A obtained as follows:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

Ã ai,n+1

0
...
0

0 . . . 0 ai,n+1 0 . . . 0 an+1,n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where we can also set ãii to zero. The new possibly nonzero entries ai,n+1 and
an+1,n+1 must be chosen so that the two monomials in the minor an+1,n+1ãi,i−
ai,n+1an+1,i have the same sign (or are zero).

These rules will allow us to inexpensively generate TSC matrices in section 5.
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3.2.1. Accurate block LDLT factorization of symmetric TSC matri-
ces. Our interest in TSC matrices stems from the fact that all their minors can be
computed without subtraction and therefore with no cancellation. According to The-
orem 1, any intermediate quantity in the process of the block LDLT factorization is
a quotient of minors (or just a minor) of the original matrix. Although the standard
formulas for the diagonal pivoting method may require subtraction and therefore lead
to cancellation, that subtraction can be avoided if the corresponding element of L or
of the Schur complement is recomputed as a quotient of minors of the original TSC
matrix. This can be done using the formulas in Lemma 1 for the Schur complements
and the formulas in Lemma 2 for the elements of L. Moreover, the lack of cancellation
implies that these minors are computed to high relative accuracy.

The argument above amounts to proving the following theorem.
Theorem 5. Algorithm 2 computes all entries of the L and D factors of the

block LDLT factorization of a symmetric TSC matrix to high relative accuracy, i.e.,

|l̂ij − lij |
|lij |

= O(ε),
|d̂ij − dij |

|dij |
= O(ε),

where L̂ and D̂ are the factors computed in floating point arithmetic by Algorithm 2
and LandD are the the exact factors which the diagonal pivoting method would com-
pute in exact arithmetic choosing the pivots with the same dimensions and positions
as those chosen in floating point arithmetic to compute L̂ and D̂.

We now write the pseudocode for the corresponding algorithm. Of course, recom-
puting represents an overhead cost, since every s × s minor costs O(s) operations
instead of the O(1) operations for the standard formula (any submatrix of a TSC ma-
trix is trivially TSC). Therefore, the following modification of the diagonal pivoting
method can cost in the worst case as much as O(n4) arithmetic operations, the same
asymptotic order of the algorithm computing nonsymmetric RRDs of TSC matrices
in [11] (see [11, Theorem 7.2, p. 60]). For more on this question, see the experiment
below at the end of section 5.2.

Algorithm 2. Block LDLT
factorization of a symmetric TSC matrix

A.

Input: symmetric n × n TSC matrix A

Output: unit lower triangular matrix L, block diagonal matrix D with 1 × 1 and 2 × 2
diagonal blocks, permutation matrix P such that PAPT = LDLT .

1. for i = 1 to n
2. choose pivot according to Bunch–Parlett pivoting strategy
3. if 1 × 1 pivot, aii
4. Dii = aii
5. for j = i + 1 to n
6. lji = aji/aii
7. endfor
8. for j = i + 1 to n
9. for k = i + 1 to n
10. ajk = ajk − ajiaik

Dii
11. (*) If the last subtraction has two nonzero operands with the

same sign, recompute ajk as the quotient of two minors of A
according to formula (13) in Lemma 1
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12. endfor
13. endfor

14. elseif 2 × 2 pivot,

(
aii ai,i+1

ai+1,i ai+1,i+1

)

15. Dii = aii, Di,i+1 = Di+1,i = ai,i+1, Di+1,i+1 = ai+1,i+1

16. for j = i + 1 to n
17. dpiv = aiiai+1,i+1 − a2

i,i+1

18. (*) If this subtraction has two nonzero operands with the same sign,
recompute dpiv as the quotient of two minors of A
according to formula (14) in Lemma 1

19. lji =
ajiai+1,i+1

dpiv
− aj,i+1ai,i+1

dpiv

20. (*) If the last subtraction has two nonzero operands with the same
sign, recompute lji as the quotient of two minors of A
according to formula (15) in Lemma 2

21. endfor
22. for j = i + 2 to n

23. lj,i+1 = −aj,i+1ai,i+1

dpiv
+

aj,i+1aii
dpiv

24. (*) If the last subtraction has two nonzero operands with the same
sign, recompute lj,i+1 as the quotient of two minors of A
according to formula (15) in Lemma 2

25. endfor
26. for j = i + 1 to n
27. for k = i + 1 to n

28. ajk = ajk − ajpaqqapk
dpiv

− ajqapqapk
dpiv

− ajpapqaqk
dpiv

+
ajqappaqk

dpiv

29. (*) If the last subtraction has two nonzero operands with the
same sign, recompute ajk as the quotient of two minors of A

according to formula (13) in Lemma 1
30. endfor
31. endfor
32. endif
33.endfor

4. From LDLT to RRD. Once we have a block LDLT factorization, we have
seen in (5) how to obtain a symmetric RRD by Givens diagonalization. It is not hard to
show that, since L is computed with small elementwise error and X = PTLQ is, up to
permutations, the result of a floating point Givens transformation (see, e.g., [6, Lemma
3.1]), the computed X satisfy (7). However, we will prove a tighter bound in Theorem 6
below, namely that X is computed with columnwise small relative errors. Note also
that X and L have the same condition number, so if L is well-conditioned, then so is
X (this is guaranteed, for instance, for DSTU matrices, according to Theorem 3).

4.1. Error analysis. We present here the error analysis showing that the block
LDLT factorization, followed by Givens diagonalization, leads to RRDs satisfying the
requirement (7) for accurately computing eigenvalues and eigenvectors via the signed
SVD method. We make no distinction between DSTU and TSC matrices, since the
error analysis is valid for any matrix such that its block LDLT decomposition can be
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computed with small componentwise error as in (6). The analysis is related to the
one in [15] and uses some results appearing in [15]. To be more precise we need some
notation: we assume the conventional model for floating point arithmetic,

fl(a	 b) = (a	 b)(1 + δ),(29)

where a and b are real floating point numbers, 	 ∈ {+,−,×, /}, and |δ| ≤ ε, where
ε is the machine precision. Moreover, we assume that neither overflow nor underflow
occur. Also, for each k > 0 we set

γk =
kε

1 − kε
,(30)

and as in [18, section 3.4], we denote by θk any positive quantity bounded by γk.
Finally, given a real symmetric 2 × 2 matrix, we write the Jacobi orthogonal diago-
nalization procedure as

(
a c
c b

)
=

(
cs sn
−sn cs

)(
λ1

λ2

)(
cs −sn
sn cs

)
,(31)

with λ1 = a− ct, λ2 = b + ct, where

t =
sign(ζ)

|ζ| +
√

1 + ζ2
for ζ =

b− a

2c
(32)

and

cs =
1√

1 + t2
, sn = cs · t.(33)

The main result in this section, written with this notation, is the following.
Theorem 6. Let A ∈ R

n×n be a symmetric matrix and let L̂, D̂ be the computed
factors of a block LDLT factorization of A obtained through the diagonal pivoting
method using the Bunch–Parlett pivoting strategy (11) (i.e., α = (1+

√
17)/8). Suppose

that L̂, D̂ have been computed with small componentwise relative error

l̂ij = lij(1 + θ
(ij)
K

L
), i, j = 1, . . . , n,

d̂ij = lij(1 + θ
(ij)
K

D
), i, j = 1, . . . , n,

(34)

for appropriate constants K
L
,K

D
> 0, and let X̂, Δ̂ (resp., X,Δ) be the computed

(resp., exact) factors of a symmetric RRD obtained by Givens diagonalization (5) in
floating point (resp., in exact arithmetic) using formulas (31)–(33). Then

|Δ̂jj − Δjj |
|Δjj |

≤ 4
1 + α

1 − α
γK

D
+29, j = 1, . . . , n,(35)

and

‖X̂(:, j) −X(:, j)‖2

‖X(:, j)‖2
≤

√
2nC2 + 1 γM , j = 1, . . . , n,(36)

where C is

C =
1

1 − α
+ O(ε).
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and

M = max{48K
L

+ 141,K
L

+ 48K
D

+ 143}.(37)

To prove it we will use the fact that the computed diagonalizing transformation
is close entrywise to the exact one. The following result is taken from [15, Appendix
A.3].

Lemma 5 (see [15]). Let

Ã =

(
ã c̃

c̃ b̃

)
=

(
a(1 + δa) c(1 + δc)
c(1 + δc) b(1 + δb)

)

be a matrix of real floating point numbers, with max{|δa|, |δb|, |δc|} ≤ γk and α|c̃| ≥
max{|ã|, |̃b|}. Let

A =

(
a c
c b

)
,

with eigenvalues λ1 ≥ λ2, and orthonormal eigenvectors v1 = [cs,−sn]T and v2 =

[sn, cs]. Let λ̂1, λ̂2, ĉs and ŝn be the versions of λ1, λ2, cs and sn computed in floating

point arithmetic for Ã according to formulas (31)–(33). If

4
√

2
1 + α

1 − α
γk+29 ≤ 1 and γ141+48k ≤ 1,

then

|λ̂i − λi|
|λi|

≤ 4
1 + α

1 − α
γk+29, i = 1, 2,(38)

and

ĉs = cs(1 + θ16k+113), ŝn = cs(1 + θ48k+141).(39)

Proof of Theorem 6. First, we may assume that P = I, since no error is introduced
by the pivoting permutations. Let Q̂ be the computed orthogonal matrix diagonalizing
D̂; i.e., if D̂ = diag(D̂1, . . . , D̂r) with Dk ∈ R

sk×sk , sk = 1 or 2, k = 1, . . . , r, then

Q̂ = diag(Q̂1, . . . , Q̂r) with Qk ∈ R
sk×sk , k = 1, . . . , r. The 1 × 1 blocks of Q̂k are

equal to 1, and each 2 × 2 block

Q̂k =

(
ĉs −ŝn
ŝn ĉs

)
(40)

is the version computed in floating point arithmetic of the Jacobi rotation which would
diagonalize the 2×2 block D̂k in exact arithmetic. Analogously, Q = diag(Q1, . . . , Qr),
where

Qk =

(
cs −sn
sn cs

)

is the exact Jacobi rotation diagonalizing the diagonal block Dk of D. For those
columns j corresponding to a pivot with sk = 1, we have Δ̂jj = d̂jj , Δjj = djj and
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X̂(:, j) = L̂(:, j), X(:, j) = L(:, j), so (35) and (36) are trivially satisfied. Therefore,
only the columns corresponding to 2 × 2 pivots must be considered. Let the jth and
(j + 1)st be two such columns. First, inequality (35) follows directly from applying

Lemma 5 in our setting, i.e., taking Ã, A, λ1, λ2 , and k to be equal, respectively, to
D̂, D, Δjj , Δj+1,j+1, and K

D
. With this choice, inequality (38) reduces to (35). To

prove (36), note that

X = LQ, X̂ = fl(L̂Q̂),

where fl(expr) denotes the computed result in finite precision of expression expr.
Reading these identities entrywise for columns j and j + 1, we get

X̂(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

0 if i < j ,
ĉs if i = j ,
ŝn if i = j + 1 ,

fl(l̂ij ĉs + l̂i,j+1 ŝn) if i > j + 1 ,

(41)

X̂(i, j + 1) =

⎧⎪⎪⎨
⎪⎪⎩

0 if i < j ,
−ŝn if i = j ,
ĉs if i = j + 1 ,

fl(−l̂ij ŝn + l̂i,j+1ĉs) if i > j + 1

and the same equalities without hats for the entries of X. Therefore,

||X̂(:, j)−X(:, j)||22 = (ĉs−cs)2+(ŝn−sn)2+

n∑
i=j+2

[fl(l̂ij ĉs+l̂i,j+1ŝn)−(lijcs+li,j+1sn)]2.

Using (34), (29), and (39), we may write

fl(l̂ij ĉs + l̂i,j+1ŝn) =
[
lij cs (1 + θ

(i,j)
K

L
) (1 + θ16K

D
+113) (1 + δ1)

+ li,j+1 sn (1 + θ
(i,j+1)
K

L
) (1 + θ48K

D
+141) (1 + δ2)

]
(1 + δ3)

= lij cs (1 + θK
L

+16K
D

+115) + li,j+1 sn (1 + θK
L

+48K
D

+143).

Hence, again using (39),

‖X̂(:, j) −X(:, j)‖2
2 = (cs θ16K

D
+113)

2 + (sn θ48K
D

+141)
2+

+

n∑
i=j+2

(
lij cs θK

L
+16K

D
+115 + li,j+1 sn θK

L
+48K

D
+143

)2

≤ (γ48K
L

+141)
2 + 2n (γK

L
+48K

D
+143)

2max{|lij |2, |li,j+1|2},

where we have used the monotonicity of γk in k. At this point, we must observe that,
although the the Bunch–Parlett strategy ensures that the entries of the computed L̂
satisfy |l̂ik| ≤ 1/(1 − α) for all i, k, this may not be true for the entries lik of the
exact L. The entrywise bound (34), however, implies (after some calculations) that
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|lik| ≤ C for a constant C which is equal to 1/(1 − α) up to first order terms4 in ε.
Therefore,

‖X̂(:, j) −X(:, j)‖2 ≤
√

1 + 2nC2 γM

with M given by (37), which leads trivially to (36), since ‖X(:, j)‖2
2 ≥ cs2 + sn2 ≥

1.

5. Numerical experiments. We have performed extensive numerical tests which
confirm the correctness of our algorithms. All of them were done in MATLAB 5.3
using an AMD Athlon (tm) XP 2000+ processor with IEEE arithmetic.

We have used as a reference the eigenvalues and eigenvectors computed using
Maple’s variable-precision arithmetic available from the Symbolic Math Toolbox of
MATLAB through the command vpa. For each matrix A, the “exact” eigendecompo-
sition is obtained using MATLAB’s usual command eig (i.e., with the QR algorithm)
but setting the variable digits, which specifies the number of significant decimal dig-
its used by Maple to 18 + d if the condition number of A is O(10d). We denote by λi

and qi the eigenvalues and eigenvectors computed in this way and by λ̂i and q̂i those
computed via the signed SVD method implemented in MATLAB. Therefore, λ̂i, q̂i
are computed in double precision arithmetic, i.e., ε ≈ 2.2 · 10−16. The initial RRD
factorization is implemented in MATLAB, using Algorithm 1 for DSTU matrices and
Algorithm 2 for TSC matrices.

We analyzed the following quantities:
1. the maximum relative error in eigenvalues:

eλ = maxi

∣∣∣∣ λi − λ̂i

λi

∣∣∣∣ ;(42)

2. a control quantity for eigenvalues:

ϑλ =
eλ
κε

,(43)

where ε is the machine precision, and κ = κ(R′) κ(X) as in (8)—this quantity
is expected to be roughly O(1) in the experiments;

3. the maximum relative error in the eigenvectors:

eq = maxi||q̂i − qi||2;(44)

4. a control quantity for eigenvectors:

ξq = maxi
||q̂i − qi||2 relgap∗(λ̂i)

κε
(45)

with κ as above and relgap∗ defined as in (9). Again, ξq should be O(1) for
the experiments to confirm our analysis.

4See [15] for a more detailed analysis, which proves that

C =
1

(1 − α)(1 − γg(α))
, g(α) =

(
32

(
1 + α

1 − α

)2

+ 196
1 + α

1 − α

)
KD .
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5.1. Diagonally scaled totally unimodular matrices. We generated TU
nonsingular matrices of sizes 6, 8, 10, and 12. We were unable to generate matrices
of larger dimension due to the high cost of the generating routine: it generates TU
matrices recursively, starting from a TU matrix of size 1, i.e., either −1, 1, or 0. Given
a generated matrix of size s, the algorithm constructs a s + 1 × s + 1 TU matrix by
adjoining a new row and column, with entries randomly chosen among −1, 1, 0, and
checking whether all new minors containing entries from that row and column are
equal to −1, 1, or 0. The computational cost of checking the minors is what makes
the algorithm so costly.

Once we have a TU matrix, we scale it on both sides with diagonal matrices
with powers of 10 on the diagonal, their condition numbers ranging from 105 to 1020.
Therefore, the corresponding DSTU matrices will have condition numbers ranging
roughly from 1010 to 1040. For each size we divide the experiments in three groups
according to their condition number: condition numbers ranging from 1010 to 1020,
from 1020 to 1030, and from 1030 to 1040. We generate 100 matrices for each range,
so the following tables reflect the results on 1200 matrices, 300 for each dimension.
Table 1 shows the control quantities ϑλ for eigenvalues, while Table 2 shows the control
quantities ξq for eigenvectors. For each dimension there are two columns, the left one
displaying the average over the 100 tests made in that range of condition numbers
and the right one displaying the largest value for the control quantity among the 100
experiments.

Table 1

Statistical data for accuracy in eigenvalues of DSTU matrices: ϑλ.

n = 6 n = 8 n = 10 n = 12

κ(A) = O(10d) Mean Max Mean Max Mean Max Mean Max
10 ≤ d ≤ 20 1.412 6.689 1.746 32.34 1.879 19.14 1.425 9.310
20 ≤ d ≤ 30 1.460 16.34 1.652 38.14 1.432 13.49 1.696 45.45
30 ≤ d ≤ 40 1.699 26.65 1.338 11.34 1.157 3.949 1.719 33.02

Table 2

Statistical data for accuracy in eigenvectors of DSTU matrices: ξq.

n = 6 n = 8 n = 10 n = 12

κ(A) = O(10d) Mean Max Mean Max Mean Max Mean Max
10 ≤ d ≤ 20 0.508 2.653 0.508 1.886 0.579 1.989 0.605 2.364
20 ≤ d ≤ 30 0.502 1.914 0.518 1.716 0.623 2.214 0.603 1.928
30 ≤ d ≤ 40 0.447 1.884 0.582 2.795 0.571 2.840 0.621 2.697

5.2. Total signed compound matrices. We generated TSC matrices of sizes
10, 20, 40, and 60 by starting from a nonzero 1 × 1 matrix and repeatedly applying
rules 2 and 3 in Theorem 4. Rule 2 was applied with a probability of 5%, choosing as
A2 one of the blocks of the TSC matrix A1 computed in the previous stage. Otherwise,
rule 3 was applied, generating the new quantities ai,n+1, an+1,n+1 with MATLAB’s
rand command. Whenever rule 3 was employed, the diagonal entry ãii was set to zero
with a probability of 20%. Finally, large condition numbers were induced by scaling
the resulting matrices on both sides with ill-conditioned diagonal matrices, exactly as
in the experiment for DSTU matrices. Notice that, since the scaling matrices were
positive, the sign pattern of the matrix does not change under scaling. Again, 1200
matrices were generated, 100 for each dimension and each range of condition numbers.
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The results are summarized in Tables 3 and 4.

Table 3

Statistical data for accuracy in eigenvalues of TSC matrices: ϑλ.

n = 10 n = 20 n = 40 n = 60

κ(A) = O(10d) Mean Max Mean Max Mean Max Mean Max
10 ≤ d ≤ 20 1.446 10.024 1.449 4.196 1.940 8.802 2.280 9.639
20 ≤ d ≤ 30 1.332 6.579 2.170 38.68 2.033 5.172 2.278 9.528
30 ≤ d ≤ 40 1.362 5.973 1.591 7.411 2.841 44.70 2.502 9.583

Table 4

Statistical data for accuracy in eigenvectors of TSC matrices: ξq.

n = 10 n = 20 n = 40 n = 60

κ(A) = O(10d) Mean Max Mean Max Mean Max Mean Max
10 ≤ d ≤ 20 0.682 3.044 0.843 2.987 1.292 3.342 1.418 3.641
20 ≤ d ≤ 30 0.717 7.438 0.889 4.215 1.294 3.034 1.405 3.665
30 ≤ d ≤ 40 0.800 3.768 0.893 3.386 1.265 2.802 1.471 3.672

As can be seen from the tables, the results confirm our theoretical predictions.
In parallel, we also computed eigenvalues and eigenvectors of the test matrices with
MATLAB’s eig command. As expected, the relative errors were huge, providing no
correct digit in the smaller eigenvalues.

We conclude with an experiment to estimate the actual computational cost of
the LDLT factorization for symmetric TSC matrices: we randomly generate one
hundred symmetric TSC matrices for each size from 10 to 100 in steps of ten, i.e., we
generate one hundred 10 × 10 matrices, one hundred 20 × 20 matrices, one hundred
30 × 30 matrices and so on, i.e., one thousand test matrices in all. For each matrix
we compute an LDLT factorization using Algorithm 2, and we record the number of
flops employed by the factorization procedure. Each star in Figure 1 corresponds to
a given size and represents the arithmetic mean of the one hundred data obtained for
that size, plotted in a log-log scale, with the logarithm of the size n of the matrix on
the horizontal axis. The solid line corresponds to flops= n4, and the dashed line to
flops= n3. As can be seen in the figure, the cost seems to be somewhere in between.
However, since we have no estimation of the constants involved in the big-oh, it is
hard to draw any specific conclusion, other than that the cost seems not to be too
high.

Appendix A. Proofs of results in section 2.

Underlying the results in section 2 is one of the most useful properties of Schur
complements, usually known as the quotient property (see, e.g., [5, section 2]).

Lemma 6. Let M be any square matrix, partitioned as

M =

(
B ∗
∗ ∗

)
, with B =

(
B1 ∗
∗ ∗

)
,

where B and B1 are square nonsingular. Let CB
1 (resp., CM

1 ) be the Schur complement
of B1 in B (resp., in M). Then the Schur complement of B in M is equal to the Schur
complement of CB

1 in CM
1 .

With this result one can easily prove Lemma 1.
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Fig. 1. Computational cost of LDLT factorization for symmetric TSC matrices of sizes ranging
from 10 to 100.

Proof of Lemma 1. We will prove (a) by induction on k. If k = 1, the elements of
C1 are

C1(i, j) = ai+1,j+1 −
ai+1,1 a1,j+1

a11
=

ai+1,j+1 a11 − ai+1,1 a1,j+1

a11

=
detA([1, i + 1], [1, j + 1])

detA([1], [1])
,

which is just (13) with k = 1. Now, suppose that (13) is true for some k ∈ {1, 2 . . . n}.
We will show that then it is also true for k + 1. According to Lemma 6, the Schur
complement Ck+1 of Ak+1 in A is the result of taking two successive Schur comple-
ments: first the Schur complement Ck of Ak in A and then the Schur complement of
the (1, 1) entry in Ck. We know from the induction hypothesis that

Ck(i, j) =
detA([1 : k, k + i], [1 : k, k + j])

detA([1 : k], [1 : k])
.

Substituting this into the formula

Ck+1(i, j) = Ck(i + 1, j + 1) − Ck(i + 1, 1)Ck(1, j + 1)

Ck(1, 1)

for the elements of Ck+1 leads to

Ck+1(i, j) =

∣∣∣∣
detA([1 : k, k + i + 1], [1 : k, k + j + 1]) detA([1 : k, k + 1], [1 : k, k + j + 1])

detA([1 : k, k + i + 1], [1 : k, k + 1]) detA([1 : k, k + 1], [1 : k, k + 1])

∣∣∣∣
detA([1 : k], [1 : k]) detA([1 : k, k + 1], [1 : k, k + 1])

.
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It suffices to apply Sylvester’s identity [19, p. 22] to the numerator to obtain (13) with
k + 1 instead of k.

Once (a) has been proved, all elements of Ck([i1, . . . , is], [j1, . . . , js]) can be writ-
ten as quotients with the same denominator dk = detA([1 : k], [1 : k]. Hence, the
submatrix can be written as (1/dk)M , where, for each l,m ∈ {1, . . . , s}, the element
(l,m) of M is detA([1 : k, k + il], [1 : k, k + jm]). Applying again Sylvester’s formula
to M proves part (b).

Proof of Theorem 1. The proof is similar to the one of Lemma 5.1 in [11, p. 52].
The entries of D are either entries of A or entries of a Schur complement of A. Hence,
by Lemma 1, any entry of D is either an entry of A or a quotient of minors of A.
Now consider an entry lij of L generated by a 1 × 1 pivot. Then lij is a quotient of
two elements of the corresponding Schur complement of A, and since both elements
have been created at the same stage of the factorization algorithm, by part (a) of
Lemma 1 they are quotients of the form (13) with the same denominator. Hence,
both denominators cancel out in the quotient and lij is a quotient of minors of A.
The argument is similar for the entries of L generated by 2 × 2 pivots, using part (b)
of Lemma 1 instead of part (a).

Proof of Lemma 2.
We distinguish the cases sk = 1 and sk = 2. If sk = 1, then nk = nk−1 + 1 and

L(i, nk) =
Ck−1(i, 1)

Ck−1(1, 1)
, i ∈ {nk + 1, . . . , n},

which, according to part (a) of Lemma 1, is equal, after simplifying, to

L(i, nk) =
detA([1 : nk−1, nk−1 + i], [1 : nk−1, nk−1 + 1])

detA([1 : nk−1, nk−1 + 1], [1 : nk−1, nk−1 + 1])
=

detA([1 : nk−1, i], [1 : nk])

detA([1 : nk], [1 : nk])
.

If sk = 2, then nk = nk−1 + 2 and, for each i ∈ {nk + 1, . . . , n}, we have

L(i, nk − 1) =

∣∣∣∣
Ck−1(i, 1) Ck−1(i, 2)
Ck−1(1, 2) Ck−1(2, 2)

∣∣∣∣∣∣∣∣
Ck−1(1, 1) Ck−1(1, 2)
Ck−1(2, 1) Ck−1(2, 2)

∣∣∣∣

and

L(i, nk) =

∣∣∣∣
Ck−1(1, 1) Ck−1(2, 1)
Ck−1(i, 1) Ck−1(i, 2)

∣∣∣∣∣∣∣∣
Ck−1(1, 1) Ck−1(1, 2)
Ck−1(2, 1) Ck−1(2, 2)

∣∣∣∣
.

In both cases, Sylvester’s identity, combined with Lemma 1, lead to the formula in
the statement. Finally, the formulas for the elements of D are trivially obtained if
we use the fact that the elements of D are either elements of the original matrix or
elements of some Schur complement.
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[29] K. Veselić, A Jacobi eigenreduction algorithm for definite matrix pairs, Numer. Math., 64
(1993), pp. 241–269.
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